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Phase space gaps and ergodicity breaking in systems with long-range interactions
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We study a generalized isotropic XY model which includes both two- and four-spin mean-field interactions.
This model can be solved in the microcanonical ensemble. It is shown that in certain parameter regions the

model exhibits gaps in the magnetization at fixed energy, resulting in ergodicity breaking. This phenomenon
has previously been reported in anisotropic and discrete spin models. The entropy of the model is calculated
and the microcanonical phase diagram is derived, showing the existence of first-order phase transitions from
the ferromagnetic to a paramagnetic disordered phase. It is found that ergodicity breaking takes place in both
the ferromagnetic and paramagnetic phases. As a consequence, the system can exhibit a stable ferromagnetic
phase within the paramagnetic region, and conversely a disordered phase within the magnetically ordered

region.
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I. INTRODUCTION

The aim of this paper is to shed light on a dynamical
feature that distinguishes systems with long-range interac-
tions from those with short-range ones. It is well known that
the attainable region in the space of extensive thermody-
namic parameters is always convex when only short-range
interactions are present. Consider, for example, two magnetic
subsystems with the same potential energy V but with two
different magnetization values m, and m, (notice that, in-
stead of the magnetization, we might have chosen any other
order parameter). By introducing a parameter A which de-
pends on the relative size of the subsystems, it is possible to
get any intermediate value of the magnetization m by just
combining the two subsystems with appropriate weights,
such that m=\m,+(1-N)m,, while the potential energy is
kept constant at V. It is important to stress that this convexity
property is satisfied only if the system is additive, since the
interaction energy between the two subsystems has been ne-
glected. This can safely be done only for short-range inter-
acting systems in the large-volume limit. Moreover, convex-
ity implies that the accessible region in the space of
thermodynamic parameters is connected.

In contrast, systems with long-range interactions [1] are
not additive. As a consequence, the convexity property may
be violated, and thus also connectivity. This feature has pro-
found consequences for the dynamics. Gaps may open up in
the order parameter space. Such gaps have been recently
reported in a class of anisotropic XY models [2,3] and for a
discrete spin system [4]. Since the accessible region in the
order parameter space is no longer connected, ergodicity
breaking naturally appears when a continuous microcanoni-
cal dynamics is considered. This is the property we discuss
in this paper. More specifically, the question we would like to
address is that of locating the region in the phase diagram of
the model where we expect ergodicity breaking to occur. We
will argue that ergodicity breaking occurs in regions of pa-
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rameters where metastable states exist. In such regions, one
may also generically expect first-order phase transitions.
Thus, we conclude that the breakdown of the order parameter
space connectivity is generically associated with first-order
phase transitions. Moreover, we conjecture that the intersec-
tion between first-order phase transition lines and the bound-
ary of the parameter region where the order parameter space
is disconnected occurs at nonsmooth (singular) points of the
boundary itself. We also conjecture that the same is true for
the metastability line. It is worth mentioning here that Kast-
ner and Hahn have recently exhibited magnetization gaps for
the mean-field ¢* model [5]. However, this latter model does
not present first-order phase transitions, in contrast to the
model studied below.

In recent years, models describing classical rotators with
all-to-all mean-field interaction have been intensively studied
in order to explain general dynamical features of long-range
interacting systems [1]. The most celebrated of such models
is the so-called Hamiltonian mean-field (HMF) model, where
rotators denoted by the angle 6, i=1,...,N, are coupled
through a long-range mean-field potential

J
W:—;vizj cos(6;— 0)). (1)

The interaction is ferromagnetic for positive J values, and
antiferromagnetic otherwise. Defining the complex order pa-
rameter (with i the imaginary unit)

ji= (v im) = 3 expli)), @

n

the potential per particle V=W/N can be rewritten as
—Jm?/2, where m=|m| is the modulus of the magnetization.
The total energy is finally obtained by adding a kinetic en-
ergy term to the above potential so that we get the mean-field
Hamiltonian
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In this formulation, the model can also be thought of as
describing a system of particles with unit mass, interacting
through the mean-field coupling (the names rotator and par-
ticle might equivalently be used). Note that a system with
nonunit mass may be reduced to the above system by rescal-
ing time. As the parameter J might be removed by a suitable
energy rescaling, we will omit it in the remainder of the
paper. Within the Hamiltonian framework, both the energy
density E=H/N and the total momentum P=2X,p, are con-
served quantities and they are fixed by the initial conditions.

