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a b s t r a c t

We review simple aspects of the thermodynamic and dynamical properties of systems
with long-range pairwise interactions (LRI), which decay as 1/rd+σ at large distances
r in d dimensions. Two broad classes of such systems are discussed. (i) Systems with
a slow decay of the interactions, termed ‘‘strong’’ LRI, where the energy is super-
extensive. These systems are characterized by unusual properties such as inequivalence
of ensembles, negative specific heat, slow decay of correlations, anomalous diffusion and
ergodicity breaking. (ii) Systems with faster decay of the interaction potential, where the
energy is additive, thus resulting in less dramatic effects. These interactions affect the
thermodynamic behavior of systems near phase transitions, where long-range correlations
are naturally present. Long-range correlations are often present in systems driven out of
equilibrium when the dynamics involves conserved quantities. Steady state properties of
driven systems with local dynamics are considered within the framework outlined above.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper provides a brief introduction to the thermodynamics and dynamics of systems with long-range interactions
(LRI). In these systems, the interaction potential between the constituent particles decays slowlywith distance, typically as a
power law∼ 1/rd+σ at large separation r � 1, where d is the spatial dimension. The interaction potential may be isotropic
or anisotropic (as in magnetic or electric dipolar systems). Long-range interacting systems may be broadly classified into
two groups: those with −d ≤ σ ≤ 0, which are termed systems with ‘‘strong’’ LRI, and those with positive but not too
large σ , which are termed systems with ‘‘weak’’ LRI. Systems with strong LRI show significant and pronounced dynamic
and thermodynamic effects due to the slow decay of the interaction potential. In contrast, in systems with weak LRI, the
potential decays relatively faster, resulting in less pronounced effects. For a recent review on long-range interacting systems,
see Ref. [1].
Long-range interacting systems are rather common in nature, for example, self-gravitating systems (σ = −2) [2], non-

neutral plasmas (σ = −2) [3], dipolar ferroelectrics and ferromagnets (anisotropic interactions with σ = 0) [4], two-
dimensional geophysical vortices (σ = −2) [5], wave-particle interacting systems such as a free-electron laser [6], and
many others.
Let us first consider systems with strong LRI. These systems are generically non-additive, resulting in many unusual

properties, both thermal and dynamical, which are not exhibited by systemswithweak LRI or with short-range interactions.
For example, the entropy may turn out to be a non-concave function of energy, yielding negative specific heat within the
microcanonical ensemble [7–14]. Since canonical specific heat is always positive, it follows that the two ensembles need not
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be equivalent. More generally, the inequivalence ismanifestedwhenever amodel exhibits a first-order transitionwithin the
canonical ensemble [15,16]. Non-additivity may also result in breaking of ergodicity, where the phase space is divided into
domains. Local dynamics do not connect configurations in different domains, leading to finite gaps inmacroscopic quantities
such as the total magnetization in magnetic systems [17–23].
Studies of relaxation processes inmodels with strong LRI have shown that a thermodynamically unstable state relaxes to

the stable equilibrium state unusually slowly over a timescale which diverges with the system size [5,17,24–30]. This may
be contrasted with the relaxation process in systems with short-range interactions. Diverging timescales in systems with
strong LRI result in long-lived quasistationary states. In the thermodynamic limit, these states do not relax to the equilibrium
state, so that the system remains trapped in these states forever. These quasistationary states and their slow relaxation have
been explained theoretically in the framework of kinetic theory [3,5,28–31]. Recent progress in the kinetic theory of systems
with long-range interactions [31–33] has also uncovered algebraic relaxation and explained anomalous diffusion in and out
of equilibrium.
It is worthwhile to point out that non-additivity may occur even in finite systems with short-range interactions in which

surface and bulk energies are comparable. Negative specific heat in small systems (e.g., clusters of atoms) has been discussed
in a number of studies [34–37].
Systems with weak LRI, for which σ > 0, are additive. Unless one is in the vicinity of a phase transition, their

thermodynamic properties are similar to those with short-range interactions, e.g., the specific heat is non-negative, and the
various statistical mechanical ensembles are equivalent. Near a phase transition, long-range correlations build up. These
correlations affect the universality class of a system near a continuous phase transition, resulting in critical exponents
which depend on the interaction parameter σ . Moreover, for these systems, the upper critical dimension dc(σ ) above
which the critical behavior becomesmean-field-like depends on σ and has a smaller value than in systemswith short-range
interactions for which dc = 4, see Refs. [38,39]. A system with weak LRI may exhibit phase transitions in one dimension at
a finite temperature, which are otherwise forbidden in a system with short-range interactions [40,41].
So far we have discussed systems in equilibrium. Long-range correlations may also build up in driven systems which

reach a non-equilibrium steady state that violates detailed balance. Quite generally, such steady states in systems with
conserving dynamics exhibit long-range correlations, even with local dynamics. One thus expects peculiarities in behavior
of equilibrium systems with long-range interactions to also show up in steady states of non-equilibrium systems with
conserving local interactions. An example of such a non-equilibrium system with long-range correlations is the so-called
ABC model. In this model, three species of particles, A, B and C , move on a ring with local dynamical rules. At long times,
the system reaches a nonequilibrium steady state in which the three species are spatially separated. The dynamics of this
model lead to effective long-range interactions in the steady state [42,43].
The paper is laid out as follows. In Section 2, we discuss the thermodynamics and dynamics of systems with strong long-

range interactions. This is followed by a discussion on upper critical dimension for systems with weak LRI in Section 3. The
ABC model, exhibiting long-range correlations under out-of-equilibrium conditions is discussed in Section 4. The paper ends
with conclusions.

2. Strong long-range interactions

2.1. Thermodynamics

Here we briefly discuss some general thermodynamic properties of systems with strong LRI. These systems are non-
extensive and non-additive. For example, the energy of a particle interactingwith a homogeneous distribution of particles in
a volume V scales as V−σ/d, so that the total energy scales superlinearly with the volume as V 1−σ/d, making it non-extensive,
and hence, non-additive.
The most immediate consequence of non-additivity is that, unlike short-range systems, the entropy S is not necessarily

a concave function of energy. This may be understood by referring to Fig. 1. The equilibrium state at a given energy within a
microcanonical ensemble is obtained bymaximizing the entropy at that energy. A short-range interacting system is unstable
in the energy interval E1 < E < E2, since it can gain in entropy by phase separating into two subsystems with energies
E1 and E2, keeping the total energy fixed. The energy and entropy densities are then given by the weighted average of the
corresponding densities of the two coexisting subsystems. As a result, the physically realizable entropy curve in the unstable
region is obtained by the common tangent line, resulting in an overall concave curve. However, in systems with strong
LRI, due to non-additivity, the energy density of two coexisting subsystems is not given by the weighted average of the
energy density of the two subsystems. Therefore, the non-concave curve of Fig. 1 could, in principle, represent a physically
realizable stable system,with no occurrence of phase separation. This results in amicrocanonical negative specific heat in the
interval E1 < E < E2 [7–11,14]. Since the specific heat within the canonical ensemble is always positive, being given by the
fluctuations about themean of the system energy, this leads to inequivalence of ensembles, which is particularlymanifested
whenever a first-order transition with coexistence of two phases is found within the canonical ensemble [15,16].
Another feature related to non-additivity is that of a discontinuity in temperature at a first-order phase transition

within a microcanonical ensemble, say, from a paramagnetic to a magnetically ordered phase. This may be understood
by referring to Fig. 2(a), which shows the entropy S(M, E) as a function of the magnetization M at an energy E close to
the transition. It exhibits three local maxima, one at M = 0 and two other degenerate maxima at M = ±M0. As the
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Fig. 1. Entropy as a non-concave function of energy. For short-range systems, due to additivity, the physically realizable curve in the interval E1 < E < E2
is given by the common tangent line, resulting in an overall concave curve. In systemswith long-range interactions, the non-concave curvemay be actually
realizable, giving rise to negative microcanonical specific heat.

