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a b s t r a c t

The theoretical study of the self-organization of two-dimensional and geophysical
turbulent flows is addressed based on statistical mechanics methods. This review is a self-
contained presentation of classical and recent works on this subject; from the statistical
mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices
and jets. Emphasize has been placed on examples with available analytical treatment in
order to favor better understanding of the physics and dynamics.

After a brief presentation of the 2D Euler and quasi-geostrophic equations, the speci-
ficity of two-dimensional and geophysical turbulence is emphasized. The equilibrium
microcanonical measure is built from the Liouville theorem. Important statistical mechan-
ics concepts (large deviations andmean field approach) and thermodynamic concepts (en-
semble inequivalence and negative heat capacity) are briefly explained and described.

On this theoretical basis, we predict the output of the long time evolution of complex
turbulent flows as statistical equilibria. This is applied tomake quantitativemodels of two-
dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the
Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria
and real flow observations is provided.

We also present recent results for non-equilibrium situations, for the studies of either
the relaxation towards equilibriumor non-equilibrium steady states. In this last case, forces
and dissipation are in a statistical balance; fluxes of conserved quantity characterize the
system and microcanonical or other equilibriummeasures no longer describe the system.
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1. Introduction

1.1. Two-dimensional and geostrophic turbulence

For many decades, two-dimensional turbulence has been a very active subject for theoretical investigations, motivated
not only by the conceptual interest in understanding atmosphere and ocean turbulence, but also by the beauty and precision
of the theoretical and mathematical achievements obtained thereby. For over two decades, two-dimensional flows have
been studied experimentally in many different laboratory setups, as for instance illustrated in Figs. 2, 4, 21 and 25 (see
also [107,179] and references therein for further details).

Although they both involve a huge range of temporal and spatial scales, two-dimensional and three-dimensional
turbulent flows are very different in nature.

The first difference is that whereas in three-dimensional turbulence energy flows forward (from the largest towards the
smallest scales), it flows backward (from the smallest towards the largest scales) in two-dimensional turbulence. Three-
dimensional turbulence transfers energy towards the viscous scale where it is dissipated into heat at a finite rate, no matter
how small the viscosity. By contrast, in the absence of any strong dissipationmechanism at the largest scales, the dissipation
of energy remains weak in two-dimensional turbulence. As a consequence, the flow dynamics is dominated by large scale
coherent structures, such as vortices or jets. This review is devoted to the understanding and prediction of these stable and
quasi-steady structures in two-dimensional turbulent flows.

The second fundamental difference between 2D and 3D turbulence is that the level of fluctuations in two-dimensional
turbulence is very small. The largest scales of three-dimensional turbulent flows are the place of incessant instabilities,
whereas the largest scales of two-dimensional turbulence are often quasi-stationary and evolve over a very long time scale,
compared for instance to the turnover time of the large scale coherent structures.

As explained in this review, the above-mentioned peculiarities of two-dimensional turbulent flows are theoretically
understood as the consequences of dynamical invariants of two-dimensional perfect flows, which are not invariants of
perfect three-dimensional flows. These invariants, including the enstrophy, make the forward energy cascade impossible
in two-dimensional flows, and explain the existence of an extremely large number of stable stationary solutions of the 2D
Euler equations, playing a major role in the dynamics.

Atmospheric and oceanic flows are three-dimensional, but strongly dominated by the Coriolis force, mainly balanced
by pressure gradients (geostrophic balance). The turbulence that develops in such flows is called geostrophic turbulence.
Models describing it have the same type of additional invariants as two-dimensional turbulence has. As a consequence,
energy flows backward and the main phenomenon is the formation of large scale coherent structures (jets, cyclones and
anticyclones, see Figs. 10 and 17). The analogy between two-dimensional turbulence and geophysical turbulence is further
emphasized by the theoretical similarity between the 2D Euler equations (describing 2D flows) and the layered quasi-
geostrophic or shallow-watermodels (describing the largest scales of geostrophic turbulence); both are transport equations
of a scalar quantity by a non-divergent flow, conserving an infinity of invariants.

The formation of large scale coherent structures is a fascinating problem and an essential part of the dynamics of Earth’s
atmosphere and oceans. This is the main motivation for setting up a theory for the formation of the largest scales of
geostrophic and two-dimensional turbulence.

1.2. Turbulence and statistical mechanics

Any turbulence problem involves a huge number of degrees of freedom coupled via complex nonlinear interactions. The
aim of any theory of turbulence is to understand the statistical properties of the velocity field. It is thus extremely tempting
and interesting to attack these problems from a statistical mechanics point of view. Statistical mechanics is indeed a very
powerful theory that allows us to reduce the complexity of a system down to a few thermodynamic parameters. As an
example, the concept of phase transition allows us to describe drastic changes of the whole system when a few external
parameters are changed. Statistical mechanics is the main theoretical approach that we develop in this review, and we
show that it succeeds in explaining many of the phenomena associated with two-dimensional turbulence.

This may seem surprising at first, as it is a common belief that statistical mechanics is not successful in handling
turbulence problems. The reason for this belief is that most turbulence problems are intrinsically far from equilibrium. For
instance, the forward energy cascade in three-dimensional turbulence involves a finite energydissipation fluxnomatter how
small the viscosity (anomalous dissipation). Because of this flux, the flow cannot be considered close to some equilibrium
distribution. By contrast, two-dimensional turbulence does not suffer from this problem (there is no anomalous dissipation
of the energy), so that equilibrium statistical mechanics, or close to equilibrium statistical mechanics makes sense when
small fluxes are present.

The first attempt to use equilibrium statistical mechanics ideas to explain the self-organization of 2D turbulence
comes from Onsager in 1949 [152] (see [76] for a review of Onsager’s contributions to turbulence theory). Onsager
worked with the point-vortex model, a model made of singular point vortices, first used by Lord Kelvin and which is a
special class of solution of the 2D Euler equations. The equilibrium statistical mechanics of the point-vortex model has
a long and very interesting history, with wonderful pieces of mathematical achievements [152,103,33,109,66,43,75,4].
In order to treat flows with continuous vorticity fields, another approach, taking account of the quadratic invariants
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only, was proposed by Kraichnan [112]. This last work has inspired a quadratic-invariant statistical theory for quasi-
geostrophic flows over topography: the Salmon–Holloway–Hendershott theory [171,170]. Another phenomenological
approach based on a minimal enstrophy principle and leading to similar predictions for the large scale flow as the
Salmon–Holloway–Hendershott theory has been independently proposed by Bretherton–Haidvogel [28]. The generalization
of Onsager’s ideas to the 2D Euler equation with continuous vorticity field, taking into account all invariants, has been
proposed in the beginning of the 1990s [162,138,163,167], leading to the Robert–Sommeria–Miller theory (RSM theory). The
RSM theory includes the previous Onsager, Kraichnan, Salmon–Holloway–Hendershott and Bretherton–Haidvogel theories
and determines the particular limits1 within which those give relevant predictions and general results. The part of this
review dealing with equilibrium statistical mechanics mainly falls within the framework of the RSM theory and presents its
further developments.

Over the last fifteen years, the RSM equilibrium theory has been applied successfully to a large class of problems, for
both the Euler and quasi-geostrophic equations. We cite and describe all relevant works and contributions to this subject.
The aim of this review is also pedagogical, and as such we have chosen to emphasize on a class of problems that can be
understood using analytical solutions.We give a comprehensive description only of thoseworks. Nevertheless, this includes
many interesting applications, such as predictions of phase transitions in different contexts, a model for the Great Red Spot
and other Jovian vortices, and models of ocean vortices and jets.

Most turbulent flows are forced, and reach a statistically steady statewhere forcing is balanced on average by a dissipative
mechanism. Such situations are referred to in statistical mechanics as Non-Equilibrium Steady States (NESS). One class of
such problems in two-dimensional turbulence are the self-similar inertial cascades first described by Kraichnan [111]: the
backward energy cascade and the forward enstrophy cascade. These are essential concepts of two-dimensional turbulence
that will be briefly described. However, in the regime where the flow is dominated by large scale coherent structures, these
self-similar cascades are no longer relevant and Kraichnan’s theory provides no prediction. We will explain in this review
how the vicinity to statistical equilibrium can be invoked in order to provide partial responses to the description of the
non-equilibrium situations, for instance prediction of non-equilibrium phase transitions. We will also emphasize why and
how such predictions based on equilibrium statistical mechanics are necessarily limited in scope, and explain how a non-
equilibrium theory can be foreseen based on kinetic theory approaches.

1.3. About this review

The aim of this review is to give a self-contained description of statistical mechanics of two-dimensional and geophysical
turbulence, and of its applications to real flows. For pedagogical purposes, we will emphasize analytically solvable cases, so
the physics can be easily understood.

The typical audience should be graduate students and researchers from different fields. One of the difficulty with this
review is that knowledge is required from statistical physics [116], thermodynamics [36], geophysical fluid dynamics
[155,194,170,85] and two-dimensional turbulence [112,179,185]. For each of these subjects, the notions needed will
be briefly presented, in a self-contained way, but we refer to classical textbooks or review papers for more detailed
presentations.

There already exist several presentations of the equilibrium statistical mechanics of two-dimensional and geostrophic
turbulent flows [179,128], some emphasizing kinetic approaches of the point-vortex model [43], other focusing on the
legacy of Onsager [76]. Parts of the introductory sections of this review (two-dimensional fluid mechanics and the mean-
field equilibrium statistical mechanics theory) are similar to those found in previous reviews or lectures (especially [179]).
However, the statistical mechanics foundations of the theory is explained in further details and none of the applications
discussed in this review, with emphasis on analytically solvable cases, were described in previous books or reviews. For
instance, the present review gives (i) a precise explanation of the statistical mechanics basis of the theory, (ii) a detailed
discussion of the validity of the mean-field approximation, (iii) an analytic treatment of phase diagrams for small energy
and analytic models for the Great Red Spot as well as for ocean jets and vortices, (iv) a detailed discussion of the irreversible
behavior of the 2D Euler equations despite its being actually a time reversible equation. In addition, we present new results
on non-equilibrium studies, on the different regime description, on non-equilibrium phase transitions and kinetic theories.
Most of these new results have been derived over the last few years. Other important recent developments of the theory
such as statistical ensemble inequivalence [69,70] and related phase transitions [16] would be natural extensions of this
review, but were considered too advanced for such a first introduction. We however always describe the main results and
give the appropriate references to the appropriate papers, for an interested reader to be able to understand these more
technical points.