In this paper, we study a generalized mean-field Hamil-

tonian [6] with potential
m? m*

Vim)=—-~K=~, 4)
which reduces to the antiferromagnetic HMF model
(J=-1) in the particular case K=0. In addition to the first
antiferromagnetic term, we consider a ferromagnetic fourth-
order term in the magnetization, whose intensity is controlled
by a positive constant K. In the regime of large values of the
parameter K, a magnetized state will be favorable because of
the ferromagnetic coupling while, for small values of K, the
antiferromagnetic coupling dominates and leads to a non-
magnetic state. As we shall demonstrate below, there exists a
range of the parameter K for which the model exhibits a
first-order phase transition between a paramagnetic phase at
high energies and a ferromagnetic phase at low energies. In
both phases there are regions in the (E,K) plane in which the
accessible magnetization interval exhibits a gap, resulting in
breaking of ergodicity.

The organization of the paper is as follows. In Sec. II, we
first address the issue of the accessible magnetization interval
in this model. In the following Sec. III, we present the sta-
tistical mechanics of the model. In particular, we study the
phase diagram and the conditions for phase transitions to
occur. In Sec. IV, we study the dynamical consequences of
this ergodicity breaking. Finally, Sec. V will be devoted to
conclusions and perspectives.

II. PHASE SPACE CONNECTIVITY

Let us study the phase space structure and the phase dia-
gram of this model. The specific kinetic energy Egx=F
—V(m) is by definition a non-negative quantity, which im-
plies that

E = V(m)=m*2 - Km*4. (5)

We will show that as a result of this condition not all the
values of the magnetization m are attainable in a certain re-
gion in the (E,K) plane; a disconnected magnetization do-
main might indeed be a typical case. As explained below, this
situation is the one of interest. Let us characterize the acces-
sible domains in the (E,K) plane more precisely by analyz-
ing the different regions.

For K<1, the local maximum of the potential energy V is
not located inside the magnetization interval [0,1] [see Fig.
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FIG. 1. Specific potential energy V vs magnetization m for three
different cases: K<1 (a), 1 <K<2 (b), and 2<K (c). The location
of the maximal magnetization m,,,, and the corresponding potential
energy V. are shown (see text). In (a) and (c), two examples of
the location of the critical magnetization m . (E, K) are indicated for
energy values E in the intermediate regions.

1(a)]. The potential being a strictly increasing function of the
magnetization, the maximum is reached at the extremum m
=1. The complete interval [0,1] is thus accessible, provided
the energy E is larger than V(1): the corresponding domain is
in R1 defined in Fig. 2. The horizontally shaded region is
forbidden, since the energy is lower than the minimum of the
potential energy V(0)=0. Finally, the intermediate region 0
<E<V(1) in included in the region R2: it is important to
emphasize that only the interval [0,m_(E,K)], where
m-(E,K)=[(1+J1-4EK)/K]"?, is accessible. Larger mag-
netization values correspond to a potential energy V(m)
larger than the total energy E, which is impossible. Figure
1(a) also displays the value m_ corresponding to an energy in
the intermediate region R2.

For K= 1, the specific potential energy V has a maximum
Viax=1/4K which is reached at 0 <mi =1/ JK=<1. Figures
1(b) and 1(c), where the potential energy (4) is plotted vs the
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FIG. 2. The (E,K) plane is divided into several regions. The
solid curve corresponds to K=1/(4E), the oblique dashed line to
K=2-4FE, and the dotted one to K=1. The vertically shaded,
crossed, and horizontally shaded regions are forbidden. The acces-
sible magnetization interval in each of the four regions is indicated
(see text for details).

magnetization m, present such cases. For an energy E larger
than the critical value V,,,, condition (5) is satisfied for any
value of the magnetization m. The complete interval [0,1] is
thus accessible for the magnetization m. This region is R1
represented in Fig. 2.

Let us now consider the cases for which E<V, . As
discussed above, the minimum V,;, of the potential energy is
also important to distinguish between the different regions.
For 1<K<2 [see Fig. 1(b)], the minimum of V(m) corre-
sponds to the nonmagnetic phase m=0 where V(0)=0. The
crossed region shown in Fig. 2, which corresponds to nega-
tive energy values, is thus nonaccessible. On the contrary,
positive energy values are possible and correspond to very
interesting cases, since only subintervals of the complete
magnetization interval [0,1] are accessible. There are how-
ever two different cases.

