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Abstract. We study long-range interacting systems driven by external
stochastic forces that act collectively on all the particles constituting the system.
Such a scenario is frequently encountered in the context of plasmas, self-
gravitating systems, two-dimensional turbulence, and also in a broad class of other
systems. Under the effect of stochastic driving, the system reaches a stationary
state where external forces balance dissipation on average. These states have an
invariant probability that does not respect detailed balance, and are characterized
by non-vanishing currents of conserved quantities. In order to analyze spatially
homogeneous stationary states, we develop a kinetic approach that generalizes the
one known for deterministic long-range systems; we obtain a very good agreement
between predictions from kinetic theory and extensive numerical simulations.
Our approach may also be generalized to describe spatially inhomogeneous
stationary states. We also report on numerical simulations exhibiting a first-order
nonequilibrium phase transition from homogeneous to inhomogeneous states.
Close to the phase transition, the system shows bistable behavior between the
two states, with a mean residence time that diverges as an exponential in the
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inverse of the strength of the external stochastic forces, in the limit of low values
of such forces.

Keywords: stochastic particle dynamics (theory), stationary states
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1. Introduction

Systems of particles interacting through two-body non-integrable potentials, also called
long-range interactions, abound in nature. Common examples are plasmas interacting
through a repulsive or attractive Coulomb potential, self-gravitating systems (globular
clusters, galaxies) involving interaction through an attractive Newton potential, two-
dimensional turbulence, and many others. In addition, there are several model systems
with non-integrable interactions which have been studied extensively in recent years, such
as spins, vortices in two dimensions, etc [1]–[5].

Very often, these systems are acted upon by external stochastic forces that drive
them out of equilibrium. Unlike systems with short-range interactions, stochastic forces
in long-range interacting systems act coherently on all particles, and not independently
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on each particle. Consider, for example, globular clusters being influenced by the
gravitational potential of their galaxy, which produces a force which fluctuates along
their physical trajectories. In addition, galaxies themselves feel the random potential
of other surrounding galaxies, and their halos are subjected to transient and periodic
perturbations, which may be due to the passing of dwarfs or to orbital decay [6]. Dynamics
of plasmas are also strongly influenced by fluctuating electric and magnetic fields due to
the ever-changing ambiance [7]. In situations of stochastic driving, the systems at long
times often reach a nonequilibrium stationary state that violates detailed balance. In
such a state, the power injected by the external random fields balances on average the
dissipation, and there is a steady flux of conserved quantities through the system.

Study of nonequilibrium stationary states (NESS) is an active area of research of
modern day statistical mechanics. One of the primary challenges in this field is to
formulate a tractable framework to analyze nonequilibrium systems on a common footing,
similar to the one due to Gibbs and Boltzmann that has been established for equilibrium
systems [8]–[10]. This paper provides, to our knowledge, the first study of NESS in long-
range systems with statistical mechanical perspectives.

Common theoretical approaches to study isolated systems with long-range interactions
include the kinetic theory description of relaxation towards equilibrium. In plasma
physics and astrophysics, this approach leads to the Lenard–Balescu equation or to
the approximate Landau equation [11, 12]. One of the main theoretical results of this
paper is a detailed development of a generalization of this kinetic theory approach to
describe nonequilibrium stationary states in systems with long-range interactions driven
by external stochastic forces, valid in the limit of small external stochastic fields. The
nonequilibrium kinetic equation that we obtain describes the temporal evolution of the
one-particle distribution function. In the limit of small external forcing, the system settles
into a stationary state, in which we find the one-particle momentum distribution to be non-
Gaussian. The predictions of our kinetic equation for spatially homogeneous stationary
states compare very well with results of our extensive N -particle numerical simulations
on a paradigmatic model of long-range interacting systems. Our numerical simulations
also exhibit a nonequilibrium phase transition between homogeneous and inhomogeneous
states. Close to the phase transition, we demonstrate the occurrence of bistability between
these two types of states, with a mean residence time that diverges as an exponential in
the inverse of the strength of the external forcing, in the limit of low values of such forcing.

Similar bistable behavior has recently been observed in two-dimensional turbulence
with stochastic forcing [13]. We believe that such phase transitions are essential
phenomena for geophysical flows and climate, for which the two-dimensional Euler
equations are a simplified paradigmatic model. There exists a very strong analogy between
the two-dimensional Euler equations and the Vlasov equation relevant for leading order
dynamics of the model we discuss in this paper [14, 15]. One of the motivations of the
present work is to be able to study analogous phenomena in a setup for which the theory
can be more easily worked out.

In a recent letter, we reported on some of the above findings, in one of the first studies
of nonequilibrium stationary states in systems with non-integrable potentials and driven
by external stochastic fields [16]. The aim of this paper is to present a detailed derivation
of the results given in [16], as well as to report on additional empirical results, more
specifically nonequilibrium phase transitions.

doi:10.1088/1742-5468/2012/12/P12010 3
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We note that [17] presents a computation of the same kinetic equation as the one we
describe in this work and in [16]. Nevertheless, the result is different.

The structure of the paper is as follows. In section 2, we define the dynamics we are
going to consider of a long-range interacting system driven by external stochastic forces.
We also discuss the paradigmatic example of the Hamiltonian mean-field (HMF) model.
In section 3, we discuss the methods we adopt to analyze the dynamics. In particular,
we give a detailed derivation of the kinetic theory to study spatially homogeneous
stationary states of the dynamics. We describe the numerical simulation scheme that we
employ to study the dynamics, specifically, to check the predictions of our kinetic theory.
This is followed by a discussion in section 4 of the results obtained from the kinetic
theory, and their comparison with numerical simulation results for spatially homogeneous
stationary states. In section 5, we discuss the results of numerical simulations of spatially
inhomogeneous stationary states. We report on the very interesting bistable behavior in
which the system in the course of its temporal evolution switches back and forth between
homogeneous and inhomogeneous states, with a mean residence time that we show to be
diverging as an exponential in the inverse of the strength of the external stochastic forcing,
in the limit of low values of such forcing. We close the paper with concluding remarks.
Some of the technical details of our computation are collected in the four appendices.

2. Long-range interacting systems driven by stochastic fields

2.1. The model

Consider a system of N particles interacting through a long-range pair potential, and
described by the Hamiltonian

H =
N∑
i=1

p2
i

2
+

1

2N

N∑
i,j=1

v(qi − qj). (1)

Here, qi and pi are, respectively, the coordinate and the momentum of the ith particle, and
v(q) is the two-body interaction potential. We take the particles to be of unit mass. In this
paper, for simplicity, we regard qis as scalar periodic variables of period 2π; generalization
to qi ∈ Rn, with n = 1, 2 or 3, is straightforward.

In plasma physics, the typical number of particles interacting with one particle is given
by the coupling parameter Γ = nλ3

D, where n is the number density, and λD is the Debye
length. It is then usual to rescale time such that the inverse of Γ multiplies the interaction
term [11]. In self-gravitating systems, the dynamics is dominated by collective effects, so
that it is natural to rescale time in such a way that the parameter 1/N multiplies the
interaction potential [18]. These facts explain the rescaling of the potential energy by 1/N
in equation (1), called the Kac scaling in systems with long-range interactions [19]. We
emphasize that no generality is lost in adopting the Kac prescription.

