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We present the phase diagram, in both the microcanonical and the canonical ensemble, of the self-
gravitating-ringsSGRd model, which describes the motion of equal point masses constrained on a ring and
subject to 3D gravitational attraction. If the interaction is regularized at short distances by the introduction of
a softening parameter, a global entropy maximum always exists, and thermodynamics is well defined in the
mean-field limit. However,ensembles are not equivalentand a phase ofnegative specific heatin the micro-
canonical ensemble appears in a wide intermediate energy region, if the softening parameter is small enough.
The phase transition changes from second to first order at atricritical point, whose location is not the same in
the two ensembles. All these features make of the SGR model the best prototype of a self-gravitating system
in one dimension. In order to obtain the stable stationary mass distribution, we apply an iterative method,
inspired by a previous one used in 2D turbulence, which ensures entropy increase and, hence, convergence
towards an equilibrium state.
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I. INTRODUCTION

There are many objects in our universe whose behavior
can be understood considering only the gravitational interac-
tion. Examples are globular clusters, galaxies, clusters of gal-
axies, molecular cloudsf1g. Different theoretical approaches
have been proposed to explain the peculiar statistical prop-
erties of self-gravitating systems. The main difficulty is that
these systems cannot approach statistical equilibrium be-
cause of the short-distance divergence of the potential and of
the evaporation at the boundaries. Even if one puts the sys-
tem in a box with adiabatic walls, thus eliminating evapora-
tion, still gravity causes the well-known phenomenon ofgra-
vothermal catastrophef2–4g. The introduction of a small-
scale softening of the interaction potential, as for instance in
self-gravitating fermionsf5–7g, avoids such a catastrophe, so
that self-gravitating systems can approach the finalsthermald
equilibrium state. However, such a state may have anegative
specific heat. Moreover, a first order phase transition from
the high energy gas phase to the low energy clustered phase
appearsf3g.

Direct studies of the full three-dimensionalN-body gravi-
tational dynamics are particularly heavyf8g and even special
purpose machines have been built to this aimf9g. Therefore,
lower dimensional models have been introduced to describe
gravitational systems with additional symmetries. For in-
stance, the gravitational sheet model describing the motion
of infinite planar mass distributions perpendicularly to their
surface has been consideredf10g. Although this model shows
interesting behaviorsf11,12g, the specific heat is always
positive and no phase transition is present. Other one-
dimensional self-gravitating toy models may have phase
transitions and ensemble inequivalencef13g.

Recently, another one-dimensional model has been intro-
ducedf14g where particle motion is confined on a ring, but
the interaction is the true Newtonian 3D one. At short dis-
tances, the potential is regularized, so that the particles do

not interact. This model has been called the self-gravitating
ring modelsSGRd and will be the subject of the study dis-
cussed in this paper. It has been shown in numerical simula-
tions f14g, that this model maintains the peculiar features of
the 3D Newtonian potential, showing a negative specific heat
phase and a phase transition if the softening parameter is
small enough. Moreover, for large softening, this model re-
duces to the Hamiltonian mean-field modelsHMFd f15g,
which has been recently extensively studied as a prototype
system with long-range interactions. This latter model, how-
ever, although it displays a second order phase transition,
does not have a negative specific heat phase at equilibrium.

In this paper, we derive the equilibrium thermodynamics
of the SGR model both in the canonical and in the microca-
nonical ensemble. For all nonvanishing softening parameter
values, this model has a thermal equilibrium state. If the
softening parameter is small enough, the model showsen-
semble inequivalencef16,17g with a negative specific heat
phase in the microcanonical ensemble and a first order phase
transition. Therefore, the SGR model displays several fea-
tures of the true 3D Newtonian interaction, and can serve as
a better prototype of self-gravitating systems in one dimen-
sion than all previously introduced models.

