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The relaxation towards equilibrium of systems with long-range interactions is not yet understood. As a step
towards such a comprehension, we propose the study of dynamical equilibrium fluctuations in a model system
with long-range interaction. We compute analytically, from the microscopic dynamics, the autocorrelation
function of the order parameter. From this result, we derive analytically a Fokker-Planck equation which
describes the stochastic process of the impulsion of a single particle in an equilibrium bath. The diffusion
coefficient is explicitly computed.

DOI: 10.1103/PhysRevE.70.036113 PACS number(s): 05.50.1q, 05.10.Gg, 05.20.2y, 05.45.2a

A number of physical systems are governed by long-range
interactions. Some examples are given by self-gravitating
systems, two-dimensional incompressible, or geophysical
flows, some models in plasma physics. For such Hamiltonian
systems, the nonadditivity of the interactions makes the usual
thermodynamic limitN→` ,V→` irrelevant. Microcanoni-
cal average is, however, still relevant, and generically leads
to a mean-field description of the equilibrium, exact in the
limit N→` [1]. The relaxation toward equilibrium of these
systems still has to be completely understood. The phenom-
enology of the dynamics shows that a rapid relaxation leads
to the formation of quasistationary structures, which may be
out of equilibrium states(see Ref.[2] for astrophysical and
geophysical examples and Ref.[3] for spin system ones). In
most cases, this is explained by the existence of stable sta-
tionary states of the associated Vlasov equation, which de-
scribes the dynamics by approximating the potential by a
mean-field one. In such stable situations, the Vlasov dynam-
ics is a good approximation of the particle dynamics, on
typical time scales diverging with the number of particles
[4]. The relaxation towards equilibrium of these structures is
then associated to the fluctuations of the potential around its
mean-field approximation, and is thus very slow. One of our
goals is to understand such a relaxation, which is of particu-
lar interest, for instance in the study of astrophysical struc-
tures, turbulence parametrization in geophysical flows, etc.
Some works towards a kinetic description of this relaxation
have been proposed, for instance, by Chandrasekar in the
context of self-gravitating systems[5], Chavanis for the
point vortex model[6], or for the two-dimensional Euler
equation[6], or in plasma physics[7]. In each of these cases,
the relaxation is then described by a Fokker-Planck equation
or some generalizations. The diffusion coefficient has been
computed, in some limits, for the point vortex model[6] and
for self-gravitating systems.

In the kinetic theory of dilute gases, the Boltzmann equa-
tion has led to the computation of transport coefficients[8],
providing an example of explicit computation of a diffusion
coefficient for a system, with a large number of particles. A
complete mathematical proof of this result directly from the
Hamiltonian dynamics is, however, still to be achieved. The
computation of the diffusion coefficient for the standard map
[9] is a classical example for a system with a small number
of degrees of freedom. In the past decades, the issue of the

link between chaotic Hamiltonian dynamics and diffusive
properties has been addressed on a general framework[10].
We also note works on the relaxation to equilibrium of a
massive piston in interaction with two out-of-equilibrium
perfect gases[11], which is a Vlasov-like behavior.

We will show that the diffusion coefficient for systems
with long-range interactions can be computed in the limit
N→` with a fixed volume and renormalized interaction. At
statistical equilibrium, one obtains the mean-field description
typical for long-range interacting systems. Near the equilib-
rium, particles have an integrable motion, perturbed by the
fluctuations of the mean field around its equilibrium value.
This leads to the relaxation towards equilibrium. The self-
consistent nature of the fluctuations(the mean field oscillates
due to small particle deviations, themselves due to the mean-
field fluctuations) is, however, an essential feature of this
process.

In order to explore these ideas, we consider a simple toy
model of long-range interacting system: the Hamiltonian
mean-field model(HMF). In this framework, as a first step
towards the study of the relaxation towards equilibrium, we
consider the equilibrium dynamical fluctuations. We first
propose an analytic computation of the autocorrelation func-
tion of the mean-field order parameter. From this result, we
can derive a Fokker-Planck equation which describes the sto-
chastic process of a particle in interaction with a bath ofN
−1 particles in equilibrium. The diffusion coefficient is then
explicitly computed, from the microscopic dynamics. We fi-
nally conclude by discussing generalization to out of equilib-
rium situations, and more realistic models.