We apologize that this review leaves little room for the description of experiments, for the cascade regimes of two
dimensional turbulence or for the kinetic theory of the point-vortex model. For these we refer the reader to [179,185,112,
9,74,3,66,43] respectively. Interesting related problems insufficiently covered in this review also include the mathematical
works on the point-vortex model [33,109,75] or on the existence of invariant measures and their properties for the 2D
stochastic Navier–Stokes equation [113,114,133], as well as studies of the self-organization of quasi-geostrophic jets on a
beta-plane (see [91,117,187,78,65] and references therein).

1 Corresponding to special classes of initial conditions.
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1.4. Detailed outline

Section 2 is a general presentation of the equations and phenomenology of two-dimensional (2D Euler equations) and
geophysical turbulence. One of the simplest possible models for geophysical flows, namely the 1.5-layer quasi-geostrophic
model (also called Charney–Hasegawa–Mima model), is presented in Section 2.1.

Section 2.2 deals with important properties of 2D Euler and quasi-geostrophic equations, and their physical
consequences: the Hamiltonian structure (Section 2.2.1), the existence of an infinite number of conserved quantities
(Section 2.2.2).

These conservation laws play a central part in the theory. They are for instance responsible for: (i) the existence of
multiple stationary solutions of the 2D Euler equations and the stability of some of these states (Section 2.3.1), (ii) the
cascade phenomenology, with energy transferred upscale, and enstrophy downscale (Section 2.3.2), (iii) the most striking
feature of 2D and geophysical flows: their self-organization into large scale coherent structures (Section 2.3.3), (iv) the
non-trivial predictions of equilibrium statistical mechanics of two dimensional turbulence, compared to statistical
mechanics of three-dimensional turbulence (Sections 2.3.4 and 2.3.5). Sections 2.3.4 and 2.3.5 also explain in details the
relations between the Kraichnan energy–enstrophy equilibrium theory and the Robert–Sommeria–Miller theory, and justify
the validity of a mean field approach.

The self-organization of two-dimensional and geostrophic flows is the main motivation for a statistical mechanics
approach of the problem. The presentation of the equilibrium theory is the aim of Section 3. A reader more interested in
applications than in the statistical mechanics basis of the theory can start her reading at the beginning of Section 3.

Section 3.1 explains how the microcanonical mean field variational problem describes statistical equilibria. All
equilibrium results presented afterward rely on this variational problem. The ergodicity hypothesis is also discussed in
Section 3.1. Section 3.1.3 explains the practical and mathematical interest of canonical ensembles, even if they are not
really relevant from a physical point of view. Section 3.3 explains the relations between the statistical mechanics of two
dimensional flows and the statistical mechanics of other systems with long range interactions.

An analytically solvable case of phase transitions in a doubly periodic domain is presented Section 3.5. This example
chosen for its pedagogical interest, illustrate the scope and type of results one can expect from statistical theory of two-
dimensional and geophysical flows. The concepts of bifurcations, phase transitions, and phase diagrams reducing the
complexity of turbulent flows to a few parameters are emphasized.

Section 4 is an application of the equilibriumstatisticalmechanics theory to the explanation of the stability and formation,
and precise modeling of large scale vortices in geophysical flows, such as Jupiter’s celebrated Great Red Spot and the
ubiquitous oceanic mesoscale rings. The analytical computations are carried out in the limit of a small Rossby radius
(the typical length scale characterizing geostrophic flows) compared to the domain size, through an analogy with phase
coexistence in classical thermodynamics (for instance the equilibrium of a gas bubble in a liquid).

Section 4.1 gives an account of the Van der Waals–Cahn–Hilliard model of first order transitions, which is the relevant
theoretical framework for this problem. The link between Van der Waals–Cahn–Hilliard model and the statistical equilibria
of the 1.5-layer quasi-geostrophic model is clarified in Section 4.2. This analogy explains the formation of strong jets in
geostrophic turbulence. All the geophysical applications presented in this review come from this result.

Section 4.3 deals with the application to Jovian vortices. The stability and shapes of the Red Great Spot, white ovals and
brownbarges are explainedby equilibriumstatisticalmechanics. A detailed comparison of statistical equilibriumpredictions
with the observed velocity field is provided. These detailed quantitative results are one of the main achievements of the
application of the statistical equilibrium theory.

Section 4.4 deals with the application to mesoscale ocean vortices. Their self-organization into circular rings and their
observed westward drift are explained as a result of equilibrium statistical mechanics.

Section 5 gives another application of the statistical theory, now to the self-organization of ocean currents. By considering
the same analytical limit and theoretical framework as in the previous section, we investigate the applicability of the
equilibrium statistical theory to the description of strongmid-latitude eastward jets, such as the Gulf Stream or the Kuroshio
(north Pacific Ocean). These jets are found to be marginally stable. The variations of the Coriolis parameter (beta effect) or a
possible zonal deep current are found to be key parameters for the stability of these flows.

Section 6 deals with non-equilibrium situations: Non-Equilibrium Steady States (NESS), where an average balance
between forces and dissipation imposes fluxes of conserved quantity (Sections 6.1–6.5) and relaxation towards equilibrium
(Section 6.6). Section 6.1 is a general discussion about the 2D Navier–Stokes equations and conservation laws. The two
regimes of two-dimensional turbulence, the inverse energy cascade and direct enstrophy cascade on one hand, and the
regime dominated by large scale coherent structures on the other hand, are clearly delimited in Sections 6.2 and 6.3.
Section 6.4 delineates what can be learned from equilibrium statistical mechanics, and what cannot, in a non-equilibrium
context. We also present predictions of non-equilibrium phase transitions using equilibrium phase diagrams and compare
these predictions with direct numerical simulations. Section 6.5 comments progresses and challenges for a non-equilibrium
theory based on kinetic theory approach. Section 6.6 presents recent results on the asymptotic behavior of the linearized
2D Euler equations and relaxation towards equilibrium of the 2D Euler equations.
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Fig. 1. Example of an experimental realization of a 2D flow in a soap bubble, courtesy of American Physical Society. See [176,107] for further details.

2. Two-dimensional and geostrophic turbulence

In this section,we present the 2D Euler equations and the quasi-geostrophic equations, the simplestmodel of geophysical
flows such as ocean or atmosphere flows. We also describe the Hamiltonian structure of these equations, the related
dynamical invariants. The consequences of these invariants are explained: (i) for the inverse energy cascade, (ii) for the
existence of multiple (stable and unstable) steady states for the equations.

2.1. 2D Euler and quasi-geostrophic equations

2.1.1. 2D Euler equations
The incompressible 3D Euler equations describe themomentum transport of a perfect and non-divergent flow. They read

∂tu + u · ∇u = −
1
ρ

∇P with ∇ · u = 0 (1)

where u = (v, w) = v + wez (v is the projection of u in the plane (ex, ey)). The density ρ is assumed to be constant. If we
assume the flow to be two-dimensional (w = 0 and v = v (r) with r = (x, y)), then it is easily verified that the vorticity is
a scalar quantity: ∇ × v is along ez . Defining the vorticity as ω = (∇ × v) � ez , the 2D Euler equations take the simple form
of a conservation law for the vorticity. Indeed, taking the curl of (1) gives

∂tω + v·∇ω = 0; v = ez × ∇ψ; ω = ∆ψ, (2)

where we have expressed the non-divergent velocity as the curl of a stream function ψ . We complement the equation
ω = ∆ψ with boundary conditions: if the flow takes place in a simply connected domain D , then the condition that v has
no component along the normal to the interface (impenetrability condition) imposesψ to be constant on the interface. This
constant being arbitrary, we impose ψ = 0 on the interface. We may also consider flows on a doubly periodic domain
(0, 2πδ)× (0, 2π) of aspect ratio δ, in which case ψ(x + 2πδ, y) = ψ(x, y) and ψ(x, y + 2π) = ψ(x, y).

The (purely kinetic) energy of the flow reads

E [ω] =
1
2


D

dr v2 =
1
2


D

dr (∇ψ)2 = −
1
2


D

drωψ, (3)

where the last equality has been obtainedwith an integration by parts. This quantity is conserved by the dynamics (dtE = 0).
As will be seen in Section 2.2, the 2D Euler equations have an infinity of other conserved quantities.

Given the strong analogies between the 2D Euler and quasi-geostrophic equations, we further present the theoretical
properties of both equations in Section 2.2.

In the preceding paragraph, we started from the 3D Euler equation and assumed that the flow is two-dimensional.
A natural question to raise is whether such two-dimensional flows actually exist. Over the last decades, a number of
experimental realizations of two-dimensional flows have been performed. Two-dimensionality can be achieved using strong
geometrical constraints, for instance soap film flows [32,107] (see Fig. 1) or very thin fluid layers over denser fluids [132,154]
(Fig. 22). Another way to achieve two-dimensionality is to use a very strong transverse ordering field: a strong transverse
magnetic field in a metal liquid setup [178] (see Fig. 21), or the Coriolis force on a rapidly rotating fluids (see Fig. 2). Another
original way to mimic the 2D Euler equations (2) is to look at the dynamics of electrons in a Penning trap [173,172] (see
Fig. 4).
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Fig. 2. Experimental observation of a 2D long lived coherent vortex on the 14 m diameter Coriolis turntable (photo gamma production).

2.1.2. Large scale geophysical flows: the geostrophic balance
The quasi-geostrophic equations are the simplest relevant model to describe mid- and high-latitude atmosphere

and ocean flows. The model itself will be presented in Section 2.1.3. To understand its physics, we need to introduce
four fundamental concepts of geophysical fluid dynamics: beta-plane approximation, hydrostatic balance, geostrophic
balance and Rossby radius of deformation. This section gives a basic introduction to these concepts, that is sufficient
for understanding the discussions in the following sections; a more precise and detailed presentation can be found in
geophysical fluid dynamics textbooks [155,194,170,85].

To begin with, we write the momentum equations in a rotating frame (� being the Earth’s rotation vector), with gravity
g, in Cartesian coordinates, calling ez the vertical direction (upward) along g, ey the meridional direction (northward), and
ex the zonal direction (eastward)

∂tu + u · ∇u + 2� × u = −
1
ρ

∇P + g. (4)

Beta-plane approximation. One can show that for mid-latitude oceanic basin of typical meridional extension L ∼ 5000 km,
the lowest order effect of Earth’s sphericity appears only through the projection of Earth’s rotation vector on the local
vertical axis: f = 2� · ez = f0 + βcy, with f0 = 2Ω sin θ0, where θ0 is the mean latitude where the flow takes place,
and βc = 2Ω cos θ0/re, where re is the Earth’s radius [194,155]. At mid-latitudes θ0 ∼ 450, so that f0 ∼ 10−4 s−1 and
βc ∼ 10−11 m−1 s−1.

