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Abstract

We perform a detailed study of the relaxation towards equilibrium in the Hamiltonian Mean-
Field model, a prototype for long-range interactions in N -particle dynamics. In particular, we
point out the role played by the in:nity of stationary states of the associated N → ∞ Vlasov
dynamics. In this context, we derive a new general criterion for the stability of any spatially
homogeneous distribution, and compare its analytical predictions with numerical simulations of
the Hamiltonian, :nite N , dynamics. We then propose, and verify numerically, a scenario for
the relaxation process, relying on the Vlasov equation. When starting from a nonstationary or a
Vlasov unstable stationary state, the system shows initially a rapid convergence towards a stable
stationary state of the Vlasov equation via nonstationary states: we characterize numerically this
dynamical instability in the :nite N system by introducing appropriate indicators. This :rst step
of the evolution towards Boltzmann–Gibbs equilibrium is followed by a slow quasi-stationary
process, that proceeds through di5erent stable stationary states of the Vlasov equation. If the
:nite N system is initialized in a Vlasov stable homogeneous state, it remains trapped in a
quasi-stationary state for times that increase with the nontrivial power law N 1:7. Single particle
momentum distributions in such a quasi-stationary regime do not have power-law tails, and hence
cannot be :tted by the q-exponential distributions derived from Tsallis statistics.
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1. Introduction

Relaxation to thermal Boltzmann–Gibbs equilibrium in N -particle Hamiltonian sys-
tems with long-range interactions has been recently the subject of an intense debate [1].
In some cases, the relaxation time has been shown to be extremely long and to increase
with the number of particles. Hence, the study of these out-of-equilibrium conditions
is of paramount importance for physical applications. The dynamics of systems with
long-range interactions shows that some states are attained quickly, on time scales of
O(1), and that afterwards the system evolves very slowly, on time scales diverging
with N , towards Boltzmann–Gibbs equilibrium. We call states that evolve on time
scales that diverge with N “quasi-stationary”. Some of them are characterized by a
particle distribution in the �-space, f(r; p; t) =

∑N
i 
(r − ri(t); p − pi(t)) (with (ri ; pi)

the position and conjugate momentum of the ith particle and 
 the Dirac function),
which remains close to a slowly varying smooth distribution for times that increase
with N .
It should be remarked that most of the numerical evidences of this behavior are for

1D and 2D systems. 2 The theoretical explanation we propose in this paper, which is
developed for mean-:eld models, extends to any dimension, as soon as the two body
interaction is suMciently smooth. Many recent studies of such quasi-stationary states
are performed for the so-called Hamiltonian Mean Field (HMF) model (for a review
see Ref. [3]). This model describes the motion of N rotators under the action of an
attractive or repulsive in:nite range cosine interaction. In this paper we will consider
the attractive case. The model then displays a second-order phase transition, which
is related to the development of a dynamical instability of the spatially homogeneous
initial state with Gaussian distribution of momenta, at a given value of the energy [4].
The analysis developed in this paper is based on a theorem due to Braun and Hepp

[5,6], according to which the dynamics of a classical N -particle system interacting
via a two body and suMciently regular long-range potential is well approximated by
the associated Vlasov dynamics of the density in �-space. In the case in which the
interaction force derives from a two-body smooth potential, Vlasov equation writes

9f
9t + p · ∇rf − ∇rU · ∇pf = 0 : (1)

The mean :eld macroscopic potential U is a functional of the probability distribution
function f(r; p; t), which makes the equation nonlinear in f. More precisely, Braun–
Hepp’s theorem states that, for a mean-:eld microscopic two-body smooth potential, the
distance 3 between two initially close “weak” solutions of the Vlasov equation increases

2 Preliminary indications that it extends to higher dimensions can be found in Ref. [2].
3 The distance is measured in the Wasserstein metric, de:ned on the space of all measures.
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at most exponentially in time. The theorem applies also to singular distributions, e.g.
distributions that have a support on a set of dimension smaller than the one of the
�-space (for instance, a line in the 2D �-space of the HMF model). If we apply this
result to a large N particle approximation of a continuous distribution the error at t=0
is typically of order 1=

√
N , thus for any “small” 
 and any “large enough” particle

number N , there is a time t up to which the dynamics of the original Hamiltonian and
its Vlasov description coincide within an error bounded by 
. The theorem implies that
this time t increases at least as lnN . Extensions to wave particle dynamics of such a
result have also been recently reported [7,8]. Since quasi-stationary states evolve on
time scales that diverge with N , this result suggests that these states might gain their
stability from being “close” to some stable stationary states of the Vlasov dynamics.
Besides the conserved quantities of the Hamiltonian dynamics (energy, momentum,

angular momentum, etc.), the Vlasov description introduces additional integrals: the
so-called Casimirs

Cs[f] =
∫

s(f(r; p; t)) dr dp (2)

where s is a generic function. These conservation laws are responsible for the existence
of an in:nity of stable stationary states for the Vlasov dynamics. In this paper, we will
argue that the existence of this in:nity of stationary states is a possible explanation for
the generic existence of quasi-stationary states in the :nite N -dynamics.
This interpretation rises the following questions. May one predict the quasi-stationary

states that emerge after a complex unstable Vlasov dynamics? Among these station-
ary states, are there some “statistically preferred” states? What governs the relaxation
towards equilibrium of the stationary states, and which is the scaling of the relaxation
time with the number of particles? We will address in this paper the :rst and the third
question, while the issues related to the second question will be only briePy mentioned.
Before the slow relaxation phase sets in, a fast evolution takes place on a time scale

that is independent of N . This phenomenon is denoted as violent relaxation in the
astrophysical context [9], and is a consequence of the nonlinear complex dynamics of
the Vlasov equation. After this very rapid stage, Vlasov dynamics produces thinner and
thinner :lamentations of the density f, which lead to an apparent equilibrium described
by a coarse grained density function Qf. A statistical mechanics interpretation of this
process has been proposed: for instance, for an initial two level density function, the
equilibrium density is of Fermi–Dirac type [9,10]. Even if this may be already a partial
answer to our second question above, we will not address in detail the very delicate
point of the convergence of the Vlasov dynamics towards its statistical equilibrium in
the present paper.
Some authors [11] have advanced a challenging interpretation of the quasi-stationary

states, suggesting that they should be true “equilibrium” states, obtained by maximizing
the Tsallis [12] entropy of the single particle distribution. We think that a landmark
of such an interpretation would be the assessment of the existence of power law tails
in the single particle momentum (or energy) distributions. Although we will not enter
into a detailed :tting of such distributions using Tsallis q-exponentials, we will present
a strong evidence of the absence of power law tails in the single particle momentum
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distribution at any stage of the time evolution, for the whole class of initial conditions
we investigate in this paper, that are all homogeneous in space (see Section 5.3). For
an initial condition in which the particles are concentrated in a point and momentum
is uniform in an interval around zero, the authors of Ref. [11] have been able to :t a
Tsallis q-exponential to the central part of the momentum distribution, after imposing
an arbitrary cut-o5 to the tails. However, these authors do not exhibit any evidence of
existence of power law tails, even for such a special initial state.
Moreover, as mentioned above, our analysis applies also to this initial condition

although it does not correspond to a stationary state of the Vlasov equation. At best,
Tsallis statistics could describe the quasi-stationary states obtained from such a special
initial state, but certainly not all of them, in particular those originated from the large
class of homogeneous states that are studied in this paper.
Moreover, the steadily progressing dynamical evolution observed for our class of

initial conditions does not show any intermediate “statistically preferred” state. As
stated above, the time evolution follows a sequence of stationary Vlasov states until,
asymptotically, Boltzmann–Gibbs equilibrium is attained.
It should be however mentioned that the special initial state studied in [11] is very

interesting from a dynamical point of view, since it shows long-time correlations that
are absent for the homogeneous initial states studied here (see also Ref. [13]). Sim-
ilar initial states produce fractal structures in the �-space for a self-gravitating sheet
model [14].
As discussed above, Braun–Hepp’s theorem suggests that the similarity between

