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Stochastic process of equilibrium fluctuations of a system with long-range interactions
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The relaxation towards equilibrium of systems with long-range interactions is not yet understood. As a step
towards such a comprehension, we propose the study of dynamical equilibrium fluctuations in a model system
with long-range interaction. We compute analytically, from the microscopic dynamics, the autocorrelation
function of the order parameter. From this result, we derive analytically a Fokker-Planck equation which
describes the stochastic process of the impulsion of a single particle in an equilibrium bath. The diffusion
coefficient is explicitly computed.
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A number of physical systems are governed by long-rangéink between chaotic Hamiltonian dynamics and diffusive
interactions. Some examples are given by self-gravitatingroperties has been addressed on a general framgwoyk
systems, two-dimensional incompressible, or geophysicale also note works on the relaxation to equilibrium of a
flows, some models in plasma physics. For such Hamiltoniamassive piston in interaction with two out-of-equilibrium
systems, the nonadditivity of the interactions makes the usugerfect gase§l1], which is a Vlasov-like behavior.
thermodynamic limitN— o,V — o irrelevant. Microcanoni- We will show that the diffusion coefficient for systems
cal average is, however, still relevant, and generically leadg,iih long-range interactions can be computed in the limit
to a mean-field description of the equilibrium, exact in then _, « with a fixed volume and renormalized interaction. At
limit N— e [1]. The relaxation toward equilibrium of these gistical equilibrium, one obtains the mean-field description

systems still has to be completely understood. The phenomg,,ico| for ong-range interacting systems. Near the equilib-
enology of the dynamics shows that a rapid relaxation lead um, particles have an integrable motion, perturbed by the

to the formation of quasistationary structures, which may b(? : : : e
e N luctuations of the mean field around its equilibrium value.
out of equilibrium stategsee Ref|2] for astrophysical and This leads to the relaxation towards equili(g)rium. The self-

eophysical examples and RE3] for spin system ongsin . ) : .
?nos[i g/ases this ig explainedegb]y the F:axist):ance of setable stgonsistent nature of the fluctuatioftee mean field oscillates

tionary states of the associated Vlasov equation, which dedu€ to small particle deviations, themselves due to the mean-
scribes the dynamics by approximating the potential by Jield fluctuations is, however, an essential feature of this
mean-field one. In such stable situations, the Vlasov dynamRfOCess. _ _ _
ics is a good approximation of the particle dynamics, on [In order to explore these ideas, we consider a simple toy
typical time scales diverging with the number of particlesmodel of long-range interacting system: the Hamiltonian
[4]. The relaxation towards equilibrium of these structures ignean-field mode(HMF). In this framework, as a first step
then associated to the fluctuations of the potential around ittowards the study of the relaxation towards equilibrium, we
mean-field approximation, and is thus very slow. One of ourconsider the equilibrium dynamical fluctuations. We first
goals is to understand such a relaxation, which is of particupropose an analytic computation of the autocorrelation func-
lar interest, for instance in the study of astrophysical struction of the mean-field order parameter. From this result, we
tures, turbulence parametrization in geophysical flows, etccan derive a Fokker-Planck equation which describes the sto-
Some works towards a kinetic description of this relaxationchastic process of a particle in interaction with a battNof
have been proposed, for instance, by Chandrasekar in thel particles in equilibrium. The diffusion coefficient is then
context of self-gravitating systemgs], Chavanis for the explicitly computed, from the microscopic dynamics. We fi-
point vortex model[6], or for the two-dimensional Euler nally conclude by discussing generalization to out of equilib-
equation[6], or in plasma physicg7]. In each of these cases, rium situations, and more realistic models.
the relaxation is then described by a Fokker-Planck equation The Hamiltonian of the attractive HMF modgl?2] is
or somedgeneralizaltions. ;I'hehdiffusion coefficierg@]hasdbeen N 2 1 N
computed, in some limits, for the point vortex mog&] an N Pe, L _ _
for self-gravitating systems. H= gl > "oN szzl[l cog = )]

