
Physica D 237 (2008) 1976–1981
www.elsevier.com/locate/physd
Simpler variational problems for statistical equilibria of the 2D Euler
equation and other systems with long range interactions
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Abstract

The Robert–Sommeria–Miller equilibrium statistical mechanics predicts the final organization of two dimensional flows. This powerful theory
is difficult to handle practically, due to the complexity associated with an infinite number of constraints. Several alternative simpler variational
problems, based on Casimir’s or stream function functionals, have been considered recently. We establish the relations between all these variational
problems, justifying the use of simpler formulations.
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We consider the 2D Euler equations, on a domain D

∂ω

∂t
+ v·∇ω = 0; v = ez × ∇ψ; ω = ∆ψ (1)

where ω is the vorticity, v the velocity and ψ the stream
function (with ψ = 0 on ∂D, D is simply connected).

The equilibrium statistical mechanics of the 2D Euler
equation (the Robert–Sommeria–Miller (RSM) theory [1–3]),
assuming ergodicity, predicts the final organization of the flow,
on a coarse grained level (see [4] for a recent review of Onsager
ideas, that inspired the RSM theory, see also [5]). Besides its
elegance, this predictive theory is a very interesting and useful
scientific tool.

From a mathematical point of view, one has to solve
a microcanonical variational problem (MVP): maximizing a
mixing entropy S[ρ] = −

∫
D d2x

∫
dσρ log ρ, with constraints

on energy E and vorticity distribution γ

S(E0, γ ) = sup
{ρ|N [ρ]=1}

{S[ρ]|E [ω] = E0,

D [ρ] = γ } (MVP).
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ρ (x, σ ) is normalized (N [ρ] = 1, see (6)) and depends on
space x and vorticity σ variables.

The theoretical predictability of RSM theory requires the
knowledge of all conserved quantities. The infinite number of
Casimir’s functionals (this is equivalent to vorticity distribution
γ ) have then to be considered. This is a huge practical
limitation. When faced with real flows, physicists can then
either give physical arguments for a given type of distribution
γ (modeler approach) or ask whether there exists some
distribution γ with RSM equilibria close to the observed
flow (inverse problem approach). However, in any case the
complexity remains : the class of RSM equilibria is huge.

During recent years, authors have proposed alternative
approaches, which led to practical and/or mathematical
simplifications in the study of such equilibria. As a first
example, Ellis, Haven and Turkington [6] proposed to treat
the vorticity distribution canonically (in a canonical statistical
ensemble). From a physical point of view, a canonical ensemble
for the vorticity distribution would mean that the system
is in equilibrium with a bath providing a prior distribution
of vorticity. As such a bath does not exist, the physically
relevant ensemble remains the one based on the dynamics :
the microcanonical one. However, the Ellis–Haven–Turkington
approach is extremely interesting as it provides a drastic
mathematical and practical simplification to the problem of
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computing equilibrium states. A second example, largely
popularized by Chavanis [7,8], is the maximization of
generalized entropies. Both the prior distribution approach of
Ellis, Haven and Turkington or its generalized thermodynamics
interpretation by Chavanis lead to a second variational
problem: the maximization of Casimir’s functionals, with
energy constraint (CVP)

C(E0, s) = inf
ω

{
Cs[ω] =

∫
D

s(ω)d2x |E [ω] = E0

}
(CVP)

where Cs are Casimir’s functionals, and s a convex function
(Energy-Casimir functionals are used in classical works on
nonlinear stability of Euler stationary flows [9,10], and have
been used to show the nonlinear stability of some of RSM
equilibrium states [2,11]).

Another class of variational problems (SFVP), that involve
the stream function only (and not the vorticity), has been
considered in relation with the RSM theory

D (G) = inf
ψ

{∫
D

d2x

[
1
2

|∇ψ |
2
+ G (ψ)

]}
(SFVP).

