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We present the phase diagram, in both the microcanonical and the canonical ensemble, of the self-
gravitating-ring(SGR model, which describes the motion of equal point masses constrained on a ring and
subject to 3D gravitational attraction. If the interaction is regularized at short distances by the introduction of
a softening parameter, a global entropy maximum always exists, and thermodynamics is well defined in the
mean-field limit. Howeverensembles are not equivaleand a phase afiegative specific heah the micro-
canonical ensemble appears in a wide intermediate energy region, if the softening parameter is small enough.
The phase transition changes from second to first ordetratraical point, whose location is not the same in
the two ensembles. All these features make of the SGR model the best prototype of a self-gravitating system
in one dimension. In order to obtain the stable stationary mass distribution, we apply an iterative method,
inspired by a previous one used in 2D turbulence, which ensures entropy increase and, hence, convergence
towards an equilibrium state.
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[. INTRODUCTION not interact. This model has been called the self-gravitating
ofing model(SGR) and will be the subject of the study dis-

There are many objects in our universe whose behavi din thi it has b h . ical simul
can be understood considering only the gravitational interactYSS€d IN IS paper. it has been shown in numerical simuia-

tion. Examples are globular clusters, galaxies, clusters of gations [14], that this model maintains the peculiar features of
axies, molecular cloudd]. Different theoretical approaches € 3D Newtonian potential, showing a negative specific heat

have been proposed to explain the peculiar statistical prog2h@s€é and a phase transition if the softening parameter is

; . P ; Il enough. Moreover, for large softening, this model re-
erties of self-gravitating systems. The main difficulty is thatS™M& ~OVET, . '
these systems cannot approach statistical equilibrium beluces to the Hamiltonian mean-field modéiMF) [15],

cause of the short-distance divergence of the potential and 3¥h'Ch has been recently extensively studied as a prototype

the evaporation at the boundaries. Even if one puts the sy ystem with long-range interactions. This latter model, how-

tem in a box with adiabatic walls, thus eliminating evapora- ver, although it displays a second order phase transition,
) . . ’ 9 POra-4oes not have a negative specific heat phase at equilibrium.
tion, still gravity causes the well-known phenomenorgs-

. . In this paper, we derive the equilibrium thermodynamics
vothermal catastroph¢2—4]. The introduction of a small- ¢ the SGR model both in the canonical and in the microca-
scale softening of the interaction potential, as for instance iygnical ensemble. For all nonvanishing softening parameter
self-gravitating fermion§5-7], avoids such a catastrophe, so ya|yes, this model has a thermal equilibrium state. If the
that self-gravitating systems can approach the fitt@rma)  softening parameter is small enough, the model shems
equilibrium state. However, such a state may hanegative  semble inequivalencgl6,17 with a negative specific heat
specific heatMoreover, a first order phase transition from phase in the microcanonical ensemble and a first order phase
the high energy gas phase to the low energy clustered phag@ansition. Therefore, the SGR model displays several fea-
appearg3]. tures of the true 3D Newtonian interaction, and can serve as
Direct studies of the full three-dimensiordibody gravi- a better prototype of self-gravitating systems in one dimen-
tational dynamics are particularly heap8] and even special sion than all previously introduced models.
purpose machines have been built to this §&h Therefore, The paper is organized as follows. In Sec. Il, we briefly
lower dimensional models have been introduced to describmtroduce the SGR model and we discuss the essential fea-
gravitational systems with additional symmetries. For in-tures of previous numerical simulatiofis4]. In Sec. Ill, we
stance, the gravitational sheet model describing the motioshow the general scheme for deriving all stationary density
of infinite planar mass distributions perpendicularly to theirdistributions which maximize Boltzmann-Gibbs entropy at
surface has been considefdd]. Although this model shows fixed total energy and mass. Section IV presents an iterative
interesting behaviorg11,17, the specific heat is always method which ensures entropy increase and leads in a unique
positive and no phase transition is present. Other oneway towards the stable equilibrium single particle distribu-
dimensional self-gravitating toy models may have phasdion function. The method is inspired by a similar one used to
transitions and ensemble inequivalents]. compute entropy maxima in 2D turbulengEg]. In Sec. V,
Recently, another one-dimensional model has been introve describe in full detail how to implement the iterative
duced[14] where particle motion is confined on a ring, but algorithm in a numerical scheme. In Sec. VI, we calculate
the interaction is the true Newtonian 3D one. At short dis-the thermodynamic quantities of the SGR model using the
tances, the potential is regularized, so that the particles diterative method. We also show how, reducing the softening
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FIG. 1. Self-gravitating ring model with a fixed unitary radius. J
Particles are constrained to move on a ring and therefore their lo- 2
cation is specified by the angles measured with respect to a fixed °
direction. Each pair of particles # and ¢; interacts through the T °
inverse-square three-dimensional gravitational force. The distance @ g
is measured by the chord, as shown in the figure. 2
AAAAAIAAWA §
parameter, one enters into a region of ensemble inequiva- a M
lence, where a tricritical point exists which is not the same in 0 A‘ Poe :
the two ensemble_BL9]. Finally, in Sec. VII, we discgss the —npp Vel Uerledugen) 200
dynamical evolution of the SGR model, emphasizing the (b) U Udlez)