The paper is organized as follows. In Sec. II, we briefly
introduce the SGR model and we discuss the essential fea-
tures of previous numerical simulationsf14g. In Sec. III, we
show the general scheme for deriving all stationary density
distributions which maximize Boltzmann-Gibbs entropy at
fixed total energy and mass. Section IV presents an iterative
method which ensures entropy increase and leads in a unique
way towards the stable equilibrium single particle distribu-
tion function. The method is inspired by a similar one used to
compute entropy maxima in 2D turbulencef18g. In Sec. V,
we describe in full detail how to implement the iterative
algorithm in a numerical scheme. In Sec. VI, we calculate
the thermodynamic quantities of the SGR model using the
iterative method. We also show how, reducing the softening
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parameter, one enters into a region of ensemble inequiva-
lence, where a tricritical point exists which is not the same in
the two ensemblesf19g. Finally, in Sec. VII, we discuss the
dynamical evolution of the SGR model, emphasizing the
properties of relaxation to equilibrium.

II. SELF-GRAVITATING RING MODEL

In this section, we briefly present the self-gravitating ring
sSGRd model f14g. In this model, particle motion is con-
strained on a ring and particles interact via a true 3D New-
tonian potentialsFig. 1d.

The Hamiltonian of the SGR model is

H =
1

2o
i=1

N

pi
2 +

1

2N
o
i,j

V«sui − u jd, s1d

V«sui − u jd = −
1
Î2

1
Î1 − cossui − u jd + «

, s2d

where« is the softening parameter, which is introduced, as
usual, in order to avoid the divergence of the potential at
short distances.

Taking the large« limit, the potential becomes

V« =
1

Î2«
F1 − cossui − u jd

2«
− 1G + Os«−2d, s3d

which is the one of the Hamiltonian mean-fieldsHMFd
modelf15g. It is well known that the HMF modelf15g has a
second order phase transition, separating a low energy phase,
where the particles form a single cluster, from a high energy
gas phase where kinetic energy dominates and the particles
are homogeneously distributed on the circle. One usually
draws the so-called caloric curve, where temperature,
given by twice the averaged kinetic energy per particle

T;b−1=2kKl /N, is plotted against the total energy per par-
ticle U;H /N. In a situation close to that of the HMF model,
e.g., for«=10, the caloric curve determined from microca-
nonical numerical simulations is reported in Fig. 2sad. In the
homogeneous phaseU.Ucs«d, the caloric curve is almost
linear, while in the clustered phaseU,Ucs«d, it is bent
downward. Nonetheless, temperature always grows with en-
ergy and one does not observe any negative specific heat
energy range. However, as it happens for 3D Newtonian
gravity simulationsf8g, when one reduces the softening pa-
rameter, a negative specific heat phase develops. For in-
stance, in Fig. 2sbd, we show two cases at small« where
three phases can be identifiedf14g:

s1d a low-energy clustered phase forU,Utops«d, where
Utop is defined as the energy at which]T/]U=0.

FIG. 1. Self-gravitating ring model with a fixed unitary radius.
Particles are constrained to move on a ring and therefore their lo-
cation is specified by the angles measured with respect to a fixed
direction. Each pair of particles atui and u j interacts through the
inverse-square three-dimensional gravitational force. The distance
is measured by the chord, as shown in the figure.

FIG. 2. Caloric curves of the self-gravitating ringsSGRd model
obtained from numerical simulations of Hamiltonians1d. Panelsad
refers to the softening parameter value«=10, for which a second
order phase transition appears atUc. No backbending of the caloric
curve, indicating a negative specific heat, is present. Simulations
were performed forN=100. Panelsbd shows the caloric curves for
two different values of the softening parameter,«1=1.0310−6 and
«2=2.5310−7, andN=100. The transition is here first order in the
microcanonical ensemblessee Sec. VI for a discussiond. The two
transition energiesUcs«1d andUcs«2d are pretty close, suggesting a
slow variation of the critical energy with the softening parameter«.
On the contrary,Utops«1d is significantly smaller thanUtops«2d, in-
dicating that this characteristic energy value diminishes with«. A
negative specific heat phase appears forUtop,U,Uc, and expands
as the softening parameter is reduced. All quantities are plotted in
arbitrary units.
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s2d an intermediate-energy phase,Utops«d,U,Ucs«d,
with negative specific heat.

s3d a high-energy gaseous phase forUcs«d,U.
The clustered phase is created by the presence of softening«,
without which the particles would fall into the zero distance
singularity. In the gas phase, the particles are hardly affected
by the potential and behave as almost free particles. The
intermediate phase is expected to show the characters of
gravity, persisting and even widening in the«→0 limit.