Such (SFVP) functionals have been used to prove the existence
of solutions to the equation describing critical points of
(MVP) [11]. Interestingly, for the Quasi-geostrophic model,
in the limit of small Rossby deformation radius, such a
SFVP functional is similar to the van der Waals-Cahn
Hilliard model which describes phase coexistence in usual
thermodynamics [12,13]. This physical analogy has been
used to make precise predictions in order to model Jovian
vortices [12,14]. Moreover (SFVP) functionals are much more
regular than (CVP) functionals and thus also very interesting
for mathematical purposes.

When we prescribe appropriate relations between the
distribution function γ , the functions s and G, the three
previous variational problems have the same critical points.
This has been one of the motivations for their use in previous
works. However, a clear description of the relations between
the stability of these critical points is still missing (is a
(CVP) minimizer a RSM equilibria, or does a RSM equilibria
minimize (CVP)?). This has led to fuzzy discussions in recent
papers. Providing an answer is a very important theoretical
issue because, as explained previously, it will lead to deep
mathematical simplifications and will provide useful physical
analogies.

The aim of this short paper is to establish the relation
between these three variational problems. The result is that
any minimizer (global or local) of (SFVP) minimizes (CVP)
and that any minimizer of (CVP) is a RSM equilibria. The
opposite statements are wrong in general. For instance (CVP)
minimizers may not minimize (SFVP), but be only saddles.
Similarly, RSM equilibria may not minimize (CVP) but be only
saddles, even if no explicit example has yet been exhibited.

These results have several interesting consequences:

1. As the ensemble of (CVP) minimizers is a sub-ensemble
of the ensemble of RSM equilibria, one cannot claim
that (CVP) are more relevant for applications than
RSM equilibria (for a different point of view, see for
instance [15]).

2. The link between (CVP) and RSM equilibria provides a
further justification for studying (CVP).

3. Based on statistical mechanics arguments, when looking at
the Euler evolution on a coarse-grained level, it may be
natural to expect the RSM entropy to increase. There is
however no reason to expect such a property to be true for
the Casimir’s functional. As explained above, it may also
happen that entropy extrema are (CVP) saddles.

In order to simplify the discussion, we keep only the energy
constraint at the level of the Casimir functional (CVP). Adding
other constraints, such as the circulation [15], or even the
microscopic enstrophy, does not change the discussion.

We note that all the discussion can be easily generalized
to any system with long range interactions (self-gravitating
systems, Vlasov Poisson system) [16].

In the first section, we explain the link between a constrained
variational problem and its relaxed version. We explain that
any minimizer of the second is a minimizer of the first. In
the second section, we present the microcanonical variational
problem (MVP). We then introduce a mixed grand canonical
ensemble by relaxing the vorticity distribution constraint in the
RSM formalism. We prove in the third section that this mixed
ensemble is equivalent to (CVP). Similarly, in the last section
we prove that the (SFVP) variational problem is equivalent to a
relaxed version of (CVP).

1. Relations between constrained and relaxed variational
problems

We discuss briefly relations between a constrained
variational problem and its relaxed version. This situation
appears very often in statistical mechanics when passing
from one statistical ensemble to another. We assume that the
Lagrange’s multipliers rule applies. Let us consider the two
variational problems

G(C) = inf
x

{g(x)|c(x) = C} and

H(γ ) = inf
x

{
hγ (x) = g(x)− γ c(x)

}
.

G is the constrained variational problem and H is the relaxed
one, γ is the Lagrange multiplier (or the dual variable)
associated to C . We have the results:

1. H (γ ) = infC {G(C)− γC} and G(C) ≥ supγ {γC +

H(γ )}.
2. If xm is a minimizer of hγ then xm is also a minimizer of

G(C) with the constraint C = c(xm).
3. If xm is a minimizer of G(C), then it exists a value of γ

such that xm is a critical point of hγ , but xm may not be a
minimizer of hγ but just a saddle. Then xm is a minimizer
of hγ if and only if G(C) = supγ {H(γ )+ γC} if and
only if G(C) coincides with the convex hull of G in C . In
this last situation the two variational problems are called
equivalent.
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Such results are classical. More detailed results in this context
may be found in [15]. Situations of ensemble inequivalence
have been classified, in relation with phase transitions [17].