Hydrostatic balance. Recalling u = (v, w), the momentum equations (4) along the vertical axis read

∂tw + u · ∇w + 2 (� × u) · ez = −
1
ρ
∂zP + g.

In the ocean or atmosphere context, an estimation of the order of magnitude of each term [194,155] lead to the conclusion
that the dominant terms are the vertical pressure gradients and gravitation. Neglecting the others gives the hydrostatic
balance:

∂zP = −ρg. (5)

Geostrophic balance. In the plane (x, y) perpendicular to the gravity direction, the momentum equations read

∂tv + v · ∇v + w∂zv + f ez × v = −
1
ρ

∇hP, (6)

where ∇hP denotes the horizontal pressure gradient.
The Rossby number ε is defined by the ratio of the order ofmagnitude of the advection term v·∇v over that of the Coriolis

term f ez × v. Introducing typical velocity U and length L for the flow, ε = U/fL. In mid-latitude atmosphere, L ∼ 104 km
(size of cyclones and anticyclones), U ∼ 10 m s−1, so that ε ≈ 0.01. In the ocean L ≈ 102 km (width of ocean currents),
U ≈ 1m s−1, so that ε ≈ 0.1. In both cases, this number is small: ε ≪ 1. In the limit of small Rossby numbers, the advection



234 F. Bouchet, A. Venaille / Physics Reports 515 (2012) 227–295

Fig. 3. Vertical structure of the 1.5-layer quasi-geostrophic model: a deep layer of density ρ +∆ρ and a lighter upper layer of thickness H and density ρ.
Because of the inertia of the lower layer, the dynamics is limited to the upper layer.

term becomes negligible in (6), and at leading order there is a balance between the Coriolis term and pressure gradients.
This is called the geostrophic balance:

f ez × vg = −
1
ρ

∇hP, (7)

where vg is the geostrophic velocity. From (7), we see that the geostrophic velocity is orthogonal to horizontal pressure
gradients. Taking the curl of the geostrophic balance (7), and noting that horizontal variations of ρ and f are much weaker
than variations of vg , we see that the two-dimensional velocity field vg is at leading order non-divergent: ∇ � vg = 0.

Let us consider the case of a flow with constant density ρ = ρ0. Then the combination of the vertical derivative of
(7) and of the hydrostatic equilibrium gives f ez × ∂zvg =

g
ρ0

∇hP = 0: the geostrophic flow does not vary with depth.
This is the Taylor–Proudman theorem. However geophysical flows have slightly variable densities and display therefore
vertical variations. But the Taylor–Proudman theorem shows that such vertical variations are strongly constrained and
explain the tendency of geostrophic flows towards two-dimensionality. Please see [194,155,170] for further discussions
of the geostrophic balance.

The Rossby radius of deformation. A consequence of the combined effects of geostrophic and hydrostatic balances is the
existence of density and pressure fronts, whose typical width is called the Rossby radius of deformation. This length plays
a central role in geostrophic dynamics. In order to give a physical understanding of the Rossby radius of deformation, we
consider a situation where a light fluid of density ρ lies above a denser fluid of density ρ + ∆ρ with ∆ρ ≪ ρ. We also
assume here that the bottom layer is much thicker than the upper one. Then, because of the inertia of the deep layer, the
dynamics will be limited to the upper layer of depth H (see Fig. 3).

We consider an initial condition where the interface has a steep slope of amplitude η, and study the relaxation of the
interface slope. This classical problem is called the Rossby adjustment problem [85,194].

Without rotation, the only equilibrium is a horizontal interface. If the interface is not horizontal, pressure gradients induce
dynamics, for instance gravitywaves, that transport potential energy andmass in order to restore the horizontal equilibrium.
A typical velocity for this dynamics is the velocity of gravity waves c. Recalling that the top layer has a thickness H much
smaller than the other one, and considering waves with wavelengths much longer than H (this is the classic shallow-water
approximation), the velocity of the gravity waves is c =

√
Hg ′ (m s−1) where g ′

= g∆ρ/ρ is called the reduced gravity.
With rotation, we see from (6) and (7) that horizontal pressure gradients can be balanced by the Coriolis force. It is then

possible to maintain a stationary non-horizontal slope for the interface (or front) in this case.
The dynamical processes leading from an unstable front to a stable one is called the Rossby adjustment. Initially, the

dynamics is dominated by gravity waves of typical velocity c =
√
Hg ′. This initial process reduces the front slope until

Coriolis forces become as important as pressure terms (related to gravity through hydrostatic balance). The typical time
of the adjustment process is τ = f −1, where f is the planetary vorticity (also called Coriolis parameter). This time can be
estimated by considering that it is the time scale at which velocity variations ∂tu become of the order of the Coriolis force
−f ez ×u. These typical time τ and velocity c are the two important physical parameters of the adjustment. Then, the typical
horizontal width of the front at geostrophic equilibrium can be estimated by a simple dimensional analysis: R ∼ cτ , which
finally gives

R ∼

√
g ′H
f

.

This length is the Rossby radius of deformation. It depends on the stratification∆ρ/ρ, on g , on the Coriolis parameter f ,
and on a typical thickness of the fluid H . This is the typical length at which many fronts form in geophysical flows, resulting
from a balance between Coriolis force and pressure gradients which are related to the stratification via the hydrostatic
balance.
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For the sake of simplicity, we have introduced the Rossby radius of deformation with a simple dimensional analysis.
The Rossby adjustment is a very interesting physical problem in itself. Please see [85,194] for more detailed analysis and
discussions of this process.

In mid-latitude oceans, ∆ρ/ρ ∼ 3 10−3 so g ′
= 0.03 m s−2 and H = 500 m, then the Rossby radius of deformation

is R ∼ 60 km and tends to a few kilometers closer to the poles. This length is easily observable on snapshots of oceanic
currents, as shown in Figs. 14 and 17. It corresponds for example to the jet width, either when jets are organized into either
rings or zonal (eastward) flows. In the Earth’s atmosphere R ∼ 1000 km,which is also the typical size of cyclones responsible
for mid-latitude weather features. In the Jovian atmosphere R ∼ 2000 km, which corresponds to the typical width of the
jet around the Great Red Spot. It is remarkable that in this latter case, the large scale flow, i.e. the Great Red Spot itself, has
a much bigger length scale ∼20,000 km.

2.1.3. The quasi-geostrophic model
We now present the quasi-geostrophic equations, a model for the dynamics of mid and high latitude flows, where the

geostrophic balance (Please see Section 2.1.2 and formula (7)) holds at leading order.
On the previous Section 2.1.2, we have seen that for geophysical flows, the Rossby number ε = U/fL is small, leading

to the geostrophic balance (7) at leading order. In order to capture the dynamics, the quasi-geostrophic model is obtained
through an asymptotic expansion of the Euler equations in the limit of small Rossby number ε, together with a Burger R/L
of order one (where R is the Rossby radius of deformation introduced in the previous paragraph, and L a typical length for
horizontal variations of the fields). We refer to [194,155] for a comprehensive derivation. Here we give only the resulting
model and the physical interpretation.

We consider in this review the simplest possible model for the vertical structure of the ocean, that takes into account the
stable stratification: an upper active layerwhere the flow takes place, and a lower denser layer either at rest or characterized
by a prescribed stationary current (see Fig. 3). This is called the 1.5 layer quasi-geostrophicmodel. The full dynamical system
reads

∂tq + v · ∇q = 0, (8)

with q = ∆ψ −
ψ

R2
+ ηd(y), (9)

and v = ez × ∇ψ, (10)

with the impenetrability boundary condition, equivalent to ψ being constant on the domain boundary ∂D .
The complete derivation shows that the stream function gradient ∇ψ is proportional to the pressure gradient along the

interface between the two layers; then relation (10) is actually the geostrophic balance (7). The dynamics (8) is a nonlinear
transport equation for a scalar quantity, the potential vorticity q given by (9). The potential vorticity is a central quantity for
geostrophic flows [85,194,170,155]. The term ∆ψ = ω is the relative vorticity.2 The term ψ/R2 is related to the interface
pressure gradient and thus to the interface height variations through the hydrostatic balance (see Section 2.1.2). R is the
Rossby radius of deformation introduced in Section 2.1.2. Physically, an increase of−ψ/R2 implies a stretching of the upper
layer thickness. Since the potential vorticity is conserved, a stretching of the fluid column in the upper layer (i.e. an increase
of −ψ/R2) is associated with a decrease of the relative vorticity ω = ∆ψ , i.e. a tendency towards an anticyclonic rotation
of the fluid column [170]. The term ηd represents the combined effects of the planetary vorticity gradient (remember that
f = f0 + βy) and of a given stationary flow in the deep layer. We assume that this deep flow is known and unaffected by
the dynamics of the upper layer. It is described by the stream function ψd which induces a permanent deformation of the
interface with respect to its horizontal position at rest.3 This is why the deep flow acts as a topography on the active layer.
The detailed derivation gives

ηd = βcy + ψd/R2.

Starting from (8) and (9) and assumingψ = 0 at boundaries it is possible to prove that quasi-geostrophic flows conserve
the energy:

E [q] =
1
2


D

dr

(∇ψ)2 +

ψ2

R2


= −

1
2


D

dr (q − ηd) ψ. (11)

Two contributions are distinguished in (11): a kinetic energy term 1
2


D

dr (∇ψ)2, as in the Euler equations, and a

(gravitational) available potential energy term 1
2


D

dr ψ
2

R2
.

2 The term ‘‘relative’’ refers to the vorticity ω in the rotating frame.
3 A real topography h(y) would correspond to h(y) = −f0ηd(y)/H where f0 is the reference planetary vorticity at the latitude under consideration and

H is the mean upper layer thickness. Due to the sign of f0 , the signs of h and ηd would be the same in the south hemisphere and opposite in the north
hemisphere. As we will discuss extensively the Jovian south hemisphere vortices, we have chosen this sign convention for ηd .
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2.2. Hamiltonian structure, Casimir’s invariants and microcanonical measures

This subsection deals with theoretical properties of the 2D Euler and quasi-geostrophic equations. As already noticed,
these properties are very similar because both dynamics are the nonlinear advection of a scalar quantity, the vorticity for
the 2D Euler case or the potential vorticity for the quasi-geostrophic case. In the following, we discuss these properties in
terms of the potential vorticity q, but they are also valid for the 2D Euler equation. Indeed the 2D Euler equation is included
in the 1/2-layer quasi-geostrophic equation, as can be seen by considering the limit R → +∞, ηd = 0, in the expression
(9) of the potential vorticity.