properties of relaxation to equilibrium.

FIG. 2. Caloric curves of the self-gravitating rit§GR model
obtained from numerical simulations of Hamiltoniél). Panel(a)
refers to the softening parameter valtre 10, for which a second

In this section, we briefly present the self-gravitating ringorder phase transition appeardt No backbending of the caloric
(SGR model [14]. In this model, particle motion is con- curve, indicating a negative specific heat, is present. Simulations
strained on a ring and particles interact via a true 3D Newwere performed foN=100. Panelb) shows the caloric curves for
tonian potentialFig. 1). two different values of the softening parameter=1.0x 1076 and

The Hamiltonian of the SGR model is £,=2.5x 1077, andN=100. The transition is here first order in the

N microcanonical ensembleee Sec. VI for a discussipnThe two
1 , 1 transition energiefl (¢;) andU(e,) are pretty close, suggesting a
H= EE Pt ﬁz V(6= 6), 1 slow variation of the critical energy with the softening parameter
=1 b On the contraryUiop(s4) is significantly smaller thaty,(e,), in-
dicating that this characteristic energy value diminishes witA
V.(6 - 6j) __ i_ 1 , ) negative spegific heat phase_ appeardfgp<U< UC_, .and expands _
V241 -cog6 - 6]-) fe as Fhe softe_nlng parameter is reduced. All quantities are plotted in
arbitrary units.

wheree is the softening parameter, which is introduced, as i ) .
usual, in order to avoid the divergence of the potential atl =8 =2K)/N, is plotted against the total energy per par-
short distances. ticle U=H/N. In a situation close to that of the HMF model,

Taking the larges limit, the potential becomes e.g., fore=10, the caloric curve determined from microca-
nonical numerical simulations is reported in Figaj2 In the
_ 1 |1-cos6-6) - homogeneous phadeg>U(e), the caloric curve is almost
Ve = \V2e %s —11+0(™), ) linear, while in the clustered phadé<U(e), it is bent
downward. Nonetheless, temperature always grows with en-
which is the one of the Hamiltonian mean-fieiMF)  ergy and one does not observe any negative specific heat
model[15]. It is well known that the HMF moddll5] has a  energy range. However, as it happens for 3D Newtonian
second order phase transition, separating a low energy phaggavity simulationg8], when one reduces the softening pa-
where the particles form a single cluster, from a high energyameter, a negative specific heat phase develops. For in-
gas phase where kinetic energy dominates and the particlesance, in Fig. @), we show two cases at small where
are homogeneously distributed on the circle. One usuallghree phases can be identifigtH]:
draws the so-called caloric curve, where temperature, (1) a low-energy clustered phase for<U(e), where
given by twice the averaged kinetic energy per particleU,,, is defined as the energy at whiefi/ JU=0.

Il. SELF-GRAVITATING RING MODEL
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(2) an intermediate-energy phasb;,,(e) <U <U(e),
with negative specific heat.
(3) a high-energy gaseous phase fh(s) <U.