Equality in point 1. follows from the remark that

H(γ ) = inf
C

{
inf
x

{g(x)− γ c(x)|c(x) = C}

}
= inf

C

{
inf
x

{g(x)|c(x) = C} − γC
}
.

We remark that −H is the Legendre–Fenchel transform of
G. The inequality of point 1 is then a classical convex analysis
result. We have for any value of γ ,

G(C) = inf
x

{g(x)|c(x) = C}

= inf
x

{g(x)− γ c(x)|c(x) = C} + γC

≥ inf
x

{g(x)− γ c(x)} + γC = H(γ )+ γC. (2)

This is a direct proof of the inequality of point 1.
Point 2: for xm a minimizer of hγ and x with c(x) = c(xm),

we have g(xm) = hγ (xm)+γ c(xm) ≤ hγ (x)+γ c(xm) = g(x).
This proves 2 First assertion of 3. is Lagrange’s multipliers rule.
Clearly, xm is a minimizer of hγ if and only if equality occurs in
(2). It is a classical result of convex analysis that the convex hull
of G is the Legendre–Fenchel transform of −H . This concludes
the proof of 3. Many examples where xm is a saddle may be
found in the literature (see [17], or examples in the context of
Euler equation in [18–20]).

2. RSM statistical mechanics

Euler’s equations (1) conserve the kinetic energy

E [ω] =
1
2

∫
D

d2x (∇ψ)2 = −
1
2

∫
D

d2xωψ = E0 (3)

and for integrable s, Casimirs’ functional

Cs[ω] =

∫
D

d2xs(ω). (4)

Let us define A (σ ) the area of D with vorticity values lower
than σ , and γ (σ ) the vorticity distribution

γ (σ ) =
1

|D|

dA

dσ
with A (σ ) =

∫
D

d2xχ{ω(x)≤σ }, (5)

where χB is the characteristic function of the set B ⊂ D, and
|D| is the area of D. As Euler’s Eq. (1) is a transport equation
by an incompressible flow, γ (σ ) (or equivalently A (σ )) is
conserved by the dynamics. Conservation of distribution γ (σ )
and of all Casimir’s functionals (4) is equivalent.

2.1. RSM microcanonical equilibria (MVP)

We present the classical derivation [2] of the microcanonical
variational problem which describes RSM equilibria. Such
equilibria describe the most probable mixing of the vorticity
ω, constrained by the vorticity distribution (5) and energy (3)
(other conservation laws could be considered, for instance if
the domain D has symmetries).
We make a probabilistic description of the flow. We define
ρ (σ, x) the local probability that the microscopic vorticity ω
takes a value ω (x) = σ at position x. As ρ is a local probability,
it satisfies a local normalization

N [ρ] (x) ≡

∫
+∞

−∞

dσρ (σ, x) = 1. (6)

The known vorticity distribution (5) imposes

D [ρ] (σ ) ≡

∫
D

dxρ (σ, x) = γ (σ ) . (7)

We are interested on a locally averaged, coarse-grained
description of the flow. The averaged vorticity is

ω (x) =

∫
+∞

−∞

dσσρ (σ, x) . (8)

ψ = ∆ω̄ is the averaged stream function. The energy may be
expressed in terms of the averaged vorticity distribution as

E [ω] ≡ −
1
2

∫
D
ψωdx ' E0. (9)

The entropy is a measure of the number of microscopic
vorticity fields which are compatible with a distribution ρ. By
classical arguments, such a measure is given by the entropy

S [ρ] ≡ −

∫
D

d2x
∫

+∞

−∞

dσρ log ρ. (10)

The most probable mixing for the potential vorticity is thus
given by the probability ρeq which maximizes the entropy (10),
subject to the three constraints (6), (7) and (9). The equilibrium
entropy S(E0, γ ), the value of the constrained entropy maxima,
is then given by the microcanonical variational problem (MVP)
(see the introduction).