a b

Fig. 2. (a) Entropy vs. magnetization close to a first-order transition in a magnetic system with long-range interactions. (b) Entropy vs. energy, showing a
slope and hence, a temperature discontinuity at a first-order transition point.

energy varies, the heights of the peaks change. The paramagnetic phase occurs at energies such that S(0, E) > S(±M0, E),
while the magnetically ordered phase occurs at energies where the inequality is reversed. The temperatures in the two
phases are given by 1/T = ∂S(0, E)/∂E and 1/T = ∂S(±M0, E)/∂E, respectively. At the transition point, when one has
S(0, E) = S(±M0, E), these two derivatives are generically not equal, resulting in a temperature discontinuity. This shows
up in the entropy vs. energy curve, see Fig. 2(b).
The non-additive property alsomanifests itself in dynamical features through breaking of ergodicity, the reason forwhich

may be traced back to the fact that in systems with strong LRI, the domain in the phase space of extensive thermodynamic
variables may be non-convex. As a result, gaps may exist in phase space between two points corresponding to the same
energy, so that local energy-conserving dynamics cannot take the system from one point to the other, leading to breaking
of ergodicity.
The entropy S of a system, given by the number of ways of distributing N particles with total energy E in a given volume

V , typically scales linearly with the volume for both short- and long-range interacting systems. The energy, on the other
hand, scales superlinearly with the volume in systems with LRI. As a result, in these systems in the thermodynamic limit,
the dominant contribution to the free energy F = E − TS at any finite temperature T is due to the energy, resulting in a
trivial thermodynamics with the ground state always representing the equilibrium state. However, there are examples of
finite-sized real systemswith long-range interactions (e.g., self-gravitating systems such as globular clusters, [5]) where the
temperature could be sufficiently high to make the entropic term TS compete with the energy E, resulting in a non-trivial
thermodynamics. To study this limit in theory, it is convenient to rescale the energy by the factor V σ/d (alternatively, rescale
the temperature byV−σ/d) so that the two terms in F become comparable. Thiswas first suggested byKac [44]. Although such
rescalingmakes the system extensive, it remains non-additive, leading to unusual thermodynamic properties, asmentioned
above.
To illustrate some of these unusual thermodynamic behavior in systemswith strong LRI, it is instructive to analyze phase

diagrams of representativemodels. A class of models amenable to exact analysis comprises those where the long-range part
of the interaction is of mean-field type. These models have been applied to study dipolar ferromagnets [45]. An example
in this class is the Ising model with both long- and short-range interactions. The model considers Ising-spins Si = ±1 on a
one-dimensional lattice of N sites with periodic boundary conditions. The Hamiltonian is given by

H = −
K
2

N∑
i=1

(SiSi+1 − 1)−
J
2N

(
N∑
i=1

Si

)2
. (1)
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Fig. 3. The (K , T ) phase diagram for the Hamiltonian in Eq. (1) within the canonical and the microcanonical ensembles. Here J = 1. In the canonical
ensemble, the large K transition is continuous (bold solid line) down to the canonical tricritical point CTP where it turns first order (dashed line). In the
microcanonical ensemble, the continuous transition coincides with the canonical one at large K (bold line). It persists at lower K (dotted line) down to the
microcanonical tricritical point MTP where it becomes first order, with a branching of the transition line (solid lines). The shaded region between these
two lines is not accessible.
Source: The figure is taken from Ref. [17].

Here the first term represents a nearest-neighbor coupling which could be either ferromagnetic (K > 0) or antiferromag-
netic (K < 0). On the other hand, the second term, corresponding to a long-range, mean-field type interaction, is ferromag-
netic, J > 0.
The canonical phase diagram of this model was analyzed in Ref. [46–48], while the microcanonical phase diagram

was obtained in Ref. [17]. Fig. 3 shows the phase diagram in the two ensembles in the (K , T ) plane with J = 1 and
antiferromagnetic K . Here T is the temperature. We see that the microcanonical and the canonical critical lines coincide
up to the canonical tricritical point CTP. The microcanonical line extends beyond this point into the region where, within
the canonical ensemble, the model is magnetically ordered. In this region, the microcanonical specific heat is negative.
At K = KMTP , the microcanonical transition turns first order, with a branching of the transition line and a temperature
discontinuity. The shaded region in the phase diagram represents an inaccessible domain resulting from the discontinuity
in temperature.
On quite general grounds, one expects the above features of the phase diagram to be valid for any system in which

a continuous transition line becomes first order at a tricritical point, for example, in the phase diagrams of the spin-1
Blume–Emery–Griffiths model [15,16], in an XY model with two- and four-spin mean-field-like ferromagnetic interaction
terms [49], and in an XY model with long- and short-range, mean-field type interactions [50]. A classification of possible
types of inequivalent canonical and microcanonical phase diagrams in systems with long-range interactions is given in
Ref. [12].

2.2. Dynamics of Hamiltonian systems: kinetic theories

We now turn to the dynamics of systems with strong long-range interactions. The dynamics of discrete spin systems
with long-range interactions will be considered in Section 2.3. Here we consider continuous Hamiltonian systems with
long-range interactions. For simplicity, we limit our discussion to the following dynamical equations of motion for a system
of N particles, given by

ẋi = pi,

ṗi = −
1
N

∑
j6=i

dW (xi − xj)
dxi

.
(2)

Here xi and pi are, respectively, the coordinate and themomentum of the i-th particle andW (x) is the interparticle potential.
For simplicity, we first discuss the case where the potential W is of infinite range, i.e., every particle interacts with every
other (mean-field interaction). The caseW (x) ∼ 1/xd+σ , where d is the spatial dimension, is very similar, as long as σ < 1.
Here the variable x is a spatial variable, similar to the variable r is the previous section. In some cases, for instance, in theHMF
model discussed later (see Eq. (8)), it could also be interpreted as an internal degree of freedom. Note that, in accordance
with the prescription of Kac (Section 2.1), the potential in the Hamiltonian dynamics, Eq. (2), is scaled by the factor 1/N . This
scaling factor arises from a change of timescale, and is the natural choice here, as it implies that each particle experiences a
force of O(1) in the limit N →∞.
In the limit of large N , the dynamical evolution given by Eq. (2) is well approximated by kinetic theories. On a relatively

short timescale (that diverges with N), the evolution is described by the Vlasov equation. On a much longer timescale, the
relaxation towards equilibrium is governed by the Lenard–Balescu-type dynamics (or, its approximation by the Landau
equation). These equations have been applied to self-gravitating stars, plasmas in the weak-coupling limit, and point vortex
models in two-dimensional turbulence [3,5,29,33,51,52].
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Table 1
The Boltzmann equation on the one hand, and the Vlasov and the Lenard–Balescu equations on the other hand are obtained in two opposite limits: for
the former, in the Grad limit for dilute gases (rare collisions), while, for the latter, in the limit where each particle interacts with a macroscopic number of
others. The structure of the kinetic theory in both cases, however, share many analogies, as shown in the table.

Small parameter Short-ranged dilute gases Long-range systems
a/l = 1/

(
πa2n

)
1/N

Equations:
Initial evolution Collisionless Boltzmann equation Vlasov equation
Late relaxation towards equilibrium Boltzmann equation Lenard–Balescu equation

Vanishing correlations Yes Yes
Boltzmann entropy Yes Yes
Stosszahl Ansatz Yes Yes

Steady states of Local Poisson distribution Quasistationary states
the initial evolution or local thermal equilibrium

Relaxation timescale ∝ l/v̄ or larger ∝ N or larger

Long-range Yes Yes
temporal correlations Yes Yes
and algebraic decays

Anomalous diffusion Dimension dependent Yes

The aim of the following subsections is to briefly present these classical kinetic equations and some recent results related
to them, including predictions of quasistationary states, anomalous diffusion and algebraic relaxation. Our presentation
makes a systematic parallel to the well-known case of the Boltzmann equation for short-range systems and also stresses
numerous analogies between the two cases.