PHYSICAL REVIEW E 71, 056111(2005

FIf]=d9f]- pE[f] - af fdpdo-yplf], (12

The clustered phase is created by the presence of softeningwherea, 8, andy are Lagrange multipliers, is stationary

without which the particles would fall into the zero distance
singularity. In the gas phase, the particles are hardly affected
by the potential and behave as almost free particles. The

p2

OF[f
#:—Iogf—l—ﬁ<z+w(0)>—a‘ypzoa (13

intermediate phase is expected to show the characters WhereW(e) is defined as

gravity, persisting and even widening in the-0 limit.

In the following, several of these features will be given a
theoretical explanation and we will detail the analysis of the

nature of the phase transitigfirst or second ordémwhene
is varied.

IIl. STATIONARY DENSITY DISTRIBUTION

In the mean-field limi{N— o with fixed length[20]), one
can introduce the single particle distribution functif{p, )
such thatf(p, #)dpde is the fraction of particles in the do-
main[ 4, 0+dd][p,p+dp]. In terms off, the potential energy
can be written as

1
Ep[f]IEJdM(bdp dpf(p,O)V.(0- H)t(p’.¢) (4)

1
=3 f de do p(0)p(H)V,(6 - ¢), )
where
p(0)=fdpf(p,0) (6)
is the mass density. The kinetic energy is
1
Edlf]=5 f dédp pf(p,6) @)
and the total energy
E[f]=Ex[f]+Ep[f]. 8

The equilibrium distribution in the microcanonical en-

semble is determined by maximizing entropy

S[f]:—Jdadpflogf (9

(14)

W(H)Ef P(P)V, (0~ ¢)dép.

Sincep[f]=0, the Lagrange multiplieyy vanishes. From
Eq. (13), the normalized stationary distribution function can
be written as

p2
f(p,0) =Aexp[— ﬁ(? +W(0))] ,

where A=exp(-1-«) is the normalization constant and the
mass density is given by

(15

p(6) = AePMO (16)

whereA=A\27/ 8. When Egs(14) and (16) are combined,
we obtain the consistency equations

W(6) = A f We‘BW<¢>vs(0—¢)d¢, (17)

and the equilibrium density equation

p(6) :Z\exp[— BA f p(PV,(0- ¢>d¢] . (19

which are solved numerically in the following. Once the sta-
tionary mass distributions and the functionV are obtained
for each value ok, the full single particle distribution func-
tion f(9,p) is derived from Eq.(15). The potential energy
and the kinetic energy are determined by Ex).and Eq.(7),
respectively, allowing to draw the caloric curve by plotting
T= B 1=2E, against the total energy =Ey+Ep.

IV. AN ITERATIVE METHOD TO SOLVE
THE EQUILIBRIUM DENSITY EQUATION

The inverse temperatur@ can be expressed in terms of

under the constraints of fixed total energy, momentum andhe energy

mass. In the following, we fix the total energyf]=U, the
total mass

M[f]:fpdez 1 (10)
and the total momentum
p[f]=f pf(p,6)dodp=0. (11

+m ot -1
B:{ZU —J f p(O)p(H)V, (6 - ¢)d0d¢} :

(19

Once an initial density distributiopy(6) is chosen, one can
determine an initial inverse temperatysg using Eq.(19),

and then solve the consistency equati@8) iteratively (as
done for instance in Ref21]). However, we will follow here

a different iterative method, which ensures entropy increase

A necessary condition to get an entropy maximum is toand, hence, convergence of the algorithm. The method is

require that the free energy

inspired by a similar one used by Turkington and Whittaker
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[18] to compute entropy maxima for two-dimensional turbu-
lence. SE= f dep d6 5p(6) Sp(H)V,(0 - ) (26)

The functional to maximizegf] is strictly concave and
we must fix both a linear constraiM[f]=1 and a nonlinear 5
one E[f]=U. It is this latter nonlinear constraint which 2% Ve 9%, (27)
makes the variational problem more difficult than usual. The
trick to solve this nonlinear problem consists in considering avhere the second equality is obtained using the Fourier se-
linearization of the energy constraint around the distributiorries expansion for both the mass density variatprand the
function resulting from the previous step in the iterative pro-potentialV,
cess.