2.2.1. The theoretical foundations of equilibrium statistical mechanics
Let us consider a canonical Hamiltonian system: {qi}1≤i≤N denote the generalized coordinates, {pi}1≤i≤N their conjugate

momenta, and H({qi, pi}) the Hamiltonian. The variables {qi, pi}1≤i≤N belong to a 2N-dimensional space Ω called the
phase space. Each point ({qi, pi}) is called amicrostate. The equilibrium statisticalmechanics of such a canonical Hamiltonian
system is based on the Liouville theorem, which states that the non-normalized measure

µ =

N
i=1

dpidqi

is dynamically invariant. The invariance of µ is equivalent to
i


∂ q̇i
∂qi

+
∂ ṗi
∂pi


= 0, (12)

which is a direct consequence of the Hamiltonian equations of motion
q̇i =

∂H
∂pi
,

ṗi = −
∂H
∂qi
.

Note that the equations of motion can also be written in a Poisson bracket form:
q̇i = {qi,H} ,
ṗi = {pi,H} .

(13)

The terms in the sum (12) actually vanish independently:

∀i,
∂ q̇i
∂qi

+
∂ ṗi
∂pi

= 0.

This is called a detailed Liouville theorem.
For any conserved quantities {I1 (p, q) , . . . ,In (p, q)} of the Hamiltonian dynamics, the measures

µF =
1
ZF


i

dpidqiF (I1, . . . ,In)

where ZF is a normalization constant, are also invariant measures. An important question is to know which of these is
relevant for describing the statistics of the physical system.

In the case of an isolated system, the dynamics is Hamiltonian and there is no exchange of energy or other conserved
quantities with the environment. It is therefore natural to consider a measure that takes into account all these dynamical
invariants as constraints. This justifies the definition of the microcanonical measure (for a given set of the values
I01 (q, p), . . . , I

0
n (q, p)


of the invariants {I1(q, p), . . . ,In(q, p)}):

µm

I01 , . . . , I

0
n


=

1
Ω


I01 , . . . , I0n

 
i

dpidqi

k=1,n

δ

Ik (p, q)− I0k


, (14)

where n is the number of constraints andΩ

I01 , . . . , I

0
n


is a normalization constant.4 For small variations of the constraints

{∆Ik}1≤k≤n, the volume of the phase space with the constraint I0k ≤ Ik ≤ I0k +∆Ik is given byΩ

I01 , . . . , I

0
n

 
k=1,n∆Ik.

4 A more natural definition of the microcanonical measure would be as the uniform measure on the submanifold defined by Ik = I0k for all k. This
would request adding determinants in the formula (14), and imply further technical difficulties. In most cases, however, in the limit of a large number
of degrees of freedom N , these two definitions of the microcanonical measure become equivalent because the measures have large deviations properties
(saddle points evaluations) where N is the large parameter, and such determinants become irrelevant. We note that in the original works of Boltzmann
and Gibbs, the microcanonical measure refers to a measure where only the energy constraint is considered.
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Then the Boltzmann entropy of the Hamiltonian system is
S = kB logΩ.

When the system considered is not isolated, but coupled with an external thermal bath of conserved quantities, other
measures need to be used to describe properly the system by equilibrium statistical mechanics. Such measures are usually
referred to as canonical or grand-canonical. A classical statistical mechanics result then proves that the relevant functions
F are exponential (Boltzmann factors):

µc =
1
Zc


i

dpidqi exp (−β1I1 − · · · − βnIn) (15)

where Zc is a normalization constant. When coupled to a thermal bath, a system can receive from and give energy to
the thermal bath, the resulting balance leading to the Boltzmann factor, as explained in statistical mechanics textbooks.
Flows are forced and stirred bymechanisms that do not allow for this two-way exchange of energy characteristic of thermal
baths. It is then hard to imagine the coupling of flows described by the Euler or quasi-geostrophic dynamics, with baths of
energy, vorticity or potential vorticity. Then the relevant statistical ensemble for thesemodels is themicrocanonical one, and
we will work in the following only starting from microcanonical measures. See Section 3.2, on the physical interpretation
of the microcanonical ensemble.

In statistical mechanics studies, it is sometimes argued that, in the limit of an infinite number of degrees of freedom,
canonical and microcanonical measures are equivalent. Then as canonical measures are more easily handled, they are
preferred in many works. However, whereas the equivalence of canonical and microcanonical ensembles is very natural
and usually true in systemswith short range interactions, common in condensedmatter theory, it is often wrong in systems
like the Euler equations. As a consequence, we will avoid the use of canonical measures in the following (see for instance
[16,59,37,22,44,15,69] and references therein).

In statistical mechanics, a macrostate M is a set of microstates verifying some conditions. The conditions are usually
chosen such that they describe conveniently the macroscopic behavior of the physical systems through a reduced number
of variables. For instance, in a magnetic system, a macrostateM could be the ensemble of microstates with a given value of
the total magnetization; in the case of a gas, a macrostate could be the ensemble of microstates corresponding to a given
local density f (x, p) in the six dimensional space (x, p) (µ space), where f is defined for instance through some coarse-
graining. In our fluid problem, an interesting macrostate will be the local probability distribution ρ (x, σ ) dσ to observe
vorticity values ω (x) = σ at xwith precision dσ .

If we identify the macrostate M with the values of the constraints that define it, we can define the probability of a
macrostate P (M) dM . If the microstates are distributed according to the microcanonical measure, P (M) is proportional
to the volume of the subsetΩM of phase space where microstates {qi, pi}1≤i≤N realize the state M . The Boltzmann entropy
of a macrostate M is then defined to be proportional to the logarithm of the phase space volume of the subset ΩM of all
microstates {qi, pi}1≤i≤N that realize the stateM .

In systemswith a large number of degrees of freedom, it is customary to observe that the probability of somemacrostates
is concentrated close to a unique macrostate. There exist also cases where the probability of macrostates concentrates
close to larger set of macrostates (see for instance [108]). Such a concentration is a very important information about the
macroscopic behavior of the system. The aim of statistical physics is then to identify the physically relevant macrostates,
and to determine their probability and where this probability is concentrated. This is the programwewill follow in the next
sections, for the 2D Euler equations.

In the preceding discussion, we have explained that the microcanonical measure is a natural invariant measure with
given values of the invariants. An important issue is to know if this measure describes also the statistics of the temporal
averages of the Hamiltonian system. This issue, called ergodicity will be discussed in Section 3.1.2.

The first step to define themicrocanonical measure is to identify the equivalent of a Liouville theorem and the invariants.
The Euler and quasi-geostrophic equations describe a conservative dynamics. They can be derived from a least action
principle [170,96], like canonical Hamiltonian systems. It is thus natural to expect Hamiltonian structure. There are however
fundamental differences between infinite dimensional systems like the Euler equations and canonical Hamiltonian systems:
1. The Euler equation is a dynamical system of infinite dimension. The notion of the volume of an infinite dimensional space

is meaningless. Then the microcanonical measure cannot be defined straightforwardly.
2. For such infinite dimensional systems, we cannot in general find a canonical structure (pair of canonically conjugated

variables {qi, pi} describing all degrees of freedom). There exists however a Poisson structure: one can define a Poisson
bracket {., .}, like in canonical Hamiltonian systems (13) and the dynamics reads

∂tq = {q,H [q]} , (16)

where H is the Hamiltonian.
For infinite dimensional Hamiltonian systems like the 2D Euler equations or quasi-geostrophicmodel, the Poisson bracket in
(16) is degenerate [95,143], leading to the existence of an infinite number of conserved quantities, the Casimir’s functionals.
These conservations laws have very important dynamical consequences, as explained in the next section. A detailed
description of the Hamiltonian structure of infinite dimensional systems is beyond the scope of this review. We refer to
[95,143] for the description of the Poisson structure formany fluid systems. The conservation laws and the Liouville theorem
are however essential consequences and we discuss them in the next two sections.
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2.2.2. Casimir’s conservation laws
Both Euler (2) and quasi-geostrophic (8) equations conserve an infinite number of functionals, named Casimirs. They are

all functional of the form:

Cs[q] =


D

dr s(q), (17)

where s is any function sufficiently smooth. Here and in the following, q is the transported field, either the potential vorticity
(9) for the quasi-geostrophicmodel or the vorticity in the case of the Euler equations forwhich q = ω. As said in Section 2.2.1,
Casimir conserved quantities are related to the degenerate structure of infinite dimensional Hamiltonian systems. They can
be also understood as the invariants arising from the Noether’s theorem, as a consequence of the relabeling symmetry of
fluid mechanics (see for instance [170]).

Let us define A (σ ) the area ofD with potential vorticity values lower thanσ , and γ (σ ) the potential vorticity distribution

γ (σ ) =
1

|D|

dA
dσ

with A (σ ) =


D

drχ{q(x)≤σ }, (18)

where χB is the characteristic function of the set B ⊂ D (χB(x) = 1 for x ∈ B), and |D| is the area of D . As quasi-
geostrophic (8) and 2D Euler equations (2) are transport equations by an incompressible flow, the area γ (σ ) occupied by a
given vorticity level σ (or equivalently A (σ )) is a dynamical invariant.

The conservation of the distribution γ (σ ) is equivalent to the conservation of all Casimir’s functionals (17). The domain
averaged potential vorticity Γ , the enstrophy G2 and the other moments of the potential vorticity Gn are Casimirs of a
particular interest

G [q] = G1 [q] =


D

dr q and Gn [q] =


D

dr qn. (19)

For the 2D Euler equations in a bounded domain, G is also the circulation G =

∂D

v · dl.
In any Hamiltonian systems, symmetries are associated with conservation laws, as a consequence of Noether’s theorem

(see e.g. [170] and references therein). Then if the flow domain D is invariant under rotations or translations, it will be
associated with angular momentum and momentum conservation. For domains with symmetries, these conservation laws
have to be taken into account in a statistical mechanics analysis.

2.2.3. Detailed Liouville theorem and microcanonical measure for the dynamics of conservative flows
In order to discuss the detailed Liouville theorem, and buildmicrocanonical measure, in the followingwe decompose the

potential vorticity field on the eigenmodes of the Laplacian on D; where D is the domain on which the flow takes place. We
could have decomposed the field on any other orthogonal basis. Whereas the Laplacian and Fourier basis are simpler for the
following discussion, finite elements basis are much more natural to justify mean field approximation and to obtain large
deviation results for the measures, as discussed in Section 2.3.5.

