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Out-of-Equilibrium States as Statistical Equilibria of an Effective Dynamics
in a System with Long-Range Interactions
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We study the formation of coherent structures in a system with long-range interactions where particles
moving on a circle interact through a repulsive cosine potential. Nonequilibrium structures are shown to
correspond to statistical equilibria of an effective dynamics, which is derived using averaging techniques.
This simple behavior might be a prototype of others observed in more complicated systems with long-
range interactions, such as two-dimensional incompressible fluids and wave-particle interaction in a
plasma.
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FIG. 1 (color online). Bicluster formation: short-time evolution
of the particle density in gray scale; the darker the gray, the
higher the density. Starting from an initial condition with all the
particles evenly distributed on the circle, one observes a very
We study the repulsive Hamiltonian mean-field (HMF)
model [12], that describes the motion of N particles on a
circle. Its Lagrangian is

rapid concentration of particles, followed by the quasiperiodic
appearence of ‘‘chevrons,’’ that shrink as time increases. The
structure later stabilizes and form two well-defined clusters.
The behavior of many complex nonlinear dynamical
systems results in the formation of spatially ordered struc-
tures. Examples include two-dimensional incompressible
weakly dissipative fluids [1], two- and three-dimensional
magnetohydrodynamics [2], planet atmospheres [3], elec-
trostatic potential in inhomogeneous magnetized plasmas,
galaxy cluster formation in self-gravitating astrophysical
systems [4], and vortices in rotating Bose-Einstein con-
densates [5]. Similar effects were also numerically re-
vealed [6] in discrete lattices, in which the modulational
instability of a linear wave was shown to be the first step
towards energy localization, followed by the nonlinear
interaction among breatherlike excitations. Related phe-
nomena have been experimentally reported, such as the
appearance of oscillons in vibrated granular media [7].

Besides all analogies, the reasons for this self-
organization can be indeed quite different. In systems for
which a structure originates from any randomly chosen
initial condition, a natural explanation is of a statistical
nature: see, for instance, Ref. [8] for self-gravitating sys-
tems or Ref. [9] for two-dimensional conservative fluids. In
other systems, the structures arise and persist as a direct
consequence of the nonlinear dynamics as, for instance,
in Ref. [6]. We present in this Letter a simple and fully
tractable model for which both reasons for self-
organization, statistical mechanics, and nonlinear dynam-
ics, have to be invoked. Indeed, we will show that Gibbsian
statistical mechanics can be safely applied only when the
correct dynamical variables are singled out [10].

The model, with long-range forces, exhibits long lived
out of equilibrium structures and related unusual relaxation
phenomena [11], such as those encountered in self-
gravitating systems, plasmas, or two-dimensional fluids.
Despite the importance of such systems, a clear under-
standing of their peculiarities is still an open problem.
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This model is an archetype of mean-field models for which
interactions are infinite range with size dependent coupling
[13]. For a special but wide class of initial conditions, this
model [14,15] has a very interesting dynamics since, con-
trary to statistical mechanics expectations, a localized
structure (bicluster) appears (see Fig. 1). Its initial forma-
tion results from a fast oscillation of the medium, that
nonlinearly drives, on a longer time scale, an average
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FIG. 2. Spatiotemporal evolution of 50 particles with initial
energy per particle e � 2:5� 10�5. The dotted lines present the
results given by the effective Hamiltonian (5), whereas the solid
lines show the evolution of particles initially between � and 2�
according to the original Lagrangian (1): except for the fast
small scales oscillations, they are almost indistinguishable. On
the left (between 0 and �), the caustics (thick lines) given by
formula (7) reproduce the ‘‘chevrons.’’
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motion of the particles in an effective double-well poten-
tial. The mechanism is qualitatively reminiscent of the
parametrically forced pendulum, first analyzed by
Kapitza [16]: the role of the harmonic forcing of the pivot
is here played, by the self-induced fast oscillation of the
original dynamics. As for the Kapitza pendulum, we aver-
age over the fast oscillation and obtain an effective
Hamiltonian for the slow motion. We will show that the
final bicluster structure is a statistical equilibrium of such
an effective Hamiltonian.