Using the Lagrange multipliers rule, there exists β and α (σ)
(the Lagrange parameters associated to the energy and vorticity
distribution, respectively) such that the critical points of (MVP)
satisfy

ρeq (x, σ ) =
1

zα
(
βψeq

) exp
[
σβψeq − α (σ)

]
, (11)

where

zα (u) =

∫
+∞

−∞

dσ exp [σu − α (σ)] and

fα (u) =
d

du
log zα. (12)

We note that zα is positive, log zα is convex, and thus fα is
strictly increasing.

From (11), using (8), the equilibrium vorticity is

ωeq = fα
(
βψeq

)
or equivalently gα

(
ωeq

)
= βψeq , (13)

where gα is the inverse of fα . The actual equilibrium ωeq is
the minimizer of the entropy while satisfying the constraints,
between all critical points for any possible values of β and α.

We note that solutions to (13) are stationary flows.
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2.2. RSM constrained grand canonical ensemble

We consider the statistical equilibrium variational problem
(MVP), but we relax the vorticity distribution constraint. This
constrained (or mixed) grand canonical variational problem is

G(E0, α) = inf
{ρ|N [ρ]=1}

{Gα[ρ]|E [ω] = E0} , (14)

with the Gibbs potential functional defined as

Gα [ρ] ≡ −S [ρ] +

∫
D

d2x
∫

+∞

−∞

dσα (σ) ρ (x, σ ) .

In the following section, we prove that (14) is equivalent to
the constraint Casimir V.P. (CVP). Using the results of the first
section, relating constrained and relaxed variational problems,
we can thus conclude that minimizers of (CVP) are RSM
equilibria, but the converse is wrong in general, as stated in the
introduction.

3. Constrained Casimir (CVP) and grand canonical
ensembles are equivalent

3.1. Equivalence

We consider a Casimir’s functional (4), where s is assumed
to be convex. The critical points of the constrained Casimir
variational problem (CVP, see introduction) satisfy

ds

dω

(
ωeq

)
= βψeq , (15)

where β is the Lagrange’s multiplier for the energy. Solutions
to this equation are stationary states for the Euler equation.
Moreover, with suitable assumptions for the function s, such
flows are proved to be nonlinearly stable [9].

This last equation is very similar to the one satisfied by RSM
equilibria (13). Indeed let us define sα the Legendre–Fenchel
transform of log zα

sα (ω) = sup
u

{uω − log zα (u)} . (16)

Then sα is convex. Moreover, if log zα is differentiable, then
direct computations lead to

sα (ω) = ωgα (ω)− log (zα (gα (ω))) (17)

and to ds/dω = gα . The equilibrium relations (13) and (15)
with s = sα , are the same ones. It been observed in the past by
a number of authors (see for instance [2]).

Let us prove that (14) and (CVP) are equivalent if s =

sα . More precisely, we assume that Lagrange’s multipliers
rule applies, and we prove that minimizers of both variational
problems have the same ωeq and that C(E0, sα) = G(E0, α).

We consider a minimizer ρeq of (14) and ωeq =
∫

dσσρeq .
Then E

[
ωeq

]
= E0 and G(E0, α) = Gα

[
ρeq

]
. A

Lagrange multiplier β then exists such that ρeq satisfies
Eq. (11). Direct computation gives ρeq log ρeq + αρeq =
exp
(
βσψeq − α (σ)

) [
− log zα

(
βψeq

)
+ βσψeq

]
/zα

(
βψeq

)
.

Using ωeq =
∫

dσσρeq , (13) and (17), we obtain∫
+∞

−∞

dσ
(
ρeq log ρeq + αρeq

)
= − log zα

(
βψeq

)
+ βψeqωeq

= sα
(
ωeq

)
. (18)

From the definitions of G and C, we obtain G(E0, α) =

Gα
[
ρeq

]
= Csα

[
ωeq

]
. Now, as C is an infimum, Csα

[
ωeq

]
≥

C(E0, sα) and

G(E0, α) ≥ C(E0, sα).