One begins with the normalized distributifnobtained at Sk = if ﬁd(P explike) dp(), (28)
thekth step of the algorithm. From that, one can compute the 2] _,
mass density,, and the average potentigl,.
1 ("
Vek=5_ f do explike)V.(¢). (29
p(6) = f dp f(p,0), (20) 2m)_,

SinceV, is even in the argumen, V, \ is a real number.
o Moreover, sinceV,<0 andV,(¢) is strictly increasing for
W (6) :f do p(P)V.(0— ). (21) Ose¢s=m, itis easy to prove that for ank, V, is strictly
-7 negative. Hence, from formul@7) the second variation of
the energy functional is negative and this functional is
The distribution at the next stefp,; will be then determined  strictly concave.
by solving the following variational problem On the other hand, the entropy is strictly concave. We

have
oE
ma fo=1,Ef+f— f-fodpdd<U, 6S 1 5f)?
”{S[“ [11=1Elfd St fk( Jdp } S[f+8f]sS[f]+fd0dp§ 6f—§fd0dp—( f),
f
(22 (30)
where the functional derivative of the energy is where in the derivation we have used1rx)=x—-x2/2 for
5 x>-1. Applying this latter inequality withf=f,,; and of
OBl _p° =f,— i1, and using both condition@4) and(25), we obtain
e Bl + W (6). (23
fi

2
o _ _ o Sfyea] = Ikl = Biea(U ~ E[fi]) + : J dﬁdpM,
This variational problem has a unique solutifyp,, since it 2 fi
corresponds to the maximization of a strictly concave func- (31
tional with linear constraints.

This iterative process ensures convergence of the entropy. i
Let us prove it. By using a generalization of the LagranggMass conservation. , _
multiplier rule for our inequality constrained variational __ W& Will now use the concavity of the energy functional
problem[22,23 E[f]. Fork>1,

here the term proportional tey,,; vanishes because of

SoE
E[fi] < E[f _1]+f —| (fe-fepdpds. (32
E = g1t Bret E (24) “ “ of fre1 o
frea fi
As Bi,1=0 andE[f, ]<U, directly from the variational
with the additional requirement problem(22), Eq. (31) implies that

1 [ (frer— f)?
qfk+1]_qfk]>§f@d0dp2 0. (33
k

(fier— fydp do - U] =0, (29
fi

SE
k -
Bk+1|:E[f ]+J S
Hence, the entropy has to increase for all iterates after the
where By, =0 is the multiplier associated with the energy second. Since the entropy is bounded from above, it has to
constraint andy,,, the one associated with mass conservaconverge. Using Eqs(31) and (33), one derives that the
tion. When solving Eq(25), we have eithep,,,=0, which  energyE[f,] converges tdJ from below. Moreover, assum-
removes the energy constraint, 8¢, >0, and an equality ing that f, converges toward, one can prove the conver-
for the linearized energy constraint. gence of the multipliers to limit values and =0, which
In order to prove convergence of the entropy, let us firsimplies thatf verifies Eq.(24) for equilibrium states. Al-
prove that the energy function& f] is concave. Since the though mathematically one cannot prove the convergence of
kinetic part is linear inf, the second variation df[f] is f, in all practical cases we will analyze, it appears to be
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verified. For a more thorough discussion of the convergence (9|_k 1 1
in the similar case of the Euler equation, see Sec. IV in Ref.

PHYSICAL REVIEW E 71, 056111(2005

+ar
-U-E+ Af do W (9)e PN =0,

(41)
V. IMPLEMENTATION OF THE ALGORITHM Substituting Eq(40) into Eq. (41), one gets the condition
We describe in this section the practical implementation 1 f"':dgwk(e)e_ﬁhlwk(a)
of an algorithm which allows the calculation of the stable =55~ =7 +U+E- 776 & Ptk =0,
distribution, using the method described in the previous sec- kel K o
tion. (42)

From (24), we obtain

2
fle1 = At exp[ ,3k+1< LA Wil 9))} (34)

where Ay1=exp—ay1—1) and By, are unknown at this

stage. Using20), we get

Proa(6) = Ayg At (35

Wherez\kﬂ:Akﬂv’er/,Bkﬂ. This equation allows us to com-

pute W,,,(6) from Eq.(21) and

1 1
E..;. = E[f —+ = OW,,1(6)dé.
k1 = Elfiea] = 2Bt Zf_.,., Prr1(0)Wier1(6)

(36)

Then the multipliersa,,; and By,; must be computed from

Egs.(10) and(25) and, from these, one gezs(ﬂ. In order to

which, sinceLy is concave, has a unique solution. Numeri-
cally, the solutiongy, 4 is found by using a Newton algorithm
for Eq. (42). Then, from Eq.(40), we getAy,;. Finally, we
can calculate the density distribution from E85).