(1) For 0<V(1)<E<V,,,, the domain of possible mag-
netization is [0,m_(E,K)]U[m,(E,K),1]. The above condi-
tions are satisfied in R3 of Fig. 2.

(2) For 0<E<V(1), only the interval [0,m_(E,K)] satis-
fies condition (5). This takes place within R2 of Fig. 2.

For the domain 2 =<K, the minimum of the potential en-
ergy is attained at the extremum m=1, implying E> V(1)
=1/2-K/4. The vertically shaded region is thus forbidden.
In the accessible region two cases can be identified.

(1) For V(1) <E<O0, only the interval [m_(E,K),1] satis-
fies condition (5). It is important to note that m, (E,K)<1
provided E=1/2-K/4. These cases correspond to R4.

(2) For 0<E<V,_,, the two intervals [0,m_(E,K)] and
[m,(E,K),1] satisfy condition (5), corresponding to R3 of
Fig. 2.
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FIG. 3. Accessible region in the (m,E) plane for K=3. For
energies in a certain range, a gap in the accessible magnetization
values is present and defined by the two boundaries m(E,K).

In summary, the complete magnetization interval [0,1] is
accessible only in the region R1. In R2, only [0,m_] is ac-
cessible, while only [m,, 1] is accessible in R4. Finally, we
note that the phase space of the system is not connected in
the region R3. Indeed, the magnetization cannot vary con-
tinuously from the first interval [0,m_] to the second one
[m,, 1], although both are accessible. These restrictions yield
the accessible magnetization domain shown in Fig. 3. The
fact that for a given energy the phase space is disconnected
implies ergodicity breaking for the Hamiltonian dynamics. It
is important to emphasize that the discussion above is inde-
pendent of the number of particles and ergodicity is expected
to be broken even for a finite (but sufficiently large) N.

III. STATISTICAL MECHANICS

We have thus found that in certain regions in the (E,K)
plane, the magnetization cannot assume any value in the in-
terval [0,1]. For a given energy there exists a gap in this
interval to which no microscopic configuration can be asso-
ciated. In this section, we study the statistical mechanics of
model (4), by considering the microcanonical measure

N

w(E.N) =1 d6,dp,s(H - NE). (6)
k=1

The probability P(m) to observe the magnetization m can be
obtained for large values of the number N of particles using
large-deviation techniques, in a similar way as it was derived
for other models [7,8]. Here again, the appropriate global
variables are the magnetization m and the mean kinetic en-
ergy E K=E,,pﬁ/ N. Cramér’s theorem allows one to derive the
probability distribution P(m) in the large-N limit. The en-
tropy per particle, for given energy and magnetization, is
obtained as

s(E,m) = 1\1]1330 ]%J In P(m). (7)

Following the steps described in Ref. [7], one finds that the
specific entropy s can be expressed as
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FIG. 4. Phase diagram of the mean-field model (4). The dashed-
dotted curve corresponds to the first-order phase transition line,
issuing from the point B(0,2). As in Fig. 2, the solid curve indicates
the right border of the region R3, where the phase space is discon-
nected. The dashed line corresponds to K=2-4E. The dotted line
issuing from the point A(1/4,1) represents the metastability line for
the magnetized state, while the E=0 vertical dotted line is also the
metastability line for the nonmagnetic state. The four insets repre-
sent the entropy s versus the magnetization m for the four energies
E=-0.05, 0.005, 0.1, and 0.35, when K=3.

S(E’m) =SK(E’m) +sconf(m)7 (8)

i.e., the sum of the momentum entropy, which is related to
the kinetic energy

2 4
’"—+K’"—), 9)

1
E,m)=In(E,))2=~In| E-
sk(E,m) =In(E,) 2n( 5 2

and of the configuration entropy, which, as for the HMF
model, is

Scont(m) = — me(m) + In[1(¢(m))]. (10)

Here ¢ is the inverse of the function /,//,, where I, is the
modified Bessel function of order n. The microcanonical
thermodynamics is finally recovered by solving the varia-
tional problem

S(E) = sup[s(E,m)]. (11)