In the kinetic theory of dilute gases, the Boltzmann equa-
tion has led to the computation of transport coefficig8ls  Because of its simplicity, a large number of authors have
providing an example of explicit computation of a diffusion considered this model and its repulsive counterpaith the
coefficient for a system, with a large number of particles. Aopposite sign for the potential enejgyrhe HMF model is
complete mathematical proof of this result directly from thethe “harmonic oscillator” for long-range interacting systems.
Hamiltonian dynamics is, however, still to be achieved. TheWe refer to Ref[13] for a review. Let us define the magne-
computation of the diffusion coefficient for the standard maptizationM by NM =i é% (M =M,+iM,). Because the ki-
[9] is a classical example for a system with a small numbenetic energy per particle. may be exactly expressed as
of degrees of freedom. In the past decades, the issue of tige,=2E-1+M? (E is the energy per particieand because
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M is a simple sum oN variables, the computation of the thus have to include the first-order expression of the angles
static microcanonical quantities is straightforward. For in-6, ;. We then obtain
stance, we obtain the volume of the shell of the phase space, . "
with energy E [14]: Q(E)y_...J5dM B(M)exdNSE,M)] Mo =a— 1/2 J du f dolbmi(o) —cmo@)],  (5)
with the entropyS given by S(E,M)=C(M)+In(2E+M? 0 0
-1)/2, whereC(M)=In[1o(AM))]-M (M), |, is defined by o0 0o
27l o(M) = [27d6 expM cos ), and ¢ as the inverse func- Where a= Ngllzz{jzle'(ﬁ”pkt), b=N"1zi, 24l and ¢
tion of d Inly/dM. The use of the saddle-point method, in the=N"*=. €Pkt™») The expressiolb) clearly reflects the self-
previous integral, shows that an overwhelming number ofonsistent nature of the motion: the magnetization at time
configurations have a magnetization close to the equilibriundepends on the magnetization at previous times.
value M (E) defined bydS(E,Mg)/dM=0 [15]. This equa- From Eq.(5), we compute the magnetization autocorrela-
tion shows that, above the critical energy=3/4, whereas tion function at leading ordgim(t)mq(0)), where the brack-
belowE, a second-order phase transition occurs. The densitgts denote microcanonical averages on the varia(lﬁl%ﬁpﬁ).
in the u-phase spac@ll angles and momenta are projected We first note thab andc are equal to their microcanonical
on a (6,p) spacg may be evaluated asfe(p,6) average plus fluctuations of orddF'2 These fluctuations
xexp{-B(E)[p?/2-Mq(E)cos 4]}, up to a rotation of angles. can be neglected at the order considered. Some lengthy com-
These results are equivalent to the canonical gees Ref. putations lead tdamg)=2 exgd-t?/28)/(2-p), (b)=0 and
[12]). (c)=2 exg—(t-v)?/2B]/(2-B) (up to orderN~2 correc-

In the following we consider only energies greater thantions). From Eq. (5), we then obtain (m*(t)m(0))
the critical oneE>E,. In such a case, the equilibrium is =24(t)/(2-B) and(m*()m*(0))=(m(t)m(0))=0; where the

homogeneous:M=0. Then g=1/(2E-1) and f(p,6)  fynction ¢ is given by the solution of the integral equation:
«exp(—Bp?/2). The static fluctuations oM may also be

computed, from the second derivativeQivith respect tav, t2 1t v?
at the equilibrium point. We obtain a Gaussian magnetization Bt = exp(— 2_) + §J dv v exp(— Z;)‘ﬁ(t —v). (6)
with N(M*M)=2/(2-p) and(M*M*)=(MM }=0 (M* is the 0
complex conjugate oM). The magnetization has typical We remark that the right-hand side integral is a convolu-
fluctuations of ordeN™'2, we thus re-scale it accordingly, by tion. This makes the solution of this equation by a Laplace

defining transform natural. We do not report the result. Whereas the
N first term on the right-hand side of this integral equation is
m:i_z it ) due to the integrable ballistic motion of the particles, the
VN1 second term reflects the self-consistent nature of the dynam-
ics

The aim of this paper is to study the dynamical equilibrium To have a physical insight on this autocorrelation func-
fluctuations of this system. From the Hamiltoniéh), one  jon, we compute the asymptotic behavior &f First ¢(t)

obtains the equations of motion: %, o exd—2(2-pB)t 2/ (4p)]. This approximation is obtained
dé, dp, N2 e 6 from Eq.(6), by a Taylor expansion. Such a Gaussian behav-
gt Pk anda = T['m (e +c.c] (3 jor for small times would be typical of a ballistic behavior.

