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We introduce a simple stochastic system able to generate anomalous diffusion for both position and
velocity. The model represents a viable description of the Fermi’s acceleration mechanism and it is
amenable to analytical treatment through a linear Boltzmann equation. The asymptotic probability
distribution functions for velocity and position are explicitly derived. The diffusion process is highly
non-Gaussian and the time growth of moments is characterized by only two exponents �x and �v. The
diffusion process is anomalous (non-Gaussian) but with a defined scaling property, i.e., P�jrj; t� �
1=t�xFx�jrj=t�x � and similarly for velocity.
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sume that they are randomly distributed in the plane with
uniform density �. Their velocity V � �V cos;V sin�

low densities, � and 	tn become independent random
variables, whose distribution will be determined by the
About half a century ago, Fermi proposed an accelera-
tion mechanism for interstellar particles, now referred to
as Fermi’s acceleration [1], to explain the very high
energy of cosmic rays. Nowadays, Fermi’s acceleration
remains one of the relevant explanations for several phe-
nomena in plasma physics [2] and astrophysics [3,4]. In
Fermi’s mechanism, at variance with diffusion in real
space (e.g., Lorentz’s gas [5,6]), it is the velocity that
undergoes diffusion due to the presence of a stochastic
acceleration. This original idea [1] found also a number of
applications in the theory of dynamical systems, because
it offers a simple but not trivial way to generate chaotic
systems [7–13] to describe the dynamics of comets [14]
and the motion of charged particles into electromagnetic
fields [15].

This Letter studies Fermi’s mechanism through a
simple model, in which a particle may absorb kinetic
energy (accelerate) through collisions against moving
scatterers. The purpose of the model is to provide a
description of the acceleration mechanism without spe-
cific assumptions on the interstellar media (e.g., the pres-
ence of turbulent magnetic fields or matter fractal
distribution). Since we are interested mainly in the gen-
eral features of the diffusion process in phase space, we
consider only nonrelativistic classical particles, neglect-
ing the details of their interactions with magnetic fields.
Our model is able to produce an acceleration process
characterized by anomalous diffusion both in velocity
and position: hjv�t�j2i � t2�v , hjx�t�j2i � t2�x (�v > 1=2,
�x > 1=2) and non-Gaussian distributions. For simplicity
we restrict to a two dimensional system [x�t� 2 R2] and
circular obstacles with radius a. These obstacles represent
the regions where the magnetic field irregularities, re-
sponsible for the scattering, are localized. We shall as-
0031-9007=04=92(4)=040601(4)$22.50 
is chosen according to an isotropic probability
G�V�dVd=2�, with the only requirement that hV2i<
1. We furthermore assume that the influence of the
particles on the magnetic scatterers is so negligible that
the velocity of the latter is kept unchanged during colli-
sions. In the reference frame of the scatterers, where the
energy of the particle remains constant, the collision
is completely determined by the trajectory deflection
angle and collision time. Such a deflection angle � �
��V; v; b; H� depends on particle and obstacle velocity,
on the impact parameter b, and on the shape of the
magnetic field H inside the obstacle.

After a collision, the new particle velocity is vAS �
M���vBS , where the superscripts A and B stand for ‘‘after’’
and ‘‘before’’ the collision, respectively, while subscript S
refers to velocities in the scatterers reference frame and
the rotation matrix M��� describes the scattering deflec-
tion. In the fixed reference frame, v � vS 
 V, we have

vA � V 
M����vB � V�:

A further simplification occurs when the density of the
scatterers � is small. Indeed, in the low density limit (��
l�2
0 � a�2), the mean free path is much larger than the

average distance between nearest obstacles l0, and two
successive collisions can be safely assumed to be inde-
pendent. Such a simplification allows describing the evo-
lution of the system as a stochastic map:

rn
1 � rn 
 vn	tn; tn
1 � tn 
	tn;

vn
1 �V 
M����vn � V�;
(1)

where 	tn � ‘n=jvnj and ‘n are the time and the free path
between two consecutive collisions, respectively. Under
the hypothesis of independent collisions, well verified at
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distribution of the obstacle velocities V and impact pa-
rameters b. For the sake of simplicity, we suppose that the
probability distribution Q��� for � is independent of V
and is an even function (for symmetry reasons).