First, by comparing the low- and high-energy regimes, it
is possible to show that a phase transition is present between
the two regimes. In the domain R4 of Fig. 2, for very low
energy E (close to the limiting value 1/2—K/4), the acces-
sible range for m is a small interval located close to m=1
[see Fig. 1(c)]. The maximum of the entropy s corresponds
therefore to a magnetized state, m.,, located very close to
m=1 (see the top left inset in Fig. 4). On the contrary, in the
very large-energy domain, the variations of entropy with re-
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spect to m are dominated by the variations of the configura-
tional entropy since the kinetic entropy [see Eq. (9) with m
of order 1 and a very large energy E] is roughly a constant
around s(E,0)=(In E)/2. As expected, the configurational
entropy is a decreasing function of the magnetization, the
number of microstates corresponding to a nonmagnetic mac-
rostate being much larger that the same number for a mag-
netized state. The configuration entropy has therefore a
single maximum located at m.,=0. A phase transition takes
place between the nonmagnetic state at large energy, and a
magnetic state at small energy. Moreover, as the nonmag-
netic state is possible only for positive energies E (see Fig.
1), the transition line is located in the domain E=0. In this
region, the quantity &51S(E ,0)=—[1+1/(2E)] is negative,
which ensures that, for any value of £ and K, the nonmag-
netic state m=0 is a local entropy maximum. The latter ar-
gument allows a second-order phase transition at a positive
critical energy to be excluded, since the second derivative
(951S(E ,0) would have to vanish, which is impossible. The
above argument leads to the conclusion that the phase tran-
sition must be first order.

Let us now focus on the behavior of the entropy (see Fig.
5) in the region R3, where the accessible range for m is the
union of two disconnected intervals [0,m_]U[m,,1]. As dis-
cussed above, the total entropy s(E,m) has a local maximum
in the first interval [0,m_] located at m=0 and associated
with the entropy 5! =s(E,0)=In(E)/2. In the second inter-
val [m,,1], a maximum is also present with s> =s(E JMeg)
where me,=m,>0. As st (E) diverges to — when E tends
to 0, a magnetized state is expected on the line E=0, as long

as s2__remains finite. Since K=2 is the only value for which

$2 (0,K) diverges, the first-order transition line originates at

max

the point B(0,2) in Fig. 4. Although it is possible to study
analytically the asymptotic behavior of the transition line
near this point, we can rather easily compute numerically the
location of the first order transition line, represented by the
dashed-dotted line in Fig. 4.

Figure 4 also shows the metastability line [the dotted line
starting at point A(1/4,1)], for the magnetized state Mg
# 0. To the right of this metastability line, there is no meta-
stable state (local entropy maximum for any m>0; see bot-
tom right inset in Fig. 4) while a metastable state (local
maximum) exists at some nonvanishing magnetization on the
other side (see top right inset in Fig. 4). Finally, the vertical
dotted line E=0 corresponds to the metastability line of the
nonmagnetic state m=0.

One of the key issues we would like to address is the
possibility of links between the breakdown of phase space
connectivity and thus ergodicity breaking, on the one hand,
and the phase transition, on the other hand. Obvious general
properties do exist: a region of parameters where the phase
space is disconnected corresponds to a region where meta-
stable states do exist. Let us justify this statement. At the
boundary of any connected domain, when the order param-
eter is close to its boundary value m,, there is a single ac-
cessible state. In a model with continuous variables, like the
one we study in this paper, this leads to a divergence of the
entropy (Fig. 5). In this case the singularity of the entropy is
proportional to In(m—m,) [see for instance Eq. (9)]. For a
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FIG. 5. Entropy s versus magnetization m for K=3 and several
energy values. The different curves correspond, from top to bottom,
to E=0.35 (dotted), 0.155 (dashed-triple-dotted, metastability limit
for the magnetized state), 0.1 (dashed), E=1/(4K)=1/12 (solid,
appearance of the gap), 0.0089 (dashed-dotted, first-order phase
transition), and —0.05 (long dashed). This picture demonstrates that
gaps in the accessible states develop as the energy is lowered.

model with discrete variables, like an Ising model, the en-
tropy would no longer reach —o as m tends to m,,, but would
rather take a finite value. However, the singularity would still
exist and would then be proportional to (m—my)In(m—my).
In both cases, of discrete and continuous variables, at the
boundary of any connected domain, the derivative of the
entropy as a function of the order parameter tends generally
to =, As a consequence, entropy extrema cannot be located
at the boundary. Thus, a local entropy maximum (metastable
or stable) does exist in a region of parameters where the
phase space is disconnected.