However, we note that the coefficief®-8)/(28) is not
(c.c. means the complex conjugate of the previous expresiquely due to the integrable zero-order dynamics, but is
sion). From the motion equatio(8), thanks to the smallness renormalized by the memory term. Second we obtain
of the mean-field fluctuations, the motion of any particle may
be treated perturbatively in the limiM— . We expand the d(V)x_AB)exd~ YAl ¥B) = 2IBYFXB), (7)
variables in powers ofN"Y2: 6= 6 o+N 26 1+, p
=po+N2p, 1+, andm=my+N"12m +- - (the magneti-
zation(2) has to be self-consistenihe zero-order motion is
a free ballistic onepy o(t)=pj and 6, o(t)= 60+ ppt, where 6}
and p(k’ are the values o andp for t=0. The expressio(B)
clearly shows that such a perturbative description, around.
this simple zero-order dynamics, will remain valid as soon a !
t<NY2 This expansion leads, to the first order, agy(t)
=[5du pea(u) with

whereF™ is the inverse of the functioR, with F(x)=2/[1
+\mx exp(x®)erfo(-x) ], where erfc is the complementary er-
ror function. This exponential limit for the autocorrelation
function is natural, as it corresponds to the Markovian limit
r the magnetization stochastic process. The lower inset of
g. 1 shows the relaxation constaptas a function of.
ear the critical energyB.=2), the relaxation constant tends
to 0. This indicates that near the critical point, the relaxation
time diverges. On the contrary, for large energydliverges
_ o1, i(P+p00) and the relaxation time is very small. Figure 1 shows a com-
Pra(t) = d“i['mo(“)e kP +c.cl. (4)  parison of the theoretical autocorrelation functifgolving
0 Eq. (6)] with the one obtained directly from the integration
A peculiarity of this asymptotic expansion is that the magne-of the Hamiltonian dynamicgl).
tization m [Eq. (2)] is a sum ofN variables, wheré\™/? is Because the stochastic process is stationary, using the
the expansion parameter. A sumMforderN-*2 terms may  Wiener-Kinchin theorem, the spectral density of the complex
be of order 1. To obtain the zero-order magnetization, wanagnetization may be computed from the Fourier transform
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FIG. 2. The solid curve shows the mean-square displacement of
a particle in function of its initial momentum, normalized Ryand
divided by the timd N(Ap?)(p,t)/(2t)] (this is not a distributioy
for four values of timet=10,15,20,25N=10 000,8=1/4. As the

FIG. 1. The magnetization autocorrelation function: the pre-
dicted valug(6) and the numerically computed value are both rep-
resented. They are indistinguishalfleaximum absolute error of
3.10°%). We have used=2.5, 8=1/(2E-1), N=10 000, and aver- : : o
aged over 18 samples, each one of duratio8000. The upper inset curves are superposed for time, this shows that thg motion is actu-
shows that the exponential decay of the autocorrelation function is glly d|ﬁu3|ye. The dashed curve r(_apres_ents the predicted @sp_]t
good approximation times greater than 2 or 3 for these parameterg.zq' (8_) with D(p)=7S(p)/4], no T't' This conflrm_s t_he theoretical
The lower inset shows the relaxation constant as a function of thémalyss, up to errors due to an incomplete statistics.

inverse temperature(B) [see Eq(7)].
with a cosine. An analytical expression f0ris thus obtained

of the autocorrelation function. As the integral equatienis ™M EQ. (8). The computation ofAp)(p,t) may be done
a convolution, the computation of this spectral density isfollowing the same procedure. Please note, however, that the

easy. DefiningS(w)=2/[5dt cogwt)(m*(t)m(0)), one ob- N2 contribution vanishes. The lower order contribution
comes from a perturbative description of the dynamics at

tains
order 2 [pyo(t) and my(t)]. The systematic momentum
) = 16(mpl(2m) " exp(- fw?l2) change is N(Ap)(p,t)~1<<n-v4dD(p)/dp-BpD(p)]t
2[(2 - B) + BPoA(BY?w) ] + mRw’exp(— Bw?)’ [17]. In the following, we will also see that this result can be
®) deduced from the stationarity of the stochastic prodess

equivalently from the fact that the distribution fprtends to

where A(x)=exp(—x?/2)[3du expu?/2). We have S(w) the equilibrium distribution This is the equivalent