In the following, several of these features will be given a
theoretical explanation and we will detail the analysis of the
nature of the phase transitionsfirst or second orderd when«
is varied.

III. STATIONARY DENSITY DISTRIBUTION

In the mean-field limitsN→` with fixed lengthf20gd, one
can introduce the single particle distribution functionfsp,ud
such thatfsp,uddpdu is the fraction of particles in the do-
main fu ,u+dugfp,p+dpg. In terms off, the potential energy
can be written as

EPffg =
1

2
E du df dp dp8fsp,udV«su − fdfsp8,fd s4d

=
1

2
E df du rsudrsfdV«su − fd, s5d

where

rsud =E dp fsp,ud s6d

is the mass density. The kinetic energy is

EKffg =
1

2
E du dp p2fsp,ud s7d

and the total energy

Effg = EKffg + EPffg. s8d

The equilibrium distribution in the microcanonical en-
semble is determined by maximizing entropy

Sffg = −E du dp f log f s9d

under the constraints of fixed total energy, momentum and
mass. In the following, we fix the total energyEffg=U, the
total mass

Mffg =E r du = 1 s10d

and the total momentum

pffg =E pfsp,uddu dp= 0. s11d

A necessary condition to get an entropy maximum is to
require that the free energy

Fffg ; Sffg − bEffg − aE f dp du − gpffg, s12d

wherea, b, andg are Lagrange multipliers, is stationary

dFffg
df

= − log f − 1 −bSp2

2
+ WsudD − a − gp = 0, s13d

whereWsud is defined as

Wsud ; E
−p

+p

rsfdV«su − fddf. s14d

Sincepffg=0, the Lagrange multiplierg vanishes. From
Eq. s13d, the normalized stationary distribution function can
be written as

fsp,ud = A expF− bSp2

2
+ WsudDG , s15d

whereA=exps−1−ad is the normalization constant and the
mass density is given by

rsud = Ãe−bWsud, s16d

whereÃ=AÎ2p /b. When Eqs.s14d and s16d are combined,
we obtain the consistency equations

Wsud = ÃE
−p

+p

e−bWsfdV«su − fddf, s17d

and the equilibrium density equation

rsud = Ã expF− bÃE
−p

+p

rsfdV«su − fddfG , s18d

which are solved numerically in the following. Once the sta-
tionary mass distributionsr and the functionW are obtained
for each value of«, the full single particle distribution func-
tion fsu ,pd is derived from Eq.s15d. The potential energy
and the kinetic energy are determined by Eq.s5d and Eq.s7d,
respectively, allowing to draw the caloric curve by plotting
T;b−1=2EK against the total energyU=EK+EP.

IV. AN ITERATIVE METHOD TO SOLVE
THE EQUILIBRIUM DENSITY EQUATION

The inverse temperatureb can be expressed in terms of
the energy

b =H2U −E
−p

+p E
−p

+p

rsudrsfdV«su − fddu dfJ−1

.

s19d

Once an initial density distributionr0sud is chosen, one can
determine an initial inverse temperatureb0 using Eq.s19d,
and then solve the consistency equations18d iteratively sas
done for instance in Ref.f21gd. However, we will follow here
a different iterative method, which ensures entropy increase
and, hence, convergence of the algorithm. The method is
inspired by a similar one used by Turkington and Whittaker
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f18g to compute entropy maxima for two-dimensional turbu-
lence.

The functional to maximizeSffg is strictly concave and
we must fix both a linear constraintMffg=1 and a nonlinear
one Effg=U. It is this latter nonlinear constraint which
makes the variational problem more difficult than usual. The
trick to solve this nonlinear problem consists in considering a
linearization of the energy constraint around the distribution
function resulting from the previous step in the iterative pro-
cess.

One begins with the normalized distributionfk obtained at
thekth step of the algorithm. From that, one can compute the
mass densityrk and the average potentialWk.

rksud =E dp fksp,ud, s20d

Wksud =E
−p

+p

df rksfdV«su − fd. s21d

The distribution at the next stepfk+1 will be then determined
by solving the following variational problem

maxHSffguMffg = 1,Effkg +E UdE

df
U

fk

sf − fkddp du ø UJ ,

s22d

where the functional derivative of the energy is

UdE

df
U

fk

=
p2

2
+ Wksud. s23d

This variational problem has a unique solutionfk+1, since it
corresponds to the maximization of a strictly concave func-
tional with linear constraints.