Hence, there is an entropy maximum (either local or glo-
bal) in any connected domain of the phase space. For in-
stance, considering the present model, in Fig. 4, the area R3
is included in the area where metastable states exist
(bounded by the two dotted and the dashed lines). In such
areas where metastable states exist, one generically expects
first-order phase transitions. Thus the breakdown of phase
space connectivity will be generically associated with a first-
order phase transition, as exemplified by the present study.
However, this is not necessary; one may observe metastable
states without first-order phase transitions, or first-order
phase transitions without connectivity breaking.

A very interesting question is related to the critical points
A and B shown in Fig. 4. As observed in the phase diagram,
the end point for the line of first-order phase transitions
(point B) corresponds also to a point where the boundary of
the region where the phase space is disconnected is not
smooth. Similarly, the end point for the line of appearance of
metastable states (point A) is also a singular point for the
boundary of the area where the phase space is disconnected.
It is thus possible to propose the conjecture that such a rela-
tion is generic, and that it should be observed in other sys-
tems where both first-order phase transitions and phase space
ergodicity breaking do occur.
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FIG. 6. Time evolution of the magnetization m (the entropy of
the corresponding cases is plotted as an inset). (a) corresponds to
the case E=0.1 and K=8, and (b) to E=0.0177 and K=3. In (b),
two different initial conditions are plotted simultaneously; the solid
line corresponds to m(t=0)=0.1 and the dashed line to m(t=0)
=0.98. The dashed (dotted) line in (b) corresponds to the line m
=m,=0.794 (m=m_=0.192).

IV. DYNAMICS

The feature of disconnected accessible magnetization in-
tervals, which is typical of systems with long-range interac-
tions, has profound implications on the dynamics. In particu-
lar, starting from an initial condition which lies within one of
these intervals, local dynamics is unable to move the system
to a different accessible interval. A macrostate change would
be necessary to carry the system from one interval to the
other. Thus the ergodicity is broken in the microcanonical
dynamics even at finite N.

In Ref. [4] this point has been demonstrated using the
microcanonical Monte Carlo dynamics suggested by Creutz
[9]. Here, we use the Hamiltonian dynamics given by the
equation of motion

), =——=—N|m— —K 3—) 12
P (mae,l maa,, (12

=N(1 — Km?)(sin 6,m, — cos 6,m). (13)

We display in Fig. 6 the evolution of the magnetization for
two cases, since we have shown above that the gap opens up
when E decreases. The first case corresponds to the domain
R1, in which the accessible magnetization domain is the full
interval [0,1]. Figure 6(a) presents the time evolution of the
modulus m of the order parameter (2) versus time. The mag-
netization switches between the metastable state m=0 and
the stable one mg,>0. This is possible because the number
of particles is small (N=20) and, as a consequence, the en-
tropy barrier (see the inset) can be overcome. Considering a
system with a small number of particles allows us to observe
flips between local maxima, while such flips would be less
frequent for larger N values.
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In the other case, we consider a stable m=0 state which is
disconnected from the metastable one. It makes the system
unable to switch from one state to the other. Note that this
feature is characteristic of the microcanonical dynamics,
since an algorithm reproducing the canonical dynamics
would allow the crossing of the forbidden region (by moving
to higher-energy states, which is impossible in the microca-
nonical ensemble). The result of two different numerical
simulations is reported in Fig. 6(b). One is initialized with a
magnetization within [0,m_], while the other corresponds to
an initial magnetization close to m=1 (i.e., within [m,,1]).
One clearly sees that the dynamics is blocked in one of the
two possible regions, and not a single jump is visible over a
long time span. This is clear evidence of ergodicity breaking.

V. CONCLUSIONS

We have found that, for sufficiently low energy, gaps open
up in the magnetization interval, to which no microscopic
configuration corresponds. Thus the phase space breaks into
disconnected regions. Within the microcanonical dynamics
the system is trapped in one of these regions, leading to a
breakdown of ergodicity even in finite systems.
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Ergodicity breaking implies that an ensemble average will
not be well reproduced by a time average, usually simpler to
get from the experimental or numerical point of view. Such a
discrepancy, forbidden a priori for short-range interacting
system, might be a typical case for systems with long-range
interactions. Ergodicity breaking has also been reported in a
chain of spins with nearest neighbor dipolar interactions [10]
and in supersymmetry breaking phase transitions [11].

Of high interest would be, of course, to study systems
with both short- and long-range interactions since they usu-
ally compete in standard condensed matter systems [12].
Such a study could suggest an experimental system where
ergodicity breaking might be observed.
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