2.2.1. Comparison of kinetic theories of long-range and short-range interacting systems
The kinetic theory of systems with short-range interactions in the dilute gas limit involves the Boltzmann equation,

a cornerstone of classical statistical mechanics (see, for example, Ref. [53] for a physical approach, or [54] for a precise
mathematical discussion). Microscopically, particles travel at a typical velocity v̄ and collide with each other after traveling
a typical distance l, called the mean free path. Let σ be the diffusion cross-section for these collisions. One has σ = πa2,
where the parameter a is of the order of the particle radius. The mean free path is defined as l = 1/

(
πa2n

)
, where n is the

typical particle density. The Boltzmann equation applies when the ratio Γ = a/l is small (the Boltzmann–Grad limit [54]).
In the limit Γ → 0, any two colliding particles can be considered as independent (uncorrelated) as they come from

very distant areas. This is the basis of the Boltzmann hypothesis of molecular chaos (Stosszahl Ansatz). It explains why the
evolution of the phase space distribution function f (x, p, t)may be described by an autonomous equation, the Boltzmann
equation, given by

∂ f
∂t
+

p
m
·
∂ f
∂x
=
v̄

l
C (f ) . (3)

Herem is the mass of the particles, while C (f ) represents collisional interactions between particles.
Inwhat follows,we explain that, for systemswith long-range interactions in the limit of largeN , any twoparticles become

statistically independent. This may seem paradoxical as, in this case, the force on every particle is the result of its interaction
with all the other particles. The equivalent of the Stosszahl Ansatz (the fact that two particles are independent to leading
order in 1/N) here is then due to the law of large numbers: the force on each particle being the result of a large number of
contributions from its interaction with all the other particles, the exact value of each contribution is of little importance and
correlation between the motion of two particles is small. We explain this in more detail in Sections 2.2.2 and 2.2.3.
The analogy between the kinetic theory of dilute gases and that of systems with long-range interactions extend further.

This is summarized in Table 1. The Boltzmann equation has a Lyapunov functional: the entropy, given by −
∫
dxdp f log f ,

can be proven to increase in time (H-theorem). According to the classical argument, the entropy, −
∫
dxdp f log f , is given

by the number of microstates corresponding to the phase space distribution f , so long as two particles can be considered
independent (this is the case in the Boltzmann–Grad limit). Moreover, it is a general property that, for a system in which
the evolution of themacroscopic phase space density f is described by an autonomous equation, the number of microscopic
states corresponding to f has to increase in time [55]. These two arguments thus explain why the H-theoremmust hold for
the Boltzmann equation. Since, for systems with long-range interactions, two particles can also be considered independent
(see the previous paragraph), an H-theorem with the same entropy, given by −

∫
dxdp f log f , must also hold in this case.

The long-time evolution of systems with long-range interaction is governed by the Lenard–Balescu equation (Section 2.2.3),
for which the entropy increase can actually be checked directly.
For the Boltzmann equation, there is an initial dynamical stage, independent of collisions, which is governed by the free

transport only (Eq. (3), with the right hand side set to zero), and leads to local Poisson statistics [54]. Similarly, evolution
of long-range interacting systems for short times leads to a state where two-point correlation functions are negligible, as
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explained in Section 2.2.2. In short-range systems, when gradients of intensive parameters (density, temperature, etc.)
are small, one achieves, for dilute gases, local thermodynamic equilibrium which is believed to hold in the limit of long
times [54]. Similarly, systemswith long-range interactions, on times of order one, converge towards ‘‘quasistationary states’’
(Section 2.2.2), which then evolve very slowly towards global statistical equilibrium (Section 2.2.3). Quasistationary states
for long-range interacting systems are thus the analogue of local thermodynamic equilibrium of the Boltzmann equation
for short-range systems.
Starting with Einstein’s paper on Brownian motion, a very important class of works tries to relate macroscopic diffusion

properties to microscopic correlations functions (Kubo-type formulae). An important result of classical kinetic theory is the
long-time algebraic behavior of the correlation functions andKubo integrands [56], and the related anomalous diffusion [56].
This leads to long-range temporal correlations of some statistical properties. As has been recently discovered, similar
behavior occurs also in systems with long-range interactions [31–33]. We explain this in Section 2.2.5.

2.2.2. Vlasov dynamics and quasistationary states
We now derive heuristically the Vlasov equation from the Hamiltonian dynamics, Eq. (2). A particle with coordinate x

feels a potential Vdiscrete (x) = 1
N

∑
iW (x− xi). It is natural to consider the following continuum approximation to this

potential:

V (x, t) =
∫
dydpW (x− y)f (y, p, t). (4)

The time evolution for the one-particle phase space distribution function f (x, p, t) follows the Vlasov equation, given by

∂ f
∂t
+ p

∂ f
∂x
−
∂V
∂x
∂ f
∂p
= 0. (5)

If {xi} were N independent random variables distributed according to the distribution f , Eq. (4) would then follow from
the law of large numbers, and would be a good approximation to Vdiscrete up to corrections of order 1/

√
N . Replacing the

true discrete potential by V thus amounts to neglecting correlations between particles (the equivalent of the Stosszahl
Ansatz) and finite-N effects. The potential Vdiscrete being replaced by an average one, namely, V , may be seen as a mean-field
approximation to the dynamics.
That this approximation is valid in the limit N → ∞ may be understood more precisely from a physical point of

view in two different ways: by either writing the Bogoliubov–Born–Green–Kirkwood-Yvon (BBGKY) hierarchy, closing the
hierarchy by considering a systematic expansion in powers of 1/N , and keeping terms to leading order, or, by following the
Klimontovich approach (see Section 2.2.3). The validity of the Vlasov equation has also been established with mathematical
rigor for smoothW [57] (see also Ref. [54], and a more recent work, [58], for some classes of singular potential). These exact
results show that the Vlasov equation is a good approximation to the particle dynamics, at least for timesmuch smaller than
logN . Recent results showed that this logN is actually optimal, in the sense that there actually exist sets of initial conditions
exhibiting divergence on times of order logN [59] (see an analogous logN timescale arising in Monte-Carlo dynamics for
discrete spin systems considered in Section 2.3).
However, the ‘‘coincidence time’’ between theVlasov dynamics and theHamiltonian dynamics is genericallymuch longer

than logN ,meaning thatmost of the initial conditions have a ‘‘coincidence time’’much longer than logN . Aswill be discussed
below, generic initial conditions converge towards a stable stationary state of the Vlasov equation on a timescale of order
one, and then stay trapped close to this state for times algebraic in N (see Ref. [28] for a numerical observation and [60] for
a mathematical investigation of the phenomenon).
As can be easily verified, the Vlasov equation, Eq. (5), inherits the conservation laws of the Hamiltonian dynamics, for

instance, the energy

H[f ] =
∫
dxdp

[
f
p2

2
+
fV [f ]
2

]
, (6)

and the linear or the angular momentum when the system has the corresponding translational or rotational symmetry,
respectively. The functionals,

Cs[f ] =
∫
dxdp s (f (x, p, t)) , (7)

sometimes called Casimirs, are also invariant, for any function s.
Let us consider a dynamical system F : ẋ = F (x), with a conserved quantity G (x) (Ġ (x) = 0). Any extremum x0 of

G represents an equilibrium of F : F (x0) = 0 and if, in addition, the second variations of G are either positive definite or
negative definite, then this equilibrium is stable [61]. This general result seems natural if one considers the example of
energy and angular momentum extrema encountered in classical mechanics. Then, as a consequence of the infinite number
of conserved quantities, Eqs. (6)–(7), there exists an infinite number of equilibria f0 for the Vlasov dynamics, a large number
of them being stable [28]. In any dynamical system, fixed points play a major role. In the case of the Vlasov equation, they
moreover turn out to be attractive, as illustrated by Landau damping [3]. Following these simple remarks, the following
dynamical scenario was proposed [28]:
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a b

Fig. 4. Panel (a): Magnetization M(t) of the HMF model, Eq. (8), for different particle numbers: from left to right, N = 102 , 103 , 2.103 , 5.103 , 104 and
2.104 . The initial state is homogeneous in angles θi and uniform in momenta pi . The horizontal line at the top represents the statistical equilibrium value
ofM . Panel (b) shows the logarithm of the relaxation timescale b(N) as a function of lnN , where the dashed line represents the law 10b(N) ∼ N1.7 .
Source: The figure is taken from Ref. [28].