Hamiltonian N -particle dynamics and Vlasov dynamics persists for times that increase
as lnN . These times are linked with the fastest possible instability of the Vlasov
dynamics. For stable solutions, the appropriate timescale is, however, the one as-
sociated with the Puctuations of the mean :eld. In agreement with this theoretical
remark, we present in Section 5.3 numerical results that indicate that the persistence
of quasi-stationary states is present up to times that are much longer than Braun–
Hepp’s lnN . This time scale increases as a power law in N with a nontrivial expo-
nent. Similar time scales have been found in gravitational systems. This is the case
of Chandrasekhar’s “collisional” time scale, which is of order N=lnN [15]. Although
such a time scale is similar to those we :nd in the HMF model, because it signals the
:nal process of relaxation to Boltzmann–Gibbs equilibrium, its origin in our model is
certainly di5erent.
In order to reformulate the timescale hierarchy sketched above, we can expect the

following scenario:

(1) An initial and fast evolution, well described for all initial conditions by the Vlasov
dynamics, takes place on a timescale independent of the particle number N .

(2) The system is then always trapped close to one of the numerous stable stationary
states of the Vlasov equation. This state may be the statistical equilibrium of the
Vlasov equation (the most probable state with constraints given by the Vlasov
invariants).

(3) The system slowly evolves, on a much longer time scale, due to “collisions”, or
due to the Puctuations around this Vlasov stationary state. Consequently this time
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scale will be a function of N . One can expect that this slow evolution takes place
passing through di5erent stable Vlasov stationary states.

(4) Finally, the system reaches a particular Vlasov stable state, corresponding to the
Boltzmann–Gibbs equilibrium state.

We will try to give support to this scenario in the remaining of the paper. The plan is
the following. We :rst introduce in Section 2 the Hamiltonian Mean Field model. We
will then show in Section 3 that the Vlasov dynamics has an in:nity of stationary states
and we propose a new general stability criterion for any homogeneous distribution (in-
cluding non-Boltzmann–Gibbs ones). We will compare these analytical results with
numerical simulations of the :nite-N Hamiltonian dynamics. The rapid convergence
towards a stable stationary state of the Vlasov equation is described in Section 4. In the
case of unstable stationary states, we will show that the exponential destabilization may
be investigated taking advantage of the existence of unstable modes of the Vlasov dy-
namics, in accordance with Braun–Hepp’s theorem. The slow evolution towards equilib-
rium, passing through di5erent stable Vlasov stationary states, is described in Section 5.

2. The Hamiltonian Mean Field model

We will consider the HMF model, whose Hamiltonian is

HN =
1
2

N∑
j=1

p2j +
1
2N

N∑
j; k=1

[1− cos(�j − �k)] ; (3)

where �i ∈ [ − �; �[ is the position (angle) of the ith particle on a circle and pi the
corresponding momentum. This system can be seen as representing particles mov-
ing on a unit circle interacting via an in:nite range attractive cosine potential, or as
classical XY-rotators with in:nite range ferromagnetic couplings [3]. The magnetiza-
tion, de:ned as

→
M (t) = (Mx;My) =

1
N

N∑
j=1

(cos �j; sin �j) ; (4)

or more precisely its modulus, M (t) = ‖→
M (t)‖6 1, is the main observable that char-

acterizes the dynamical and thermodynamical state of the system.
Its introduction allows to write the canonical equations of motion as follows:

d�j

dt
= pj ;

dpj

dt
=−Mx sin �j +My cos �j : (5)

Equilibrium statistical mechanics can be derived exactly both in the canonical and
in the microcanonical ensembles [16–18]. In the ferromagnetic case, that we
consider here, a minimal free energy (maximum entropy) state with a nonvanishing
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magnetization appears when lowering temperature T (resp. energy per particle) below
Tc = 1

2 (resp. Uc = 3
4). A discontinuity at Tc(Uc) in the second derivative of the free

energy (entropy) with respect to magnetization signals a second-order phase transition.
This transition is between a low-energy phase with particles forming a cluster (rotators
pointing towards a preferred direction), and a high-energy phase with particles evenly
distributed on the circle (no preferred direction for rotators).
This theoretical result, valid in the N → ∞ limit, is also con:rmed by direct

numerical simulations of the equations of motion (5), which moreover allow a careful
analysis of :nite N corrections and give access to the study of nonequilibrium features.
It is in this context that, within the energy range U ∈ [0:5; Uc], a class of initial states
has been found that displays an extremely slow relaxation towards Boltzmann–Gibbs
equilibrium [11,16,19–22], with a relaxation time that increases with N . Similar phe-
nomena occur for other particle systems with long-range interaction (self-gravitating
stars or point vortices [10]). Indeed, in the context of 2D Puid-dynamics [23,24] and
plasma physics [24], the existence of an in:nity of stationary states is known since a
long time.
These slow relaxation processes have recently attracted considerable attention, since

the HMF model can be considered as a simple paradigmatic model of long-range
interactions, without the two additional diMculties of gravitational dynamics: singularity
at short range and particle evaporation. As briePy recalled in the Introduction, Latora
et al. [11] have carefully analyzed an initial condition where all particles are located
at the same position on the circle (giving initially M =1) and momentum is uniformly
distributed over a :nite range, symmetrically around zero. The system shows a fast
relaxation towards a small magnetization state which persists for an extremely long
time, that increases with N . The authors compare the momentum distribution of such
a quasi-stationary state with Tsallis distributions, obtaining some convincing :t of the
central part of the distribution only after they impose a cut-o5 to momentum tails.
Montemurro and Zanette [25], analyzing the same initial condition, have even criticized
the existence of a small magnetization plateau in time, by presenting some numerical
evidence that magnetization :rst evolves towards a minimum, and then take o5 again
towards the higher equilibrium value. We will avoid this controversial point by using
the de:nition of quasi-stationary state given in the Introduction, i.e., we shall call
quasi-stationary a state which still evolves, but on a time scale that diverges with N .
Hence, macroscopic properties are well de:ned over a suMciently wide time span to
allow local running time averages, even though the system slowly and continuously
evolves towards equilibrium.
At variance with most previous numerical experiments [11,25], we choose here an

initial state where the particles are uniformly distributed on the circle (hence M is
initially close to zero, M =O(1=

√
N )) and momentum has a uniform distribution cen-

tered around zero, as above. We make this choice for two reasons: (i) this state is a
stationary state of the Vlasov equation, that describes the HMF model in the N → ∞
limit, (ii) the M = 0 state plays a relevant role also in the previous numerical exper-
iments [11,25] and we then thought that it is better to start directly from it. Finally,
we think that the analysis of the M = 0 initial state can also clarify several aspects of
the phenomenology of the M = 1 initial state used by the authors above.
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As explained in the Introduction, we believe that the Vlasov description is a useful
and appropriate tool to understand the slow relaxation process. In the following section,
we introduce and discuss the Vlasov equation for the HMF model.