The Hamiltonian of the attractive HMF model[12] is

H = o
k=1

N
pk

2

2
+

1

2N
o

k,l=1

N

f1 − cossuk − uldg. s1d

Because of its simplicity, a large number of authors have
considered this model and its repulsive counterpart(with the
opposite sign for the potential energy). The HMF model is
the “harmonic oscillator” for long-range interacting systems.
We refer to Ref.[13] for a review. Let us define the magne-
tization M by NM =ok=1

N eiuk sM =Mx+ iMyd. Because the ki-
netic energy per particleec may be exactly expressed as
2ec=2E−1+M2 (E is the energy per particle), and because
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M is a simple sum ofN variables, the computation of the
static microcanonical quantities is straightforward. For in-
stance, we obtain the volume of the shell of the phase space,
with energy E [14]: VsEd~N→`e0

1dM BsMdexpfNSsE,Mdg
with the entropyS given by SsE,Md=CsMd+lns2E+M2

−1d /2, whereCsMd=lnfI0scsMddg−McsMd, I0 is defined by
2pI0sMd;e0

2pdu expsM cosud, and c as the inverse func-
tion of d lnI0/dM. The use of the saddle-point method, in the
previous integral, shows that an overwhelming number of
configurations have a magnetization close to the equilibrium
value MesEd defined by]SsE,Med /]M =0 [15]. This equa-
tion shows that, above the critical energyEc=3/4, whereas
belowEc a second-order phase transition occurs. The density
in the m-phase space(all angles and momenta are projected
on a su ,pd space) may be evaluated asfEsp,ud
~exph−bsEdfp2/2−MesEdcosugj, up to a rotation of angles.
These results are equivalent to the canonical ones(see Ref.
[12]).

In the following we consider only energies greater than
the critical oneE.Ec. In such a case, the equilibrium is
homogeneous:Me=0. Then b=1/s2E−1d and fsp,ud
~exps−bp2/2d. The static fluctuations ofM may also be
computed, from the second derivative ofSwith respect toM,
at the equilibrium point. We obtain a Gaussian magnetization
with NkM !M l=2/s2−bd andkM !M !l=kMM l=0 (M ! is the
complex conjugate ofM ). The magnetization has typical
fluctuations of orderN−1/2, we thus re-scale it accordingly, by
defining

m =
1

ÎN
o
k=1

N

eiuk. s2d

The aim of this paper is to study the dynamical equilibrium
fluctuations of this system. From the Hamiltonian(1), one
obtains the equations of motion:

duk

dt
= pk and

dpk

dt
=

N−1/2

2
fim!stdeiuk + c.c.g s3d

(c.c. means the complex conjugate of the previous expres-
sion). From the motion equation(3), thanks to the smallness
of the mean-field fluctuations, the motion of any particle may
be treated perturbatively in the limitN→`. We expand the
variables in powers ofN−1/2:uk=uk,0+N−1/2uk,1+¯, pk
=pk,0+N−1/2pk,1+¯, andm=m0+N−1/2m1+¯ (the magneti-
zation(2) has to be self-consistent). The zero-order motion is
a free ballistic one:pk,0std=pk

0 anduk,0std=uk
0+pk

0t, whereuk
0

andpk
0 are the values ofu andp for t=0. The expression(3)

clearly shows that such a perturbative description, around
this simple zero-order dynamics, will remain valid as soon as
t!N1/2. This expansion leads, to the first order, touk,1std
=e0

t du pk,1sud with

pk,1std =E
0

t

du
1

2
fim0

!sudeisuk
0+pk

0ud + c.c.g. s4d

A peculiarity of this asymptotic expansion is that the magne-
tization m [Eq. (2)] is a sum ofN variables, whereN−1/2 is
the expansion parameter. A sum ofN orderN−1/2 terms may
be of order 1. To obtain the zero-order magnetization, we

thus have to include the first-order expression of the angles
uk,1. We then obtain

m0std = a − 1/2E
0

t

duE
0

u

dvfbm0
!svd − cm0svdg, s5d

where a=N−1/2ok=1
N eisuk

0+pk
0td, b=N−1ok=1

N eif2uk
0+pk

0st+vdg and c

=N−1ok=1
N eipk

0st−vd. The expression(5) clearly reflects the self-
consistent nature of the motion: the magnetization at timet
depends on the magnetization at previous times.