This iterative process ensures convergence of the entropy.
Let us prove it. By using a generalization of the Lagrange
multiplier rule for our inequality constrained variational
problemf22,23g

UdS

df
U

fk+1

= ak+1 + bk+1UdE

df
U

fk

s24d

with the additional requirement

bk+1FEffkg +E UdE

df
U

fk

sfk+1 − fkddp du − UG = 0, s25d

wherebk+1ù0 is the multiplier associated with the energy
constraint andak+1, the one associated with mass conserva-
tion. When solving Eq.s25d, we have eitherbk+1=0, which
removes the energy constraint, orbk+1.0, and an equality
for the linearized energy constraint.

In order to prove convergence of the entropy, let us first
prove that the energy functionalEffg is concave. Since the
kinetic part is linear inf, the second variation ofEffg is

d2E =E df du drsuddrsfdV«su − fd s26d

=o
k

V«,kudrku2, s27d

where the second equality is obtained using the Fourier se-
ries expansion for both the mass density variationdr and the
potentialV«

drk =
1

2p
E

−p

+p

dw expsikwddrswd, s28d

V«,k =
1

2p
E

−p

+p

dw expsikwdV«swd. s29d

SinceV« is even in the argumentf, V«,k is a real number.
Moreover, sinceV«ø0 andV«swd is strictly increasing for
0øwøp, it is easy to prove that for anyk, V«,k is strictly
negative. Hence, from formulas27d the second variation of
the energy functional is negative and this functional is
strictly concave.

On the other hand, the entropy is strictly concave. We
have

Sff + dfg ø Sffg +E du dpUdS

df
U

f
df −

1

2
E du dp

sdfd2

f
,

s30d

where in the derivation we have used lns1+xdùx−x2/2 for
x.−1. Applying this latter inequality withf = fk+1 and df
= fk− fk+1, and using both conditionss24d ands25d, we obtain

Sffk+1g − Sffkg ù bk+1sU − Effkgd +
1

2
E du dp

sfk+1 − fkd2

fk
,

s31d

where the term proportional toak+1 vanishes because of
mass conservation.

We will now use the concavity of the energy functional
Effg. For k.1,

Effkg ø Effk−1g +E UdE

df
U

fk−1

sfk − fk−1ddp du. s32d

As bk+1ù0 and EffkgøU, directly from the variational
problems22d, Eq. s31d implies that

Sffk+1g − Sffkg ù
1

2
E sfk+1 − fkd2

fk
du dpù 0. s33d

Hence, the entropy has to increase for all iterates after the
second. Since the entropy is bounded from above, it has to
converge. Using Eqs.s31d and s33d, one derives that the
energyEffkg converges toU from below. Moreover, assum-
ing that fk converges towardf, one can prove the conver-
gence of the multipliers to limit valuesa and bù0, which
implies that f verifies Eq. s24d for equilibrium states. Al-
though mathematically one cannot prove the convergence of
f, in all practical cases we will analyze, it appears to be
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verified. For a more thorough discussion of the convergence
in the similar case of the Euler equation, see Sec. IV in Ref.
f18g.

V. IMPLEMENTATION OF THE ALGORITHM

We describe in this section the practical implementation
of an algorithm which allows the calculation of the stable
distribution, using the method described in the previous sec-
tion.

From s24d, we obtain

fk+1 = Ak+1 expF− bk+1Sp2

2
+ WksudDG , s34d

where Ak+1=exps−ak+1−1d and bk+1 are unknown at this
stage. Usings20d, we get

rk+1sud = Ãk+1e
−bk+1Wksud, s35d

whereÃk+1=Ak+1
Î2p /bk+1. This equation allows us to com-

puteWk+1sud from Eq. s21d and

Ek+1 ; Effk+1g =
1

2bk+1
+

1

2
E

−p

+p

rk+1sudWk+1suddu.

s36d

Then the multipliersak+1 and bk+1 must be computed from

Eqs.s10d ands25d and, from these, one getsÃk+1. In order to
compute numerically these Lagrange parameters, let us de-
fine the Lagrangianf23g