We perturb the system (1) by a statistically homogeneous Gaussian stochastic field
F (q, t) with zero mean, and variance given by

〈F (q, t)F (q′, t′)〉 = C(|q − q′|)δ(t− t′). (2)

doi:10.1088/1742-5468/2012/12/P12010 4
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The resulting equations of motion for the ith particle are

q̇i =
∂H

∂pi
, and ṗi = −∂H

∂qi
− αpi +

√
αF (qi, t). (3)

The property that the Gaussian fields F (qi, t) are statistically homogeneous, i.e., the
correlation function C depends solely on |q− q′|, is consistent with any perturbation that
respects space homogeneity. Such a property is necessary for the discussions later in the
paper on the kinetic theory approach to describe spatially homogeneous stationary states
of the dynamics (3). Note that C(q) is the correlation, so that it is a positive-definite
function [20], and its Fourier components are positive:

ck ≡
1

2π

∫ 2π

0

dq C(q) e−ikq > 0; c−k = ck, C(q) = c0 + 2
∞∑
k=1

ck cos(kq). (4)

We find it convenient to use the equivalent Fourier representation of the Gaussian field
F (q, t) as follows:

F (q, t) =
√
c0 X0(t) +

∞∑
k=1

√
2ck [cos(kq)Xk(t) + sin(kq)Yk(t)] , (5)

where X0(t), Xk(t) and Yk(t) are independent scalar Gaussian white noises satisfying

〈Xk(t)Xk′ (t′)〉 = δk,k′δ(t− t′), (6)

〈Yk(t)Yk′ (t′)〉 = δk,k′δ(t− t′), (7)

〈Xk(t)Yk′ (t′)〉 = 0. (8)

For stochastic dynamics of the type equation (3), general mathematical results allow one
to prove that the dynamics is ergodic (see, for instance, [21]).

Using the Itō formula [22] to compute the time derivative of the energy density
e = H/N , then averaging over noise realizations gives〈

de

dt

〉
+ 〈2ακ〉 =

α

2
C(0), (9)

where κ =
∑N

i=1p
2
i /(2N) is the kinetic energy density. On integration, we get for

homogeneous states for which e = κ that

〈k(t)〉 =

(
〈k(0)〉 − C(0)

4

)
e−2αt +

C(0)

4
. (10)

The average kinetic energy density in the stationary state is thus 〈κ〉ss = C(0)/4. We
define the kinetic temperature of the system as

〈κ〉ss ≡
T

2
; (11)

as a result, we have

T =
C(0)

2
. (12)

Let us note that in the dynamics (3), fluctuations of intensive observables due to

stochastic forcing are of order
√
α, while those due to finite-size effects are of order 1/

√
N .

doi:10.1088/1742-5468/2012/12/P12010 5
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Moreover, the typical timescale associated with the effect of stochastic forces is 1/α, as is
evident from equation (10), while the one associated with relaxation to equilibrium due
to finite-size effects is of order N , see [1, 2].

Our theoretical analysis to study the dynamics (3) by means of kinetic theory is
valid for any general two-particle interaction potential v(q). However, in order to perform
simple numerical simulations with which we may check the predictions of the kinetic
theory, we specifically make the choice v(q) = 1 − cos q, which defines the stochastically
forced attractive Hamiltonian mean-field (HMF) model, as detailed below.

2.2. A specific example: the stochastically forced HMF model

The Hamiltonian mean-field (HMF) model is a paradigmatic model to study long-
range interacting systems. The model describes particles moving on a circle under
deterministic Hamiltonian dynamics, and interacting through the interparticle potential
v(q) = 1 − cos q [23, 24]. It displays many features of generic long-range interacting
systems, e.g., existence of quasistationary states [1, 24]. In equilibrium, the model has
a second-order phase transition from a high-energy spatially homogeneous phase to a low-
energy inhomogeneous phase at the energy density ec = 3/4, corresponding to the critical
temperature Tc = 1/2. In a system of N particles, the degree of spatial inhomogeneity at
time t is measured by the magnetization variable m(t), defined as

m(t) =
1

N

√√√√( N∑
i=1

cos qi

)2

+

(
N∑
i=1

sin qi

)2

. (13)

In the thermodynamic limit N → ∞, the magnetization in the steady state decreases
continuously as a function of energy from one to zero at the transition energy ec, and
remains zero at all higher energies. When forced by the stochastic forces F (qi, t) resulting
in the dynamics (3), we call the corresponding model the stochastically forced HMF model.
We note for later purposes that the Fourier transform of the HMF interparticle potential
is, for k 6= 0, vk = −[δk,1 + δk,−1]/2, where δk,i is the Kronecker delta.

3. Methods of analysis

3.1. Kinetic theory for homogeneous stationary states

Here, we develop a suitable kinetic theory description to study the dynamics (3) in the
joint limit N →∞ and α→ 0. While the first limit is physically motivated on grounds
that most long-range systems indeed contain a large number of particles, the second one
allows us to study stationary states for small external forcing. Moreover, for small α, we
will be able to develop a complete kinetic theory for the dynamics. For simplicity, we
discuss here the continuum limit Nα� 1, when stochastic effects are predominant with
respect to finite-size effects. The generalization of the following discussion to the cases Nα
of order one and Nα� 1 is straightforward, as pointed out at the end of this section. For
the development of the kinetic theory, we assume the system to be spatially homogeneous;
a possible generalization to the non-homogeneous case will be discussed in the conclusions
of the paper.

doi:10.1088/1742-5468/2012/12/P12010 6
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As a starting point to develop the theory, we consider the Fokker–Planck equation
associated with the equations of motion (3). This equation describes the evolution of
the N -particle distribution function fN(q1, . . . , qN , p1, . . . , pN , t), which is the probability
density (after averaging over noise realizations) to observe the system with coordinates
and momenta around the values {qi, pi}1≤i≤N at time t. This equation can be derived by
standard methods [22]; we have

∂fN
∂t

=
N∑
i=1

[
−pi

∂fN
∂qi

+
∂(αpifN)

∂pi

]
+

1

2N

N∑
i,j=1

∂v(qi − qj)
∂qi

[
∂

∂pi
− ∂

∂pj

]
fN

+
α

2

N∑
i,j=1

C(|qi − qj|)
∂2fN
∂pi∂pj

. (14)

In appendix A, by applying the so-called potential conditions [25] for the above
Fokker–Planck equation, we prove that a necessary and sufficient condition for the
stochastic process (3) to verify detailed balance is that the Gaussian noise is white in
space, that is, ck = c for all k. This condition is not satisfied for a generic correlation
function C(q), in which case, the steady states of the dynamics are true nonequilibrium
ones, characterized by non-vanishing probability currents in configuration space, and a
balance between external forces and dissipation.

Similar to the Liouville equation for Hamiltonian systems, the N -particle
Fokker–Planck equation (14) is a very detailed description of the system. Using kinetic
theory, we want to describe the evolution of the one-particle distribution function

f(z1, t) =

∫ N∏
i=2

dzi fN(z1, . . . , zN , t), (15)

where we have used the notation zi ≡ (qi, pi). We note that with this definition, the
normalization is

∫
dz f(z, t) = 1. Substituting in the Fokker–Planck equation (14) the

reduced distribution functions

fs(z1, . . . , zs, t) =
N !

(N − s)!N s

∫ N∏
i=s+1

dzi fN(z1, . . . , zN , t), (16)

and using standard techniques [26], we get a hierarchy of equations, similar to those of
the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, as follows:

∂fs
∂t

+
s∑
i=1

pi
∂fs
∂qi
− 1

N

s∑
i,j=1

∂v(qi − qj)
∂qi

∂fs
∂pi
−

s∑
i=1

∂

∂pi
[αpifs]

− α

2

s∑
i,j=1

C(|qi − qj|)
∂2fs
∂pi∂pj

=
s∑
i=1

∫
dzs+1

∂

∂qi
v(qi − qs+1)

∂fs+1

∂pi
(17)

for s = 1, . . . , N − 1. In this paper, we use both the notations ∂h/∂q and h′ to denote the
derivative of a function h. With a slight abuse of the standard vocabulary, we will refer
to equation (17) as the BBGKY hierarchy equation.

doi:10.1088/1742-5468/2012/12/P12010 7
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Now, as is usual in kinetic theory, we split the reduced distribution functions into
connected and non-connected parts, e.g.,

f2(z1, z2, t) = f(z1, t)f(z2, t) + g̃(z1, z2, t), (18)

and similarly, for other fss with s > 2. In appendix B, we show that the connected part
g̃(z1, z2, t) of the two-particle correlation is of order α, so that we may write

f2(z1, z2, t) = f(z1, t)f(z2, t) + αg(z1, z2, t), (19)

where g is of order unity; more generally, the connected part of the k-particle correlation
is of higher order, with respect to α, in the small parameters α and 1/N . Then, to
close the BBGKY hierarchy, we neglect the effect of the connected part of the three-
particle correlation on the evolution of the two-particle correlation function. This scheme
is justified at leading order in the small parameter α, and is the simplest self-consistent
closure scheme for the hierarchy while taking into account the effects of the stochastic
forcing. With our assumption that the system is homogeneous, i.e., f depends on p, and
g depends on |q1 − q2|, p1 and p2 only, the first two equations of the hierarchy are then