VI. DISCUSSION OF THE RESULTS

Using the iterative method described in the previous sec-
tion, we are able to derive the stable mass density so-
lution of Eqg. (18) and, from that, all thermodynamic func-
tions in the microcanonical ensemble. In the first part of this
section, we will show the numerical solution obtained for
p(#), and its dependence on energy for a small value of the
softening parameter. In the second part, we will discuss the
phase diagram of the SGR model, both in the microcanonical
and in the canonical ensemble, wheis varied.

A. Mass density, entropy and caloric curves

compute numerically these Lagrange parameters, let us de- For energies above a certain critical valuk(e), the

fine the Lagrangian23]

Lk[f](ﬂya)=-5(f]+,3[Ek+f (f-fodp dH—U}

fi

+a(M[f]-1). (37)
From this, one further defines
Le(B,a) = irflf{Lk[f](B, a)}. (38)

One can prove on a general groui8] thatL; is concave

and thatay,; and B,, are the unique maxima df;. Using

condition (34) for the extrema oL ,[f](83,«), we can com-
puteLy. We obtain, using for practical reasons the variahle

instead ofa,

LA(BA) = A+ Llog - (U+E—i>
k(B,A) =log 2095 B K~ 28,

-A f dg e PO, (39)

Necessary conditions for the concave functigrto be maxi-
mal are

a1

+
==- J dge P =0, (40)

A A

stable mass density solution is uniform. In this case, one can
compute the entropy from E@9)

S= %[3 log(27) + 1 -log 8], (43)

and the inverse temperature from Eij9)
B=(2U-2E,)7, (44)

where
Ep= 2(2 )J f dode V.(0- ) (45)
1 1 2

== K , 46
77\"5\“”2+£ <8+2> (46

where IC is the complete elliptic integral of the first kind
K(x)= [7?d6/\1-x sir? 6.
Remark that Eq(44) implies that the homogeneous state

cannot be continued beloW,,=E,, because this latter en-
ergy corresponds to zero temperature.

For U<U.(e), the stable mass distribution must be deter-
mined numerically. We have checked in this case, that a di-
rect iterative method of solution of the consistency EG3)
and(18) does not always converge. On the contrary, the al-
gorithm presented in Sec. V ensures convergence as shown
in Fig. 3 for the entropy.
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FIG. 3. Convergence of the entropy using the algorithm of Sec.
V for ¢=10° and U=-1. All quantities are plotted in arbitrary
units. ; L

In Fig. 4 we show both entropy and temperatlire8™* as & ; D
a function of energyJ. The most striking feature is the pres- —4l Ywo U Ue_Unign
ence of a negative specific heat region tihg,<U<U.. For -110 35
Ujow=U =< Uygn, the entropy does not coincide with its con-

vex envelope. Hence, microcanonical and canonical en- fig. 4. Temperaturgpanel (a)] and entropy[panel (b)] versus
sembles do not give the same predictions. Indeed, the maishergyU for the softening parameter valee10°5. Four values of
peculiarity of the microcanonical ensemble is that macro+the energy, indicated by the short-dashed vertical lines, can be iden-
scopic states within this interval are stable, while they wouldified from this pictureU;,,,~-93 andUpgn=6 bound from below
be either metastable or unstable in the canonical ensembland above the region of inequivalence of ensemhtilgs=0 is the
The mass density is uniform abowg,, while, below this transition energy in the microcanonical ensemblg,=-66 limits
value, it is localized. The appropriate order parameter tdrom below the negative specific heat region, where temperature
characterize this localization is the “magnetization” decreases as energy increadgg,~= 15, represented with a dashed
line in panel(a), is the canonical transition temperature and corre-
*m g sponds to the inverse slope of the entropy, botlg} andUy,gp, as
B= doe’p(6), (47) represented by the straight dashed line in pahgelThe full lines