We call {ei}i≥1 the orthonormal family of eigenfunctions of the Laplacian on the domain D , with Dirichlet boundary
conditions (see Section 2.1):

−∆ei = λiei,


D

dr eiej = δij. (20)

The eigenvalues λi are arranged in increasing order. For instance for a doubly periodic domain or infinite domain, ei (r) are
Fourier modes. Any function g defined on the domain can be decomposed into g =


k gk(t)ek(r)with gk =


D

dr gek. Then

q (r, t) =

+∞
i=1

qi (t) ei (r) .

From (8), the quasi-geostrophic equations are

q̇i =

+∞
j=1

+∞
k=1

Aijkqjqk, (21)

where the explicit expression for Aijk will not be needed in the following discussion. For (21), a detailed Liouville theorem
holds:

∀i,
∂ q̇i
∂qi

= 0 , (22)

see [119,112]. Note that while we have discussed here the detailed Liouville theorem in the context of mode decomposition,
more general results exist [164,206].5

5 A direct consequence of the detailed Liouville Theorem (22) is that any truncation of the 2D Euler or quasi-geostrophic equations also verifies a Liouville
theorem [112]. This result is actually much more general: any approximation of the Euler equation obtained by an L2 projection on a finite dimensional
basis verify a Liouville theorem, (see [164]). For truncations preserving the Hamiltonian structure and a finite number of Casimir invariants, see [206].
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From the detailed Liouville theorem, we can define the microcanonical measure. First the n moment microcanonical
measure (which, by including the energy, makes n + 1 constraints) is defined as

µm,n (E,Γ1, . . . ,Γn) =
1

Ωn (E,Γ1, . . . ,Γn)


i

dqi δ (E [q] − E)

k=1,n

δ (Gk [q] − Γk) , (23)

where E (11) is the energy, Γn (19) the vorticity moments and δ(·) the Dirac delta function. A precise definition ofµm,n goes
through the definition of approximate finite dimensional measures: for any observable φK depending on K components
{qi}1≤i≤K of q, we define

⟨µN
m,n, φK ⟩ =

 
i=1,N

dqi δ (EN [q] − E)


k=1,n
δ

GN,k [q] − Γk


φK

Ωn,N (E,Γ1, . . . ,Γn)
,

where EN and GN,n are finite dimensional approximations of E (11) and Gn (19), and ΩN is a normalization factor. Then
we define ⟨µm,n, φK ⟩ = limN→∞⟨µN

m,n, φK ⟩. Usually Ωn,N has no finite limit when N goes to infinity, and the definition of
Ωn (E,Γ1, . . . ,Γn) in the formal notation (23) implies a proper rescaling.
µm,n are ensembles of invariant measures. The microcanonical measure corresponding to the infinite set of invariants

{Γi} is then defined as

µm (E, {Γi}) = lim
n→∞

µm,n (E,Γ1, . . . ,Γn) ,

and is denoted

µm (E, {Γi}) =
1

Ω (E, {Γi})


i=1..∞

dqi δ (E [q] − E)


k=1..∞

δ (Gk [q] − Γk) . (24)

2.3. Specificity of 2D and geostrophic turbulence as a consequence of Casimir’s invariants

Wediscuss in this section the consequences of the conservation laws presented above. These consequences are important
physical properties: (i) the existence of an infinite number of stationary solutions to the 2D Euler equations, and the
stability of some of these flows (Section 2.3.1), (ii) the existence of an inverse (or upscale) energy cascade and of a
direct (or downscale) cascade of enstrophy (Section 2.3.2), (iii) the self-organization of the large scale flow (Section 2.3.3),
(iv) non-trivial results from the equilibrium statistical mechanics of two-dimensional flows by contrast with three
dimensional flows (Section 2.3.4), and (v) the validity of a mean-field treatment of equilibrium statistical mechanics
(Section 2.3.5).

2.3.1. First physical consequence of 2D invariants: multiple stationary flows
Let us consider a dynamical system G : ẋ = G (x), where ẋ is the temporal derivative of x, with conserved quantity F (x)

(Ḟ (x) = 0). It can be proved easily that any non-degenerate extrema x0 of F (F ′ (x0) = 0) is a stationary solution (ẋ = 0)
of G (G (x0) = 0) and if, in addition, the second variations of G are either positive-definite or negative-definite, then this
stationary solution is stable [95]. This general result seems natural when one considers the examples of energy and angular
momentum extrema encountered in classical mechanics. This simple idea, coupled to convexity estimates, was used for
instance by Arnold [5] to prove the stability of stationary solutions of the 2D Euler equations. Generalizations of these ideas
to larger classes of stationary flows of the 2D Euler equations can be found in [204,70,35]. Generalizations of these ideas to
many other fluid mechanics equations can be found in [95].

If we apply this idea to the 2D Euler and quasi-geostrophic equations, as a consequence of the infinite number of Casimir’s
invariants (2.2.2), there exists an infinite number of stationary flows, a large number of them being stable. In any dynamical
system, fixed points play a major role. In the case of the 2D Euler equations, moreover they turn out to be attractive, as
discussed in Section 6.6.

We discuss now the case of the quasi-geostrophic equations, but the case of the 2D Euler equations is exactly similar.
The conserved quantities we use are the so called Energy–Casimir functionals

F = E [q] + Cs[q] = −
1
2


D

dr qψ +


D

dr s (q) , (25)

where s is an arbitrary function. They are the sum of the energy (11) and a Casimir invariant (17). The critical points qe of
this functional (satisfying δF =


D

dr

ψe − s′ (qe)


δq = 0 for any perturbation δq) verify the equation

ψ = s′ (q) . (26)

As expected from the general argument above, these critical points should be stationary solutions of the quasi-geostrophic
equation (8). From (8), we see that any dynamical invariant verifies∇ψ×∇q = 0 (we recall that q,ψ and the velocity v are
related by (9)–(10)). Then the dynamical invariants of the quasi-geostrophic equation (8), are all potential vorticity fields q,
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such that the isocontour lines for q and forψ are the same. A special class of dynamical invariant are the potential functional
vorticity fields q, such that a relation q = g (ψ) between q and ψ exist, with g an arbitrary function. Then solutions to (26)
are indeed stationary flows.

The case when s is either strictly convex or concave is very interesting. Indeed, then s′ is monotonous and (26) can be
inverted: q =


s′
−1

(ψ). Moreover if the functional (25) is either strictly convex or concave, then we expect the critical
points to exist and to be unique, andwe expect them to be non-degenerate (the second variations are either positive-definite
or negative-definite). Then according to the general argument above, in this case we expect the stationary flows (25) to be
dynamically stable.

In the case of fluid dynamics, there are further difficulties with the general argument above, because the potential
vorticity field q lies in an infinite dimensional space variable. Roughly speaking, these difficulties are related to continuity
properties of the functionals, which may depend on the chosen norm for the potential vorticity field. One then has to define
carefully the norm for the perturbation and a norm with respect to which the dynamics is stable. In the case of the Euler
equations, these difficulties have first been dealt by Arnold [5], proving that when F is either strictly convex or strictly
concave, the stationary flows (25) are indeed stable. Among Arnold’s results, we learn that a sufficient condition for F to be
strictly convex is s convex and a sufficient condition for F to be strictly concave is s concave with s′′(qe) ≥ c > λ1, where
λ1 is the smallest eigenvalue of the Laplacian on the domain D , with Dirichlet boundary conditions (these two condition can
be easily worked out). These results have found to be valid for weaker hypothesis and generalized to the quasi-geostrophic
model and a number of other models in fluid dynamics and plasma physics (see for instance [95,204,70]).

In the preceding paragraphs, we have applied the property that non-degenerate extrema of conserved quantities are
stable equilibria, to the minimization of Energy–Casimir functionals (25), following Arnold [5]. The same idea and property
could be applied to other conserved functionals or conserved functionals with constraints. For instance, we may use that
the dynamics conserves all Casimirs (17). Then the extremum of the energy (11) for fixed values of the Casimirs (17)
(a constrained variational problem) should be a stable equilibria.6 Such an extremization is called a Kelvin energy principle
as Lord Kelvin was the first to realize this property [188]. We note that critical points of a Kelvin energy principle, like
critical points of Energy–Casimir functionals (25), are stationary solutions of the quasi-geostrophic (or 2D Euler) equations.
On the one hand, the class of stable solutions obtained through Kelvin energy principle is larger than the class obtained
from Energy–Casimir variational problem, and in this sense, the Kelvin energy principle is less restrictive. On the other hand
the stability of Kelvin energy minimizers is expected to be weaker compared to the stability of Energy–Casimir minimizer,
as perturbations modifying the value of the Casimirs may destabilize the flow (for instance we know no counterparts of
the Arnold theorems for Kelvin energy minimizers). We refer to [45] for a recent comprehensive review of these different
variational problems and other related ones, and for a discussion of the conditions for second variations of these variational
problems to be definite positive or definite negative.

We conclude that due to the infinite number of their invariants, the 2D Euler and quasi-geostrophic equations have an
infinite number of stationary flows. Moreover an infinite class of these stationary flows can be proved to be stable. As in any
dynamical system, we expect these stationary flows to play a very important role in the dynamics.Wewill see in Section 3.1
that the microcanonical measure of statistical mechanics is concentrated close to some of these stationary flows. Moreover,
the arguments of this section, or some generalizations, can be used to prove the dynamical stability of classes of statistical
equilibria [137,70].

2.3.2. Second physical consequence of 2D invariants: the inverse energy cascade
We saw that the infinite number of steady states of the 2D Euler and quasi-geostrophic equations, and the stability

of some of these states, can be understood as a consequence of the conservation of Casimir invariants. We now look at
another consequence of these conservation laws: the direction of the energy fluxes in spectral space is upscale. The argument
developed in this section is a very classical one for physical systems with multiple invariants.

We treat here the case of decaying two-dimensional turbulence (for which the potential vorticity q is simply the relative
vorticity ω), following [150]. A discussion of the direction of the energy and enstrophy fluxes was originally given by
Fjortoft [79]. The case of statistically stationary cascade [111] is treated in Section 6.2. Let us consider an infinite 2D domain
and decompose the vorticity into Fourier eigenmodes. The energy spectrum E(k) is defined such that E (k) dk is the energy
contained inmodes with wave numbers k′ with k ≤ k′

≤ k+∆k, and such that the total energy is E =

dk E (k). We define

similarly the enstrophy spectrum Γ2 (k): Γ2 =

dkΓ2 (k) (see (19) for Γ2). It is easy to show that Γ2 (k) = 2k2E (k).