Let us now specify, the probability distribution of 	t. If
the scatterers were at rest, a particle with speed v would
encounter uniformly distributed obstacles, and then the
variable 	t would follow an exponential distribution law:
P�	t� � � exp���	t� with a decay rate � � 2a�v. How-
ever, in the case of moving obstacles, a particle will
encounter preferentially those obstacles with a velocity
direction opposite to its own velocity. Then, the rate � has
to be replaced by ��v;V� � 2a�jv� Vj. Therefore the
probability that a particle with velocity v undergoes a
collision with an obstacle of velocity V, after a time 	t
from the previous collision is

PV�	t j v� � 2a�jv� VjG�V� expf� ���v�	tg; (2)

with ���v� � 2a�hjv� VjiV, where h� � �iV indicates the
average on V [16]. Of course more general laws can be
considered to take into account the presence of a minimal
collision time, but our simulations show that the results
are fairly independent of the details of P�	t�.

The above system might look somehow trivial when
considering its statistical properties as functions of the
number of collisions. Noting that vn
1 is obtained from vn
by a random rotation plus a random shift, one can expect,
from the central limit theorem, that hjvnj2i � n and anal-
ogously hjrnj2i � n; of course the probability distribution
functions (PDFs) of vn and n are Gaussian. However, the
proper question is about the dependence in time rather
than in n, so the particles at the same time t experience a
different number of collisions, and therefore the PDFs of
v�t� and r�t� are not expected to be Gaussian. The time
after n collisions, t �

P
n
k�1 	tk, is the sum of random

quantities and its dependence on n can be worked out via
the following scaling argument [17]. Since 	tk �
‘=

�������������
hjvkj2i

p
� 1=

���
k

p
, then t�

P
n
k�1 k

�1=2 �
���
n

p
; hjrnj2i �

n corresponds to the scaling laws:

hjv�t�j2i � t2 and hjr�t�j2i � t2: (3)

In the following, we will show that this ‘‘mean field’’
scaling behavior is in fact correct.

Let us now present a simple but relevant remark: an
easy computation gives

hjx�t� � x�0�j2i ’ 2
Z t

0

Z t�t0

0
hjvx�t

0�j2iRx�t
0;  �dt0d ; (4)

with Rx�t;  � � hvx�t�vx�t
  �=hjvx�t�j
2i. In Lorentz gas

with fixed obstacles and elastic collisions, hjvx�t
0�j2i re-

mains bounded; thus the integration over t0 yields a
proportionality to t. In addition stationarity makes
Ri�t0;  � independent of t0 and an anomalous diffusion
can originate only by a long time tail of Ri� � [i.e., slower
than O� �1�].

By contrast, in systems with Fermi’s acceleration
which are nonstationary, Rx�t;  � depends also on t, and
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the scaling laws, hjv�t�j2i � t2�v and hjr�t�j2i � t2�x , could
not be trivially related [see (4)]. In this case, one can
derive only the bound:

�x � �v 
 1;

the equality holding in the presence of a very strong time
correlation among the velocities.

A Boltzmann-like description of our model can be
carried out under the hypothesis of the independence of
consecutive collisions, already employed to write the
dynamics (1) and (2). The spatial homogeneous probabil-
ity f�v; t�, that a particle has a velocity v at time t, evolves
according to the equation

@tf�v; t� � � ���v�f�v; t� 

Z

duT�v;u�f�u; t�; (5)

where, from Eqs. (1) and (2), the transition probability T
reads

T�v;u� � h��u;V�&�v� V �M����u� V��iV;�: (6)

Equation (5), at variance with the usual Boltzmann equa-
tion, is linear because of the independence between ob-
stacles and particles. Moreover, the isotropy of the
scatterer distribution insures that T is only a function of
the moduli v; vB and of the angle '� 'B between v and
vB: T � T�v; vB; '� 'B�. Therefore it is convenient to
expand f in a Fourier series of the angular variable:
f�v; '� �

P
kfk�v� exp�ik'�. The linearity of Eq. (5) de-

couples Fourier modes fk and we obtain @tfk�v; t� �
���v�fk 


R
dvBTk�v; vB�fk�vB; t� with Tk�v; vB� �R

d' exp�ik'�T�v; vB; '�.
We can restrict to the asymptotic time behavior be-

cause the particles accelerate and their distribution is
rapidly dominated by velocities v � V. Then an asymp-
totic expansion of the operator T is possible in the small
parameter V=v.