o represent the analytical solutions of the temperature and of entropy

which vanishes if the mass distribution is uniform while it I" the uniform casgsee formulag43) and(44)]. They are extended

reaches the valuB=1 when the mass is concentrated in only S9Nty below Ug, iin the metastable phase, in order to identify

one point. Intermediate degrees of localization give interme!hem' The insets in pane(a) and(b) ShO\.N a zoom of the tempera-

diate values oB. The “magnetization” is plotted in Fig. 5 as ture and of the entropy aroundi,, revealing a temperature jump at
: o - . ) U, and different slopes of the entropy above and beléwvwhich

a function ofU. It is a decreasing function df, up toU,, N

. . S emphasizes the first order nature of the phase transition. All quan-
where it has a jump to the limiting value 0. Hence, we have: ¢ 4o plotted in arbitrary units
here a first order microcanonical phase transition. The first '

order nature of the phase transition is confirmed zooming the__ 5 )
entropy aroundJ, [see the inset in panéb) of Fig. 4. This cific casee=107. The inhomogeneous metastable state turns
c .4

reveals that this first order phase transition is of the convex?Ut 10 exist forU.<U<Uj, with U;,=0.16, while the ho-
neous metastable state exists Wgp,,<U=<U,, with

concave typdsee Ref[17]). The canonical ensemble is ob- mogene
tained by taking the convex envelope of the microcanonicabhon=Ep(e=107°)=~-1.19.
entropy. The transition is first order in the canonical en-
semble and the transition temperatdrg, is given by the
inverse slope of the entropy Bk, andUyg,. No canonical
macrostate is present in the energy rafidg,,, Unignl- Let us first examine a situation where the softening pa-
A typical localized mass density distribution is shown in rameter is much larger than previousty; 1072, In the mi-
Fig. 6. It corresponds to an energy where the specific heat isrocanonical ensemble, Fig. 8 shows that a concavity change
negative. still occurs atU,,=-0.8, and that a phase transition exists at
The first order phase transition is associated with the extJ)=U.=-0.3. However, the temperature being now a con-
istence of metastable states. Using a continuation methodinuous function of the energy but with discontinuous deriva-
we have been able to compute them. Their entropy is repraive atU,., the phase transition is of second orfeze Fig. 9,
sented in Fig. 7 around the transition enetdyfor the spe- and is associated with the symmetry breaking of the order

B. Behavior as the softening parameterfe is varied
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FIG. 5. “Magnetization”B versus energy for =105, which
emphasizes the microcanonical first order phase transitiod.at
=0 by showing a jump in the order parameter. All quantities are
plotted in arbitrary units.

FIG. 7. Both the high energy branch of the entropy versus en-
ergy curve, corresponding to the homogeneous solygold line)
and the low energy branch of the inhomogeneous sol(tiashed
line) are represented in this plot fo=1075. The two branches cross
parameter. The caloric curve shows that this second ordeftU.=0. The continuation of the homogeneous branch into the low
phase transition is of the convex-concave type. As it is necenergy region is bounded from below by,,=-1.19, indicated by
essary for this type of microcanonical second order phase vertical dashed line. The inhomogeneous branch continues into
transition[17], we observe a positive specific heat jump atthe high energy phase and enddJgt=0.16, again indicated by a
the transition point. vertical dashed line. All quantities are plotted in arbitrary units.
What we find suggests that between10°® ande=1072,
there is an intermediate value sfwhere amicrocanonical joins the critical line. This is a generic feature of tricritical

tricritical point is present. This point is signaled by two points with symmetry breakin¢see Fig. 6 of Ref[17]).

properties: _ S To locate the tricritical point in the canonical ensemble,
(1) The caloric curve assumes a negative infinite slope agne has to look for the value at which the two curved,q,
U tends toU. from below. and Up,g, merge(see Fig. 11 An approximate estimate of

(2) The upper energy of the metastable inhomogeneouhis value iss$=10"". At the canonical tricritical point, also
phaseUj, collapses ontdJ. from above, while still a con- y,,, merges with the above curves, indicating the disappear-
tinuation of the homogeneous phase beldwexists as an  ance of the negative specific heat region. We thus note that
unstable phase. ensemble inequivalence disappears at the canonical tricritical

In Fig. 10, we have represented thelependence of the point by the disappearance of the inflection pointia, in
critical energylU. and of the energy bounds;, andUp,, At the entropy curve. As it may be checked in Table | of Ref.
the microcanonical tricritical pointf =107, the end point  [17], this is the only way in which ensemble inequivalence
for the existence of the inhomogeneous metastable phasgin disappear when associated with a tricritical point.