From Eq.(5), we compute the magnetization autocorrela-
tion function at leading orderkm0stdm0s0dl, where the brack-
ets denote microcanonical averages on the variablessu k

0,pk
0d.

We first note thatb andc are equal to their microcanonical
average plus fluctuations of orderN−1/2. These fluctuations
can be neglected at the order considered. Some lengthy com-
putations lead tokam0l=2 exps−t2/2bd / s2−bd, kbl=0 and
kcl=2 expf−st−vd2/2bg / s2−bd (up to order N−1/2 correc-
tions). From Eq. (5), we then obtain km!stdms0dl
=2fstd / s2−bd andkm!stdm!s0dl=kmstdms0dl=0; where the
function f is given by the solution of the integral equation:

fstd = expS−
t2

2b
D +

1

2
E

0

t

dv v expS−
v2

2b
Dfst − vd. s6d

We remark that the right-hand side integral is a convolu-
tion. This makes the solution of this equation by a Laplace
transform natural. We do not report the result. Whereas the
first term on the right-hand side of this integral equation is
due to the integrable ballistic motion of the particles, the
second term reflects the self-consistent nature of the dynam-
ics.

To have a physical insight on this autocorrelation func-
tion, we compute the asymptotic behavior off. First fstd
~t→0 expf−2s2−bdt 2/ s4bdg. This approximation is obtained
from Eq.(6), by a Taylor expansion. Such a Gaussian behav-
ior for small times would be typical of a ballistic behavior.
However, we note that the coefficients2−bd / s2bd is not
uniquely due to the integrable zero-order dynamics, but is
renormalized by the memory term. Second we obtain

fstd~t→`Asbdexpf− gsbdtg;gsbd = s2/bd1/2F−1sbd, s7d

whereF−1 is the inverse of the functionF, with Fsxd=2/f1
+Îpx expsx2derfcs−xdg, where erfc is the complementary er-
ror function. This exponential limit for the autocorrelation
function is natural, as it corresponds to the Markovian limit
for the magnetization stochastic process. The lower inset of
Fig. 1 shows the relaxation constantg as a function ofb.
Near the critical energysbc=2d, the relaxation constant tends
to 0. This indicates that near the critical point, the relaxation
time diverges. On the contrary, for large energy,g diverges
and the relaxation time is very small. Figure 1 shows a com-
parison of the theoretical autocorrelation function[solving
Eq. (6)] with the one obtained directly from the integration
of the Hamiltonian dynamics(1).

Because the stochastic process is stationary, using the
Wiener-Kinchin theorem, the spectral density of the complex
magnetization may be computed from the Fourier transform
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of the autocorrelation function. As the integral equation(6) is
a convolution, the computation of this spectral density is
easy. DefiningSsvd=2/pe0

`dt cossvtdkm!stdms0dl, one ob-
tains

Ssvd =
16spb/s2pdd1/2 exps− bv2/2d

2fs2 − bd + b3/2vAsb1/2vdg2 + pb3v2exps− bv2d
,

s8d

where Asxd=exps−x2/2de0
xdu expsu2/2d. We have Ssvd

,v→`s2b /pd1/2 exps−bv2/2d.
Let us now consider the diffusion of the momentump of

a single particle, where all other particles have a random
angle and momentum according to the microcanonical distri-
bution (one particle in a bath at equilibrium). Let us
denote kDplsp,td the mean displacementpstd−ps0d, and
kDp2lsp,td the mean-square displacement of a particle know-
ing that its initial momentumfps0d=pg. From Eq.(4) and the
results for the autocorrelation function or for similar quanti-
ties, it is possible to compute explicitlykDp2lsp,td, at the
leading order inN, for any time such thatt!N1/2 (perturba-
tive description of the dynamics). The quantitykDp2lsp,td
has a transient behavior on a time scale of order 1(the ex-
plicit computation is feasible, but not reported), followed
for 1! t!N1/2, by a diffusive behavior. We then obtain
kDp2lsp,td,1!t!N−1/22DspdN−1t, with