∂f

∂t
− α ∂

∂p
[pf ]− α

2
C(0)

∂2f

∂p2
= α

∂

∂p

∫
dq1 dp1 v

′(q1)g(q1, p, p1, t), (20)

and

∂g

∂t
+ L

(1)
f g + L

(2)
f g = C(|q1 − q2|)f ′(p1, t)f

′(p2, t), (21)

where L
(1)
f and L

(2)
f are the Vlasov operators linearized about the one-particle distribution

f , and acting, respectively, on the first pair (q1, p1) and on the second pair (q2, p2) of the
function g = g(q1, p1, q2, p2, t). Explicitly, for a function h of (q, p, t), the expression for the
linear Vlasov operator Lfh is

Lfh(q, p, t) = p
∂h

∂q
− f ′(p, t)

∫
dq1 dp1 v

′(q − q1)h(q1, p1, t), (22)

so that we have for L
(1)
f g,

L
(1)
f g(q1 − q2, p1, p2, t) = p1

∂g

∂q1

− f ′(p1, t)

∫
dq3 dp3 v

′(q1 − q3)g(q3 − q2, p3, p2, t). (23)

L
(2)
f g is obtained from equation (23) by exchanging the subscripts 1 and 2.

To obtain from equations (20) and (21) a single kinetic equation for the distribution
function f , we have to solve equation (21) for g as a function of f and plug the result
into the right-hand side of equation (20). Because the two equations are coupled, this
program is not achievable without making further simplifying assumption. Nevertheless,
we readily see from these equations that the two-particle correlation g evolves over a
timescale of order one, whereas the one-particle distribution function f(p, t) evolves over
a timescale of order 1/α. We may then use this timescale separation and compute the
long-time limit of g from equation (21) by assuming f to be steady in time; this is the
equivalent of the Bogoliubov’s hypothesis in the kinetic theory for isolated systems with
long-range interactions. Note that for this timescale separation to be valid, we must also
suppose that the one-particle distribution function f(p, t) is a stable solution of the Vlasov

doi:10.1088/1742-5468/2012/12/P12010 8
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equation at all times. Indeed, if this is not the case, it can be shown that g diverges in
the limit t→∞ [27]. The physical content of this hypothesis is that the system slowly
evolves from the initial condition through a sequence of quasistationary states to the final
stationary state.

Because we assume the system to be homogeneous in space, it is useful to Fourier
transform equations (20) and (21) with respect to the spatial variable; we get

∂f

∂t
− α ∂

∂p
[pf ]− α

2
C(0)

∂2f

∂p2
= −2πiα

∞∑
k=−∞

kvk
∂

∂p

∫
dp′ gk(p, p

′, t), (24)

and (
∂gk
∂t

+ L
(1)
f,kgk + L

(2)
f,−kgk

)
(p1, p2, t) = ckf

′(p1)f ′(p2), (25)

where gk(p1, p2, t) is the Fourier transform of g(q, p1, p2, t) with respect to the spatial
variable, and vk is the kth Fourier coefficient of the pair potential v(q). The explicit
expression for the kth Fourier component of the linear Vlasov operator Lf,k acting on a
function h(p) is

(Lf,kh) (k, p) = ikph(p)− 2πikvkf
′(p)

∫
dp′ h(p′). (26)

One has analogous expressions for L
(1)
f,k and for L

(2)
f,−k. We readily see that L∗f,k = Lf,−k.

From the right-hand side of equation (24), we see that to obtain a single kinetic
equation, we need only the Fourier transform gk(p, p

′, t), more specifically, its integral with
respect to the second momentum variable p′. Actually, it can be shown that gk(p, p

′, t) does
not have a well-defined time-asymptotic (it converges only in the sense of distribution),
while its integral with respect to p′ does have; this is connected to the mechanism of
Landau damping [27].

The structure of equations (20) and (21), or, equivalently, of equations (24) and (25)
is very familiar in kinetic theories; we refer the reader to [27] for a general discussion.
Equation (21), or, equivalently, equation (25), is called the Lyapunov equation for the
two-point correlation of a stochastic variable described by an Ornstein–Uhlenbeck process.
However, there is a difference from the standard finite-dimensional case [22] in that, in
our case, Lf is a linear infinite-dimensional operator acting on a functional space, instead
of being a finite-dimensional one, i.e., a matrix. This makes it non-trivial to compute the
long-time asymptotic of the right-hand side of equation (20), where g is the solution of
equation (21) with f steady in time. A possible way to achieve this goal is to follow the
derivation of the Lenard–Balescu equation from the BBGKY hierarchy, as may be found
in appendix A of [11]. For explicit technical details, see [27], in which the method to solve
the Lyapunov equation in a general manner is discussed and, subsequently, applied to
the derivation of kinetic theories for long-range interacting systems and two-dimensional
turbulence models.

In the present case, the linear transform of the stationary solution of the Lyapunov
equation, equation (25), which is needed to compute the right-hand side of equation (24),

doi:10.1088/1742-5468/2012/12/P12010 9
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can be written (see [27]) in frequency space as∫
dp1 g

∞
k [f ](p, p1) ≡ lim

t→∞

∫
dp1 gk(p, p1, t) (27)

=
1

π

∫
Γ

dω (Rf,k(ω)b) (p)

∫
dp′ (Rf,−k(−ω)b∗) (p′), (28)

where Γ is a contour which passes above all the poles of (Rf,k(ω)b), and Rf,k(ω) is the
resolvent operator, defined as

Rf,k(ω) ≡ (−iω + Lf,k)
−1, (29)

while b(p, t) =
√
ckf

′(p, t). The discussion of the explicit form of the resolvent operator is
a standard topic in plasma theory, and involves the phenomenon of Landau damping; we
refer the reader to classical references for this result, for example, [11, 12, 28]. Its action
on a function h, defined for ω such that Im(ω) > 0, is

(Rf,k(ω)h) (p) =
1

−iω + ikp

[
h(p) +

2πikvk
ε(k, ω)

f ′(p)

∫
dp′

h(p′)

−iω + ikp′

]
, (30)

where ε(k, ω) is the dielectric function, which for Im(ω) > 0 is given by

ε(k, ω) =

[
1− 2πivkk

∫
dp

f ′(p)

−iω + ikp

]
, (31)

and by its analytic continuation for ω when Im(ω) ≤ 0. Both the resolvent operator and
the dielectric function are defined for ω ∈ R by their analytic continuation, which will still
be denoted by the same symbols.

Now, inserting equation (30) into (27), and with some calculations whose details will
be reported in [27], we get the kinetic equation

∂f

∂t
− α∂(pf)

∂p
− α ∂

∂p

[
D[f ]

∂f

∂p

]
= 0, (32)

where

D[f ](p) =
1

2
C(0) + 2π

∞∑
k=1

vkck

∫ ∗
dp1

[
1

|ε(k, kp)|2
+

1

|ε(k, kp1)|2

]
1

p1 − p
f ′(p1, t). (33)

We recall that vk is the kth Fourier coefficient of the pair potential v(q), the quantity
ck is defined in equation (4), ε is the dielectric function defined in equation (31), and

∫ ∗
indicates the Cauchy integral or principal value.

The kinetic equation equation (32) is the central result of the kinetic theory developed
in this paper. It has the form of a non-linear Fokker–Planck equation [25] because the
diffusion coefficient D[f ](p) is itself a functional of the one-particle distribution function
f . The linear part of the diffusion coefficient (1/2)C(0) is the mean-field effect of the
stochastic forces, whereas the effect of two-particle correlation is encoded in the non-linear
part. In section 3.2, we describe how we use this kinetic equation to get information about
the nonequilibrium stationary states of the dynamics.