Summarizing, the important changes of the phase diagram

100 T of the SGR model when is varied are due to the existence
of microcanonical and canonical tricritical points. Fer
<e&%, there is an energy range with ensemble inequivalence.
0L J These features were already observed in Héf3,24.

VIl. RELAXATION TO EQUILIBRIUM

e 1L i We have first checked numerically if the equilibrium den-
sity profile is ever attained in dire®-body simulations of
Hamiltonian(1). In Fig. 12, we compare the result of a nu-
JL merical simulation with the equilibrium density profile ob-
01 F 3 tained by the iterative method. The agreement is good in the

center of the mass distribution, while the tails are still af-

fected by strong finiteN fluctuations. In this case, the total
0.01 L energyU=-20 is in the region of negative specific heat and
- g ® is well conserved using a sixth order symplectic integrator
[25]. Simulations were performed using GRAPE-5, a special

FIG. 6. Atypical mass density distributigi(6) for e=10°and  purpose computer for gravitational forf@.

U=-20.0, in the negative specific heat region. All quantities are However, it is well known that systems with long-range
plotted in arbitrary units. interactions display a very slow relaxation to equilibrium
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3.0l FIG. 9. “Magnetization”B versus energy for e=1072 which

emphasizes the microcanonical second order phase transitigyy at
because the order parameter vanishes continuously. All quantities
are plotted in arbitrary units.

25

2.0 ff

1.0 ©®

-2.5 0.2
(b) i

Even slower is the relaxation when local maxima of the
entropy exist. This happens around the critical enddgyn
the case of a first order phase transition, e.g.,&fel07.
Figure 14 shows the relaxation to different values of two
relevant quantities, the temperature and the “magnetization,”
when the system is initialized either with the particles con-

FIG. 8. Panela): The caloric curvetriangles for =102 The  Centrated on a small arch, or on a larger one. When the
dashed vertical lines indicate, from left to rightl,~-1.98,  SYStem is “close” to the local entropy maximum correspond-
Uiop=-1.3, U.=-0.32, andUy4,=-0.225. The homogeneous N9 to the clustered state, it converges to it pretty fast. The
phase curve, known analytically, is shown by the continuous linecontrary happens when the particles are more homoge-
The main difference with respect to Fig. 4 is that now there is not a1eously distributed, and then the system converges to the
temperature jump dt.. The phase transition is second order in the homogeneous state. Indeed, between the two states there is
microcanonical ensemble, while it is still first order in the canonicalan entropy barrier which has been found to grow as(xp

ensemble, af.,,=0.8. Panelb): Entropy versus energyriangles for systems with long-range interactiof7,2§.
for e=1072 The entropy curve corresponding to the inhomoge-

neous distribution smoothly connects with the one of the homoge-

neous distribution(solid line). The oblique straight dashed line is 1.3 ; ' ' ' ' '
tangent to the entropy &y, and Uyg,, which delimit the energy ‘.‘
region of ensemble inequivalence. All quantities are plotted in ar- 1r \ .
bitrary units. \