~ o281 m) Y2 exp(—Bw?l 2). of an Einstein relation. Figure 2 shows that the analytical
Let us now consider the diffusion of the momentpnof diffusion coefficient agree with the numerically computed

a single particle, where all other particles have a randonN(Ap?(p,t)/(2t).

angle and momentum according to the microcanonical distri- We have observed a diffusive behavior for the momenta

bution (one particle in a bath at equilibrivm Let us  (9) with a systematic momentum drift, fordt < NY2 More-

denote (Ap)(p,t) the mean displacement(t)—p(0), and over, the mean displacement and the mean-square displace-

(Ap?(p,t) the mean-square displacement of a particle knowment are small as they scale likgL, These two facts are

ing that its initial momentunip(0)=p]. From Eq.(4) and the ~ two sufficient hypotheses for the derivation of a Fokker-

results for the autocorrelation function or for similar quanti- Planck equatiorisee Ref[16]). Thus any momentum distri-

ties, it is possible to compute explicitdAp?)(p,t), at the bution function f(p) evolves, at the leading order iN,

leading order inN, for any time such that<NY?2 (perturba-  through the equation

tive description of the dynamigsThe quantity(Ap?)(p,t)

has a transient behavior on a time scale of ordéthg& ex- df 19 af

plicit computation is feasible, but not reporjedollowed E:Na_p D(p) a_p+Bpf) .

for 1<t<NY2 by a diffusive behavior. We then obtain

(Ap*)(p,t)~1<ten-122D(P)N7', with

(10

This equation is valid for tim&> 1. For the derivation of the
1(” . mean square and mean displacement, we have asstimed

D(p):if d{m*(m(0))cos(py. (9 <NM2 (perturbative description However, the previous

analysis has also shown that the correlation function decays

This result is the equivalent of a Kubo formula. However, itexponentially for large time. The correlation time for the

states a bit more: the diffusion coefficient is there expressetbrce (or equivalently the magnetizatipins then of order 1

as the autocorrelation of the mean field and not as the aut@nd is thus much smaller tha#2. This is a first indication

correlation of the force. We note that the diffusion coefficientthat the stochastic process may become Markovian for times

is proportional to the spectral densit(p)==S(p)/4. This  much smaller thaiN'/2. If it is actually so, the Fokker-Planck

is a peculiarity of this model for which the interaction is built will be correct for any timet. We note that this equation

0
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actually converges towards the equilibrium dengiy(p) tion is limited to states with an energy larger than the critical
=(BI2m)Y? exp(-Bp?/2). energyE.=3/4.Numerous studies have been devoted to ho-
In this paper, we have analytically derived the autocorremogeneous out of equilibrium, quasistationary states, with
lation function for the HMF model. This derivation reflects energy lower thark, [3]. These states are very interesting as
the physics of long-range interacting systems: due to thishey exibit peculiar dynamical properties. For instance, the
type of interaction, the autocorrelation of the mean fieldstudy of the correlation function@or 6 or p) [18,19 and of
evolves self-consistently, as expressed by @®g. We have diffusion [19] are of particular interest. We hope to general-
used this result to derive analytically the diffusion of theize in the future, the results of this paper to such out-of-
momentum of a single particle in an equilibrium distribution, eqyjliprium states. The generalization of this paper’s results
leading to a Fokker-Planck equation. A more complete study, gther long-range interacting particle models may follow
of the magnetization stochastic process, the detailed cOmpyhe same path, and the theoretical problems linked with the
tations, and the study of this Fokker-Planck equation will begiyergence of some interactions at small scéfesnt vorti-

addressed in a forthcoming papéi]. Due to the asymptotic ces, self-gravitating systems, and plagma
decay of the diffusion coefficient, for large momentum, the

spectrum of the linear operators of the Fokker-Planck equa- | acknowledge useful discussions with J. Barré, E. Cagli-
tion has no gap between the eigenvalue corresponding to thai, P. H. Chavanis, T. Dauxois, Y. Elskens, S. Ruffo, A.
ground state and the other eigenvalues. The present deriveulpiani, and Y. Yamaguchi.
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