• Starting from some initial condition, the N-particle system approximately follows the Vlasov dynamics, and evolves on
a timescale of order 1.
• It then approaches a stable stationary state of the Vlasov equation. Subsequently, the Vlasov evolution stops
(‘‘quasistationary states’’).
• Because of discreteness effects, the system evolves on a timescale of order Nα for some α, and slowly approaches the
statistical equilibrium, moving along a series of stable stationary states of the Vlasov equation (see Section 2.2.3).

We note that a similar scenario was also observed in the plasma [3,30], astrophysical [29] and point vortex [5] contexts.
As a concrete example, let us consider the case of the Hamiltonian mean-field (HMF) model, which involves classical XY
spins with mean-field interactions [24]. Here the Hamiltonian is given by

H =
N∑
i=1

p2i
2
+
1
2N

N∑
i,j=1

[
1− cos

(
θi − θj

)]
, (8)

and themagnetization is given byM =
∣∣∣ 1N ∑N

i=1 exp (iθi)
∣∣∣. Note that, for theHMFmodel, the variables θi’s play the role of the

variables xi’s in the discussion following Eq. (2). For the HMFmodel, the abovementioned dynamical scenario is actually ob-
served for initial states which are homogeneous in angles θi and uniform inmomenta pi (water-bag initial condition) [25,28]
(see Fig. 4).
In this scenario, the N-particle system gets trapped for long times in out-of-equilibrium states close to stable stationary

states of the Vlasov equation; these are called quasistationary states (QSS) in the literature. Before turning to a discussion
of these states in the next paragraph, let us note that there is however no reason for this scenario to be the only possibility.
For instance, the Vlasov dynamics could converge towards stable periodic solutions of the Vlasov equation [62].
We have explained that any Vlasov-stable stationary solution is a quasistationary state. Then, because inhomogeneous

Vlasov-stationary states do exist, one should not expect quasistationary states to be homogeneous. This is illustrated in the
case of several generalizations of the HMF model in [59].
The issue of the robustness of QSS when the Hamiltonian is perturbed by short-range interactions [50], or, when the

system is coupled to an external bath [63] has also been addressed, and it was found that, while the power law behavior
survives at least on some timescale, the exponent may not be universal. A possible statistical mechanical explanation of
these QSS would be the ‘‘violent relaxation’’ theory of Lynden-Bell [8] and its generalizations. We refer to Ref. [6,64] and
references therein for discussions on the interests and limitations of this approach.

2.2.3. Order parameter fluctuations and the Lenard–Balescu equation
In the previous subsection, we explained that, to leading order in 1/

√
N , the dynamical evolution is described by the

Vlasov equation.We now treat the 1/
√
N fluctuations of the order parameter, and the resulting correlations and corrections

to the Vlasov equation. We assume that the initial condition is close to a QSS, and that this property holds in time as the
system evolves (this is the equivalent of the propagation of local equilibrium for the Boltzman equation [54]).
In order to keep this discussion simple, we treat the case of the HMFmodel, Eq. (8). The case of a more general potential,

Eq. (2), can be treated following exactly the same procedure. We follow [33], and refer to Ref. [53] for a plasma physics
treatment, to Refs. [5,51,52] for the case of point vortices, and to Ref. [65] for self-gravitating stars.
A way to perform these computations would be an asymptotic expansion of the BBGKY hierarchy, where 1/

√
N is

the small parameter (see, for instance, Ref. [3]). The 1/
√
N fluctuations would then be obtained by explicitly solving the

dynamical equations for the two-point correlation function while truncating the BBGKY hierarchy by assuming a Gaussian
closure for the three-point correlation function. Our presentation, giving the same results, rather follows the Klimontovich
approach [3,53].
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The state of the system of N particles can be described by the discrete single particle time-dependent density function
fd (θ, p, t), defined as fd(θ, p, t) ≡ 1

N

∑N
j=1 δ

(
θ − θj (t)

)
δ
(
p− pj (t)

)
, where δ is the Dirac delta function, (θ, p) the Eulerian

coordinates of the phase space and (θj, pj) the Lagrangian coordinates of the particles. By taking the time derivative of
fd (θ, p, t) and using Eq. (2), one finds that the dynamical evolution is described by the Klimontovich equation [3], given by

∂ fd
∂t
+ p

∂ fd
∂θ
−
dV
dθ
∂ fd
∂p
= 0, (9)

with

V (θ, t) ≡ −
∫ 2π

0
dθ ′

∫
∞

−∞

dp cos(θ − θ ′)fd(θ ′, p, t). (10)

Eq. (9) is the same as the Vlasov equation, Eq. (5) (with x replaced by θ ). However, whereas Eq. (9) describes the evolution of
a sum of Dirac distributions and is exact, the Vlasov equation describes a smooth distribution f understood as a local spatial
average (or a temporal average, depending on the interpretation).
When N is large, it is natural to approximate the discrete density fd by a continuous one, namely, f (θ, p, t). Considering

an ensemble of microscopic initial conditions close to the same initial macroscopic state, one defines the statistical average
〈fd〉 = f0(θ, p), while fluctuations are of order 1/

√
N . We will assume that f0 is any stable stationary solution of the Vlasov

equation. The discrete time-dependent density function can thus be written as fd(θ, p, t) = f0(θ, p) + δf (θ, p, t)/
√
N ,

where the fluctuation δf is of zero average. Similarly, we define the average potential 〈V 〉 and its corresponding fluctuation
δV (θ, t) so that V (θ, t) = 〈V 〉 + δV (θ, t)/

√
N . Inserting both expressions in the Klimontovich equation, Eq. (9), and taking

the average, one obtains

∂ f0
∂t
+ p

∂ f0
∂θ
−
d〈V 〉
dθ

∂ f0
∂p
=
1
N

〈
dδV
dθ

∂δf
∂p

〉
. (11)

The above equation with the right hand side set to zero is the Vlasov equation. The exact kinetic equation, Eq. (11), suggests
that the quasistationary states of Section 2.2.2 do not evolve on timescalesmuch smaller thanN; this explains the extremely
slow relaxation of the system towards statistical equilibrium.
Let us now concentrate on stable homogeneous distributions f0(p). Then, one has 〈V 〉 = 0. Subtracting Eq. (11) from Eq.

(9) and using fd = f0 + δf /
√
N , one gets

∂δf
∂t
+ p

∂δf
∂θ
−
dδV
dθ

∂ f0
∂p
=
1
√
N

[
dδV
dθ

∂δf
∂p
−

〈
dδV
dθ

∂δf
∂p

〉]
. (12)

For times much smaller than
√
N , we may drop the right hand side encompassing quadratic terms in the fluctuations. The

fluctuating part δf is then described by the left hand side of Eq. (12), which is the linearized Vlasov equation.
The linearized Vlasov equation can be solved explicitly by introducing the spatio-temporal Fourier–Laplace transform of

δf and δV . This leads to

δ̃V (ω, k) = −
π
(
δk,1 + δk,−1

)
ε(ω, k)

∫
+∞

−∞

dp
δ̃f (0, k, p)
i(pk− ω)

, (13)

where the dielectric permittivity ε is given by

ε(ω, k) = 1+ πk
(
δk,1 + δk,−1

) ∫ +∞
−∞

dp
∂ f0
∂p

(pk− ω)
. (14)

Eq. (13) describes exactly the fluctuations to leading order. From it, we can compute any quantity of interest, for instance,
the potential autocorrelation or the right hand side of Eq. (11). We describe the results without reproducing here the
computational details (which are long and tedious, see Refs. [33,53]).