In the foregoing, we discussed the kinetic theory in the limit Nα� 1. The extension
to the general case is straightforward: because of the linearity of the equations of the
hierarchy (20) and (21), the finite-N and stochastic effects give independent contributions.

doi:10.1088/1742-5468/2012/12/P12010 10
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The kinetic equation at leading order of both stochastic and finite-size effects is

∂f

∂t
= Qα[f ] +QN [f ], (34)

where Qα is the operator described in equation (32), and QN (of order 1/N) is the
Lenard–Balescu operator. For instance, in the case Nα � 1 and in dimensions greater
than one, the operator QN is responsible for the relaxation to Boltzmann equilibrium after
a timescale of order N , whereas the smaller effect of Qα selects the actual temperature
after a longer timescale of order 1/α.

3.2. Numerical simulations

Here we describe how we may simulate the dynamics (3) by means of a numerical
integration scheme. To simulate the dynamics over a given time interval [0:T ], choose
a time step size ∆t, and set tn = n∆t as the nth time step of the dynamics. Here,
n = 0, 1, 2, . . . , Nt, where Nt = T /∆t. In our numerical scheme, at every time step, we
first discard the effect of the noise and employ a fourth-order symplectic algorithm to
integrate the deterministic Hamiltonian part of the dynamics [29]. Subsequently, we
add the effect of noise and implement an Euler-like first-order algorithm to update the
dynamical variables4. Specifically, one step of the scheme from tn to tn+1 = tn+∆t involves
the following updates of the dynamical variables for i= 1, 2, . . . , N : for the symplectic part,
we have, for m = 1, . . . , 4,

pi

(
tn +

m∆t

4

)
= pi

(
tn +

(m− 1)∆t

4

)
+ b(m)∆t

[
−∂H
∂qi

({
qi

(
tn +

(m− 1)∆t

4

)})]
,

qi

(
tn +

m∆t

4

)
= qi

(
tn +

(m− 1)∆t

4

)
+ a(m)∆t pi

(
tn +

m∆t

4

)
,

(35)

where the constants a(m)s and b(m)s are given in [29]. At the end of the update (35), we
have the set {qi(tn+1), pi(tn+1)}. Next, one includes the effect of the stochastic noise by
leaving qi(tn+1)s unchanged, but by updating pi(tn+1)s as

pi(tn+1)→ pi(tn+1) [1− α∆t] +
√
α

[
√
c0∆X(0)(tn+1)

+
NR∑
k=1

√
2ck
{

∆X(k)(tn+1) cos (kqi(tn+1)) + ∆Y (k)(tn+1) sin (kqi(tn+1))
}]

.

(36)

Here ∆X(k) and ∆Y (k) are Gaussian distributed random numbers with zero mean and unit
variance. The outcome of implementing this mixed scheme for the stochastically forced
HMF model is shown in figure 1, where one may observe consistent results with respect

4 We found that an Euler-like first-order scheme alone is unstable with respect to not-too-small ∆t, in the sense
that one obtains different magnetization profiles as a function of time t = tn∆t. The situation gets worse for small
α, when one needs to use very small ∆t to obtain consistent results. Therefore, for faster and efficient simulation,
we adopted the ‘mixed’ scheme described in the text.
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J.S
tat.M

ech.(2012)
P

12010

Kinetic theory of nonequilibrium stochastic long-range systems

Figure 1. Magnetization as a function of time, obtained from numerical
simulation of the stochastically forced HMF model with N = 1000, α =
0.01 at kinetic temperature T = 0.25, and with c1 = c2 = c3 = · · · = c10 =
C(0)/20, ck≥11 = 0, where C(0) = 2T . The values of the integration step size
∆t used are marked in the figure. The data are obtained by using the integration
algorithm described in section 3.2. That the magnetization plots collapse onto
one curve shows the stability of our algorithm with respect to variation in ∆t.
We have checked that the final value of the magnetization matches with the
prediction from equilibrium statistical mechanics.

to changes of ∆t over a wide range of values. In numerical simulations, reported later in
the paper, we exclusively used this mixed scheme to simulate the dynamics (3).

4. Predictions of the kinetic theory and comparison with simulations

We now focus on how to obtain from the kinetic equation (32) predictions for the
nonequilibrium stationary states of the system. According to equation (32), 1/α is only
a timescale; thus, at leading order in α and except for a time rescaling, the parameter α
does not affect the time evolution of the system. This statement holds also beyond the
leading order as far as concerns the evolution of the kinetic energy; its evolution may be
obtained directly from the equations of motion (3), as discussed in section 2, and can also
be obtained from the kinetic equation (32), as detailed in appendix C. For the evolution
of other observables, there will be corrections at higher orders in α.

As previously discussed, the dynamics of the system does not respect detailed balance
if the forcing is not white in space. At the level of the kinetic equation, by inspecting the
definition of the diffusion coefficient, equation (33), we see that the effect of correlations
induced by the stochastic forces is modulated by the Fourier component vk of the
interparticle potential. Then, taking the forcing spectral amplitudes ck different from zero
if and only if vk = 0, the non-linear part of the diffusion coefficient vanishes. On the other
hand, taking ck 6= 0 for the modes for which vk 6= 0 leads to a diffusion constant which
has a non-vanishing non-linear part. To be concrete, let us discuss these two scenarios in
the context of the stochastically forced HMF model.

Since the Fourier transform of the HMF interparticle potential is, for k 6= 0, vk =
−[δk,1 + δk,−1]/2, it follows that only the stochastic force mode with wavenumber k = 1

doi:10.1088/1742-5468/2012/12/P12010 12
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contributes to the non-linear part of the diffusion coefficient; all the other stochastic force
modes result in only a mean-field contribution through the term C(0). Thus, for the case
c1 6= 0, the two relevant parameters that dictate the evolution of the stochastically forced
HMF model by the kinetic equation (32) with a non-linear diffusion coefficient are C(0)
and c1. From equation (12), since C(0) is related to the kinetic temperature T , we take T
and c1 to be the two relevant parameters. From equation (11), we know that 2T equals the
kinetic energy in the final stationary state. Also, equation (4) implies that c1 ≤ C(0)/2.

If however c1 = 0, then, at leading order in α, the dynamics of the system is described
by a linear Fokker–Planck equation; this equation is the same as the one which describes
the HMF system when coupled to a Langevin thermostat, studied in [30, 31]. This means
that for this particular choice of the parameters, the detailed balance is broken for the
dynamics, but this feature cannot be seen in the kinetic theory, being an effect at a higher
order in α. In this case, the homogeneous stationary states of the kinetic equation have
Gaussian momentum distribution f(p). As has been studied thoroughly in the context
of canonical equilibrium of the HMF model, these states are stable for kinetic energies
greater than 1/4, i.e., for C(0) > 1.

Except for the special case of c1 = 0, the stationary velocity distribution of the kinetic
equation (32) is in general not Gaussian. This can be seen semi-analytically by observing
that the Gaussian distribution function

fG(p) = A exp(−βp2), A =

√
β

π
, β =

1

2T
, (37)

with β chosen such that the value of the kinetic energy is the one selected by T , solves
the linear Fokker–Planck equation with the diffusion coefficient given by

Dmf = T. (38)

To prove that the Gaussian distribution function is not a stationary solution of
equation (32), we have to prove that the contribution to ∂f/∂t from the non-linear part
of D[f ](p) in equation (33) does not vanish. This result can be proved with an asymptotic
expansion [12] for large momenta of the integrals which appear in the diffusion coefficient.
We report the straightforward computation in appendix D. From the same analysis, one
can deduce that, even though the distribution function is not Gaussian, its tails are
Gaussian.