We first consider the evolution of an isotropic density
f�v; '� � f�v� by introducing the PDF of the velocity
modulus, v � jvj, g�v; t� � 2�vf�jvj�. We can then sub-
stitute &�v� V �M����vB � V�� with &�vB � v� �1�
M����V� in Eq. (6) and, at second order in v=V, we obtain
[18]

@tg�v; t� � Dv@2vg; (7)

where D � a�+FhV
2iV and +F � h1� cos�i�. The

asymptotic solution of this Fokker-Planck equation may
be explicitly derived [18] and it converges toward the
scaling function ga�v; t� � h�v=�Dt��=�Dt�. A direct sub-
stitution into Eq. (7) shows that the scaling function
h verifies the equation: -h00�-� 
 -h0�-� 
 h�-� � 0,
whose solution is h�-� � - exp��-�. Thus ga�v; t� �
v=�Dt�2 expf�v=�Dt�g and the moments of v are given
by hvni � �n
 1�!�Dt�n.

We now consider the evolution of a nonisotropic
Fourier mode f�v; '� � exp�ik'�fk�v�. We can then sub-
stitute &�v�M���vB � �1�M����V�with exp��ik���
&�vB � v� �1�M����V�, in Eq. (6) and performing the
expansion at small v=V we obtain
040601-2
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FIG. 1. PDF of rescaled particle velocity u � jvj=
��������������
hv�t�2i

p
at

times t � 80, 320, 1280, and 5120, corresponding to circles,
squares, diamonds, and triangles, respectively. The perfect
collapse is in accordance with the theoretical results. Inset:
hv�t�ni1=n vs t, for n � 2, 4, and 6 from bottom to top; straight
lines have a slope of 1.
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@tfk�v� � �Lkfk�v� (8)

at leading order in V=v, with Lk � 2a�+F;k and +F;k �
h1� cos�k��i� (we have exploited even symmetry of the
� distribution Q). Thus for any initial distribution func-
tion, fk relaxes exponentially. This is physically clear, as
few collisions randomize the phase of the velocity. The
proportionality to v of the relaxation rate is a conse-
quence of the fact that the number of collisions per unit
time is proportional to v. We note that the neglected
higher order terms in V=v, in Eq. (8), are a transport
and a diffusion term, not relevant for large v.

This result shows that any distribution rapidly becomes
isotropic; it also allows one to compute the velocity
autocorrelation function and some properties of the spa-
tial diffusion. For large t, the velocity autocorrelation can
be expressed in terms of the asymptotic distribution ga
and of the solution of the Boltzmann equation (5), with a
deltalike initial condition &�v0 � v�. Using Eq. (8), we can
compute this solution. Using this result, we obtain the
expression for the autocorrelation function:

hvx�t�vx�t
  �i � 3�Dt�2=�1
DL1t �
4: (9)

The diffusion properties of velocity can be derived di-
rectly by Eq. (9) computed at t � 0 and from the sym-
metry x $ y

hjv�t�j2i � 6�Dt�2: (10)

The algebraic decay of the function (9) is fast enough to
make the integral (4) convergent, then

hjx�t� � x�0�j2i �
2D
L1

t2: (11)

The above results (9)–(11) agree with the simple argu-
ment leading to Eq. (3). In order to study the statistical
properties of the particle position, we consider the evo-
lution of the PDF, f�r; v; t�, for the velocity and position.
The generalization of Eq. (5) is the inhomogeneous
Boltzmann equation where @tf is replaced by
@tf�r; v; t� 
 v � rrf. We introduce the distribution
g�r;; v; '; t� � 4�2rvf�r; v; t� in polar coordinates, r �
�r cos; r cos�, v � �v cos'; v cos'�. We limit the dis-
cussion to the isotropic case; that is g�r;; v; '� �
g�r; v; '��. Again, it is convenient to develop the
angular dependence in Fourier modes: g�r;; v; '� �P

kgk�r; v� exp�ik�'���.
The evolution equation for each mode gk can be written

down and studied in the long time limit, but we do not
report here the detailed derivation. We can prove that g0
is dominant for large t and converges toward a scaling
function h0�L