Potential autocorrelation. For homogeneous states, by symmetry, one has 〈δ̃V (ω1, k1)δ̃V (ω2, k2)〉 = 0, except when
k1 = −k2 = ±1. For k = ±1, one gets, after a transient exponential decay, the general result

〈δV (t1,±1)δV (t2,∓1)〉 =
π

2

∫
C

dω e−iω(t1−t2)
f0(ω)
|ε(ω, 1)|2

. (15)

This is an exact result to leading order.



F. Bouchet et al. / Physica A 389 (2010) 4389–4405 4397

Lenard–Balescu equation. In order to describe the slow evolution of the distribution f0 due to finite-N effects, we evaluate
the right hand side of Eq. (11) to order 1/N . This is, for systems with long-range interactions, the analogue of the collision
operator for the Boltzmann equation for dilute systems with short-range interactions. This collision operator is called the
Lenard–Balescu operator and it leads to the Lenard–Balescu equation, given by

∂ f0(p, t)
∂t

= −
1
N
∂

∂p
LB[f ],

LB[f ] =
∫
dp′

1
|ε(1, 1)|

(
f0 (p)

∂ f0
∂p
(p′)− f0

(
p′
) ∂ f0
∂p
(p)
)
δ
(
p− p′

)
. (16)

We have presented the computation of the Lenard–Balescu equation for the HMF model, where variables θ and p are one
dimensional. The generalization of this computation to the general potential as in Eq. (2), and for variables x and p of
dimensions larger than one leads to

∂ f0(p, t)
∂t

= −
1
N
∂

∂p
LB[f ], (17)

LB[f ] =
∫
dkdp′

φ(k)
|ε(k, k.p′)|

k.
(
f0 (p)

∂ f0
∂p
(p′)− f0

(
p′
) ∂ f0
∂p
(p)
)
δ
(
k.
(
p− p′

))
. (18)

Here k is a wave vector, φ(k) is the Fourier transform of the potential V (x), and
∣∣ε(k, k.p′)∣∣ is the dielectric permittivity. We

note that the Lenard–Balescu operator is a quadratic one, as is the collision operator C(f ) in the Boltzmann equation, Eq. (3).
Moreover, this operator involves a resonance condition through the Dirac distribution δ

(
k.
(
p− p′

))
.

From Eq. (16), we expect a relaxation towards equilibrium of any quasistationary state with a characteristic time of order
N . We note that, for plasma or self-gravitating systems, due to the small distance divergence of the interaction potential,
the Lenard–Balescu operator diverges at small scales. This is regularized by introducing a small scale cut-off. This leads to
a logarithmic correction to the relaxation time, which is then the Chandrasekhar time for stellar systems, proportional to
N/ logN.
One clearly finds from Eq. (16) that themechanism for the evolution of the distribution function is related to two-particle

resonances. An essential point is that the resonance condition p − p′ = 0 cannot be fulfilled. This is because, with p = p′,
the Lenard–Balescu operator, Eq. (16), which is odd in the variable p, would vanish.
For physical systems for which x is a one-dimensional variable, this proves that Vlasov-stable distribution functions do

not evolve on timescales smaller or equal to N . This is an important result: generic out-of-equilibrium distributions, for one-
dimensional systems, evolve on timescales much larger than N [66]. As noted in Ref. [33], this explains why for the HMFmodel,
relaxation does not occur on times scales of order N (a N1.7 scaling law was numerically observed in the HMF model [28],
see Fig. 4, page 13). A similar kinetic blocking due to the same type of lack of resonances may also occur in the case of the
point vortex model [67].

2.2.4. The stochastic process of a single particle
Let us now consider the relaxation properties of a test-particle, labeled by 1, surrounded by a background of (N − 1)

particles with a homogeneous distribution f0(p). Wewant to describe the stochastic process of particle 1.Wewill first prove
that the dynamics of this particle may be described by a Fokker–Planck equation. For this, we generalize the computations
of Section 2.2.3. As in Section 2.2.3, for the sake of simplicity, we treat here the case of the HMFmodel, but extensions to the
general case, Eq. (2), is straightforward.
We first compute the diffusion

〈
(p1(t)− p1(0))2

〉
, where p1(0) and p1(t) are the momentum of particle 1 at initial time

and at time t , respectively. Here the brackets denote averaging over the initial positions and momenta of the remaining
N − 1 particles. Taking into account the knowledge of the position of particle 1, the distribution fd (see Eq. (9)) is
fd(θ, p, t) = f0(θ, p) + δf (θ, p, t)/

√
N + δ(θ − θ1, p − p1)/N , where δf is the zero-average fluctuation of the density

of the remaining N − 1 particles. We define the average potential 〈V 〉 and its corresponding fluctuation δV (θ, t) so that
V (θ, t) = 〈V 〉 + δV (θ, t)/

√
N . Then, from Eq. (10), we obtain

δV (θ, t) = −
∫ 2π

0
dθ ′

∫
+∞

−∞

dp cos(θ − θ ′) δf (θ ′, p, t)−
1
√
N
cos (θ − θ1) . (19)

Using the equations of motion, Eq. (2), for the test particle and omitting from now on the label 1 for the sake of simplicity,
one obtains

p(t) = p(0)−
1
√
N

∫ t

0
du
dδV
dθ

(u, θ(u)). (20)

Then 〈
(p(t)− p(0))2

〉
=
1
N

∫ t

0

∫ t

0
dudu′

〈
dδV
dθ

(u, x(0))
dδV
dθ

(u′, θ(0))
〉
+ O

(
1
N

)
. (21)
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In deriving the above equation, we have replaced θ(u) by θ(0) in Eq. (20), which is valid to leading order in 1/N . From Eq.
(19), it is clear that the average autocorrelation of the potential does not depend on particle 1 to leading order in 1/N . Then,
to leading order, Eq. (15) for the Laplace transform of the potential autocorrelation can be used. We obtain〈

(p(t)− p(0))2
〉
∼

t→+∞

2t
N
D(p), (22)

where the diffusion coefficient D(p) is explicitly computed from Eq. (15). One gets

D(p) = 2 Re
∫
+∞

0
dteipt 〈δV (t, 1)δV (0,−1)〉 =

π2f0(p)
|ε(p, 1)|2

. (23)

The computation of 〈(p(t)− p(0))〉 is less straightforward, as then the corrections to the potential due to particle 1 have
to be evaluated to next order. These computations are not conceptually difficult (see Refs. [31–33]), but are too long to be
presented here. We obtain

〈(p(t)− p(0))〉 ∼
t→+∞

t
N

(
dD(p)
dp
+
1
f0

∂ f0
∂p
D(p)

)
. (24)

As the changes in themomentum p are small (of order 1/
√
N), the description of the stochastic process inmomentum p by a

Fokker–Planck equation is valid (see Ref. [68]). The Fokker–Planck equation is then characterized by the temporal behavior
of the first twomoments,

〈
(p(t)− p(0))n

〉
; n = 1, 2 [68]. Rescaling the time variable τ = t/N , as suggested by Eqs. (24) and

(22), the Fokker–Planck equation describing the time evolution of the distribution of the test particle is

∂ f1(τ , p)
∂τ

=
∂

∂p

[
D(p)

(
∂ f1(τ , p)
∂p

−
1
f0

∂ f0
∂p
f1(τ , p)

)]
. (25)

We stress that this equation depends on the bath distribution f0. It is valid for both equilibrium baths (Gaussian f0) and
out-of-equilibrium baths, provided that f0 is a stable stationary solution of the Vlasov equation. It is easily checked that
f1(p) = f0(p) is the stationary solution to Eq. (25). Then, in the limit τ → ∞, the test particle probability density function
f1 converges towards the quasistationary distribution of the surrounding bath f0. This is consistent with the result that f0 is
stationary for timescales of order N .
The Vlasov equation, the Lenard–Balescu equation and the Fokker–Planck equation for a test particle are all classical

results. Recent results are the ones related to the understanding of the importance of QSS and their extensive study in
the context of the HMF model. The Fokker–Planck diffusion coefficient has also been tested numerically [32]. In the next
subsection, we explain other recent results related to the very interesting and peculiar properties of the Fokker–Planck
equation, Eq. (25), and the associated algebraic temporal correlation and anomalous diffusion.