A question of interest is to determine whether the energy goes towards large scales or small scales. To answer this, we
look at rigorous bounds on the k-centroids kE (and l-centroids lE) for the energy:

kE =
1
E


dk kE (k) and lE =

1
E


dk k−1E (k) ,

and for the enstrophy

kΓ2 =
1
Γ2


dk kΓ2 (k) dk and lΓ2 =

1
Γ2


dk k−1Γ2 (k) .

A transfer of energy towards large scales during the flow evolution is equivalent to an increase of the k- or the l-centroid.

6 See [195,190,191] for interesting algorithms that allow to compute energy maxima while preserving the Casimir functionals.
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Fig. 4. Snapshot of electron density (analogous to vorticity field) at successive time from an initial condition with two vortices to a single large scale
coherent structure via turbulent mixing (see [172,173]). The best experimental realization of inviscid 2D Euler equations is probably so far achieved in
those magnetized electron plasma experiments where the electrons are confined in a Penning trap. The dynamics of both systems are indeed isomorphic,
where the electron density plays the role of vorticity. Themajor drawback of this experimental setting comes from its observation, since anymeasurement
requires the destruction of the plasma itself.

Using Cauchy–Schwartz inequalities


dk f (k)g(k) ≤


dk f 2(k)


dk g2(k)


, one can easily show that

kE ≤


Γ2

2E
, kΓ2 ≥


Γ2

2E
, kEkΓ2 ≥

Γ2

2E
, (27)

lE ≥


2E
Γ2
, lΓ2 ≤


E
Γ2
, lE lΓ2 ≥

2E
Γ2
. (28)

The first inequalities of (27) and (28) imply that the energy cannot be transferred to scales smaller than
√
2E/Γ2, and

enstrophy cannot be transferred to scales larger than
√
2E/Γ2.

The last inequality of (27) implies that if the energy goes to larger and larger scales (kE → 0), then the enstrophy goes
to smaller and smaller scales (kΓ2 → +∞): an evolving state presenting an inverse flux of energy implies a simultaneous
direct flux of enstrophy. Similarly, the last inequality of (28) implies than if the enstrophy goes to smaller and smaller scales
(lΓ2 → 0), then the energy goes to larger and larger scales (lE → +∞): a direct flux of enstrophy implies an inverse flux of
energy. A sufficient and necessary condition for the existence of a forward enstrophy flux is then the existence of an inverse
energy flux.

2.3.3. Third physical consequence: the phenomenon of large scale self-organization of the flow
The most striking feature of 2D and geostrophic flows, and by far the most important phenomenon for applications,

is their tendency to organize into large scale coherent structures. Be it in laboratory experiments (with the formation of
long lived and robust 2D vortices, see for instance Fig. 4), in the ocean (with the formation of jets and rings), in the Jovian
atmosphere (with the Great Red Spot and other vortices), or in numerical simulations, these coherent structures are yet
ubiquitous, and represent the main qualitative feature of turbulent 2D flows. Understanding their formation is thus a major
challenge in geophysical fluid dynamics.

In the previous section, we proved that an upscale energy flux is always accompanied by a downscale enstrophy flux,
and that there is a lower bound for the energy centroid. Using heuristic statistical mechanics arguments, we know that the
dynamics will tend to partition as much as possible energy and enstrophy among the modes. The combination of these
two arguments and the preceding are sufficient to conclude that the complex nonlinear dynamics of the flow will tend to a
transfer of energy towards largest scales and a transfer of enstrophy towards smallest scales.
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Wealso explained in Section 2.3.1why the equations have infinitelymanymultiple stable stationary flows. This, together
with the energy fluxes towards the largest scales, is already sufficient to explain qualitatively the self-organization of the
flow. On an inertial time scale (given for instance by the turnover time of the large scales of the turbulent flow), these large
scale structures can be considered stationary solutions, in contrast to the complicated dynamics of the small scale turbulent
flow.

The aim of this review is to present predictive theories for these large scale structures. We need to explain the physical
mechanism atwork and describe theoretically the dynamicalmechanisms thatwill select some states among all the possible
stationary flows. This is where statistical mechanics will be very useful. The equilibrium theory predicts that turbulent
mixing7 will drive the flow towards a stationary state thatmaximizes a Boltzmann–Gibbs entropy formulas, while satisfying
all the constraints of the dynamics presented in the previous subsections. This mixing entropy, derived from the Liouville
theorem, will allow us to build theoretically natural invariant measures for the dynamics. We will also consider non-
equilibrium theories for forced and dissipated flows.

Statisticalmechanics is an extremely powerful tool that allows to reduce a complicated problem (the description of a fine-
grained turbulent flow, our microscopic state with a huge number of degrees of freedom) to the study of a few parameters,
which describes the large scale structures of the flow, our macroscopic state.

2.3.4. Fourth consequence: about Jeans paradox, why can we get a non-trivial equilibrium statistical mechanics for 2D flows by
contrast with the 3D Euler ultraviolet divergence

In this section, for pedagogical reasons, we try to apply equilibrium statistical mechanics ideas to the three-dimensional
Euler equations. This very simple discussion illustrates, with the example of the 3D Euler equations, that in most of
Hamiltonian field equation a straight application of equilibrium statistical mechanics fails because of the so called Jeans
paradox [158]. The reason is that in the simplest cases, for instance when energy is the only conserved quantity, at the
statistical equilibria each degree of freedomhas on average the same energy. Then because there are infinitelymany degrees
of freedom for a field, either the total energy is infinite, or if the energy is kept constant the average energy per modes is
zero.

Then equilibrium statistical mechanics predicts that all the energy flows towards the smallest scales, for the three-
dimensional Euler equations, in accordance with basic observations. But the microcanonical measure obtained in the limit
of an infinite number of degrees of freedom is a trivial one, with no more energy in the largest scales. This argument proves
that, because of Jeans paradox, three-dimensional turbulence is intrinsically a non-equilibrium process.

The main interest of this discussion is to show that, by contrast, two dimensional flows are different from this point of
view and give non-trivial microcanonical measures. Basically thanks to the presence of more invariants, the Jeans paradox
is avoided for the energy. Since the discussions of this section involves technical computations, it can be skipped at first
reading. However, this discussion is essential for a physically relevant interpretation of the theory.

In Section 2.2.3, we defined a microcanonical measure for the 2D Euler equations. We proceed here similarly. First, we
note that for the three-dimensional Euler equations, for instance on a periodic cube, the velocity can be decomposed in
Fourier modes uk = (u1,k, u2,k, u3,k). The 3D Euler equations then read

u̇i,k =


p,q; j,l=1,2,3

Aj,l,k,p,quj,pul,q.

The explicit expression of A is not important for this discussion. The important point is that a detailed Liouville theorem
holds:

∀k,


i


∂ u̇i,k

∂ui,k
+
∂ u̇i,−k

∂ui,−k


= 0,

see for instance [119] for more details. As the kinetic energy E =
1
2


k |uk|

2
=

1
2


dr u2 is the only invariant in this case,

following discussion in Section 2.2.3, the microcanonical measure is defined as

µm = lim
K→∞

µK
m with µK

m =
1

ΩK (E)


|k|≤K

dvkδ (EK − E) , (29)

where 2EK =


|k|≤K |vk|2 andm stand for ‘‘microcanonical’’.
Let us compute the average of Ek = |vk|2 /2, the energy of mode k for the measure µK

m. We note this average ⟨Ek⟩m,K =
µK

mEk. In (29), all degrees of freedoms vk′ readily play a symmetric role. Henceforth we have energy equipartition
⟨Ek⟩m,K = ⟨Ek′⟩m,K and ⟨Ek⟩m,K = E/N (K) where N (K) is the total number of modes such that |k| ≤ K . This equipartition
for the finite-dimensional measure µK

m leads to an energy spectrum E (k) proportional to k2 (see Section 2.3.2 for definition
of E(k)). This has been described by Kraichnan [111]. Recent applications to Galerkin truncations of the Euler equations and
bottlenecks in turbulence can be found in Frisch et al. [84].

7 Here mixing does not refers to the effect of molecular viscosity, but rather to the stirring by the flow dynamics.
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We are now interested in invariant measures for the Euler equations themselves, not in invariant measures for truncated
dynamics. We thus take the limit K → ∞ (which then implies N (K) → +∞), with fixed energy because each trajectory
has a finite energy. We obtain

⟨Ek⟩m = lim
K→∞

⟨Ek⟩m,K = 0.

Then, at statistical equilibrium, the average energy of each mode is exactly zero. Due to the infinite number of degrees of
freedom, the tendency towards equipartition spreads energy on modes corresponding to smaller and smaller scales. This
phenomenon associated with the existence of an infinite number of degrees of freedom is called the Jeans paradox [158]. It
is a form of ultraviolet divergence.

We thus conclude that the equilibrium statistical mechanics of the 3D Euler equations explains the tendency for the
energy to flow towards smaller and smaller scales. However, because in the microcanonical distribution, the energy
per degree of freedom is zero, the microcanonical measure is trivial and thus useless. We see that for 3D turbulence,
the statistically stationary flux of energy towards the smallest scales is intrinsically a far from equilibrium process. The
equilibrium statistical mechanics is of no help to understand these fluxes, and the associated energy spectrum and velocity
increment statistics.

Because of the additional Casimir invariants, the situation is quite different in 2D turbulence. All configurations of the
microcanonical ensemble described in Section 2.2.3 have the same energy E and enstrophy Γ2. Then, for any configurations
the lE centroid inequality (28), holds: lE >


2E
Γ2

. Henceforth, this is also true for the average over the microcanonical
measure:

⟨lE⟩m >


2E
Γ2
.

This simple argument shows that for the microcanonical measure, the energy cannot flow to the smallest scales. The
microcanonical measure is thus non-trivial for two-dimensional conservative flows. It will describe large scale features
that cannot be guessed straightforwardly. A detailed understanding of these equilibrium structures is the aim of the next
sections.

The energy–enstrophy microcanonical measure of two dimensional flows. In order to illustrate that statistical mechanics gives
non-trivial predictions for the 2D Euler case, we now consider the energy–enstrophy canonical measure

µm,2 (E,Γ2) =
1

Ω (E,Γ2)

∞
i=1

dωi δ (E [ω] − E) δ (G2 [ω] − Γ2) .

This is the measure where we take into account only the quadratic invariants. There is no physical reason to exclude
the other invariants; however the energy–enstrophy measure can be interesting because it may be in some cases a good
approximation of the complete microcanonical measure. The interest and limitation of the energy–enstrophy measures are
further discussed at the end of this section.

Our real motivation here is more pedagogical: it will be very useful to introduce mean-field treatment, and to explain
on a simple example the relation between microcanonical measures defined on Section 2.2.3 and mixing entropy used in
Section 3.1 and the following. The following discussion and the computation performed in the following paragraphs are
adapted from the original presentation in [19].