Lkffgsb,ad = − Sffg + bFEk +E UdE

df
U

fk

sf − fkddp du − UG
+ asMffg − 1d. s37d

From this, one further defines

Lk
!sb,ad = inf

f
hLkffgsb,adj. s38d

One can prove on a general groundf23g that Lk
! is concave

and thatak+1 andbk+1 are the unique maxima ofLk
!. Using

condition s34d for the extrema ofLkffgsb ,ad, we can com-

puteLk
!. We obtain, using for practical reasons the variableÃ

instead ofa,

Lk
!sb,Ãd = log Ã +

1

2
log b − bSU + Ek −

1

2bk
D

− ÃE
−p

+p

du e−bWksud. s39d

Necessary conditions for the concave functionLk
! to be maxi-

mal are

]Lk
!

]Ã
=

1

Ã
−E

−p

+p

du e−bWksud = 0, s40d

]Lk
!

]b
=

1

2b
+

1

2bk
− U − Ek + ÃE

−p

+p

du Wksude−bWksud = 0.

s41d

Substituting Eq.s40d into Eq. s41d, one gets the condition

−
1

2bk+1
−

1

2bk
+ U + Ek −

e−p
+pdu Wksude−bk+1Wksud

e−p
+pdu e−bk+1Wksud = 0,

s42d

which, sinceLk
! is concave, has a unique solution. Numeri-

cally, the solutionbk+1 is found by using a Newton algorithm

for Eq. s42d. Then, from Eq.s40d, we getÃk+1. Finally, we
can calculate the density distribution from Eq.s35d.

VI. DISCUSSION OF THE RESULTS

Using the iterative method described in the previous sec-
tion, we are able to derive the stable mass densityrsud so-
lution of Eq. s18d and, from that, all thermodynamic func-
tions in the microcanonical ensemble. In the first part of this
section, we will show the numerical solution obtained for
rsud, and its dependence on energy for a small value of the
softening parameter«. In the second part, we will discuss the
phase diagram of the SGR model, both in the microcanonical
and in the canonical ensemble, when« is varied.

A. Mass density, entropy and caloric curves

For energies above a certain critical valueUcs«d, the
stable mass density solution is uniform. In this case, one can
compute the entropy from Eq.s9d

S=
1

2
f3 logs2pd + 1 − logbg, s43d

and the inverse temperature from Eq.s19d

b = s2U − 2Ēpd−1, s44d

where

Ēp =
1

2

1

s2pd2E
−p

+p E
−p

+p

du df V«su − fd s45d

=−
1

pÎ2

1
Î2 + «

KS 2

« + 2
D , s46d

where K is the complete elliptic integral of the first kind
Ksxd;e0

p/2du /Î1−x sin2 u.
Remark that Eq.s44d implies that the homogeneous state

cannot be continued belowUhom=Ēp, because this latter en-
ergy corresponds to zero temperature.

For U,Ucs«d, the stable mass distribution must be deter-
mined numerically. We have checked in this case, that a di-
rect iterative method of solution of the consistency Eqs.s17d
and s18d does not always converge. On the contrary, the al-
gorithm presented in Sec. V ensures convergence as shown
in Fig. 3 for the entropy.
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In Fig. 4 we show both entropy and temperatureT=b−1 as
a function of energyU. The most striking feature is the pres-
ence of a negative specific heat region forUtopøUøUc. For
UlowøUøUhigh, the entropy does not coincide with its con-
vex envelope. Hence, microcanonical and canonical en-
sembles do not give the same predictions. Indeed, the main
peculiarity of the microcanonical ensemble is that macro-
scopic states within this interval are stable, while they would
be either metastable or unstable in the canonical ensemble.
The mass density is uniform aboveUc, while, below this
value, it is localized. The appropriate order parameter to
characterize this localization is the “magnetization”

B =E
−p

+p

du eiursud, s47d

which vanishes if the mass distribution is uniform while it
reaches the valueB=1 when the mass is concentrated in only
one point. Intermediate degrees of localization give interme-
diate values ofB. The “magnetization” is plotted in Fig. 5 as
a function ofU. It is a decreasing function ofU, up to Uc,
where it has a jump to the limiting value 0. Hence, we have
here a first order microcanonical phase transition. The first
order nature of the phase transition is confirmed zooming the
entropy aroundUc fsee the inset in panelsbd of Fig. 4g. This
reveals that this first order phase transition is of the convex-
concave typessee Ref.f17gd. The canonical ensemble is ob-
tained by taking the convex envelope of the microcanonical
entropy. The transition is first order in the canonical en-
semble and the transition temperatureTcan is given by the
inverse slope of the entropy atUlow andUhigh. No canonical
macrostate is present in the energy rangefUlow,Uhighg.