On the basis of the above discussions, we expect that for values of T and c1 such
that T > 0.5 and c1 � 2T , the stationary states will be close to homogeneous states
with Gaussian momentum. In order to locate the actual stationary states of the kinetic
equation, we have devised a simple numerical scheme, based on the observation that a
linear Fokker–Planck equation whose diffusion coefficient D(p) is strictly positive admits
a unique stationary state

fss(p) = A exp

[
−
∫ p

0

dp′
p′

D(p′)

]
. (39)

For a given distribution fn(p), we compute the diffusion coefficient Dn(p) through
equation (33), and then fn+1 using Dn and equation (39). This procedure defines
an iterative scheme. Whenever convergent, this scheme leads to a stationary state of
equation (32). Each iteration involves integrations, so that we expect the method to be
robust enough when starting not too far from an actual stationary state. However, we have
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Figure 2. (a) Kinetic energy density 〈κ〉, and (b) 〈p4〉 as a function of αt, at
kinetic temperature T = 0.75, with modes 1–2 excited with amplitudes satisfying
c1 = c2 = C(0)/4, where C(0) = 2T . The data for different N and α values are
obtained from numerical simulations of the stochastically forced HMF model with
∆t = 0.01, and involve averaging over 50 histories for N = 104 and 103 histories
for N = 103. The data collapse implies that α is the timescale of relaxation to the
stationary state. The inset shows the data without time rescaling by α. Similar
plots for different parameter values were reported in [16].

no detailed mathematical analysis yet. Implementing this iterative scheme, we observed
that the distribution f∞ to which the scheme converges is independent of the initial
distribution f0. Moreover, the convergence time is exponential in the number of steps n
whenever T is not too close to loss of stability of f∞ with respect to the linear Vlasov
dynamics; in practice, we are able to get reliable results for T & 0.65.

In order to check the theoretical predictions discussed above, we performed numerical
simulations of the stochastically forced HMF model. Figure 2 shows the evolution of
the kinetic energy and 〈p4〉 = (1/N)

∑N
i=1p

4
i , where they have been compared with our

theoretical predictions. In the case of 〈p4〉, we have compared the long-time asymptotic
value with the kinetic theory prediction for the stationary state, computed numerically
by using the iterative solution for the stationary distribution. The figure illustrates a very
good agreement between the theory and simulations. For a more accurate check of the
agreement, we have obtained the stationary momentum distribution from both N -body
simulations and the numerical iterative scheme discussed above. A comparison between
the two, shown in figure 3, both on linear and semi-log scales, shows a very good agreement
between theory and simulations. In this figure, we also show the Gaussian distribution with
the same kinetic energy, to illustrate the point that the stationary momentum distribution
of the system is far from being Gaussian. The diffusion coefficient D[f ](p) is shown in
figure 4.

In passing, let us remark that, with an iterative scheme analogous to the one described
above, one could have also obtained the full-time evolution f(p, t) that obeys the kinetic
equation (32). However, we will not address this point here.

We also note that while a linear Fokker–Planck equation with non-degenerate diffusion
coefficient can be proved to converge to a unique stationary distribution [25], this is
not true in general for non-linear Fokker–Planck equations such as equation (32). We
expect that if the dynamics is not too far from detailed balance, the kinetic equation
will have a unique stationary state. Far from equilibrium, the kinetic equation could
lead to very interesting dynamical phenomena, such as bistability, limit cycles or more
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Figure 3. Stationary momentum distribution f(p), on (a) linear, and (b) semi-
log scales, for α = 0.001 and 0.01 at kinetic temperature T = 0.75. The plots
correspond to modes 1 and 2 excited with amplitudes satisfying c1 = c2 = C(0)/4,
where C(0) = 2T . The data denoted by crosses and squares are results of N -body
simulations of the stochastically forced HMF model with N = 10 000,∆t = 0.01
and 1000 independent realizations of the dynamics, while the red continuous
lines refer to the theoretical prediction from the kinetic theory. For comparison,
the black broken line shows the Gaussian distribution with the same kinetic
energy (stationary state of the stochastically forced HMF model at T = 0.75,
c0 = c1 = 0, c2 = 0.75, ck≥3 = 0).

Figure 4. Diffusion coefficient D[f ](p) for the stationary momentum distribution
f(p) at kinetic temperature T = 0.75, with c0 = ck≥3 = 0, and either (i) c1 = c2 =
0.375, or (ii) c1 = 0, c2 = 0.75.

complex behaviors. The main issue is then the analysis of the evolution of the kinetic
equation. Although some methods to study this type of equation exist [32], we have only
the numerical iterative scheme described above to provide some preliminary answers. A
more rigorous mathematical analysis is left for future studies.

5. Nonequilibrium phase transition and collapse

Until now, we have considered homogeneous stationary states of the dynamics (3), and
have discussed a kinetic theory to analyze them. Although our theory can in principle
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be extended to include inhomogeneous stationary states, its actual implementation to
get, e.g., the single-particle distribution, would require more involved computations than
the one we encountered for homogeneous states. In order to get preliminary answers, we
have performed extensive numerical simulations of the dynamics in the context of the
stochastically forced HMF model. Our specific interest is to know how the magnetization
behaves as the kinetic temperature is reduced from high values.

In the case when the stochastic forcing respects detailed balance (i.e., when the
noise spectrum is flat and all modes are excited), the stochastically forced HMF model
reduces to the Brownian mean-field (BMF) model studied previously [31]. Here, we know
that the system settles into an equilibrium state in which it exhibits a second-order
phase transition at the kinetic temperature T = Tc = 1/2: on increasing T from low
values, the magnetization decreases continuously to zero at Tc and remains zero at higher
temperatures. In the following, we excite only a limited number of modes NR, but the
amplitudes of all excited modes are equal (ck equals c for all k ≤ NR, and is zero otherwise,
where the constant c is related to the temperature). Figure 5(a) shows that with NR = 50,
one reproduces very well the equilibrium profile of the magnetization as a function of
temperature. On reducing the value of NR, the system is driven more and more out of
equilibrium. Indeed, figure 5(b) shows that withNR = 7, the magnetization profile changes;
in particular, it develops a discontinuity around a temperature Ttrans ≈ 0.49, reminiscent
of a first-order phase transition. The transition temperature is denoted by the vertical
dashed line. With NR = 3, figure 5(c) shows that the discontinuity gets more pronounced,
and Ttrans is now shifted to a higher value (denoted again by the vertical dashed line). A
new feature appears in this plot, namely, at a temperature Tdyn ≈ 0.4, the magnetization
attains the maximal value of unity, which it retains for all lower temperatures. This value
of unity corresponds to a state in which the particles are very close to one another on the
circle, thus defining a ‘collapsed’ state. We found that this state, as well as the transition
to it, persist on changing the system size N .

Now, it is known that trajectories of ensembles of dissipative dynamical systems forced
by the same realization of a stochastic noise converge to a single one [33, 34]. These
attracting trajectories are referred to as those due to the so-called stochastic attractor.
Although we did not perform a detailed characterization of the collapse in our model, we
believe that the phenomenon is related to stochastic attractors.

Coming back to figure 5(c), we see that for temperatures Tdyn < T < Ttrans, the
magnetization shows strong fluctuations. Reducing the number of excited modes to a
single one, namely, to the one that coincides with the Fourier mode of the HMF potential,
it seems from figure 5(d) that only the dynamical transition to the collapsed state at a
temperature Tdyn ≈ 0.66 persists.