Let’s consider the evolution of particles for small initial
energy and velocity dispersion [14]. The analysis relies on
the existence of two time scales in the system: the first one,
defined by the linearized dynamics, is intrinsic and corre-
sponds to the inverse of the ‘‘plasma frequency’’ ! ����
2

p
=2. The second one depends on the energy per particle

e � H=N via the relation � � "t, with " �
�����
2e

p
. As a

consequence, we use the following ansatz �i � �0i ��� �
"fi�t; ��. A multiscale analysis shows that the correct
choice to describe the small and rapid oscillations is fi �
f
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variables, and d��=dt, A���� and a���� are slow vari-
ables. The phase  is defined via the complex number
M2 � N�1

P
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�2i . We introduce this ex-

pression in Lagrangian (1) and keep terms up to order "2,
averaging over the fast time t, as described, e.g., in
Ref. [17]. Dropping the "2 overall factor, the averaged
Lagrangian reads
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ment associated to the angles and !� 
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will turn out to be the fast frequencies (for details, see
Ref. [18]). �� are now cyclic variables and correspond to
two quasiconserved quantities, P� � NA2

�!
2
�
_���, which

are adiabatic invariants of the dynamics. Going from the
Lagrangian to the Hamiltonian formalism, one must first
remark that, having eliminated the dependence on the time
derivatives of A�, a�, there is no Legendre transform over
these variables. In the absence of conjugate variables to the
amplitudes A�, the corresponding Hamilton’s equation are
simply given, from the least action principle, by
@A�

Hslow � 0. This leads to the expression for the ampli-
tudes NA2

� � P�!
�3
� . Finally, from the equations

@a�Hslow � 0 and _��� � @P�
Hslow, we determine the shifts

a� and the phases ��.
Rewriting the action, taking into account the relations

for A� and a�, we end up with a very simple effective
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Hamiltonian that retains only the slow motion
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and which describes the evolution of the full system. The
constant P� and P� are determined by the initial
condition.

For the sake of simplicity, we restrict here to the case in
which only one mode, P�, is initially excited (P� � 0).
Dropping the subscript for P, we then consider the
Hamiltonian

Heff �
X
i

p02
i

2
� P

�������������������
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2

s
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The particle dynamics determined by this Hamiltonian
perfectly compares with the one given by Lagrangian (1),
as shown in Fig. 2.

In order to explain the formation of the bicluster and the
chevrons observed in Fig. 1, let us first remark that the
equations of motion of the effective Hamiltonian Heff

���0i � �
P

N
�������������������������
2�1� jM2j�

p sin2��0i �  � (6)

are pendulumlike. The evolution of the system thus con-
sists of N pendulum trajectories in a double-well potential,
which is self-consistently modified since M2 depends
on the �0i . If the initial velocity dispersion is small,
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FIG. 3. The solid curve shows the theoretical prediction of
jM�

2j as a function of the ratio between the energy E and the
adiabatic invariant P, whereas the filled circles correspond to
numerical results for the full Lagrangian (1).
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singularities appear in the density profile which becomes
infinite along the envelope (or caustics) of the trajectories;
the chevrons of Fig. 1 are a manifestation of these singu-
larities [19]. This picture allows us also to make quantita-
tive predictions. To simplify the calculations, we assume
that position and depth of the double-well potential are
fixed; this amounts to take  � const in Eq. (6) (as sug-
gested by Fig. 1) and jM2j � const which is the simplest
hypothesis we can make in order to characterize the chev-
rons. We can compute the time ts of the first divergence of
the density: it is the time when the particles in the bottom
of the two wells of the potential, that perform a quasihar-
monic motion, cross. We get ts � �

��������������������������
N!�=�8Pe�

p
, where

P and e depend on the initial condition, and!� depends on
jM2j. Approximating the trajectories by straight lines near
the bottom of the wells, we obtain the shape of the ‘‘chev-
rons,’’ resorting to standard methods [20] of curve enve-
lope calculation (see details in [18]). The lowest order
approximation of the nth shock is

� /
�t� �2n� 1�ts	

3=2���������������
2n� 1

p ; (7)

where the 1=
���
n

p
factor explains the shrinking of the chev-

rons, whereas the 3=2 scaling law is generic according to
catastrophe’s theory [19]. Taking for jM2j its mean value
(0:51 for the present initial condition), Fig. 2 emphasizes
that the agreement with the numerics is quantitatively
excellent.