2.2.5. Long-range temporal correlations and anomalous diffusion
The quest for relations between observable macroscopic transport properties and microscopic properties are at the core

of the program of equilibrium and out-of-equilibrium statistical mechanics. Historically, this has played an important role,
not only from a practical point of view to have access to microscopic information without observing them directly, but also
from a conceptual point of view. The Kubo-type formulae are an essential part of the theory, relatingmicroscopic correlation
functions to diffusion coefficients. In the 1970’s, it came as a great surprise to discover that the integrand of the Kubo
formulae may diverge and lead to anomalous diffusion and transport (see below). This led to a series of very interesting
papers reviewed in Ref. [56].
Webriefly recall that,when looking at the statistics of a spatial variable x as a function of time,when itsmoment of ordern,

〈xn(τ )〉, scales like τ n/2 at long times, the associated transport is called normal. However, anomalous transport [69,70], where
moments do not scale as in the normal case, is also known in some stochastic models, in continuous time random walks
(Levy walks), in kinetic theory [56] and for systems with a lack of stationarity of the corresponding stochastic process [71].
In this subsection, we present recent results [33] that predicted the existence of non-exponential relaxation,

autocorrelation of the momentum p with algebraic decay at long times, and anomalous diffusion of the spatial or
angular variable x. These results thus show that, similar to the case of the classical theory of systems with short-range
interactions [56], anomalous transport exists also in the kinetic theory of systemswith long-range interactions. These results
also clarify the highly debated disagreement between different numerical simulations reporting either anomalous [26] or
normal [27] diffusion, in particular, by delimiting the time regime for which such anomalous behavior should occur. These
theoretical predictions have been numerically checked in Ref. [72]. Some recent results, extending this work, have also been
reported for the point vortex model [73]. We note that an alternative explanation, with which we disagree, both for the
existence of QSS and for anomalous diffusion has been proposed in the context of Tsallis non-extensive statistical mechanics
[74,75] (see Refs. [28,33,76] for further discussions).
Our results have been obtained by analyzing theoretically the properties of the Fokker–Planck equation, Eq. (25), derived

in Section 2.2.4. From a physical point of view, as particles with large momenta p move very fast in comparison to the
typical timescale of the fluctuations of the potential, they experience a very weak diffusion and thus maintain their large



F. Bouchet et al. / Physica A 389 (2010) 4389–4405 4399

Fig. 5. Diffusion (σ 2θ (τ )/N
2
≡
〈
(θ(t)− θ(0))2

〉
/N2 as a function of time τ = t/N) in the HMF model, for a quasistationary state. Points are from a N-

body numerical simulation, the straight line is the analytic prediction by the kinetic theory. For long times,
〈
(θ(t)− θ(0))2

〉
∼t→∞ tν with ν 6= 1. A weak

anomalous diffusion is also observed in equilibrium (see Ref. [33] for details).

Table 2
Theoretical predictions of the autocorrelation function Cp(τ ) of the momentum p and of the standard deviation σ 2θ (τ ) of the variable θ in the long-time
regime, for different bath distributions f0(p). The results are valid for any bath distribution f0(p) which is strictly decreasing as |p| → ∞, and depend on
f0(p) only through its large p asymptotic behavior (tail of the distribution). The prediction for α is α = (ν−3)/(ν+2). See Fig. 5 for an illustration of these
results using numerical simulations of the HMF model and Refs. [31,33] for more details.

Tails of the bath f0(p) Cp(τ ) σ 2θ (τ )

distribution function f0 (|p| → ∞) (τ →∞) (τ →∞)

Power-law |p|−ν τ−α τ 2−α

Stretched exponential exp(−β|p|δ) (ln τ)2/δ

τ
τ(ln τ)2/δ+1

momentum during a very long time (one finds from Eq. (23), using |ε(p, 1)|2→p→∞ 1, that the diffusion coefficient decays
as fast as the bath distribution f0 (p) for large times). Because of this very weak diffusion for large p, the distribution of
waiting time for passing from a large value of p to a typical value of p is a fat distribution. This explains the algebraic
asymptotics for the correlation function. From a mathematical point of view, these behaviors are linked to the fact that
the Fokker–Planck equation, Eq. (25), has a continuous spectrum down to its ground state (without gap). This leads to a
non-exponential relaxation of different quantities and to long-range temporal correlations [31,33]. These results apply to
the kinetic theory of any system for which the slow variable (here the momentum) lives in an infinite space. By explicitly
deriving an asymptotic expansion of the eigenvalues and eigenfunctions of the Fokker–Planck equation, the exponent for the
algebraic tail of the autocorrelation function of momentum has been theoretically computed [31,33]. The detailed analysis
is a bit complex and tedious, thus, cannot be reproduced here (a detailed presentation can be found in Ref. [31]).
Let us present the results in the context of the HMFmodel, Eq. (8), for which algebraic long-time behavior formomentum

autocorrelation has been first numerically observed in Refs. [74,75]. In its QSS, the theoretical law for the diffusion of angles
σ 2θ (τ ) has also been derived in Refs. [31,33]. The predictions for the diffusion properties are listed in Table 2 and illustrated
using numerical simulations of the HMF model in Fig. 5.
When the distribution f0(p) is changed within the HMF model, a transition between weak anomalous diffusion (normal

diffusion with logarithmic corrections) and strong anomalous diffusion is predicted (Table 2). We have numerically
confirmed this theoretical prediction [72]. For initial distributions with power-law or Gaussian tails, correlation functions
and diffusion are in good agreement with numerical results. Diffusion is indeed anomalous super-diffusion in the case of
power-law tails, while normal when Gaussian. In the latter case, the system is in equilibrium, but the diffusion exponent
shows a slow logarithmic convergence to unity due to a logarithmic correction to the correlation function. The long transient
times before observing normal diffusion, even for Gaussian distribution and in equilibrium, suggests that one should be very
careful to decide whether diffusion is anomalous or not from numerical simulations.

2.3. Dynamics of discrete spin systems

In this section, we discuss the relaxation process from a thermodynamically unstable state in long-range interacting
systems with discrete degrees of freedom. These systems do not have intrinsic dynamics and one has to resort to Monte
Carlo (MC) dynamics within either a microcanonical or a canonical ensemble. Here we briefly discuss the results for the
Ising model with long- and short-range interactions, defined by the Hamiltonian in Eq. (1) [17].
Within a microcanonical ensemble, the dynamics followed in Ref. [17] is based on the microcanonical MC algorithm of

Creutz [77]. In this algorithm, an extra degree of freedom, called the demon, with energy ED ≥ 0 samples microstates of
the system with energy E − ED by attempting random single spin flips. At long times, to leading order in the system size N ,
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Fig. 6. Relaxation time of them = 0 state when this is a local minimum of the entropy for the model in Eq. (1). Here K = −0.25, J = 1, ε = −0.2.

the distribution of ED attains the Boltzmann form, P(ED) ∼ exp(−ED/kBT ), where T is the temperature of the system with
energy E. As long as the entropy of the system increases with its energy, the temperature is positive and the average energy
of the demon is finite and small compared with the system energy, with the latter scaling with N . The system energy at any
given time is E − ED, with finite fluctuations.
In applying the above dynamics to models with long-range interactions, one should note that, to next order in N ,