The hint that the nature of the phase transition at Ttrans is of first order comes from
the hysteresis plots of figure 6. To obtain these plots, one monitors the magnetization while
tuning adiabatically the kinetic temperature across Ttrans from higher to lower values and
back to complete a full cycle. As is evident from figure 6, the observed hysteresis is between
the collapsed state and the zero-magnetization state. In principle, it should be possible to
observe a hysteretical behavior between the magnetized and the zero-magnetization state.
To achieve this in simulations involving adiabatic tuning of temperature, one should not
allow the system to make the transition to the collapsed state, which requires conditions
close to those that ensure detailed balance. However, a possible drawback of this method
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Figure 5. Numerical simulation results for magnetization in the stochastically
forced HMF model as a function of adiabatically tuned kinetic temperature
T ; the different plots correspond to different numbers of modes excited in the
spectrum with amplitudes satisfying C(0) = c0 +2

∑NR

k=1ck, where C(0) = 2T , the
index k = 1, 2, . . . , NR denotes the mode number, while NR is the total number
of excited modes with k 6= 0. In all cases, the modes excited were chosen to
have equal amplitudes, with c0 = 0, N = 5000, α = 0.01,∆t = 0.01, while the
tuning rate for T is 10−5. It may be noted that forcing equally a large number
of modes (∼50) reproduces the equilibrium magnetization profile as illustrated
by the match with the analytical equilibrium solution in panel (a). In panel (b),
the first-order nonequilibrium phase transition is marked by the vertical dashed
line. In panel (c), besides the first-order transition, we also show the dynamical
transition to the collapsed state by the vertical dashed dotted line. In panel (d),
the nonequilibrium phase transition and the dynamical transition almost coincide,
and we show just the latter one by the vertical dashed dotted line.

is that closeness to detailed balance might lead to narrow hysteresis loops. Moreover,
the adiabatic tuning of temperature should not be very slow, as otherwise one observes
bistability instead of the hysteresis. All these factors make the observation of hysteresis
between the magnetized and the zero-magnetization state difficult to observe numerically;
further explorations of this will be the subject of future investigations.

In order to explore further the region in figure 5(c) close to Ttrans, and to ascertain the
nature of the phase transition at Ttrans, we fix the value of the temperature to be T = 0.53,
and monitor the magnetization as a function of time. The time series of the magnetization
is shown in figure 7(a), in which one observes clear signatures of bistability, whereby
the system switches back and forth between homogeneous (m ≈ 0) and inhomogeneous
(m > 0) states. In addition, we show in figure 7(b) the distribution of the magnetization
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Figure 6. Numerical simulation results for magnetization in the stochastically
forced HMF model as a function of adiabatically tuned kinetic temperature T
for two different values of α. In each case, the modes 1–3 are excited with
amplitudes satisfying c1 = c2 = c3 = C(0)/6, where C(0) = 2T . In all cases,
N = 5000,∆t = 0.01, while the tuning rate for T is 10−5. The gray points
correspond to the case when the temperature is decreased from high values, while
the black points correspond to the case when the temperature is increased from
low values.

Figure 7. (a) Numerical simulation results for magnetization in the stochastically
forced HMF model as a function of time at kinetic temperature T = 0.53, with
N = 5000, α = 0.005,∆t = 0.01, and with modes 1–3 excited, whose amplitudes
satisfy c1 = c2 = c3 = C(0)/6, where C(0) = 2T . The figure shows clear signatures
of bistability in which the system during the course of evolution switches back and
forth between spatially homogeneous (m ∼ O(0)) and inhomogeneous (m ∼ O(1))
states. (b) Distribution Prob(m) of the magnetization m as a function of T at a
fixed value of α = 0.01. The data are obtained from numerical simulation results
similar to (a) for magnetization in the stochastically forced HMF model, with
N = 5000,∆t = 0.01, and with modes 1–3 excited, whose amplitudes satisfy
c1 = c2 = c3 = C(0)/6, where C(0) = 2T .

around the phase transition temperature: the distribution is bimodal with a peak around
a zero value and another one around a positive value. When decreasing the temperature
across the phase transition region, we clearly see that the peak heights of the distributions
of the magnetization at the zero and non-zero values interchange. These two features,
together with the hysteresis plots of figure 6, support the first-order nature of the transition
around Ttrans, which can be estimated from figure 7(b) to be Ttrans ≈ 0.532.
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Figure 8. Distribution of the residence time τ in the inhomogeneous state, for
two values of α. The data are obtained from simulations with modes 1–3 excited,
whose amplitudes satisfy c1 = c2 = c3 = C(0)/6, where C(0) = 2T . Here, the
kinetic temperature T = 0.53, while ∆t = 10−2, N = 5000.

From figure 7, it is clear that the system has two well separated attractors,
corresponding to the homogeneous and inhomogeneous states. A question of immediate
interest is: How long does the system stay in one state before switching to the other? Let
us define the residence time as the time the system stays in one state before it switches to
the other. In the limit of low noise level α, there is a clear separation between the natural
dynamical time and the typical residence time, as is evident from figure 7(a). As a result,
one may conjecture that two successive switching events are statistically independent of
one another. In the case such a conjecture holds for our model, the residence time statistics
will be a Poisson process, characterized solely by the probability per unit time, λ+, of
switching from the inhomogeneous state to the homogeneous state, and the probability
per unit time, λ−, for the reverse switch. The distribution of residence time τ in each
phase is then exponential:

P±(τ) =
1

λ±
exp(−λ±τ), (40)

so that the average residence times in the two states are τ res
± = 1/λ±. Such an exponential

form of the residence time distribution is verified from our simulation data displayed in
figure 8. Note that generating such a plot requires running simulations of the dynamics
for long enough times so that the magnetization switches back and forth between the two
states a sufficient number of times, and one has good statistics for the residence times. For
low values of α, such as those used in figure 8, this was often not feasible due to very long
simulation times. This results in bad statistics and, hence, the form of the plot displayed
in figure 8, which, though good, may be improved upon by running longer simulations.
We conclude that our conjecture of two successive jumps being independent holds for our
model, and that the average residence time fully characterizes the switching process for
small enough α.

We now discuss how the residence times depend on the system parameters, in
particular, on α. For an equilibrium system, the type of switching process described above
is an activation process with a residence time described by the Arrhenius law. A simple
model of such an activation process is the Langevin dynamics of a Hamiltonian system in
a potential V . The noise level is then related to the temperature, and the Arrhenius law
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Figure 9. The plot shows as a function of 1/α the log of the mean residence time
τ res

+,− in the two bistable states, namely, the inhomogeneous (m > 0) state and the
homogeneous state (m ≈ 0). The plot is based on data obtained from simulations
with modes 1–3 excited, whose amplitudes satisfy c1 = c2 = c3 = C(0)/6, where
C(0) = 2T . Here, the kinetic temperature T = 0.53, while ∆t = 10−2, N = 5000.
The straight line fits imply that τ res

+,− ∼ exp(1/α), in accordance with equations
(41) and (42). That the slopes of the two straight lines in the plot are different
could be due to the fact that the height of the barrier is different when observed
from the inhomogeneous and the homogeneous state.

takes the form [22], [35]–[37]

τ res
+ ∝ exp(∆V+−/α), (41)

τ res
− ∝ exp(∆V−+/α). (42)

Here, ∆V+− and ∆V−+ are respectively the potential energy barrier as observed from the
inhomogeneous and the homogeneous state. In a nonequilibrium context such as ours,
there is no obvious equivalent of a potential, but the law given by equations (41) and
(42) is expected to hold on a fairly general basis, in the limit of small noise. This may
be established from the instanton theory, or, from the Freidlin–Wentzell theory, which
allows one to compute V explicitly for a given model [38, 39]. Our system does not fulfil
the hypothesis of Freidlin–Wentzell theory, nevertheless, it is interesting to check if the
law given by equations (41) and (42) holds. Our simulation data shown in figure 9 show
that the dependence of τ res

± on α, as in equations (41) and (42), holds also for our model,
thereby suggesting that in the limit of low noise, the system behaves as one with transitions
activated by a weak noise.

We conclude this section by describing briefly the algorithm to find P±(τ±) to produce
figure 8, and τ res

± to produce figure 9. To this end, one has to identify from the time series
data of the magnetization (see figure 7(a) for an example) the switching time instants
between the two states. In the limit of very small α, the distinction between two states
should be obvious. However, we could not reach such a limit in our numerical simulations
because the simulation time grows exponentially with 1/α (see figure 9). For intermediate
values of α, it is then a challenge to define precisely the two states. Indeed, as may be
seen in figure 7(a), the data show strong fluctuations and, hence, one needs to filter out
‘spurious’ switching events and retain only the genuine ones. This may be done efficiently,
as we now discuss.
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We first obtain from the data a rough estimate of the mean of the magnetization
when the system is in the two states, the homogeneous and the inhomogeneous one. Let
us denote by m> and m< these estimates when the system is in the inhomogeneous and the
homogeneous state, respectively. Let us define a ‘threshold’ value of the magnetization mth

as the average of m> and m<; the magnetization crossing this threshold to switch from one
state to another however is not a precise enough criterion to define a switching event, as is
obvious from figure 7. We thus resort to our algorithm, which we now illustrate for the case
when the system is in the homogeneous state; when the system is in the inhomogeneous
state, the algorithm may be defined in a manner similar to the one below. In our algorithm,
we identify a switching event as the one for which the following two conditions are satisfied,
namely, (i) that the magnetization crosses the threshold to switch from the homogeneous
to the inhomogeneous state, (ii) the magnetization after the switching reaches the value
m> before reaching the value m<. When a switching event occurs, the switching time
is defined as the time at which the magnetization crossed the threshold. This algorithm
allows us to precisely define the switching times, from which we compute the switching
time statistics P±(τ±) and, hence, the mean residence time τ res

± .