05 + \'\ e

L AN

[26]. Hence, we expect that similar features will be also ex- N,
hibited by the SGR model. For instance, we can considera = O -‘-\ .
“cold start,” where the particles are initially homogeneously .-\'\.___e___e___e____e__eo_@_o___o;-j
distributed on an archd € [ Omin, Onaxd) With zero kinetic en- 05 L - 4
ergy. Usually, in gravitational simulations, one looks at the -7
evolution of the virial ratio|2K/V|, which is here initially ) -
zero. The plot of the time dependence of this parameter is - e i
shown in Fig. 13 for the same parameter values used previ- L -~ /
ously. One clearly observes that the system relaxes to a “qua- - -510,5 1('),5 0.0001 00'01 061 0'1
siequilibrium” state, where the virial ratio fluctuates around a Softening parameter €

value which differs from the equilibrium one, computed ana-
lytically. While previously, for the mass positiorisee Fig. FIG. 10. The dash-dotted line represebis(e), the dashed line
12), the relaxation was observed on a short time scale, W8,om=Ep(e), the filled circles the first order microcanonical phase
show here that a quantity related also to velocities does nQtansition energy, and the open circles the second order one. At the
display a relaxation on the same time scale. From previougicrocanonical tricritical pointe“=1074, the phase transition
experiences with similar casg®6], one expects that the re- changes from first order to second order and, at the same time, the
laxation should occur on a time scale of the order of a powelhhomogeneous metastable solution disappears. All quantities are
of N. plotted in arbitrary units.
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FIG. 13. Time evolution of the virial ratit®K/V| of the SGR

FIG. 11. & dependence oy, (dashed ling Uy (solid line), model fore=10"° andN=4000. Initially, the particles are homoge-

andU,,,, (dash-dotted ling The canonical tricritical point is located Neously distributed in the intervgd, 2m/75] with zero kinetic en-
atS=10"! where the three curves merge. At this softening param-£79Y- Thg vmgl ratio o§glllates asymptotlcally_ around the value
eter value also the negative specific heat disappears in the microc8-49, which differs significantly from the equilibrium value 0.55
nonical ensemble, while the transition becomes second order in t8dicated by the dashed horizontal line. The initial virial ratio is
canonical ensemble. In the figure, we also show, with a long-dashegf©: although this time region is not visible in the figure. All quan-
line, the theoretical estimate ff, =~1/(4:2¢) obtained in Ref. lities are plotted in arbitrary units.

[14]. All quantities are plotted in arbitrary units. . o . . .
eter is sufficiently small, a negative specific heat region ap-

VIIl. CONCLUSIONS AND PERSPECTIVES pears in the microcanonical ensemble, in coincidence with

' the phase transition becoming first order in the canonical

We have fully characterized from the thermodynamicensemble. Further lowering the softening parameter, the tran-

point of view a one-dimensional model of self-gravitating Sition becomes first order in the microcanonical ensemble
particles moving on a rinfi14], which is the simplest proto- and a temperature jump appears at the transition energy. The

type of the full 3D self-gravitating system. Solving the equi- microcanonical and canonical tricritical points do not coin-
librium density equation by an iterative method, whose con<cide [19].

vergence is assured by entropy increase, allows us to derive Dynamically, we have performed numerical experiments
the full phase diagram of the model both in the microcanoniwhich show that relaxation to equilibrium can be extremely

cal and the canonical ensemble. When the softening paranslow. They reveal also the presence of quasiequilibrium
states, which are ubiquitous in systems with long-range in-

100.00°F . 3 teractions[16]. These states could be further characterized
i ] considering a Vlasov equation approach as done for the

L 100.0 ]
F 1 8 ' : 0.4 i :

0.3

10.00 3 10.0 + 3

o4 1 m 0.2

o
} Wt I‘ |’ ’
i

2r 1 0.14)

0 1000 2000 3000 0 1000 2000 3000
(@) t (b) t

FIG. 14. Relaxation to different maximum entropy states in the
- 0 . SGR model forU=0, =105, and N=10%. Panel(a) shows the
9 relaxation of the temperature either to the inhomogeneous state
value (horizontal dotted ling or to the homogeneous offfeorizon-

FIG. 12. Comparison of the mass density profile obtained by thaal dash-dotted line depending on whether the particles are initially
iterative methodsolid line) with the result of numerical simulations distributed on a smaller arche [0,7/50] (solid line) or a larger
(plus signg with N=4000 ande=10"°. Parameter values are the archée[0,w/5] (dashed ling In both cases, the velocity distribu-
same as Fig. 6. The inset is a zoom of the center of the profile. Altion is initially a “water bag.” Pane(b) shows the same for the
guantities are plotted in arbitrary units. “magnetization.” All quantities are plotted in arbitrary units.
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