3. The Vlasov dynamics of the HMF model

3.1. Introduction

In the continuum limit, that is keeping the volume (here the interval [−�; �[) and the
energy per particle :xed as the number of particles N → ∞, the dynamics governed
by Eqs. (5) is described by the Vlasov equation. The state of the :nite N system can
be described by a single particle time-dependent density function:

fd(�; p; t) =
1
N

N∑
j=1


(� − �j(t); p − pj(t)) ; (6)

where 
 is the Dirac function. When N is large, it is natural to approximate the discrete
density fd by a continuous one f(�; p; t). Using this density, also called �-space
distribution, it is possible to rewrite the two components of the magnetization M given
by Eq. (4). They read

QMx[f] ≡
∫

f(�; p; t) cos � d� dp ; (7)

QMy[f] ≡
∫

f(�; p; t) sin � d� dp : (8)

Within this approximation, one can write the potential that a5ects all the particles as

V (�)[f] = 1− QMx[f] cos � − QMy[f] sin � : (9)

This potential enters the expression of the Vlasov equation

9f
9t + p

9f
9� − dV

d�
[f]

9f
9p = 0 ; (10)

which governs the spatiotemporal evolution of the density f. In the remaining of the
paper, we will omit the over-bar on Mx and My for the sake of simplicity.
It is important to note that the discrete distribution fd, a sum of Dirac peaks, contains

exactly the true dynamics of the system and is also a solution of the Vlasov equation
(10). Then, introducing a suitably de:ned distance on the space of probability measures
on [− �; �[× R, it is possible to show [5–7] that the distance between two solutions
f1 and f2 of Eq. (10) grows at most exponentially in time

d(f1(t); f2(t))6d(f1(0); f2(0))e�t (11)

with a growth rate � which is independent of the initial conditions. This result, which
is the essence of Braun–Hepp’s theorem, heavily relies on the mean :eld character of
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the underlying Hamiltonian dynamics and on the genericity of exponential instability of
trajectories. Choosing then f1(�; p; t)=fd(�; p; t) and taking for f2(�; p; t) a continuous
approximation of fd, one immediately obtains that d(f1(0); f2(0)) → 0 as N grows. As
a consequence, the previous result implies that the discrete particle dynamics converges
to Vlasov dynamics when N → ∞, uniformly over all :xed time intervals [0; T ].
However, for all :xed N there is a typical time � ∼ �−1 over which the two dynamics
diverge.
From this analysis, it is therefore natural to expect that particle and Vlasov dynamics

coincide during a time that diverges as lnN , if d(fd(0); f(0)) ∼ 1=N and � is indepen-
dent of N . However, for initial conditions corresponding to stable stationary solutions
of the Vlasov equation, this time may be much longer, actually of order N [26].
All this explains why the properties of the Vlasov equation are of particular interest

for the study of the particle dynamics. In the next subsection, we will study the Vlasov
dynamics of the HMF model and its stationary states, with the aim of getting useful
insights on particle dynamics.

3.2. The Vlasov dynamics and its stationary states

The Vlasov equation inherits from the particle dynamics the conservation of the
energy HV

HV [f] =
∫

p2

2
f(�; p; t) d� dp+

1
2

− M 2
x +M 2

y

2
(12)

and of the total momentum

P[f] =
∫

pf(�; p; t) d� dp : (13)

However, the Casimir’s functionals (2), de:ned for any continuous function s, yield
an in:nity of additional conserved quantities, linked with the labeling symmetry when
following a Puid particle in the �-space. These new conserved quantities play of course
a major role in the dynamics of the Vlasov equation and thus of particle dynamics.
For a nonstationary initial distribution, the dynamics of the Vlasov equation is known

to give rise to a very complex nonlinear evolution, characterized by stretching and fold-
ing of the initial distribution, the details of this evolution being usually unpredictable.
However, one may predict the :nal evolution using statistical mechanics arguments,
in the spirit of the statistical mechanics of 2D conservative Pows [27,28] or of the
Vlasov–Poisson equation [29,30]. One ends up with the most probable coarse-grained
distribution Qf, which takes into account the dynamical invariants. Unfortunately, the
dynamical mixing of the distribution is likely to be incomplete: the reason lies in the
existence of in:nitely many stable stationary solutions of the Vlasov equation, in the
neighborhood of which the system may be trapped. Therefore, under Vlasov dynamics
an initial state quickly converges (weak convergence) to a stable stationary state which
should be studied in detail.
Equations (7) and (8) show that the magnetization

→
M is constant for a stationary

solution f(�; p). This implies that the potential V is constant. The equation for the
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stationary states of the Vlasov equation may thus be considered as a linear :rst-order
partial di5erential equation. Solutions are then given by densities f that are constant
on the characteristics of the equation, corresponding to the level sets of the individual
particle energy

e(�; p) =
p2

2
+ V (�) =

p2

2
− Mx cos � − My sin � ; (14)

which corresponds to the energy of a pendulum. It is important to observe that
the total energy HV given by Eq. (12), is di5erent from the sum of the individual
energies (14).
Smooth stationary solutions of the Vlasov equation are thus given by

f(�; p) = !(e(�; p)) ; (15)

where ! is any real function. Moreover, the values of Mx, My and the function ! must
be self-consistent. The Boltzmann–Gibbs equilibrium density

feq(�; p) = A exp(−#e(�; p)) (16)

is a particular case, although very important. One may also prove that stationary states
of the Vlasov equation in a moving frame with constant velocity v are given by
f(�; p) = !(e(�; p) + vp).
Let us note that the function ! may be multi-valued for individual energies e greater

than the energy of the separatrix (one branch for particles with positive momentum
and the other for negative momenta). We will assume that this does not happen in
the remaining of the paper, for the sake of simplicity (a generalization would be
straightforward).

3.3. Stability of stationary states of the Vlasov equation

As discussed above, the stationary states of the Vlasov equation are not true station-
ary states of the particle dynamics. If the former are stable, however, they may explain
the long lifetime of quasi-stationary states in the particle dynamics. Linear stability
results for the stationary states of the Vlasov equation have been already reported in
the case of spatially homogeneous distributions for both Gaussian [4] and water bag
[16] momentum distributions. In this section, we will show that it is possible to derive
stability results for arbitrary spatially homogeneous stationary states, using a method
developed in the context of two 2D Puid dynamics and in plasma physics [24], based
on original ideas introduced by Arnold [23].
The authors of Ref. [24] actually study nonlinear stability, a concept that we would

like to briePy distinguish from other stability concepts. For a generic dynamical system,
any extremum f0 of a conserved quantity F[f] is a stationary point of the dynamics.
It is said to be formally stable if the second variations V2F[
f1; 
f2] of F is positive
de:nite (f0 is then a minimum) or negative de:nite (f0 is then a maximum). In the case
of the linearized dynamics around a formally stable point f0, as the second variations
of F at f0 are conserved, a small perturbation of f0 remains bounded in the norm
provided by the second variations: this state is linearly stable. Since this implies that
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the spectrum of the linearized dynamics does not have any negative value, the sys-
tem is also spectrally stable. It is however not true in general that spectral stability
implies linear stability, and that linear stability implies formal stability. Finally, non-
linear stability corresponds to the case where a small perturbation, evolving according
to the real dynamics, remains bounded in some norm. It can be shown that nonlinear
stability implies spectral stability, the converse being wrong in general, whereas formal
stability implies nonlinear stability only in :nite dimensional systems.
In this section we prove that any stationary state of the Vlasov equation, de:ned by