Since the short-time dynamics and the ‘‘chevrons’’ for-
mation is now clarified, let us next consider the stabiliza-
tion of this outof equilibrium state: this is where statistical
mechanics comes into play.

Because of the special form of the effective potential,
which depends only on the global variable jM2j, the sta-
tistical mechanics of the effective Hamiltonian (5) is ex-
actly tractable. Indeed, the density of states ��E� can be
expressed in terms of the density of states corresponding to
the kinetic part of the Hamiltonian �kin and of the angular
configurational part �conf as follows:

��E� /
Z
djM2j�kin�E� V�jM2j�	�conf�jM2j�; (8)

where V�jM2j� � P
���������������������������
�1� jM2j�=2

p
. Using an inverse

Laplace transform and the Hubbard-Stratonovitch trick,
one also obtains �conf after some calculations. ��E� in
Eq. (8) can thus be evaluated [18] by the saddle point
method, which leads to the equilibrium value jM�

2j as a
function of E=P. This explains the numerical result jM2j ’
0:5 found by the authors of Ref. [14] (their initial condi-
tions correspond to E=P �

���
2

p
=2 and jM�

2j � 0:51). In
addition, this shows that other initial conditions lead to
other values of jM�

2j, which are in excellent agreement with
numerical simulations (see Fig. 3). The long lifetime of
these out-of-equilibrium states is therefore fully under-
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stood, since they appear as equilibrium states of an effec-
tive Hamiltonian that well represents the long-time motion.

Once jM�
2j is known, it is easy to show that the equili-

brium velocity distribution is Maxwellian with tempera-
ture T � 2hEci=N, and that the distribution of angles has a
Gibbsian shape  ��� / e�V���=T , with the potential inferred
from the equations of motion. However, whereas jM2j
quickly reaches its equilibrium value, the distribution
 ��� relaxes very slowly, in the numerical experi-
ments. Moreover, the relaxation time increases with N.
Nevertheless, the density profile  ��� obtained in long-
time simulations with the full system (1) fully agrees
with the one obtained with the effective dynamics (5), as
shown in Fig. 4. This makes this model a good candidate to
study the unusual relaxation properties and the non equi-
librium states observed in other systems with long-range
interactions [11].

We thus conclude that the dynamics of the effective
Hamiltonian (5) parametrizes very well the one of the
full Lagrangian (1), for short as well as for long-time.
The variational multiscale analysis we used allows us to
exhibit naturally the adiabatic invariants and to preserve
the Hamiltonian structure of the problem (to leading or-
der), making it well suited for a statistical treatment. This
leads us to predict statistical properties of the full system,
as the asymptotic value of jM2j. Moreover, the effective
Hamiltonian gives the opportunity to study numerically the
relaxation towards equilibrium of the bicluster, whereas it
was not possible in the real dynamics, because of computa-
tional limitations. Indeed, let us observe that the ratio of the
typical time scale of the two dynamics is of order 100 or
even larger at smaller energies.

We have thus described a simple mechanism to explain
the existence of a stable out-of-equilibrium structure in a
110601-3



FIG. 4. Comparison of the non-Gibbsian density distributions
 ��� of particles obtained with the original Lagrangian (1)
(circles) and with the effective one (5) (solid line). Both results
have been obtained for N � 103 particles and are averaged over
times corresponding to � � 103 ! 104. The energy per particle
is e � 2:5� 10�5.
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Hamiltonian mean-field model. This model deserves spe-
cial attention for different reasons. It is probably the sim-
plest N-particles solvable model in one dimension which
exhibits such a stabilization effect, corresponding to the
coupling of very fast oscillations self-interacting with a
slower motion. This model is moreover a simple analogue
of other examples of nonlinear interactions of rapid oscil-
lations with a slower global motion like the piston problem
[21]: averaging techniques could be applied to the fast
motion of gas particles in a piston which itself has a slow
motion [22]. Examples can also be found in applied
physics as for instance wave-particle interaction in plasma
physics [23], or the interaction of fast inertia gravity waves
with the vortical motion for the rotating shallow water
model [24].
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