P(ED) ∼ exp(−ED/T − E2D/2CV T
2), where CV = O(N) is the system’s specific heat. In systems with short-range interactions,

the specific heat is non-negative so that the next-to-leading term in the distribution is a stabilizing factor which is negligible
for large N . On the other hand, in systems with long-range interactions, CV may be negative in some regions of the phase
diagram, and on the face of it, the next-to-leading termmay destabilize the distribution. However, the next-to-leading term
is small, of O(1/N), so that as long as the entropy increases with the energy, the next-to-leading term does not destabilize
the distribution.
The above dynamics has been applied to the model in Eq. (1). It was found that, starting with a zero magnetization

thermodynamically unstable state at energies where this state is a local minimum of the entropy, the model relaxes to the
equilibrium, magnetically ordered state on a timescale which diverges with the system size as lnN (see Fig. 6).
To get insight into the above result for the relaxation time, we consider the Langevin equation corresponding to the

dynamics, which is given by

∂m
∂t
=
∂s
∂m
+ ξ(t); 〈ξ(t)ξ(t ′)〉 = Dδ(t − t ′), (26)

where ξ(t) represents white noise. The diffusion constant D scales as D ∼ 1/N . This may be seen by considering the non-
interacting case inwhich themagnetization evolves by pure diffusion, where the diffusion constant scales in this form. Since
we are interested in a thermodynamically unstablem = 0 state, corresponding to a local minimum of the entropy, we may,
for simplicity, consider an entropy function of the form

s(m) = am2 − bm4, (27)

with a and b non-negative parameters. The Fokker–Planck equation for the probability distribution P(m, t) at time t reads

∂P(m, t)
∂t

= D
∂2P(m, t)
∂m2

−
∂

∂m

(
∂s
∂m
P(m, t)

)
. (28)

This equation may be viewed as describing the motion of an overdamped particle with coordinate m in a potential −s(m)
at a temperature T = D. To probe the relaxation process from them = 0 state, it is sufficient to consider the entropy in Eq.
(27) with b = 0. With the initial condition, P(m, 0) = δ(m), the long-time distribution is [78]

P(m, t) ∼ exp
[
−
ae−atm2

D

]
. (29)

It follows that the relaxation time from the unstable state, τus, which corresponds to the width reaching a value of O(1),
satisfies

τus ∼ − lnD ∼ lnN. (30)

Similar behavior has been found for themodel in Eq. (1) withMetropolis-type canonical dynamics at fixed temperature [17].
Thus, the logarithmic divergence with N of the relaxation time seems to be independent of the nature of the dynamics
(i.e., whether microcanonical or canonical).
The relaxation process from a metastable state (rather than an unstable state discussed above) has also been studied in

the past [17]. Here the entropy has a local maximum at m = 0, while the global maximum occurs at some m 6= 0. As one
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would naively expect, the relaxation time τms from themetastablem = 0 state grows exponentially withN: τms ∼ eN∆s [17].
The entropy barrier∆s corresponding to the non-magnetic state is the difference in entropy between that of them = 0 state
and the entropy at the local minimum separating it from the stable equilibrium state. Such exponentially long relaxation
times are expected to occur independently of the nature of the order parameter or of the type of the dynamics (stochastic
or deterministic). This has been found in the past in numerous studies of canonical, Metropolis-type dynamics, of the Ising
model with mean-field interactions [79], in deterministic dynamics of the XY model [80], and in models of gravitational
systems [81,82].

3. Weak long-range interactions

Here we consider systems with weak long-range interactions, with σ > 0. These systems are additive and thus, have
usual properties as for systems with short-range interactions. This is true unless one is close to a phase transition, where,
as mentioned in the Introduction, building up of long-range correlations leads to modification of the thermodynamic
properties. For example, critical exponents near a continuous transition become dependent on the interaction parameter σ .
In this Section, we briefly discuss the upper critical dimension dc(σ ) for these systems above which the critical exponents
assume the Landau or mean-field values. For details, see Ref. [83].
We first discuss the case of short-range interactions. We start with the coarse-grained Landau–Ginzburg effective

Hamiltonian of the system. This Hamiltonian involves only the long-wavelength degrees of freedom, and is obtained by
averaging over the short-wavelength ones. For a given system, one obtains this Hamiltonian phenomenologically from the
symmetry properties of the order parameter involved in the transition. In systems with a single component, Ising-like order
parameter, say, the magnetization, the effective Hamiltonian involves the local coarse-grained magnetizationm(r) defined
at the spatial location r. If the interaction is short-ranged, this Hamiltonian has the form

βH =
∫
ddr

[
1
2
tm2 +

1
4
um4 +

1
2
(∇m)2

]
, (31)

where t and u > 0 are phenomenological parameters, and d is the spatial dimension. Close to the critical temperature Tc ,
the parameter t may be taken to depend on temperature, t ∝ (T−Tc )

Tc
. Considering the model at t > 0, when the equilibrium

state is a paramagnetic one, we first evaluate the fluctuations of the order parameter around its average value, 〈m〉 = 0.
Expressing the effective Hamiltonian in terms of the Fourier modes of the order parameter, m(q) =

∫
ddreiq·rm(r), and

neglecting the fourth-order term in Eq. (31) close to the transition, the Hamiltonian in the thermodynamic limit reduces to
that of a Gaussian model. Thus, one has

βH =
1

2(2π)d

∫
ddq(t + q2)m(q)m(−q). (32)

From this, it follows that the two-point correlation function, 〈m(r)m(r′)〉, is given by

〈m(r)m(r′)〉 =
1

(2π)d

∫
ddq
e−iq·(r−r

′)

t + q2
. (33)

On scaling q by
√
t , the integral in Eq. (33) implies a correlation length ξ = t1/2. At distances much larger than ξ , the

correlation function decays exponentially as e−|r−r
′
|/ξ , with a sub-leading power law correction.

From Eq. (33), integrating over modes with wavelengths bigger than the correlation length ξ , one gets

〈m2(r)〉 =
∫
q<
√
t

ddq
(2π)d

1
t + q2

∝ t
d
2−1. (34)

In the Landau or mean-field theory, one neglects fluctuations of the order parameter. To find the dimensions at which this
assumption is valid, let us first consider the fluctuations of the order parameter about its average below the critical point

(t < 0) by writing m(r) as m(r) = m0 + δm(r), where the average m0 =
√
−
t
u . With this form for m(r), from Eq. (31), it

follows that, to second order in δm(r), the Landau–Ginzburg effective Hamiltonian close to the transition point is given by

βH =
∫
ddr

[
1
2
|t|(δm(r))2 +

1
2
(∇δm(r))2

]
. (35)

We now see that the fluctuations of the order parameter around the average value below but close to the transition obey
a Hamiltonian similar to that for the fluctuations above and close to the transition. It then follows from Eq. (34) that
〈δm2(r)〉 ∝ |t|

d
2−1. For the Landau theory to be self-consistent near the transition, fluctuations of the order parameter

should be negligibly small compared with the average value of the order parameter, 〈δm2(r)〉 � m20, which is true so long
as d is greater than the upper critical dimension dc = 4. In dimensions less than 4, negligible fluctuations of the order
parameter around its average can be achieved only away from the critical point for |t| > |tG|, where tG defines the Ginzburg
temperature interval. This is known as the Ginzburg criterion [84–86].
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Fig. 7. The schematic (d, σ ) phase diagram, showing various regions with different critical behavior. Here LR stands for long-range, while SR stands for
short-range. The system is non-additive with strong long-range interactions for d ≤ σ ≤ 0. For σ > 0, the critical exponents can be either mean-field like,
short-range like or characteristic of the long-range interactions, depending on σ and d. The line separating the LR from the SR behavior is indicated close
to the point d = 2σ = 4, where it has been evaluated using Renormalization Group calculations in d = 2σ − ε dimensions. Note that for the case σ > 2,
no phase transition takes place for d ≤ 1.