Dspd =
1

2
E

0

`

dtkm!stdms0dlcossptd. s9d

This result is the equivalent of a Kubo formula. However, it
states a bit more: the diffusion coefficient is there expressed
as the autocorrelation of the mean field and not as the auto-
correlation of the force. We note that the diffusion coefficient
is proportional to the spectral density:Dspd=pSspd /4. This
is a peculiarity of this model for which the interaction is built

with a cosine. An analytical expression forD is thus obtained
from Eq. (8). The computation ofkDplsp,td may be done
following the same procedure. Please note, however, that the
N−1/2 contribution vanishes. The lower order contribution
comes from a perturbative description of the dynamics at
order 2 [pk,2std and m1std]. The systematic momentum
change is NkDplsp,td,1!t!N−1/2fdDspd /dp−bpDspdgt
[17]. In the following, we will also see that this result can be
deduced from the stationarity of the stochastic process(or
equivalently from the fact that the distribution forp tends to
the equilibrium distribution). This is the equivalent
of an Einstein relation. Figure 2 shows that the analytical
diffusion coefficient agree with the numerically computed
NkDp2lsp,td / s2td.

We have observed a diffusive behavior for the momenta
(9) with a systematic momentum drift, for 1! t!N1/2. More-
over, the mean displacement and the mean-square displace-
ment are small as they scale likeN−1. These two facts are
two sufficient hypotheses for the derivation of a Fokker-
Planck equation(see Ref.[16]). Thus any momentum distri-
bution function fspd evolves, at the leading order inN,
through the equation

] f

] t
=

1

N

]

] p
FDspdS ] f

] p
+ bpfDG . s10d

This equation is valid for timet@1. For the derivation of the
mean square and mean displacement, we have assumedt
!N1/2 (perturbative description). However, the previous
analysis has also shown that the correlation function decays
exponentially for large time. The correlation time for the
force (or equivalently the magnetization) is then of order 1
and is thus much smaller thanN1/2. This is a first indication
that the stochastic process may become Markovian for times
much smaller thanN1/2. If it is actually so, the Fokker-Planck
will be correct for any timet. We note that this equation

FIG. 1. The magnetization autocorrelation function: the pre-
dicted value(6) and the numerically computed value are both rep-
resented. They are indistinguishable(maximum absolute error of
3.10−3). We have usedE=2.5, b=1/s2E−1d, N=10 000, and aver-
aged over 18 samples, each one of durationt=8000. The upper inset
shows that the exponential decay of the autocorrelation function is a
good approximation times greater than 2 or 3 for these parameters.
The lower inset shows the relaxation constant as a function of the
inverse temperaturegsbd [see Eq.(7)].

FIG. 2. The solid curve shows the mean-square displacement of
a particle in function of its initial momentum, normalized byN and
divided by the timefNkDp2lsp,td / s2tdg (this is not a distribution),
for four values of time:t=10,15,20,25;N=10 000,b=1/4. As the
curves are superposed for time, this shows that the motion is actu-
ally diffusive. The dashed curve represents the predicted resultDspd
[Eq. (8) with Dspd=pSspd /4], no fit. This confirms the theoretical
analysis, up to errors due to an incomplete statistics.
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actually converges towards the equilibrium densityPeqspd
=sb /2pd1/2 exps−bp2/2d.

In this paper, we have analytically derived the autocorre-
lation function for the HMF model. This derivation reflects
the physics of long-range interacting systems: due to this
type of interaction, the autocorrelation of the mean field
evolves self-consistently, as expressed by Eq.(6). We have
used this result to derive analytically the diffusion of the
momentum of a single particle in an equilibrium distribution,
leading to a Fokker-Planck equation. A more complete study
of the magnetization stochastic process, the detailed compu-
tations, and the study of this Fokker-Planck equation will be
addressed in a forthcoming paper[17]. Due to the asymptotic
decay of the diffusion coefficient, for large momentum, the
spectrum of the linear operators of the Fokker-Planck equa-
tion has no gap between the eigenvalue corresponding to the
ground state and the other eigenvalues. The present deriva-