Eq. (15) with ! strictly decreasing, corresponds to a critical point of some invariant
functional. Computing the second variations of this functional, we can therefore exhibit
a necessary and suDcient condition of formal stability for such a stationary state.
Let us consider the maximum of the functional

F[f] = Cs[f]− #HV [f]− �
∫

f(�; p; t) d� dp ; (17)

where HV is energy (12), Cs is a Casimir functional (2) corresponding to a strictly
concave function s and # is positive. Performing the :rst variations of this functional,
we obtain the equation

s′(f0) = #
(
p2

2
−
∫
cos (� − &)f0(&; p; t) d& dp

)
+ � = #e(�; p) + � ; (18)

which de:nes the critical points f0. This yields

f0(�; p) ='(#e(�; p) + �)

with e given by (14) and ' the inverse function of s′, the derivative of s. The condition
that s is strictly concave is equivalent to the fact that ' is strictly decreasing.
The computation of the second variation of F gives

V2F[
f; 
f] =
∫

s′′(f0(�; p))[
f(�; p)]2 d� dp

+ #((Mx[
f])2 + (My[
f])2) ; (19)

where Mx and My are given by Eqs. (7) and (8). As s is strictly concave, s′′ is
negative. The :rst term of V2F[
f; 
f] is thus clearly negative whereas the second
one is positive. We will consider now only homogeneous states, corresponding to
Mx =My = 0 and f0(�; p) = f0(p) ='(#p2=2 + �).
Let us introduce the Fourier series of the perturbation


f(�; p; t) =
∑
n

cn(p; t) cos n�+ sn(p; t) sin n� : (20)

From Eq. (19), after integration on the spatial variable �, one obtains the second
variations

V2F[
f; 
f] =
∫

s′′(f0(p))
∑
n¿1

(c2n(p) + s2n(p)) dp

+2G(c1(p)) + 2G(s1(p)) ; (21)
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where we have introduced

G(c(p)) ≡
∫

s′′(f0(p))c2(p) dp+
#
2

(∫
c(p) dp

)2
: (22)

The terms involving cn and sn, n¿ 1, in Eq. (21), are clearly negative de:nite, since
s′′ is strictly negative. Consequently, the second variations of F are negative de:nite
if and only if G is negative de:nite.
The sign of the G function can be studied using the Cauchy–Schwartz inequality:

(∫
c(p) dp

)2
=

(∫
c(p)

√−s′′(f0(p))√−s′′(f0(p))
dp

)2
(23)

6
(∫

s′′(f0(p))c2(p) dp
)(∫

dp
s′′(f0(p))

)
: (24)

This inequality leads therefore to

G(c(p))6
∫

s′′(f0(p))c2(p) dp
(
1 +

#
2

(∫
1

s′′(f0(p))
dp
))

: (25)

Recalling that s′′ is strictly negative, we conclude that if the quantity

1 +
#
2

∫
dp

s′′(f0(p))
(26)

is positive, the function G is negative. Conversely, when it is negative, considering the
particular function c(p) =−1=s′′(f0(p)) demonstrates that G may be positive.
Di5erentiating with respect to the variable p the equality

s′(f0(p)) = #
p2

2
+ � (27)

obtained from Eq. (18) in the case of homogeneous states, yields

#
s′′(f0(p))

=
f′
0(p)
p

: (28)

As f′
0(0) = 0, quantity (26) can be written as

I [f0] = 1 +
1
2

∫ +∞

−∞

f′
0(p)
p

dp : (29)

This leads to the following equivalence:

f0 is formally stable ⇔ I [f0]¿ 0 : (30)

This condition will be of course an excellent criterion to predict the stability of several
initial conditions, and therefore the lifetime of the corresponding quasi-stationary states.
This is what we will consider now.
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Let us note that Inagaki and Konishi [31] have found a dispersion relation for the
linearized Vlasov equation which leads to the above stability criterion. Hence, in this
particular case, linear stability and formal stability criteria coincide.

3.4. Applications of the nonlinear stability criteria

Waterbag distribution: One of the most widely used initial condition in previous
numerical studies of the HMF model is the so-called waterbag distribution:

fwb(p) =

{
0 if |p|¿ Qp ;

1=(2 Qp) if − Qp¡p¡ Qp :
(31)

If Mx =My = 0 (homogeneous state), the relation between energy HV = U and Qp is
Qp=

√
6U − 3. Computing the :rst derivative of fwb

f′
wb(p) =

1
2 Qp

[
(p+ Qp)− 
(p − Qp)] ; (32)

one obtains the following expression:

I [fwb] = 1− 1
2
1
Qp2

; (33)

exhibiting that the critical width of the distribution, above which the waterbag is for-
mally unstable, is Qpc = 1=

√
2. This corresponds to the critical energy density

U ∗
c =

7
12 (34)

as reported earlier [16].
Gaussian distribution: As a second example, let us consider a Gaussian distribution:

fg(p) =

√
#
2�
e−#p2=2 (35)

characteristic of an equilibrium canonical distribution. In this case, the quantity in
Eq. (29) can be easily reduced to

I [fg] = 1− #
2

(36)

emphasizing that the critical inverse temperature is #∗
c =2 and consequently the critical

energy density U ∗
c =

3
4 . This coincides with the critical point of the second-order phase

transition Uc.
Mixed distribution: Finally, let us consider a more general distribution, namely a

mixed distribution between fwb and fg, de:ned as

fa(p) = (1− a)fwb(p) + afg(p) : (37)

Thanks to the linearity of quantity (29) with respect to the distribution, the critical
energy density for this mixed distribution fa is obtained as a linear combination of
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both previous results:

U ∗
c (a) =

7
12
(1− a) +

3
4
a=

7
12
+

a
6

: (38)

Such a result allows to de:ne a phase diagram of the dynamical critical energy that
we will be able to con:rm using numerical simulations. We aim in the following at
showing how these considerations about the Vlasov equation and its stationary states are
useful to understand the dynamics of the discrete particle system. We begin in Section 4
by studying the short time evolution, and turn in Section 5 to the intermediate and long
time behavior.

4. Short time behavior

4.1. The numerical setup

We have numerically integrated the canonical equations of motion (5), by using
symplectic fourth-order integrators, the McLachlan–Atela’s [32] or Yoshida’s [33]
algorithms. The timestep dt = 0:1 was chosen to obtain an energy conservation with a
relative accuracy |VE=E| better than 10−7. We will consider initial conditions with
uniform distribution with respect to � as explained in Section 3.3. The magneti-
zation being consequently zero, these states are stationary solutions of the Vlasov
equation (10).
However, the numerical calculations correspond to simulations with a Fnite number

of degrees of freedom, and these initial states are not anymore stationary a priori. The
spatial coordinates �j are randomly chosen in the interval [ − �; �[, which leads to
a magnetization of order 1=

√
N initially. The momenta pj are also randomly chosen

from the given distribution f(p) satisfying the conditions for the energy:

1
N

N∑
j=1

p2j
2
= U − 1

2
; (39)

whereas the conserved total momentum is set to zero:
N∑

j=1

pj = 0 : (40)

We will present how the numerical results allow us to detect the critical energy for
dynamical instability, using :rst the most widely used initial conditions, the waterbag
distribution, and then the mixed ones.