A typical localized mass density distribution is shown in
Fig. 6. It corresponds to an energy where the specific heat is
negative.

The first order phase transition is associated with the ex-
istence of metastable states. Using a continuation method,
we have been able to compute them. Their entropy is repre-
sented in Fig. 7 around the transition energyUc for the spe-

cific case«=10−5. The inhomogeneous metastable state turns
out to exist forUcøUøUin with Uin.0.16, while the ho-
mogeneous metastable state exists forUhomøUøUc, with

Uhom=Ēps«=10−5d.−1.19.

B. Behavior as the softening parameter« is varied

Let us first examine a situation where the softening pa-
rameter is much larger than previously,«=10−2. In the mi-
crocanonical ensemble, Fig. 8 shows that a concavity change
still occurs atUtop.−0.8, and that a phase transition exists at
U=Uc.−0.3. However, the temperature being now a con-
tinuous function of the energy but with discontinuous deriva-
tive atUc, the phase transition is of second orderssee Fig. 9d,
and is associated with the symmetry breaking of the order

FIG. 3. Convergence of the entropy using the algorithm of Sec.
V for «=10−5 and U=−1. All quantities are plotted in arbitrary
units.

FIG. 4. Temperaturefpanelsadg and entropyfpanelsbdg versus
energyU for the softening parameter value«=10−5. Four values of
the energy, indicated by the short-dashed vertical lines, can be iden-
tified from this picture:Ulow.−93 andUhigh.6 bound from below
and above the region of inequivalence of ensembles.Uc.0 is the
transition energy in the microcanonical ensemble.Utop.−66 limits
from below the negative specific heat region, where temperature
decreases as energy increases.Tcan.15, represented with a dashed
line in panelsad, is the canonical transition temperature and corre-
sponds to the inverse slope of the entropy, both atUlow andUhigh, as
represented by the straight dashed line in panelsbd. The full lines
represent the analytical solutions of the temperature and of entropy
in the uniform casefsee formulass43d ands44dg. They are extended
slightly below Uc, in the metastable phase, in order to identify
them. The insets in panelssad andsbd show a zoom of the tempera-
ture and of the entropy aroundUc, revealing a temperature jump at
Uc and different slopes of the entropy above and belowUc, which
emphasizes the first order nature of the phase transition. All quan-
tities are plotted in arbitrary units.
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parameter. The caloric curve shows that this second order
phase transition is of the convex-concave type. As it is nec-
essary for this type of microcanonical second order phase
transition f17g, we observe a positive specific heat jump at
the transition point.

What we find suggests that between«=10−5 and«=10−2,
there is an intermediate value of« where amicrocanonical
tricritical point is present. This point is signaled by two
properties:

s1d The caloric curve assumes a negative infinite slope as
U tends toUc from below.

s2d The upper energy of the metastable inhomogeneous
phaseUin collapses ontoUc from above, while still a con-
tinuation of the homogeneous phase belowUc exists as an
unstable phase.

In Fig. 10, we have represented the« dependence of the
critical energyUc and of the energy boundsUin andUhom. At
the microcanonical tricritical point,«T

m.10−4, the end point
for the existence of the inhomogeneous metastable phase

joins the critical line. This is a generic feature of tricritical
points with symmetry breakingssee Fig. 6 of Ref.f17gd.

To locate the tricritical point in the canonical ensemble,
one has to look for the« value at which the two curvesUlow
and Uhigh mergessee Fig. 11d. An approximate estimate of
this value is«T

c .10−1. At the canonical tricritical point, also
Utop merges with the above curves, indicating the disappear-
ance of the negative specific heat region. We thus note that
ensemble inequivalence disappears at the canonical tricritical
point by the disappearance of the inflection point atUtop in
the entropy curve. As it may be checked in Table I of Ref.
f17g, this is the only way in which ensemble inequivalence
can disappear when associated with a tricritical point.