tion is limited to states with an energy larger than the critical
energyEc=3/4. Numerous studies have been devoted to ho-
mogeneous out of equilibrium, quasistationary states, with
energy lower thanEc [3]. These states are very interesting as
they exibit peculiar dynamical properties. For instance, the
study of the correlation functions(for u or p) [18,19] and of
diffusion [19] are of particular interest. We hope to general-
ize, in the future, the results of this paper to such out-of-
equilibrium states. The generalization of this paper’s results
to other long-range interacting particle models may follow
the same path, and the theoretical problems linked with the
divergence of some interactions at small scales(point vorti-
ces, self-gravitating systems, and plasma).
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Vulpiani, and Y. Yamaguchi.

[1] F. Bouchet and J. Barré, e-print cond-mat/0303307.
[2] D. Lynden-Bell, Mon. Not. R. Astron. Soc.136, 101 (1967);

R. Robert and C. Rosier, J. Stat. Phys.86, 481 (1997).
[3] V. Latora, A. Rapisarda, and C. Tsallis, Phys. Rev. E64,

056134(2001).
[4] W. Braun and K. Hepp, Commun. Math. Phys.56, 101(1977);

H. Spohn, Large Scale Dynamics of Interacting Particles
(Springer-Verlag, Heidelberg, 1991).

[5] S. Chandrasekar,Principles of Stellar Dynamics(Dover, New
York, 1942); S. Chandrasekar, Rev. Mod. Phys.21, 383
(1949).

[6] P. H. Chavanis, inDynamics and Thermodynamics of Systems
with Long Range Interactions, edited by T. Dauxois, S. Ruffo,
E. Arimondo, and M. Wilkens, Lecture Notes in Physics Vol.
602 (Springer, New York, 2002); Phys. Rev. Lett.84, 5512
(2000); P. H. Chavanis and C. Sire, Phys. Fluids137, 1804
(2001).

[7] Y. Elskens and D. F. Escande,Microscopic Dynamics of Plas-
mas and Chaos(IoP, Bristol, 2002).

[8] E. M. Lifshitz and L. P. Pitaevskii,Physical Kinetics, Course
of Theoretical Physics, Vol. 10(Pergamon, New York, 1981).

[9] A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic
Dynamics, 2nd ed.(Springer-Verlag, Berlin, 1992).

[10] P. Gaspard,Chaos, Scattering and Statistical Mechanics(Cam-
bridge University Press, Cambridge, England, 1998); B. Dorf-

mann,An Introduction to Chaos in Non-equilibrium Statistical
Mechanics(Cambridge University Press, Cambridge, England,
1999).

[11] N. Chernov and J. Lebowitz, J. Stat. Phys.109, 507(2002); N.
Chernov, J. Lebowitz and Ya. Sinai,ibid. 109, 529 (2002); E.
Caglioti, N. Chernov, and J. Lebowitz(unpublished).

[12] M. Antoni and S. Ruffo, Phys. Rev. E52, 2361(1995).
[13] T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, and A. Torcini,

in Dynamics and Thermodynamics of Systems with Long
Range Interactions(Ref. [6]).

[14] L. Velazquez, R. Sospedra, J. C. Castro, and F. Guzman,
e-print cond-mat/0302456.

[15] This proves that the actual expression forBsMd has no influ-
ence on the equilibrium value ofM.

[16] N. G. Van Kampen,Stochastic Processes in Physics and
Chemistry(North-Holland, Amsterdam, 1981).

[17] F. Bouchet and T. Dauxois(unpublished).
[18] A. Pluchino, V. Latora, and A. Rapisarda, e-print cond-mat/

0312425; e-print cond-mat/0303081; D. H. Zanette and M. A.
Montemurro, Phys. Rev. E67, 031105(2003); Y. Yamaguchi,
ibid. 68, 066210(2003).

[19] V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. Lett.83,
2104 (1999); Y. Y. Yamaguchi, Phys. Rev. E68, 066210
(2003).

FREDDY BOUCHET PHYSICAL REVIEW E70, 036113(2004)

036113-4