An energy–enstrophy ensemble has been treated and discussed in length by many authors, including Kraichnan
(see [112]), but in the canonical ensembles (that is using the canonical measure (15), rather than the microcanonical one).
See also [128] for a precise discussion for the energy–enstrophy–circulation ensemble. It has also been proven, through
computations of explicit inequalities, that the statistics of the small scales of the velocity field, in the energy–enstrophy
ensemble, are incompatible with 2D Navier–Stokes invariant measures [11].

The following discussion gives the first derivation of the microcanonical ensemble, its relation to the mean field
variational problem, and the first observation of ensemble inequivalence for the energy–enstrophy ensemble. We come
back to discuss Kraichnan type results in the end of this section.

Following the discussion in Section 2.2.3, themicrocanonicalmeasure is defined throughN dimensional approximations:

µm,2 = lim
N→∞

µN
m,2 with µN

m,2 =
1

ΩN (E,Γ2)


i=1...N

dωi δ (EN [ω] − E) δ

G2,N [ω] − Γ2


(30)

where,ωi are components ofω on the base of eigenmodes ei (see (20)), EN andΓ2,N areN dimensional approximations of the
energy (3) and enstrophy (19): 2EN =


n=1...N ω

2
n/λn and G2,N [ω] =


n=1..N ω

2
n . In the following, to simplify the argument,

we assume that the first eigenvalue is non-degenerate: λ1 ≠ λ2, which is generically the case.8

8 This is always true for simply connected bounded Lipschitz domains. An example of geometry for which the first eigenvalue is degenerate is a doubly
periodic domain with aspect ratio δ = 1.
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The main technical difficulty is to compute

ΩN (E,Γ2) =

 
i=1..N

dωi δ (EN [ω] − E) δ

G2,N [ω] − Γ2


. (31)

The computation of this result, using representation of the delta functions as integral in the complex plane, is given in [19],
where it is shown that

ΩN (E, G2) =
N→∞

C3 (N, {λi}) C4 ({λi} ,Γ2,N)
exp [NS (E,Γ2)]

√
2E

+ o (N)

with S (E,Γ2) =
1
2
log (Γ2 − 2λ1E)+

log 2
2
, (32)

where C3 (N, {λi}) depends only on N and {λi} (i.e. does not depend on the physical parameters E and Γ2) and C4 has no
exponentially large contribution (limN→∞ (log C2) /N = 0). The notation o (N) refers to corrections that are negligible with
respect to N when N becomes large enough. From (32) we have

S (E,Γ2) = lim
N→∞

1
N

log (ΩN (E,Γ2))− C (N, {λi}) , (33)

where C can be computed from C3, and depends only on N and on the geometric factors {λi} (the entropy is defined up to
an arbitrary constant).

We see that the quantity S(E,Γ2) is the Boltzmann entropy rescaled by 1/N with an unimportant additional constant.
It counts the number of microstates ΩN satisfying the constraints of the problem, i.e. characterized by energy E and
enstrophy Γ2.

From the entropy, we can compute the temperature β = ∂S/∂E = −λ1/ (Γ2 − 2λ1E) ≤ 0 and chemical potential
α = ∂S/∂Γ2 = 1/ [2 (Γ2 − 2λ1E)]. These thermodynamic potentials are related by β = −2λ1α. Then some couples of
thermodynamic parameter are not obtained in the microcanonical ensemble, by contrast with what would be expected in
the thermodynamics of classical condensed matter systems, which are most of the time short range interacting systems.
Moreover the determinant of the Hessian of S (∂2S/∂E2.∂2S/∂Γ 2

2 −

∂2S/∂E∂Γ2

2) is zero, showing that S is not strictly
concave as one would expect for an entropy in the case of short range interacting systems. Both of these properties are signs
of non-equivalence between the microcanonical and the canonical ensembles. (see for instance [16,69,59]). This case of the
energy–enstrophy ensemble is actually a case of partial equivalence (see [69] for a definition).

From (30) we see that for the finite N dimensional measure µN , the distribution function for ωn the amplitude of mode
en is

PN,n (ωn) =
ΩN−1;λn


E − ω2

n/2λn,Γ2 − ω2
n


ΩN (E,Γ2)

,

where ΩN−1;λn is defined as ΩN (Eq. (31)), but with the integration over ωn excluded, and with the constraint ω2
n ≤

max {2λnE,Γ2}. The distribution function for En = ω2
n/2λn, the energy of the mode en, is obtained by the change of variable

PN,n (En) dEn = PN,n (ωn) dωn. Using result (32) for bothΩN−1;λ1 (then λ1 has to be replaced by λ2) andΩN , we obtain

PN,1 (E1) ∼
N→∞

C
exp [N log (Γ2 − 2λ2E + 2 (λ2 − λ1) E1) /2]

√
E1 (E − E1)

for 0 ≤ E1 ≤ E,

and PN,1 (E1) = 0 otherwise, where C does not depend on E1 (normalization constant). From this expression, we see that the
most probable energy is E1 = E. Moreover, the distribution is exponentially picked close to E1 = E, such that in the infinite
N limit (the microcanonical distribution) we have

P1 (E1) = δ (E − E1) .

All the energy condenses to the first mode.
If onedisregards large deviations for E − E1, a good approximation for largeN of the finiteN distribution is the exponential

distribution

PN,1 (E1) = ∼
N→∞

C
exp


−N λ2−λ1

Γ2−2λ1E
(E − E1)


√
E − E1

for 0 ≤ E1 ≤ E and N1/2 (E1 − E) ≪ 1; (34)

the distribution for ω1 being also exponential. The amplitude of the departure of E1 from the value E is thus proportional to
1/N and to (Γ2 − 2λ1E) / (λ2 − λ1).

The distribution of the energy En of mode n is obtained similarly as

PN,n (En) ∼
N→∞

C
exp [N log (Γ2 − 2λ1E − 2 (λn − λ1) En)]

√
En

(35)

for 0 ≤ En ≤ E. (36)
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For infinite N , the microcanonical distribution are thus a delta function with zero energy:

Pn (En) = δ (En) .

Disregarding large deviations, finite N distributions is also well approximated by an exponential distribution (a Gaussian
distribution this time forωn) with typical energy departure from 0 of order 1/N for the energy and a variance of order 1/

√
N

forωn. Onemay also check that for large n (λn ≫ λ1), the variance for the enstrophy becomes independent of n (asymptotic
equipartition of the enstrophy).

Even if we have described finite N effects for finite N approximations of the microcanonical measure µN
m, the only

invariant measure for the Euler equation is the limit one µm. From the preceding discussion we see that all the energy
is concentrated on the first mode and that the excess enstrophy Γ2 − 2λ1E goes to smaller and smaller scales, leading to a
zero energy or zero enstrophy per mode in the infinite N limit. This condensation of the energy in the first mode is the main
physical result of this energy–enstrophy ensemble. This is a non-trivial prediction of equilibrium statistical mechanics of
two-dimensional flows, by contrast with the triviality of the results for three-dimensional flows.

The Kraichnan energy–enstrophy theory. The term of condensation has been proposed by Kraichnan from the analysis of
the energy–enstrophy canonical ensembles [112]. As explained in Section 2.2.1, canonical measure are not relevant for
fluid systems and they may be useful only when given equivalent results to microcanonical measures. Kraichnan noticed
this and worked nevertheless with the canonical ensemble, maybe because he did not know how to make microcanonical
computations, and most probably because at that time the possibilities of ensemble inequivalence were nearly unknown.9
Unfortunately, as explained above the energy–enstrophy ensemble is an example of partial ensemble inequivalence. These
remarks explain the difficulties encountered by Kraichnan by analyzing the canonical measure and why he wrongly
concluded that a statistical mechanics approach would work only for truncated systems. Working in the microcanonical
ensemble actually allows to build invariant measures of the real Euler equation. If one is however interested in truncated
systems, then Kraichnan’s work remains very useful.

More importantly, when looking closely at Kraichnan’s works (see for instance [112]), one sees that in the canonical
ensemble, a complete condensation of the energy on the gravestmodeoccurs only for specific values of the thermodynamical
parameters. For most values of the thermodynamical parameters, an important part of the energy remains on the other
modes. Still Kraichnan argued, probably from numerical observations available at the time and from physical insight, that
these cases leading to a condensation were the most interesting ones. The microcanonical treatment we propose here
proves that a complete condensation occurs whatever the values of the energy and of the enstrophy, in the microcanonical
ensemble. A complete condensation is actually observed inmany numerical simulations.We thus conclude that the physical
insight of Kraichnan and his concept of condensation describes the relevant physical mechanism, but that a treatment in
the microcanonical ensemble provides a much better understanding, and overcomes the preceding contradictions.

Limitations and interest of the energy–enstrophy approach. There is no reason to consider only the energy and enstrophy
invariants, except for being able to solve easily the mathematics. Here we used this property for instance to illustrate the
equivalence of the mean field variational problems with a direct definition of the microcanonical measure. Another class of
statistical equilibriawith easily solvable solutions is the one forwhich only energy, enstrophy and circulations are taken into
account [196,146].10 Moreover, several studies, among which [2,67], have specifically addressed the importance of higher
potential vorticity moments, showing that they may be indeed essential in some case.

From the following studies we will see that taking into account all invariants, it will be wrong that the energy is limited
to the first mode e1. However the energy–enstrophy measure may be in some cases a good approximation: for instance in
the limit of small energy, most of the energy will remain in the first few modes. The notion of condensation will thus be
valid only roughly speaking.

By contrast, in some cases like for instance for doubly periodic domains with aspect ratio close to one but not exactly one
(see Section 3.5), the notion of condensation would lead to completely wrong predictions.

2.3.5. Validity of a mean field approach to the microcanonical measures
For pedagogical reasons, we have considered in the previous section the energy–enstrophy microcanonical ensemble.

It is shown in [19] that within this ensemble the correlation coefficient between vorticity at point r and vorticity at point
r′ is zero. It would be possible to prove without much difficulties that vorticity at points r and r′ are actually independent
variables. Such a result is extremely important and does apply to amuchwider context than the energy–enstrophymeasure,
for instance it will remain true for all the microcanonical invariant measures, whatever the number of invariants. We will

9 The first observation of ensemble inequivalence have been made in the astrophysical context [127,92], and then observed for two dimensional
flows [177,109,75,69,196]. Thorough study of ensemble inequivalence in the broad class of systems with long range interactions has been addressed
during the last decade by many others, see for instance [59,44,38,17,37,16] and references therein.
10 [196] proves relations between phase transitions on one hand, and ensemble equivalence and inequivalence results on the other hand. [146]
proves specifically the equivalence between entropy maximization at fixed energy, circulation and enstrophy on one hand, and macroscopic enstrophy
minimization at fixed energy and circulation on the other hand (see also [15] for equivalence results in a more general context).
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explainwhy vorticity fields are independent formicrocanonicalmeasures below. Let us first analyze an extremely important
implication: the possibility to quantify the volume of the phase space through the Boltzmann–Gibbs entropy formula.