6. Conclusions

In this work, we considered long-range interacting systems driven by external stochastic
fields, thereby leading to generic nonequilibrium stationary states. To study spatially
homogeneous stationary states, we developed a kinetic theory approach by generalizing the
known results for isolated long-range systems. Our theoretical approach is quite general,
being applicable to any long-range interparticle potential, space dimensions and boundary
conditions. Our extensive numerical simulations on a paradigmatic model of long-range
interacting systems demonstrated a very good agreement with the theory. Furthermore,
our simulations for this representative case illustrated very interesting bistable behavior
between homogeneous and inhomogeneous states, with a mean residence time that diverges
as an exponential in the inverse of the strength of the external stochastic forces in the
limit of low values of such forces.

Let us note that another route to deriving the kinetic theory studied in this paper
is to adopt an approach similar to the one due to Klimontovich for isolated systems,
by writing down the time evolution equation for the noise-averaged empirical measure
ρ(p, q, t) = (1/N)

∑N
i=1〈δ(qi(t)−q)δ(pi(t)−p)〉. In the resulting equation, the noise appears

as a multiplicative term, which can be treated perturbatively, leading to the kinetic
equation (32).

This work leaves open some interesting issues, e.g., for technical simplicity, we assumed
a homogeneous stationary state for the development of the kinetic theory. It would be of
interest to generalize the theory to inhomogeneous states; in this regard, the method due to
Heyvaerts reported recently may be of help [40]. Another issue is to study the dynamics
of the kinetic equation (32), both analytically and numerically, which may unveil very
interesting behaviors, such as limit cycles. One may also hope to develop a kinetic theory
similar to the one analyzed here for related systems, for example, the point vortex model
and the Euler equations in two-dimensional turbulence [5].
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Appendix A. Condition of detailed balance for the dynamics (3)

We prove here that the dynamics defined by the equations of motion (3) satisfies detailed
balance if and only if ck = c for all k, that is, if the stochastic forcing has a white spectrum
in space.

We start from the N -particle Fokker–Planck equation (14) associated with the
equations of motion (3). It will be useful to rewrite it in the following way:

∂fN(x)

∂t
= −

2N∑
i=1

∂

∂xi
[Ai(x)fN(x)] +

1

2

2N∑
i,j=1

∂2

∂xi∂xj
[Bi,j(x)fN(x)], (A.1)

where xi = qi for i = 1, . . . , N , xi = pi−N for i = (N + 1), . . . , 2N , and we use the notation
x = {xi}. The drift vector Ai(x) is a function of the xis, and is given by

Ai(x) = pi for i = 1, . . . , N, (A.2)

Ai(x) = −αpi−N −
1

N

N∑
j=1

∂v(qi−N − qj)
∂qi−N

for i = (N + 1), . . . , 2N. (A.3)

Similarly, the expression for the (symmetric) diffusion matrix Bi,j is:

Bi,j(x) = αC(|qi−N − qj−N |) for i > N ∧ j > N, (A.4)

and Bi,j(x) = 0 otherwise. We moreover introduce the constants εi = ±1, which denote
the parity with respect to time inversion of the variables xi, and the notation εx = {εixi}.

It can be shown (see [22], section 5.3.5, or [25], section 6.4) that the dynamics described
by a Fokker–Planck equation of the form (A.1) satisfies detailed balance if and only if the
following two conditions are satisfied (i = 1, . . . , 2N):

εiεjBi,j(εx) = Bi,j(x), (A.5)

and

εiAi(εx)f sN(x) = −Ai(x)f sN(x) +
2N∑
j=1

∂

∂xj
Bi,j(x)f sN(x), (A.6)

where f sN(x) is the stationary solution of (A.1).
In our case, in which the drift and the diffusion terms are given by equations (A.2)

and (A.4), respectively, the condition (A.5) is trivially satisfied. Our proof goes as follows:
we solve formally equation (A.6), and show that f sN(x) is a stationary solution of (A.1)
if and only if the non-vanishing part of Bi,j is proportional to the identity matrix. Then,
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it is simple to show that this implies that the spectrum of the forcing has to be white in
space.

Equation (A.6) for i = 1, . . . , N is also trivially satisfied. On the other hand, as far as
concerns i = (N + 1), . . . , 2N , we have

2pkf
s
N(x) = −

N∑
j=1

C(|qk − qj|)
∂f sN(x)

∂pj
, (A.7)

where k = i–N . We introduce the N × N matrix C whose components are given by
Ck,j(x) = C(|qk − qj|), and observe that, for generic values of the qis, C admits an inverse
C−1. Integrating equation (A.7), we thus have

f sN(x) = d(q1, . . . , qN) exp

− N∑
k,j=1

pk
(
C−1

)
k,j
pj

 , (A.8)

where d(q1, . . . , qN) is an undetermined function. Inserting equation (A.8) into the
Fokker–Planck equation (A.1), imposing that it is a stationary solution, and with some
calculations, we get

N∑
i=1

[
−∂f

s
N

∂qi

∂H

∂pi
+
∂H

∂qi

∂f sN
∂pi

]
= 0. (A.9)

Then, f sN is a function of the Hamiltonian H, that is f sN(x) = ψ(H(x)) for some function
ψ. On the other hand, because f sN is given by the formula in equation (A.8), we can
also deduce that ψ is an exponential, and thus, that f sN is Gaussian in the velocities. We
conclude that C−1 (and hence, C) has to be independent of the qis and proportional to the
identity. Finally, from the form of C(|qi − qj|) in equation (4), we see that this condition
on C is satisfied if and only if the spectrum of the forcing is white in space.

Appendix B. Closure of the BBGKY hierarchy (17)

We analyze here in detail the closure of the BBGKY hierarchy discussed in the text, in
particular, the reasons for which the connected part of the two-particle correlation is of
order α, while higher correlations are negligible at leading order in α, so that this closure
is self-consistent.

In the following, we expand the functions f2 and f3 as

f2(z1, z2, t) = f(z1, t)f(z2, t) + g̃(z1, z2, t), (B.1)

and

f3(z1, z2, z3, t) = f(z1, t)f(z2, t)f(z3, t) + f(z1, t)g̃(z2, z3, t)

+ f(z2, t)g̃(z1, z3, t) + f(z3, t)g̃(z1, z2, t) + h(z1, z2, z3, t), (B.2)

and similarly, for other fss for s ≥ 4.
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Now, let us write explicitly the first two equations of the BBGKY hierarchy (17). The
first one, obtained from equations (17) and (B.1), is

∂f

∂t
+ p

∂f

∂q
− ∂f

∂p

∂Φ[f ]

∂q
− α ∂

∂p
[pf ]− α

2
C(0)

∂2f

∂p2

=
∂

∂p

∫
dq1 dp1 v

′(q − q1)g̃(z, z1, t), (B.3)

where

Φ[f ](q) =

∫
dq1 dp1 v(q − q1)f(q1, p1, t) (B.4)

is the mean-field potential. For the second equation of the hierarchy, we use equations
(B.2) and (B.3) to get

∂g̃(z1, z2, t)

∂t
=

[
−p1

∂g̃

∂q1

+
∂g̃

∂p1

∂Φ[f ]

∂q1

+
f(z2)

N

∂v(q1 − q2)

∂q1

∂f

∂p1

+
1

N

∂v(q1 − q2)

∂q1

∂g̃

∂p1

+
∂f

∂p1

∫
dz3

∂v(q1 − q3)

∂q1

g̃(z2, z3) +
∂

∂p1

[αp1g̃] +
α

2
C(|q1 − q2|)

∂f

∂p1

∂f

∂p2

+
α

2
C(0)

∂2g̃

∂p2
1

+
α

2
C(|q1 − q2|)

∂2g̃

∂p1∂p2

+

∫
dz3

∂v(q1 − q3)

∂q1

∂h

∂p1

]
+ {1↔ 2}, (B.5)

where the symbol {1↔ 2} stands for an expression obtained from the bracketed one on
the right-hand side by exchanging the subscripts 1 and 2.