Summarizing, the important changes of the phase diagram
of the SGR model when« is varied are due to the existence
of microcanonical and canonical tricritical points. For«
ø«T

c, there is an energy range with ensemble inequivalence.
These features were already observed in Refs.f19,24g.

VII. RELAXATION TO EQUILIBRIUM

We have first checked numerically if the equilibrium den-
sity profile is ever attained in directN-body simulations of
Hamiltonians1d. In Fig. 12, we compare the result of a nu-
merical simulation with the equilibrium density profile ob-
tained by the iterative method. The agreement is good in the
center of the mass distribution, while the tails are still af-
fected by strong finiteN fluctuations. In this case, the total
energyU=−20 is in the region of negative specific heat and
is well conserved using a sixth order symplectic integrator
f25g. Simulations were performed using GRAPE-5, a special
purpose computer for gravitational forcef9g.

However, it is well known that systems with long-range
interactions display a very slow relaxation to equilibrium

FIG. 5. “Magnetization”B versus energyU for «=10−5, which
emphasizes the microcanonical first order phase transition atUc

.0 by showing a jump in the order parameter. All quantities are
plotted in arbitrary units.

FIG. 6. A typical mass density distributionrsud for «=10−5 and
U=−20.0, in the negative specific heat region. All quantities are
plotted in arbitrary units.

FIG. 7. Both the high energy branch of the entropy versus en-
ergy curve, corresponding to the homogeneous solutionssolid lined
and the low energy branch of the inhomogeneous solutionsdashed
lined are represented in this plot for«=10−5. The two branches cross
at Uc.0. The continuation of the homogeneous branch into the low
energy region is bounded from below byUhom.−1.19, indicated by
a vertical dashed line. The inhomogeneous branch continues into
the high energy phase and ends atUin.0.16, again indicated by a
vertical dashed line. All quantities are plotted in arbitrary units.
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f26g. Hence, we expect that similar features will be also ex-
hibited by the SGR model. For instance, we can consider a
“cold start,” where the particles are initially homogeneously
distributed on an archsuP fumin,umaxgd with zero kinetic en-
ergy. Usually, in gravitational simulations, one looks at the
evolution of the virial ratiou2K /Vu, which is here initially
zero. The plot of the time dependence of this parameter is
shown in Fig. 13 for the same parameter values used previ-
ously. One clearly observes that the system relaxes to a “qua-
siequilibrium” state, where the virial ratio fluctuates around a
value which differs from the equilibrium one, computed ana-
lytically. While previously, for the mass positionsssee Fig.
12d, the relaxation was observed on a short time scale, we
show here that a quantity related also to velocities does not
display a relaxation on the same time scale. From previous
experiences with similar casesf26g, one expects that the re-
laxation should occur on a time scale of the order of a power
of N.

Even slower is the relaxation when local maxima of the
entropy exist. This happens around the critical energyUc in
the case of a first order phase transition, e.g., for«=10−5.
Figure 14 shows the relaxation to different values of two
relevant quantities, the temperature and the “magnetization,”
when the system is initialized either with the particles con-
centrated on a small arch, or on a larger one. When the
system is “close” to the local entropy maximum correspond-
ing to the clustered state, it converges to it pretty fast. The
contrary happens when the particles are more homoge-
neously distributed, and then the system converges to the
homogeneous state. Indeed, between the two states there is
an entropy barrier which has been found to grow as expsNd
for systems with long-range interactionsf27,28g.

FIG. 8. Panelsad: The caloric curvestrianglesd for «=10−2. The
dashed vertical lines indicate, from left to right,Ulow.−1.98,
Utop.−1.3, Uc.−0.32, and Uhigh.−0.225. The homogeneous
phase curve, known analytically, is shown by the continuous line.
The main difference with respect to Fig. 4 is that now there is not a
temperature jump atUc. The phase transition is second order in the
microcanonical ensemble, while it is still first order in the canonical
ensemble, atTcan.0.8. Panelsbd: Entropy versus energystrianglesd
for «=10−2. The entropy curve corresponding to the inhomoge-
neous distribution smoothly connects with the one of the homoge-
neous distributionssolid lined. The oblique straight dashed line is
tangent to the entropy atUlow andUhigh, which delimit the energy
region of ensemble inequivalence. All quantities are plotted in ar-
bitrary units.