4.2. Waterbag initial distributions

4.2.1. The Frst peak of the magnetization
Figure 1 presents the initial temporal evolution of the magnetization M (t) for di5er-

ent values of the energy density, but with the same number of particles, for a system
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Fig. 1. Temporal evolution of M (t) for di5erent values of the energy density U , when the number of particles
is N = 103. The values of U are from 0.50 to 0.78 with 0.04 step size. The curves correspond to averages
over 100 samples.

initialized with a waterbag distribution in momentum and a homogeneous one for the
angles (M is close to zero since initially M =O(1=

√
N )). Averages over a set of ini-

tial conditions (samples) are taken. These results (already partially reported elsewhere
[34]) show that the initial time evolution of the magnetization, starting from such a
nonequilibrium initial condition, is quite di5erent, depending on whether U is larger or
smaller than U ∗

c ≈ 0:583. If U ¿U ∗
c , but still below the second-order phase transition

energy Uc, the magnetization remains close to the M=0 initial value and does not show
any tendency towards the nonvanishing equilibrium value (the long time relaxation to
equilibrium will be discussed in Section 5.3). For U ¡U ∗

c , instead, the magnetiza-
tion shows a fast relaxation to a non vanishing value which is close to equilibrium.
Relaxation proceeds through repeated oscillations that damp after a relatively short
time. In order to characterize quantitatively this behavior, let us focus on the :rst peak
of M (t), by studying its height and its time of occurrence as a function of the energy
density U , as presented in Figure 2 for increasing particle numbers.
Figure 2(a) emphasizes that the :rst peak height vanishes in the energy region

above U ∗
c as N increases, in agreement with the theoretical predictions of the Vlasov

equation, which imply that the M =0 state becomes stable in this energy range in the
continuum (N → ∞) limit. The initial Puctuations of the magnetization, which are of
order 1=

√
N , do not grow when U ¿U ∗

c , because the waterbag state is Vlasov stable.
On the contrary, these Puctuations rapidly grow for U ¡U ∗

c , leading in a short time
to a nonvanishing magnetization state which is close to equilibrium.
Similar indications come from the :rst peak time, shown in Fig. 2(b). For U ¿U ∗

c
this quantity clearly shows a convergence to an asymptotic value as N increases, but
this value sharply increases as one approaches U ∗

c from above, signaling the instability
of the M = 0 initial state. The behavior below U ∗

c is less clear since the :rst peak
time does not yet show the saturation expected on the basis of the Vlasov equation for
the values of N considered here. This might perhaps be due to the limited validity in
time of the Vlasov description when starting from an initially unstable state. We will
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Fig. 2. The :rst peak height (a) and the :rst peak time (b) vs. energy density U . The curves correspond to
di5erent particle numbers N =102; 103; 104 and 105 from top to bottom for U ¿U∗

c for panel (a) and from
bottom to top for U ¡U∗

c for panel (b), keeping in mind that every curve is obtained averaging over 100
(resp. 20) samples for N 6 104 (resp. N = 105). The vertical line represents the theoretical critical energy
density U∗

c , given by Eq. (34).

however show in the next section that at least the early exponential instability is well
reproduced.
Both quantities, the :rst peak height and the :rst peak time, are therefore useful

indicators of the presence of a dynamical critical energy U ∗
c , as predicted theoretically

in the continuum limit. To summarize, we could say that on a O(1) time scale, and
when starting from such a waterbag initial state, one would observe the instability of
the M = 0 state at U ∗

c instead of Uc, the phase transition energy.
Before extending these :ndings to other types of initial distributions in Section 4.3,

we will :rst show in the next section that the predictions of the Vlasov equation are
suMciently precise to give the growth rate of the instability.

4.2.2. Theoretical estimate of the growth rate
As shown in Fig. 2(b), a typical time scale of the system (the one of the :rst

peak in magnetization) shows a tendency to diverge at U ∗
c . We show in this sec-

tion that Vlasov equation not only predicts this divergence, but is also quantitative in
determining the time scale of the initial exponential instability of the magnetization for
U ¡U ∗

c .
Let us therefore de:ne the exponential growth rate 2 of an initial perturbation


f(�; p; 0) of a Vlasov stationary unstable state as follows:

‖
f(�; p; t)‖ ∼ exp(2t) ‖
f(�; p; 0)‖ : (41)

The perturbation we consider is around a homogeneous state, whose density function f
depends only on the variable p. However, the perturbation 
f depends on all variables
(�; p; t).
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The linearized equation that governs the time evolution of the perturbation 
f, for
vanishing magnetization, is

9
f
9t + p

9
f
9� − (sin �Mx[
f]− cos �My[
f])

9f
9p = 0 : (42)

Using the development in Fourier series of the perturbation 
f given in Eq. (20), we
obtain the following equations for each Fourier component:

9cn
9t =−npsn ∀n¿ 1 ; (43)

9sn
9t = npcn ∀n¿ 1 ; (44)

9c1
9t =−ps1 − 1

4
9f
9p

∫
du s1(u; t) ; (45)

9s1
9t = pc1 +

1
4
9f
9p

∫
du c1(u; t) : (46)

One can easily show that the Fourier components with n¿ 1 cannot be unstable.
Indeed, by introducing the quantity vn = cn + isn, it is straightforward to show that its
time derivative is v′

n = ipnvn. Hence, the generalized eigenvalues are all pure imagi-
nary numbers, inp (with p∈R), and the corresponding eigenvectors are Dirac delta
functions.
Let us then concentrate on the n=1 components for waterbag initial conditions. Using

expressions (32) for the derivative with respect to p of distribution (31),
Eqs. (45) and (46) become

9c1
9t =−ps1 − 1

8 Qp
[
(p+ Qp)− 
(p − Qp)]

∫
du s1(u; t) ; (47)

9s1
9t = pc1 +

1
8 Qp

[
(p+ Qp)− 
(p − Qp)]
∫
du c1(u; t) : (48)

To solve this in:nite dimensional eigenvalue problem, we restrict to functions c1 and
s1 that are linear combinations of 
(p+ Qp) and 
(p − Qp). This yields a 4D problem,
whose eigenvalues can be calculated explicitly as functions of Qp, and therefore as
functions of the energy per particle U .
One :nds that above U ∗

c =
7
12 all eigenvalues are pure imaginary, indicating that the

Vlasov equation is linearly stable for such perturbations, in full agreement with the
stability analysis developed in Section 3.4. Below U ∗

c , the largest eigenvalue 2 that
controls the growth rate is

2=
√
6(U ∗

c − U ) : (49)

The exponential growth of perturbations of the initial distribution implies an exponen-
tial growth of magnetization M (t). This is indeed con:rmed in Fig. 3(a) where the
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Fig. 3. (a) Semi-log plot of the magnetization M (t) for N = 105 particles, the number of samples being
20. The values of U are from 0.50 to 0.60 from top to bottom with 0.02 step size. The exponential growth
rates of M (t), 2, are estimated from the :tting solid lines. (b) Comparison of the theoretical (solid curve)
and numerical (crosses) growth rate 2.

magnetization is plotted versus time in semi-logarithmic scale. The comparison of the
theoretical estimate (49) of the growth rate with the numerical results, reported in
Fig. 3(b), shows a very good agreement. Moreover, the time scale 1=2 diverges
at U ∗

c .