We now prove the opposite inequality. Let ωeq,2 be a
minimizer of (CVP) with s = sα . Then there exists β2 such
that (15) is satisfied with dsα/dω = gα . We then define
ρeq,2 ≡ exp

[
σβ2ψeq,2 − α (σ)

]
/zα

(
β2ψeq,2

)
. Following the

same computations as in (18), we conclude that Gα
[
ρeq,2

]
=

Csα

[
ωeq,2

]
= C(E0, sα). Then using that G is an infimum we

have G(E0, α) ≤ C(E0, sα) and thus

G(E0, α) = C(E0, sα).

Then Csα

[
ωeq

]
= C(E0, sα) = G(E0, α) = Gα

[
ρeq,2

]
. Thus

ωeq and ρeq,2 are minimizers of (CVP) and of (14) respectively.
But as such minimizers are in general not unique, ωeq may be
different from ωeq,2 and β may be different from β2.

A formal, but very instructive, alternative way to obtain
equivalence between (CVP) and (14) is to note that

Csα [ω] = inf
{ρ|N [ρ]=1}

{
Gα [ρ] |

∫
+∞

−∞

dσσρ = ω(x)
}
. (19)

We do not detail the computation. A proof of this result is easy
as we minimize a convex functional with linear constraints.
Then, from (14), using (19), we obtain

G(E0, α)

= inf
ω

{
inf

{ρ|N [ρ]=1}

{
Gα[ρ]|

∫
dσσρ = ω(x)

}
|E [ω] = E0

}
= C(E0, sα).

3.2. Second variations and local stability equivalence

In the previous section, we have proved that the constrained
Casimir (CVP) and mixed ensemble (14) variational problems
are equivalent, for global minimization. Does this equivalence
also hold for local minima ? We now prove that the reply is
positive.

We say that a critical point ρeq of the constrained mixed
ensemble variational problem (14) is locally stable iff the
second variations δ2Jα , of the associated free energy Jα =

Gα + βE , are positive for perturbations δρ that respect the
linearized energy constraints

∫
D ψeqδω = 0, where δω =∫

dσσδρ. Similarly, the second variations δ2Ds of the free
energy Ds = Cs + βE define the local stability of the Casimir
maximization.

By a direct computation, we have δ2Gα [δρ] = −δ2Sα [δρ] =∫
D dx

∫
dσ 1

ρeq
(δρ)2 and δ2Csα [δω] =

∫
D dxs′′

α

(
ωeq

)
(δω)2.
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We decompose any δρ as

δρ = δρ‖
+ δρ⊥ with δρ‖

=
δω

f ′
α

(
−z′

α + σ zα
z2
α

)
exp

[
σβψeq − α (σ)

]
.

In this expression, the functions f ′
α , zα and z′

α are evaluated at
the point βψeq . Using the definition of fα and of zα (12), and
the fact that f ′

α =
(
−z′2

α + zαz′′
α

)
/z2
α we easily verify that the

above expression is consistent with the relation δω =
∫

dσσδρ.
Moreover by lengthy but straightforward computations,

we verify that
∫

dσδρ‖δρ⊥/ρeq = 0. In this sense, the
decomposition δρ = δρ‖

+δρ⊥ distinguishes the variations of ρ
that are normal to equilibrium relation (11) from the tangential
ones.

From s′
α = gα and using that (gα)−1

= fα , we obtain

s′′
α =

(
f ′
α

)−1. Using this relation we obtain
∫

dσ
(
δρ‖

)2
/ρeq =

s′′
α

(
ωeq

)
(δω)2. We thus conclude

δ2Jα [δρ] =

∫
D

d2x
∫

+∞

−∞

dσ
1
ρeq

(
δρ⊥

)2
+ δ2Dsα [δω] . (20)

To the best of our knowledge, this equality has never been
derived before in this context, see [21] in plasma physics
(information provided by one of the referee). It may be very
useful as second variations are involved in many stability
discussions.

From equality (20), it is obvious that the second variations
of Jα are positive iff the second variations of Dsα are
positive. If we also note that perturbations which respect the
linearized energy constraint are the same for both functionals,
we conclude that the local stabilities of the two variational
problems are equivalent.