1=2
1 r=�D1=2t�; v=�Dt��L1=2

1 =�D3=2t2� [19]
which verifies the equation

2h0
1@1h0
-@-h0
-@2-h0

-
4

�
@21h0�@1

�
h0
1

�	
� 0:

(12)
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We were not able to explicitly solve Eq. (12); however
we computed all the moments of h0 by recurrence.
Indeed, if we define ak;n �

R
1
0 drdvvkrnh0�r; v�, we ob-

tain �n
 k�ak;n � k�k
 1�ak�1;n 
 n2=4ak
1;n�2. Using
that

R
1
0 d1h0�1; -� � h�-� � - exp��-�, we have ak;0 �

�k
 1�!. The recurrence relation then, for instance, gives
hr2i � 2hjx�t� � x�0�j2i �Dt2=L1, hr4i � 8D2t4=�3L2

1�,
and so on.

Numerical simulations confirm our theoretical results
obtained via the Boltzmann equation for the scaling of
the moments of position and velocity. Simulations were
run for a set of N � 106 particles starting from random
initial positions and velocities well localized in a region
of the phase space with size small compared with l20 and
V2
0 . For a particle with velocity v, we randomly select a

scatter velocity V from G�V� � &�V � V0�=2� and a
scattering angle � uniformly distributed in �0; 2��.
Then the collision time 	tn was drawn from the law (2)
and finally particle position and velocity were updated
via the rule (1). Figures 1 and 2 show, for different times,
the rescaled PDF for the velocity modulus v � jvj and x
coordinate. The collapse of the curves is very good and
the exponential tails agree with our theoretical predic-
tions. The qualitative scenario corresponding to �x �
�v � 1 and exponential tails remains unaffected by using
the generic form of PV�	t; v�, provided it keeps the ex-
ponential decay for large 	t.

We stress that the diffusion process is anomalous, since
�x is different from 1=2 (we discuss only the diffusion for
the position but similar considerations hold for velocity).
The existence of a unique exponent characterizing the
growth of the different moments hjr�t�jni � tn�x is some-
how peculiar and in Ref. [20] is called weak anomalous
diffusion, because the most general anomalous diffusion
(strong anomalous diffusion) implies that hjr�t�jni �
tn�x�n� with �x�n� a nonconstant parameter. Therefore all
the PDFs cannot be rescaled onto a single curve.
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FIG. 2. PDF of the rescaled coordinate z � x=
�������������
hx�t�2i

p
at

times t � 80, 320, 1280, and 5120 with the same symbols as
Fig. 1. Inset: hx�t�ni1=n vs t for n � 2, 4, and 6 from bottom to
top; straight lines have a slope of 1.

P H Y S I C A L R E V I E W L E T T E R S week ending
30 JANUARY 2004VOLUME 92, NUMBER 4
The model can be made more realistic taking into
account possible energy losses due to interactions with
the medium and energy irradiation. This dissipation is
mimicked by rescaling the velocity components by a
factor

�������������
1� 4

p
after each collision, where 4 �

jvA � vBj=� c�vA 
 vB�� with  c a typical time of the
collision. The presence of dissipation introduces neither
substantial modification on the tailed structure of posi-
tion and velocity PDFs, nor changes their scaling behav-
ior. Even different forms of 4 do not affect the global
scenario.

In summary, we introduced a simplified treatable
model of Fermi’s acceleration. It is remarkable that the
system presents an anomalous (super) diffusion for both
position and velocity, which is robust under changes of
the details, and it is characterized by only two exponents
�x � �v � 1 and by the PDFs’ scaling behavior
P�jrj; t� � 1=t�xFx�jrj=t�x�, P�jvj; t� � 1=t�vFv�jvj=t�v�.
Furthermore, as a consequence of nontrivial correlations,
the two exponents �x and �v are not related by a simple
dimensional argument.
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