4.3. Extended initial distribution

We present in this section the numerical results for the mixed distributions in formula
(37) using the indicators introduced in Section 4.2.1.
The :rst peak height, shown in Fig. 4, shows a dependence on U which is perfectly

consistent with the theoretical prediction of the existence of a critical energy density
U ∗

c (a), given in formula (38), above which the M = 0 state is stable.
However, the numerical results emphasize that the transition is much less abrupt for

nonvanishing values of the parameter a than for a = 0 (the waterbag case previously
analyzed). The explanation of this e5ect is possibly twofold. On one hand, the stability
criterion derived in Section 3.3 gives no information on the time evolution that begins
from an unstable initial state: it may well be that the system evolves initially to states
with smaller magnetization than for a = 0. On the other hand, this weaker instability
below U ∗

c may be also due to the linear vanishing of the growth rate at U
∗
c character-

istic of the Gaussian initial distribution [4], instead of the sharper square root behavior
of the waterbag initial distribution, as expressed by Eq. (49).
The :rst peak time data, presented in Fig. 5 as a function of the energy density

U , do not follow sometimes a smooth curve. This may be due to the fact that mag-
netization M (t) is almost Pat in the region U ∼ U ∗

c , and hence the :rst peak time
is strongly a5ected by slight variations in the shape of the function M (t). Neverthe-
less, the behavior of the :rst peak time is qualitatively the same as the one shown in
Fig. 2(b) for a= 0. The same comments made there apply also to this case.
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Fig. 4. The :rst peak heights vs. the energy density U for waterbag (panel (a)), mixed with a= 0:5 (panel
(b)) and Gaussian (panel (c)) initial conditions. The vertical line represents the theoretical critical energy
density U∗

c (a), given by Eq. (38). The di5erent curves correspond to the following values of N : 102, 103,
104 and 105 from top to bottom for U ¿U∗

c (a).

We have shown in this section that the formal stability criterion of Vlasov stationary
states, stated in Section 3.3, allows to characterize the short time (O(1) time scale)
behavior of the :nite N dynamics of the HMF model in the N → ∞ limit. In particular,
it describes the behavior of the magnetization as a function of the energy per particle
U and the presence of several di5erent instability thresholds depending on the detailed
properties of the chosen initial distribution. The critical energy for the instability of the
Gaussian distribution coincides with the thermodynamical phase transition point Uc, as
already remarked by Inagaki [4]. Moreover, the linear stability analysis of the Vlasov
equation gives results for the growth rates of the instability that are perfectly con:rmed
by numerical simulations. Several aspects remain to be ascertained. An important one
concerns the intermediate and long time evolution of an initial Vlasov unstable state.
In the following section, after introducing suitable indicators of stationarity, we will
follow the time evolution of such states for the HMF model. A further important
question is the ultimate fate of Vlasov stable M =0 states for the :nite N dynamics of
the HMF model. In the next section, we will show that these states display indeed a
much slower “instability”, that becomes evident on a time scale that increases with a
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c (a).

nontrivial power law in N . These are examples of the quasi-stationary states that are
the main object of study of this paper.

5. Intermediate and long time behaviors

This section is devoted to the study of the intermediate and long time evolution of
both initially unstable and stable Vlasov stationary states. As discussed in the previous
section, the initial evolution is well described by Vlasov dynamics. Unstable states
quickly evolve (on times of order 1), until they approach, and are trapped, close
to stationary states of the Vlasov equation. The system then evolves slowly through
these stationary states, until it reaches Boltzmann–Gibbs statistical equilibrium. In this
section, we will construct indicators to assess if a N particle state is close to a stationary
state (necessary conditions). Using these indicators, we will show that in all cases,
during the relaxation towards equilibrium, the system always remains close to Vlasov
stationary states.
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5.1. Necessary conditions of stationarity

In order to check these features, we need to introduce necessary conditions for sta-
tionarity, and to perform numerical tests of nonstationarity for the HMF model. The
tests guarantee nonstationarity only, they do not guarantee stationarity. In order to
obtain supporting evidences of stationarity, we introduce several indicators of nonsta-
tionarity and observe whether all of them fail. We take this fact as a good indication
of stationarity.

5.1.1. Energy distribution
If fst(�; p) is stationary, so will be the single particle energy distribution, fe(e).

This implies the stationarity of its moments

〈ej〉=
∫ ∞

0
ejfe(e) de with j ∈N : (50)

The logical implications

f(�; p; t) stationary ⇒ fe(e; t) stationary ⇒ 〈ej〉(t) stationary (51)

guarantees that the stationarity of the energy moments is a necessary condition for the
stationarity of the distribution f(�; p; t).
In other words, the system is not stationary if at least one of the moments 〈ej〉(t) is

not. The computation of the time derivatives d〈ej〉=dt for the :rst four moments will
be our Test I for nonstationarity.

5.1.2. Symmetry with respect to the spatial variable �
The previous necessary condition (51) is valid for all Hamiltonian models. It is

possible to derive, using symmetry arguments, another necessary condition which is
speci:c of the HMF model. Indeed, using the individual particle energy (14), the
Vlasov equation (10) for a stationary distribution can be written as[

9e
9p

9
9� − 9e

9�
9
9p

]
fst(�; p) = 0 : (52)

The solution of Eq. (52) is constant on the characteristic curves e(�; p) = constant.

Moreover, if one always resets to zero the phase of the magnetization vector
→
M (t) (i.e.,

My(t) = 0), all characteristic curves will be symmetric with respect to a sign reversal

of �. Hence, if f is stationary and the previous condition on the phase of
→
M (t) is

respected, then the stationary distribution obeys the following symmetry condition:

fst(�; p) = fst(−�; p) ∀p : (53)

Consequently, an asymmetry of the distribution f(�; p; t) with respect to the spatial
variable �, implies that the system is nonstationary.
It is important to note that the symmetry with respect to sign changes in momentum

p, f(�; p; t) = f(�;−p; t), is not a necessary consequence of the stationarity of f.
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Two separate characteristic curves for e¿es, where es is energy of the separatrix,
may correspond to di5erent values of f since they are not connected. This symmetry
is therefore not required even if the system is stationary. A violation of this symmetry
is not therefore an acceptable test of nonstationarity.
Obtaining the distribution f(�; p; t) numerically is, however, not easy since it is

de:ned on the 2D �-space at all :xed times t, and therefore a huge number of samples
would be necessary to obtain a good statistics. A trick to easily check asymmetries
in f(�; p; t) would be to verify the associated symmetry of the marginal distribution
function

f̃(�; t) =
∫

f(�; p; t) dp : (54)

However, unfortunately, f̃(�; t) may be symmetric even if symmetry (53) is not satis-
:ed. Typical examples of asymmetric distributions f(�; p; t) and corresponding sym-
metric marginal distributions f̃(�; t) are shown in Figs. 6(a) and (c), respectively. In
order to recognize the asymmetry of f(�; p; t) with respect to �, one must consider
partially integrated distributions:

f̃+(�; t) =
∫
p¿0

f(�; p; t) dp and f̃−(�; t) =
∫
p¡0

f(�; p; t) dp : (55)

These latter distributions, besides being symmetric if the system is stationary, are
able to correctly detect the asymmetries of 2D distributions in (�; p), as shown in
Figs. 6(a) and (c).
We quantitatively observe the time evolution of the asymmetry by introducing the

two following quantities:

A+(t) =
∫
[f̃+(�; t)− f̃+(−�; t)]2 d�

=
∫
d�
[∫

p¿0
dp(f(�; p; t)− f(−�; p; t))

]2
;

A−(t) =
∫
[f̃−(�; t)− f̃−(−�; t)]2 d�

=
∫
d�
[∫

p¡0
dp(f(�; p; t)− f(−�; p; t))

]2
: (56)

Both A+ and A− exactly vanish when the distribution is symmetric, but they are a5ected
by numerical errors and :nite N e5ects when estimated from numerical simulations.
In order to reduce such e5ects, we :rst de:ne the quantity