Extending this analysis to systems with weak LRI, one finds that the Landau–Ginzburg effective Hamiltonian takes the
form

βH =
∫
ddr

[
1
2
tm2 +

1
4
um4

]
+

∫
ddr ddr′m(r)m(r′)

1
|r− r′|d+σ

, (36)

where the second integral accounts for the contribution from the long-range interaction potential to the energy. Next, we
note that, to leading order in q, the Fourier transform of the long-range potential is of the form a + bqσ , where a and b
are constants (For integral σ , a logarithmic correction is present, e.g., a + bq2 ln q for σ = 2; however, these logarithmic
corrections do not affect the conclusions reached below.). In terms of the Fourier components of the order parameter, the
Landau–Ginzburg effective Hamiltonian close to the transition thus takes the form

βH =
1

2(2π)d

∫
ddq(t̄ + bqσ + q2)m(q)m(−q), (37)

where t̄ = t + a.
To obtain the upper critical dimension, one may now perform an analysis similar to that discussed above for systems

with short-range interactions. For σ > 2, the qσ term in Eq. (37) may be neglected in comparison to the q2 term. One then
recovers the behavior for models with short-range interactions and the upper critical dimension is dc = 4. On the other
hand, for 0 < σ < 2, the dominant term is qσ . The correlation length in this case diverges as ξ ∝ |t̄|−1/σ . The order
parameter fluctuations satisfy

〈(δm(r))2〉 =
∫
q<1/ξ

ddq
(2π)d

1
|t̄| + qσ

∝ |t̄|d/σ−1. (38)

Requiring that the fluctuations are much smaller than the average value of the order parameterm0 =
√
−
t̄
u , one concludes

that the upper critical dimension is dc = 2σ . Thus, in d < 4 dimensions, there exists a critical σ , given by σc(d) = d
2 , such

that, for 0 < σ < σc(d), the critical exponents are mean-field like.This naive approach suggests that, for σc(d) < σ < 2,
the critical exponents are affected by the long-range nature of the interaction and hence, become dependent on σ , see Ref.
[38]. In fact, it has been shown using Renormalization Group in d = 2σ − ε dimensions that the value of σ above which
short-range behavior is recovered is smaller than 2, and depends on the dimension d [87].
These conclusions are schematically shown in Fig. 7, where the associated critical behavior in different regimes are also

indicated.

4. Nonequilibrium steady states and long-range interactions

We now turn to discuss steady states in systems driven out of equilibrium. In these systems, the drive may be provided
either by an external force, such as due to an electric field, or by coupling to external thermostats at different temperatures.
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We consider here systems for which the dynamics is conserving and local. These systems are typically characterized by
long-range correlations which have been shown to lead to phase transitions and long-range order inmany one-dimensional
models. For reviews on steady state properties of driven models, see, for example, Refs. [88–91]. In some models, features
characteristic of strong LRI, such as inequivalence of ensembles, have been observed [92]. In this Section, we discuss
a particular model with local dynamics, called the ABC model, which exhibits spontaneous symmetry breaking in one
dimension and for which such correlations can be explicitly demonstrated [42,43]. Moreover, for particular values of the
parameters defining this model, the steady state becomes an equilibrium state obeying detailed balance. The weights of
configurations in such a state are given by an effective Hamiltonian, which has explicit long-range interacting terms.
The model is defined on a one-dimensional lattice of N sites with periodic boundary conditions. Each site is occupied

by either an A, a B, or a C particle. Configurations evolve by random sequential dynamics as follows: at each time step, two
neighboring sites are chosen randomly and the particles on these sites are exchanged according to the following rules:

BC ←−
1
−→
q

CB

AB ←−
1
−→
q

BA

CA ←−
1
−→
q

AC .

(39)

The rates are cyclic in A, B and C and conserve the total number of particles NA,NB and NC of each type, respectively.
For q = 1, the particles undergo symmetric diffusion. At long times, the system reaches an equilibrium steady state,

which is disordered. However, for q 6= 1, the particle exchange rates are biased, and the system settles into a nonequilibrium
steady state which shows separation of the particle species into three distinct domains in the thermodynamic limit.
To be specific, we take q < 1, although the analysis is easily extended to any q 6= 1. In this case, the bias drives, say, an

A particle to move to the left inside a B domain, and to the right inside a C domain. Therefore, starting with a random initial
configuration, after a relatively short time, the system reaches a configuration of the type . . . AABBCCAAAB . . . in which A, B
and C domains are located to the right of C , A and B domains, respectively. Due to the bias q < 1, the domainwalls . . . AB . . .,
. . . BC . . ., and . . . CA . . ., are stable, and configurations of this type are long-lived. In fact, the domains in these configurations
diffuse into each other and coarsen on a timescale of the order of q−l, where l is the typical domain size. This coarsening
process leads to the growth of the typical domain size as (ln t)/| ln q|. Eventually, the system settles into a phase-separated
state of the form A . . . AB . . . BC . . . C . A finite system does not stay in such a state indefinitely. For example, the A domain
breaks up into smaller domains in a time of order q−min{NB,NC }. In the thermodynamic limit, however, when the density of
each type of particles is non-vanishing, the timescale for the break up of extensive domains diverges and the system remains
in the phase-separated state forever. Generically, the system supports particle currents in the steady state. This can be seen
by considering, say, the A domain in the phase-separated state. The rates at which an A particle traverses a B (C) domain to
the right (left) is of the order of qNB (qNC ), so that the net current is of order qNB − qNC , vanishing exponentially with N . This
implies that, for the special case of equal densities of the three particle species, NA = NB = NC , the current is zero for any
system size.
One finds that, for the special case of equal densities, NA = NB = NC , the dynamics satisfy detailed balance with respect

to a distribution function. The model in this case reaches an equilibrium steady state. It turns out however that, although
the dynamical rules of the model are local, the effective Hamiltonian corresponding to this equilibrium steady state has
long-range interactions, and thus, supports phase separation, consistent with our predictions above.
In order to specify the probability distribution of configurations for equal densities, we define a local occupation variable

{Xi} = {Ai, Bi, Ci}, where Ai, Bi and Ci are equal to one if site i is occupied by an A, a B, or a C particle, respectively, and is zero
otherwise. The probability of finding the system in a configuration {Xi} is given by

WN({Xi}) = Z−1N q
H({Xi}), (40)

where the effective Hamiltonian H is given by

H({Xi}) =
N−1∑
i=1

N∑
k=i+1

(CiBk + AiCk + BiAk)− (N/3)2, (41)

and the normalization or the partition function ZN is given by ZN =
∑
qH({Xi}). In this Hamiltonian, the site i = 1 is arbitrary

and can be chosen as any other site on the ring, since the Hamiltonian does not depend on this choice. The Hamiltonian
involves strong long-range interactions, where the strength of the interaction between two sites is independent of the
separation (thus, σ = −1). Also, the Hamiltonian is non-extensive, with energy scaling as N2. It may be verified that the
dynamics (39) satisfy detailed balance with respect to the probability distribution in Eq. (40), with the Hamiltonian in Eq.
(41) [83].
The ABC model exhibits phase separation and long-range order so long as q 6= 1. The parameter q acts like the

temperature for the case of equal densities, with β = − ln q, as can be seen from Eq. (40). A very interesting limit is that
of infinite temperature, with q → 1. To probe this limit, Clincy and co-workers [93] studied the case q = e−β/N , which
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amounts to either scaling the temperature by N , or, alternatively, scaling the Hamiltonian in Eq. (41) by 1/N , as is done in
the prescription due to Kac (Section 2.1). In this case, themodel shows a phase transition from a homogeneous phase at high
temperatures to a phase-separated one at low temperatures across the critical point βc = 2π

√
3.

In this section, we discussed how, in the ABC model for equal particle densities, the effective Hamiltonian governing the
steady state involves explicitly strong long-range (in fact, mean-field) interacting terms. By continuity, this is expected to
hold even for the case of non-equal densities, although, in such cases, no effective Hamiltonian could be explicitly written.
It remains to explore in more detail steady state properties of driven systems within the framework of systems with long-
range interactions.

5. Conclusions

In this paper, we reviewed the thermodynamic and dynamic properties of systemswith long-range pairwise interactions
(LPI) decaying as 1/rd+σ at large distances r in d dimensions. Systemswith a slow decay of the interactions, termed ‘‘strong’’
LRI, have superextensive energy. These systems are characterized by unusual properties such as inequivalence of ensembles,
negative specific heat, slow decay of correlations, anomalous diffusion and ergodicity breaking. Systemswith faster decay of
the interaction potential, termedweak ‘‘LRI’’, have additive energy, thus resulting in less dramatic effects. These interactions
affect the thermodynamic behavior of systems near phase transitions, where long-range correlations are naturally present.
We also discussed long-range correlations in systems driven out of equilibrium when the dynamics involves conserved
quantities.
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