4. Relation between RSM equilibria and stream function
functionals

In this section, we establish the relation between stream
function functionals and RSM equilibria. For this we consider
the constrained Casimir variational problem (CVP). However,
we relax the energy constraint. We thus consider the free energy
associated to CVP

F(β, s) = inf
ω

{Fs[ω] = Cs[ω] + βE [ω]} . (21)

This is an Energy-Casimir functional [9]. As previously
explained, minima of this relaxed variational problem are also
minimum (CVP). It is thus also a RSM equilibria.

Let G̃ be the Legendre–Fenchel transform of the function
s: G̃(z) = supy {zy − s(y)}. G̃ is thus convex. Let us define

Gβ (ψ) = G̃ (βψ) /β. Gβ is thus convex for positive β and
concave for negative β. In the following, we will show that the
variational problem (21) is equivalent to the SFVP

D
(
Gβ

)
= inf

ψ

{
DGβ [ψ] =

∫
D

d2x
[
|∇ψ |

2
+ Gβ (ψ)

]}
.

More precisely in the following discussion we prove that

1. F (β, s) = −βD(Gβ).
2. Ifψeq is a local minimizer ofDGβ then it is a local minimizer
of Fs .

3. If we assume that a global minimizer of DGβ exists, then
ωeq = ∆ψeq is a global minimizer of Fs if and only if ψeq
is a global minimizer of DGβ .

When DGβ [ψ] and Fs[ω] are strictly convex, both variational
problems have a single minimizer. As the equations for the
critical points of the variational problems coincide, points
2. and 3. above are thus easily verified [11]. Conditions
for DGβ [ψ] and Fs[ω] to be strictly convex are given, for
instance in [11], or [9] for Fs[ω]. This is obvious for positive
temperature β > 0, as Gβ is convex in this case. For negative
temperature, Gβ is concave. However, if we assume that G̃ ′′ is
bounded 0 ≤ G̃ ′′ (z) ≤ g, then it can be proven that DGβ [ψ] is
strictly convex for βc ≤ β ≤ 0, with βc ≤ λ1/g, where λ1 is the
opposite of the first eigenvalue of the Laplacian over the domain
D (this follows from the Poincaré inequality, see [9,11]). (G̃ ′′ is
actually bounded, for instance if the vorticity distribution γ (σ )
(5) has a compact support, or for the point vortex model). In the
following we prove that results 1., 2. and 3. are valid also when
DGβ [ψ] and Fs[ω] are no longer convex.

In order to prove these results for negative temperature β <
0, it is sufficient to prove:

(a) ωc = ∆ψc is a critical points of Fs if and only if ψc is a
critical point of DG , and then Fs [ωc] = −βDGβ [ψc].

(b) For any ω = ∆ψ , Fs [ω] ≥ −βDGβ [ψ].

Point (a) has been noticed in [13], and is actually sufficient to
prove points 1 and 2. The inequality (b) [22] proves that DGβ

is a support functional to Fs [22]. Let us prove points (a) and
(b). First, the critical points ofFs andDGβ verify s′(ωc) = βψc
and ωc = G ′ (βψc). Now using that G is the Legendre–Fenchel
transform of s, if s is differentiable, we have

(
s′

)−1
= G ′. Thus

the critical points of both functionals are the same.
Let us prove point (b)

Fs[ω] = −

∫
D

d2x [−s (ω)+ βωψ] +

∫
D

d2x
β

2
ωψ

≥

∫
D

d2x

[
−G(βψ)+

β

2
ωψ

]
= −βDGβ [ψ]

where we have used the definition of G, as the Legendre–Fenchel
transform of s, in order to prove the inequality. We now con-
clude the proof of point (a). A direct computation gives G(x) =

x
(
s′

)−1
(x)− s

[(
s′

)−1
(x)

]
. Thus G(βψc) = βψcωc − s (ωc).

This proves that in the preceding inequality, an equality actually
occurs for the critical points: Fs[ωc] = −βDGβ [ψc].

We have thus established the relations between RSM
equilibria and the simpler Casimirs (CVP) and stream function
(SFVP) variational problems.
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