A(t) =
∫
d�
[∫

dp(f(�; p; t)− f(−�;−p; t))
]2

: (57)

For initial conditions that are symmetric under the transformation (�; p) → (−�;−p),
since this symmetry is conserved during the time evolution, A(t)=0 for both stationary
or nonstationary distributions. Of course, also this quantity is a5ected by numerical
errors. To factor out such errors, we introduce the quantities A+(t)=A(t) and A−(t)=A(t),
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Fig. 6. Typical asymmetric (a) and symmetric (b) distribution f(�; p; t). Panel (c) (resp. (d)) presents
the marginal distributions f̃(�; t) (crosses), f̃ +(�; t) (open squares) and f̃ −(�; t) (full squares) for the
distributions plotted in panel (a) (resp. (b)). The three curves superpose almost perfectly in panel (d).
N =104, U =0:63, a=1:0, the number of samples is 103. Time is t=10 for panels (a) and (c), and t=102

for panels (b) and (d).

which are large for asymmetric distributions similar to those in Fig. 6(a), and are
instead O(1) for symmetric distributions (actual values taken for the cases shown Fig. 6
are 160 for Fig. 6(a) and 0.4 for Fig. 6(b)). Large values of the quantities A±=A will
be our Test II for nonstationarity.

5.2. Nonstationarity test

Now that we have de:ned these two indicators, let us check nonstationarity
by considering both Vlasov unstable and Vlasov stable initial states with waterbag
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Fig. 7. Nonstationarity tests for a waterbag initial condition with N=103 particles and 102 samples. Note the
logarithmic scale for the time variable. Panels (a) (resp. (b)) presents the time evolution of the magnetization
M (t) (crosses), Test I d〈e〉=dt (open squares) and Test II A+(t)=A(t) (full squares) in the unstable case
U = 0:55 (resp. stable case U = 0:69). The quantities d〈ej〉=dt (resp. A±(t)=A(t)) are multiplied by a factor
10 (resp. 10−2) for graphical purposes. The horizontal line represents the canonical value of M .

distribution, a = 0 in Eq. (37). Typical results of Test-I and-II are shown in
Fig. 7.
For Vlasov unstable cases (Fig. 7(a)), the quantity d〈ej〉=dt takes large values

only in the time region 2¡t¡ 80. Similarly, the indicator A±(t)=A(t) is large in
the time region 1¡t¡ 10. We have reported only d〈e〉=dt and A+(t)=A(t), but we
have checked that the behavior is totally identical for higher moments j = 2, 3 and
4 and for A−(t)=A(t), respectively. This time region of nonstationarity perfectly coin-
cides with the region where the magnetization M (t) rapidly grows or largely Puctuates.
For Vlasov stable cases, d〈ej〉=dt exhibits small Puctuations only in the time interval
1¡t¡ 20, while A±(t)=A(t) remains small all the time. We guess that the Puctuations
in d〈ej〉=dt are due to :nite size e5ects and would vanish in the N → ∞ limit. Note
the logarithmic scale for the horizontal time axis: the increase in M (t) in Fig. 7(b) is
much slower than the one in Fig. 7(a).
The behavior shown in Fig. 7(b) is very important, because it shows that a variation

in M is compatible with the fact that the distribution f may remain stationary; i.e.,
the system can relax to equilibrium (notably in the time region [104; 105] in Fig. 7(b))
passing through stationary states of the Vlasov equation. It is natural to suppose in
addition that these stationary states are stable.
Figure 8 reports results for two unstable Gaussian initial conditions, a = 1 in

Eq. (37) with U = 0:55 and 0.69. The behavior in panel (a) is very similar to the
unstable waterbag case of Fig. 7(a). The case in panel (b) exhibits a small peak
around t = 5 for both Tests I and II. This presumably indicates that the system is
weakly nonstationary at this time, meaning that the temporal variations of the distribu-
tions f are small. It is also possible to explain the weakness of the nonstationarity for
Gaussian initial conditions with the same arguments that we used when commenting
on Fig. 4. This state is unstable below the critical energy Uc=0:75, but the equilibrium
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Fig. 9. (a,b) Same plots as in Figs. 7, for waterbag initial conditions in momentum p whereas all the phases
�j are set at 0, i.e., M (0) = 1. The quantity A+(t)=A(t) is multiplied by 10−4 for graphical purposes.

value for M goes to zero when U tends to Uc. Hence, the initially unstable state may
be very close to stationary stable states, and can be therefore immediately trapped
into a stable state. We expect the nonstationarity to become weaker and weaker as U
approaches Uc.
The initial conditions used above correspond to stationary solutions of the Vlasov

equation. What happens with nonstationary initial conditions? On the basis of what
we have found above, we expect that the system reaches a stationary stable state, just
like it does when starting from initially unstable stationary states (Figs. 7 and 8). To
con:rm this expectation, we have prepared the initial condition M (0)=1, and we have
reported the results of Tests I and II in Fig. 9. In the short time region t ¡ 3, both
d〈ej〉=dt and A± are large but they vanish for longer times, indicating that the system
reaches some stationary state of the Vlasov equation.
Summarizing the results of this section, we have found a strong support to the

guess that, generically, the states corresponding to stationary stable solutions of the
Vlasov equation attract stationary unstable and nonstationary solutions. The system
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Fig. 10. Temporal evolution of the probability distribution function f̃(�; t) for a waterbag initial condition,
identical to the one used for Fig. 7. N = 103 and the number of samples is 102. The distributions at times
t=1 (crosses), t=10 (open squares), t=104 (full squares), t=105 (open circles), are reported for U =0:55
(a), and at t=1 (crosses), t=103 (open squares), t=104 (full squares), t=105 (open circles), for U =0:69
(b). The solid curve represents the equilibrium distribution, exp[M cos �=T ]=C, where M = 0:558, T = 0:412
and C = 9:52 for U = 0:55 and M = 0:309, T = 0:475 and C = 6:97 for U = 0:69.

evolves in time passing through a series of stationary solutions of the Vlasov
equation.

5.3. Long time behavior

Let us now consider the long time behavior of the system. We :rst discuss the
behavior of the time evolution of the marginal distribution in angle f̃(�; t)=

∫
f(�; p; t)

dp, shown in Fig. 10. For U = 0:55, the initial condition is Vlasov unstable, thus f̃
drastically changes from t = 1 to 10 (see Figs. 10(a) and 7). From t = 10 to 104, the
distribution is almost frozen and :nally relaxes to the equilibrium distribution at t=105.
On the contrary, in the Vlasov stable case, U = 0:69, (see Fig. 10(b)) the distribution
is almost frozen from t = 1 up to t = 103: this is the crucial test of the presence of
a quasi-stationary state associated to the Vlasov stable initial condition. Meanwhile,
the magnetization M (t) remains constant, well below the equilibrium value. Finally the
distribution changes from t = 104 to 105, and correspondingly the magnetization M (t)
increases to reach equilibrium (similar results have been obtained for Gaussian initial
distributions).
In order to characterize the relaxation timescale with respect to the particle number

N in the case of the Vlasov stable waterbag initial conditions (U = 0:69), we have
studied the temporal evolution of the magnetization M (t) (a preliminary study has been
already reported in Ref. [34]). This can be :tted by the function:

M (t) = [1 + tanh(a(N )(log10 t − b(N )))]c(N ) + d(N ) (58)

as shown in Fig. 11(a). The parameters c(N ) and d(N ) represent the half-width
between the initial and the equilibrium levels of M (t) and the initial level of M (t),
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Fig. 11. Panel (a) presents the temporal evolution of the magnetization M (t) for di5erent particles numbers:
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law 10b(N ) ∼ N 1:7.

respectively (we further comment about such parameters in the appendix). The prod-
uct a(N )c(N ) is the slope at log10 t = b(N ), i.e., a(N )c(N ) = dM=d(log10 t)|log10 t=b(N ),
and �(N ) = 10b(N ) is the timescale. The most important parameter, �(N ), presented
in Fig. 11(b) as a function of N , is shown to be proportional to N 1:7. The :t is
very good and excludes both the N and the N 2 trivial scalings. This nontrivial power
law emerges unexpectedly, since theoretical arguments as well as previous studies of
the HMF model suggest trivial divergences of the timescale (typically as N ) (see
Ref. [3]). Quite interestingly however, Zanette and Montemurro [25] have also investi-
gated the timescale for the HMF model for U=0:69 with a waterbag initial distribution
of momenta, but with a fully ordered initial state, i.e., M (0)=1. They have shown that
M (t) presents a minimum at tmin (already present in the simulation by Latora et al.
[11]) which is also proportional to N 1:7. Although our initial condition is di5erent and
hence di5erent scalings could be found, we consider this :nding as a con:rmation of
the presence of nontrivial timescales in the HMF model. Other, apparently unrelated,
nontrivial timescales have been found, associated to the vanishing Lyapunov exponent,
for instance the well-veri:ed 1

3 scaling [3].
We were led by this discovery to rescale the momentum distributions f∗(p; t) =∫
f(�; p; t) d� by the nontrivial time-scale �(N ) ∼ N 1:7, see Fig. 12. The superposition

of the curves at di5erent times, in the quasi-stationary state, is quite impressive and
we consider this as a strong test of the nontrivial timescale.
There have been recently claims that momentum distributions in quasi-stationary

states, obtained from the M (0)=1 initial conditions, could be :tted with single particle
distributions inspired by Tsallis statistics [11]. In this study, we could not obtain any
reasonable :t of the momentum distribution in Fig. 12 using several values of the
Tsallis q parameter with q¿ 1. Moreover, the tails of the distribution are rather sharp,
as shown by the inset in lin-log scale, and we can numerically exclude the presence
of power law tails.
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It should be however mentioned that in another physical context, i.e., in the
dynamics of self-gravitating N -body systems con:ned in an adiabatic wall, the long-
term time evolution has been argued to sweep through stellar polytropes, that are pe-
culiar stationary solutions that maximize Tsallis entropy [35]. However, Chavanis [36],
using the minimization of functionals built on conserved quantities (called H-functions
in this context), showed that Tsallis entropy can be considered as a particular choice
among the in:nitely many possible H-functions: their maximization lead to particular
stationary solutions of the Vlasov dynamics.
The success of Tsallis statistics in describing quasi-stationary regimes in N-body

dynamics remains therefore doubtful. Further studies should :x this puzzling issue.
It should be moreover mentioned that in connection with some aging properties of

the M = 1 initial state, q-exponential have been used to :t quite eMciently numerical
data of correlation functions [37,13].

6. Summary

In this paper we have proposed a general framework, based on Vlasov equation,
to study the relaxation to equilibrium of the HMF model. In the short time regime,
the behavior of the system is well described by the Vlasov equation, which is a valid
approximation for :nite times. The stability of the initial conditions is therefore ade-
quately characterized by considering the stability of Vlasov stationary states. We have
checked the accuracy of this criterion in comparison with :nite N simulations. In ad-
dition, a simple analytical derivation of the largest eigenvalue of the linearized Vlasov
operator gives an excellent estimate of the numerical timescale in the short time regime
of the :nite N system.
In the intermediate and long time regimes, two situations have been analyzed sep-

arately. The :rst one, corresponding to unstable stationary Vlasov states, shows a
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complex short time evolution before reaching some stationary stable state of the Vlasov
equation that is situated close to Boltzmann–Gibbs equilibrium. The latter is :nally
reached on very long times, �(N ) ∼ N . The second one, which begins from Vlasov
stable stationary states, evolves through other quasi-stationary states that are far from
equilibrium and are among the many other stationary Vlasov states. The :nal relaxation
to Boltzmann–Gibbs equilibrium takes place on times that increase with a nontrivial
power law in the number of particles �(N ) ∼ N 1:7. Interestingly, this exponent is
consistent with the one recently reported in Ref. [25] for a di5erent initial condition.
We have analyzed the momentum distributions in such a quasi-stationary regime

and found that they scale properly with the nontrivial exponent. As in Ref. [13], we
have been unable to :t the momentum distributions using q-exponentials, as it had
instead been done for other initial states in Ref. [11]. This is a negative indication that
quasi-stationary states can always be described by Tsallis statistics.
An analogy between the slow time evolution appearing in quasi-stationary states and

the aging phenomenon in glasses and spin-glasses has been proposed in Ref. [37] and
further analyzed in Ref. [13]. However, none of these studies has been performed using
stationary states of the Vlasov equation as initial conditions. It would be extremely
interesting to repeat the study of correlation functions and of other glassy behavior
indicators for such states, as already partially done in Ref. [34], where nonstationary
stretched exponential correlation functions have been found.
After completing this paper, we became aware of a further, and more complete,

study by Choi and Choi [38] of the linear stability of the homogeneous state in both
the canonical (Fokker–Planck) and the microcanonical (Vlasov) ensemble. However,
this paper does not give any answer to the question of the instabilities caused by the
:niteness of the number of particles.
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Appendix A. Detailed scaling of the magnetization

Let us recall the :tting function we have used in Section 5.3 for the magnetization
M (t)

M (t) = [1 + tanh(a(N )(log10 t − b(N )))]c(N ) + d(N ) : (A.1)
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We have already commented about the scaling behavior of �(N ) = 10b(N ). According
to Fig. 13, all the parameter set scales as follows:

a(N ) =

√
N

100c(N )
; 10b(N ) =

1
9
N 1:7 ;

c(N ) =
(Meq − d(N ))

2
; d(N ) =

1:7√
N

; (A.2)

where Meq is the equilibrium level of M (t).
By using the scaling functions (A.2), we can predict when M (t) reaches a given

threshold, Mth, as a function of N . The corresponding threshold time, tth, with M (tth)=
Mth, has the following expression:

tth(Mth) = 10b
(

Mth − d
2c + d − Mth

)ln 10=2a
=
1
9
N 1:7

(
Mth − 1:7√

N

Meq − Mth

)ln 10=2a
: (A.3)

Let us consider, for numerical purposes, two threshold times for both threshold levels,
Mth = d+ 
 and Meq − 
. These two times roughly represent the beginning and ending
times when M (t) grows towards the equilibrium value Meq [34]. Numerical results have
Puctuations, particularly in the early time region, and hence we have de:ned tth(d+ 
)
and tth(Meq − 
) as follows:

tth(d+ 
) = max{t ∈R|M (t)¡d+ 
} ; (A.4)

tth(Meq − 
) = min{t ∈R|M (t)¿Meq − 
} : (A.5)

In Fig. 14, the comparison between the numerical results and the theoretical prediction
(A.3) for 
 = 0:0088 shows an excellent agreement, except in the small N region.
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We remark that both threshold times are approximately proportional to N 1:7 in the
thermodynamic limit. This further con:rms the nontrivial scaling law.
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