Let us analyze the order of magnitude of various terms in equation (B.5). First of
all, we have f ∼ 1, as it is normalized to unity. However, we do not know a priori
the order of magnitude of g̃ and h. Thus, the order of magnitude of all but the terms
(f(z2)/N)(∂v(q1− q2)/∂q1)(∂f/∂p1) and (α/2)C(|q1− q2|)(∂f/∂p1)(∂f/∂p2) is unknown.
In the continuum limit Nα� 1, we have

f(z2)

N

∂v(q1 − q2)

∂q1

∂f

∂p1

∼ 1

N
� α ∼ α

2
C(|q1 − q2|)

∂f

∂p1

∂f

∂p2

, (B.6)

so that it is natural to guess that g̃ ∼ α. Let us also observe that in the limit Nα� 1,
we have

f(z2)

N

∂v(q1 − q2)

∂q1

∂f

∂p1

∼ 1

N
� α ∼ α

2
C(|q1 − q2|)

∂f

∂p1

∂f

∂p2

, (B.7)

so that we obtain g̃ ∼ 1/N . In the limit Nα � 1, the kinetic theory leads to the
Lenard–Balescu equation.

Once we have established that g̃ ∼ α, one can write down the equation of the hierarchy
for h and, with similar reasoning as above, one then finds that h is at least of order
α/N � α (or, α2 depending on whether α/N � α2 or the reverse), so that the term∫

dz3 (∂v(q1−q3)/∂q1)(∂h/∂p1) is negligible in equation (B.5), as may be straightforwardly
checked. The iterative procedure can be repeated at all orders of the hierarchy. Discarding
three-particle and higher-order correlations is thus a self-consistent procedure. Moreover,
note that in equation (B.5) some of the terms are of higher orders (α2, α/N , . . .) with
respect to α, and, thus, can be discarded. The final form of the second equation of the
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BBGKY hierarchy is thus

∂g̃(z1, z2)

∂t
=

[
−p1

∂g̃

∂q1

+
∂g̃

∂p1

∂Φ[f ]

∂q1

+
∂f

∂p1

∫
dz3 v

′(q1 − q3)g̃(z2, z3)

+
α

2
C(|q1 − q2|)

∂f

∂p1

∂f

∂p2

]
+ {1↔ 2}. (B.8)

Note that g̃ ∼ α implies, see equation (B.3), that the mean-field effect of the stochastic
forces gives a contribution at the same order to the two-particle correlation induced by
them.

Appendix C. Evolution of the kinetic energy for the dynamics (3)

We derive here the evolution of the kinetic energy as obtained from the kinetic equation
(32). Let us recall that the average kinetic energy density at time t in the continuous limit
can be written as

〈k(t)〉 = 1
2

∫
dp p2 f(p, t). (C.1)

The starting point to obtain its time evolution is to multiply the kinetic equation (32) by
1
2
p2, and then, to integrate over p. Neglecting for the moment the non-linear part of the

diffusion coefficient, and integrating by parts, we get〈
∂k(t)

∂t

〉
+ 2α 〈k(t)〉 − α

2
C(0) = 0, (C.2)

which gives

〈k(t)〉 =

(
〈k(0)〉 − C(0)

4

)
e−2αt +

C(0)

4
. (C.3)

The kinetic energy density in the stationary state is thus 〈κ〉ss = C(0)/4.
We now have to prove that the non-linear part of the diffusion coefficient (33) does

not contribute to the time evolution of the kinetic energy. Such a result is expected
and is usually valid for collisional terms (i.e., those terms in the kinetic equations which
are given by two-particle correlation), for example, in the Boltzmann equation or in the
Lenard–Balescu equation [28]. The contribution to k(t) from the non-linear part of the
diffusion coefficient is a sum of terms proportional to

T =
1

2

∫
dp p2 ∂

∂p

{
f ′(p, t)

[
1

|ε(k, kp)|2

∫ ∗
dp1

f ′(p1, t)

p1 − p
+

∫ ∗
dp1

f ′(p1, t)

p1 − p
1

|ε(k, kp1)|2

]}
;

(C.4)

we will show that each of such terms vanishes independently. Indeed, integrating the last
expression over p by parts, we get that

T = −
∫

dp

∫ ∗
dp1 p f

′(p, t)

[
f ′(p1, t)

p1 − p
1

|ε(k, kp)|2
+
f ′(p1, t)

p1 − p
1

|ε(k, kp1)|2

]
. (C.5)
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Exchanging now the variables p1 and p and the order of integration, we get that the above
equation may be rewritten as

T =

∫
dp

∫ ∗
dp1 p1 f

′(p1, t)

[
f ′(p, t)

p1 − p
1

|ε(k, kp1)|2
+
f ′(p, t)

p1 − p
1

|ε(k, kp)|2

]
. (C.6)

Summing up the last two equations, we therefore have

T =
1

2

∫
dp

∫
dp1 f

′(p1, t) f
′(p, t)

[
1

|ε(k, kp1)|2
+

1

|ε(k, kp)|2

]
, (C.7)

which vanishes on integrating by parts both with respect to p1 and p.

Appendix D. Proof that equation (32) admits non-Gaussian stationary distribution
with Gaussian tails

We prove here that for a general forcing spectra, the Gaussian distribution function in
equation (37) is not a stationary solution of the kinetic equation (32), and that the
tails of any stationary state are Gaussian. For the first point, we have to prove that the
contribution to ∂f/∂t from the non-linear part of D[f ](p) in equation (33) is not vanishing.
This result can be proved with an asymptotic expansion [12] for large momenta of the
integrals which appear in the diffusion coefficient. Given any function g(p), we approximate
integrals of the form∫ ∗

dp1
g(p1)

p1 − p
(D.1)

by expanding 1/(p1 − p) in Taylor series. We get, for example,∫ ∗
dp1

f ′G(p1)

p1 − p
' 2√

π
β3/2

∫ ∞
−∞

e−βp
2
1

[
p1

p
+

(
p1

p

)2

+

(
p1

p

)3

+ · · ·
]
' 1

p2
, (D.2)

where, in the last equality, we have taken into account the fact that the Gaussian
distribution being even, the terms containing (p1/p)

k with k odd do not contribute. In a
similar way, we have

|ε(k, kp)|2 ' 1− 4πv(k)

p2
, (D.3)

and ∫ ∗
dp1

[
f ′G(p1)

p1 − p
1

|ε(k, kp1)|2

]
' 2β3/2

√
π p2

∫
dp1

p2
1 e−βp

2
1

|ε(k, kp1)|2
, (D.4)

where we have used the fact that |ε(k, kp)|2 is an even function of p. With these results,
we can evaluate the non-linear part of the kinetic equation: for large p1, the non-linear
contribution to ∂f/∂t is

2πα
∞∑
k=1

vk ck

[
1 +

2β3/2

√
π

∫
dp

p2e−p
2

|ε(k, kp)|2

][
4β5/2

√
π

e−βp
2
1

]
. (D.5)

It can be shown that such a term is a non-vanishing function of p1. This completes the
proof: for a generic forcing spectra, the stationary state, when it exists, is not Gaussian.
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Using the same asymptotic expansion as before, it can be checked that the diffusion
coefficient D[f ](p) converges to C(0)/2 for any distribution f . From this observation and
equation (39), it follows that any stationary solution of the kinetic equation (32) has
Gaussian tails.
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