FIG. 9. “Magnetization”B versus energyU for «=10−2 which
emphasizes the microcanonical second order phase transition atUc,
because the order parameter vanishes continuously. All quantities
are plotted in arbitrary units.

FIG. 10. The dash-dotted line representsUins«d, the dashed line

Uhom=Ēps«d, the filled circles the first order microcanonical phase
transition energy, and the open circles the second order one. At the
microcanonical tricritical point«T

m.10−4, the phase transition
changes from first order to second order and, at the same time, the
inhomogeneous metastable solution disappears. All quantities are
plotted in arbitrary units.
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VIII. CONCLUSIONS AND PERSPECTIVES

We have fully characterized from the thermodynamic
point of view a one-dimensional model of self-gravitating
particles moving on a ringf14g, which is the simplest proto-
type of the full 3D self-gravitating system. Solving the equi-
librium density equation by an iterative method, whose con-
vergence is assured by entropy increase, allows us to derive
the full phase diagram of the model both in the microcanoni-
cal and the canonical ensemble. When the softening param-

eter is sufficiently small, a negative specific heat region ap-
pears in the microcanonical ensemble, in coincidence with
the phase transition becoming first order in the canonical
ensemble. Further lowering the softening parameter, the tran-
sition becomes first order in the microcanonical ensemble
and a temperature jump appears at the transition energy. The
microcanonical and canonical tricritical points do not coin-
cide f19g.

Dynamically, we have performed numerical experiments
which show that relaxation to equilibrium can be extremely
slow. They reveal also the presence of quasiequilibrium
states, which are ubiquitous in systems with long-range in-
teractionsf16g. These states could be further characterized
considering a Vlasov equation approach as done for the

FIG. 11. « dependence ofUlow sdashed lined, Uhigh ssolid lined,
andUtop sdash-dotted lined. The canonical tricritical point is located
at «T

c .10−1 where the three curves merge. At this softening param-
eter value also the negative specific heat disappears in the microca-
nonical ensemble, while the transition becomes second order in the
canonical ensemble. In the figure, we also show, with a long-dashed
line, the theoretical estimate ofUtop

th .−1/s4Î2«d obtained in Ref.
f14g. All quantities are plotted in arbitrary units.

FIG. 12. Comparison of the mass density profile obtained by the
iterative methodssolid lined with the result of numerical simulations
splus signsd with N=4000 and«=10−5. Parameter values are the
same as Fig. 6. The inset is a zoom of the center of the profile. All
quantities are plotted in arbitrary units.

FIG. 13. Time evolution of the virial ratiou2K /Vu of the SGR
model for«=10−5 andN=4000. Initially, the particles are homoge-
neously distributed in the intervalf0,2p /75g with zero kinetic en-
ergy. The virial ratio oscillates asymptotically around the value
0.49, which differs significantly from the equilibrium value 0.55
indicated by the dashed horizontal line. The initial virial ratio is
zero, although this time region is not visible in the figure. All quan-
tities are plotted in arbitrary units.

FIG. 14. Relaxation to different maximum entropy states in the
SGR model forU.0, «=10−5, and N=103. Panelsad shows the
relaxation of the temperature either to the inhomogeneous state
valueshorizontal dotted lined, or to the homogeneous oneshorizon-
tal dash-dotted lined, depending on whether the particles are initially
distributed on a smaller archuP f0,p /50g ssolid lined or a larger
archuP f0,p /5g sdashed lined. In both cases, the velocity distribu-
tion is initially a “water bag.” Panelsbd shows the same for the
“magnetization.” All quantities are plotted in arbitrary units.
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HMF model in Ref.f26g. Moreover, in the first-order micro-
canonical transition region a strong metastability appears
and, at a given energy, the system can relax towards different
thermodynamic states.

Preliminary studies of velocity probability distributions in
this model have been performed in Ref.f14g. A similar
analysis has been more recently done for the full 3D self-
gravitating systemf29g. In both models, non-Gaussian tails
show up in several energy regions. Among future directions
of study of the SGR model, we think that deriving a theoret-
ical framework to undertand these large tails would be of
particular interest. To this aim, especially useful could be the
methods developed to understand single-particle diffusion in
the HMF modelf30,31g.
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