A classical example where degrees of freedom can be considered independent is an ensemble of particles undergoing
collisions (for instance hard spheres) in the dilute limit (the Boltzmann–Grad limit). Microscopically, particles travel at a
typical velocity v̄ and collide with each other after traveling a typical distance l called the mean free path. Let σ be the
diffusion cross-section for these collisions. One has σ = πa2 where the parameter a is of the order of the particle radius.
The mean free path is defined as l = 1/


πa2n


, where n is the typical particle density. The Boltzmann equation applies

when the ratio Γ = a/l is small (the Boltzmann–Grad limit [183]). In the limit Γ → 0, any two colliding particles can be
considered as independent (uncorrelated) as they come from very distant areas. This is the basis of Boltzmann hypothesis
of molecular chaos (Stosszahl Ansatz). It explains why the evolution of the µ-space distribution function f (x, p, t)may be
described by an autonomous equation, the Boltzmann equation (x, p refers respectively to position and momentum, the
µ-space is the six dimensional space of spatial variable x and momentum p).

There is a classical argument by Boltzmann (that one can found in any good textbook in statistical mechanics) to prove
that the Boltzmann entropy of the distribution f is, up to a multiplicative constant, given by the Boltzmann–Gibbs formula:

S = −


dxdp f log f . (37)

We stress that this formula for the Boltzmann entropy is not a Gibbs entropy.11 The essential point is that this formula is a
valid counting of the volume of the accessible part of the phase space only when particles can be considered as independent.
For instance, for particles with short range interactions studied by Boltzmann, this is valid only in the Boltzmann–Grad limit.

As discussed above, in the energy–enstrophy ensemble, vorticity field values are independent. As we will explain below,
the reason is completely different from the Boltzmann case, there is here no dilute-gas (Boltzmann–Grad) limit. However
the consequences will be the same: if we define ρ (r, σ ) as ρ (r, σ ) drdσ being the probability to have values of the vorticity
ω between σ and σ + dσ in the area element dr around r, then the entropy

S = −


D

dr


+∞

−∞

dσ ρ ln ρ, (38)

actually quantifies the volume of the phase space. Let us explain the meaning of this last sentence, for instance in the case
of the energy–enstrophy ensemble. The probability ρ is normalized (N [ρ] (r) ≡


+∞

−∞
dσ ρ (σ , r) = 1) and we define the

average vorticity as ω̄ (r) =


+∞

−∞
dσ σρ (σ , r). Then the equilibrium entropy

S (E,Γ2) = sup
{ρ|N[ρ]=1}


1

|D|
S [ρ] | E [ω] = E,


drdσ σ 2ρ = Γ2


(39)

is exactly the same as the Boltzmann entropy defined from the rescaled logarithm of volume of the phase space defined by
Eq. (33). This variational problem (39) means that the equilibrium entropy S(E,Γ ) is the supremum of the mixing entropy
S [ρ] defined above, among all the normalized probability ρ(σ , r) that are characterized by a given value of the energy E
and enstrophy Γ2.

The definition of the entropy (32)–(33) and the variational problem (39) are so different, that the fact that they express
the same concept seems astonishing. These types of results are indeed one of the great achievements of statisticalmechanics.
It is shown in [19] that starting from (33) and computing S(E,Γ2) gives the same result as (32).

The deep reason why vorticity fields are independent for microcanonical measures, and henceforth why entropy can
be expressed by (39) can be explained rather easily on a heuristic level. Correlations between variables could appear
through the invariants constrains only. For instance the 2D Euler equation energy can be expressed in the form where
interactions between vorticity appear explicitly, using the Laplacian Green function H


r, r′


(∆H


r, r′


= δ


r, r′


with

Dirichlet boundary conditions):

E [ω] = −
1
2


D

drω∆−1ω = −
1
2


D


D

drdr′ ω (r)H(r, r′)ω

r′

. (40)

In the formula above, H

r, r′


appears as the coupling between vorticity at point r and vorticity at point r′. The Green

function of the Laplacian in a two-dimensional space is logarithmic, which is not integrable in the whole plane, hence lead
to a non-local interaction. Then the vorticity at point r is coupled to the vorticity at any other points of the domains and not
only close ones.

11 TheGibbs entropy S = −k

ρ(pi, qi) log2(ρ(pi, qi)) dpidqi is an ensemble entropy, aweight on the phase space,whereas the Boltzmann–Gibbs formula

for the entropy is an integral over theµ-space. In the case of dilute gases, the Boltzmann–Gibbs formulas for the entropy is just the opposite of theH function
of Boltzmann. We avoid this terminology here since our discussion is not related to relaxation towards equilibrium, and because the equivalent of an H
theorem has never been proved for the 2D Euler equations.
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For people trained in statistical mechanics, it is natural that in systems where degrees of freedom are coupled to many
other, these degrees of freedom can be considered as statistically independent and a mean-field approach will be valid. For
instance in systems with nearest neighbor interactions, a mean field approach becomes exact for large dimensions, when
the effective number of degrees of freedom to which one degree of freedom is coupled becomes infinite. For people not
trained in statistical mechanics, this can be understood simply, as one increases the number of coupling, the interaction felt
by one degree of freedom is nomore sensitive to the fluctuations of the others but just to their average value, due to an effect
similar to what happens for the law of large numbers. Then a mean field treatment becomes exact, which is equivalent to
saying that different degrees of freedom can be considered as statistically independent.

Because of the non-locality of the Green function, the vorticity field is virtually coupled to an infinite number of degrees
of freedom, so that a mean-field is actually exact. This also explains why the energy computed from the average vorticity
field appears in the variational problem (39).

To formalize the preceding heuristic explanation, in order to prove that the mean-field approximation is exact and to
prove that the Boltzmann–Gibbs formulas for the entropy (37) is relevant, we need a rather technical discussion. We will
not explain this in details. This has been for instance justified by theoretical physicists for the point vortexmodel in the 1970s
(assumed to be valid by Joyce and Montgomery [103] and then proved to be self-consistent, for instance in a Cramer Moyal
expansions). In the 1980s, rigorous mathematical proofs have been given also for the point vortex model (see [75,109,33]
and references therein). In the modern formulation of statistical mechanics, the entropy appears as a large deviation rate
function for an ensemble of measures, justifying (37) and the variational problem (39). The proof of such large deviation
results leading to the microcanonical measures for the Euler and quasi-geostrophic equations, justifying the mean field
approach, can be found in [136] (see also [12] and references therein).

We thus conclude that a mean field approach to the microcanonical measures of the Euler and quasi-geostrophic
equations is valid. This justifies the use of the entropy (37) and of variational problems similar to (39) but with all invariants
of the Euler equations. This is a drastic simplification compared to direct approaches as the one presented in Section 2.3.4 for
the energy–enstrophy statistical mechanics. The first presentation of the equilibrium statistical mechanics of the 2D Euler
and quasi-geostrophic equations on this form dates from the beginning of the 1990s with the works of Robert, Sommeria
and Miller [162,138,163,168]. We thus call this theory the Robert–Sommeria–Miller (RSM) theory.

3. Equilibrium statistical mechanics of two dimensional and geophysical flows

In Sections 2.2.1 and 2.2.3 we have recalled the basis of equilibrium statistical mechanics of Hamiltonian systems:
building invariant measures based on the Liouville theorem, especially the microcanonical measure that takes into account
all of the dynamical invariants of the equations. We have explained in Section 2.3.4 how this program can be applied to fluid
dynamics equations and in Section 2.3.5 why for the 2D Euler and quasi-geostrophic equations the microcanonical measure
is described by a mean field variational problem.

The aim of this section is to describe this mean field variational problem and the tools used to actually compute
the equilibrium states. We consider the limit of small energy, as a simple example for which an analytic treatment
is possible in order to illustrate the theory and especially the notion of phase transition. Phase transition is a key
concept of thermodynamics and statistical physics, where the physical system undergoes drastic qualitative changes as
external parameters are tuned. In the statistical mechanics of hydrodynamic problems, the flow undergoes continuous or
discontinuous transitions of the topology of the flow streamlines. We discuss applications of this equilibrium theory to real
flows, for instance in the geophysical context, in Sections 4 and 5 and discussion of out of equilibrium statistical mechanics
in Section 6.

3.1. Mixing entropy and equilibrium states

3.1.1. Equilibrium entropy and microcanonical equilibrium states
We describe in this section the microcanonical variational problem andmicrocanonical entropy, the Robert–Sommeria–

Miller theory, following these first papers [162,138,163,168].
We explained is Section 2.3.5 that for themicrocanonicalmeasure, the vorticity field at different locations are statistically

independent. We denote ρ (r, σ ) drdσ the probability for the vorticity ω to take values between σ and σ + dσ in the area
element dr around r. Then the Boltzmann–Gibbs entropy

S [ρ] ≡ −


D

d2r


+∞

−∞

dσ ρ log ρ (41)

is a quantification of the number of microscopic states (vorticity fields) corresponding to a macroscopic states (probability
density ρ). A more precise meaning of this will be given with the variational problem (46) below. The most probable state,
close to whichmost of the other states will be concentrated, will thus be themaximizer of the entropy (41) with constraints
associated with each dynamical invariant.
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We now list the constraints. As ρ is a local probability, it satisfies a local normalization

N [ρ] (r) ≡


+∞

−∞

dσ ρ (σ , r) = 1. (42)

The conservation of all the Casimir functionals (17), or equivalently the known potential vorticity distribution (18) imposes

D [ρ] (σ ) ≡


D

dr ρ (σ , r) = γ (σ ) . (43)

The averaged potential vorticity is

q (r) =


+∞

−∞

dσ σρ (σ , r) (44)

with the average stream function ψ̄ , defined by q = ∆ψ̄ −
ψ̄

R2
+h(y). As explained in Section 2.3.5, because the interactions

are long range and the energy is a sum over infinite contributions, the energy of the mean field will be equal to the initial
energy

E [q] ≡ −
1
2


D

drψq = E. (45)

Then the entropy of the system is given by the variational problem

S(E, γ ) = sup
{ρ|N[ρ]=1}

{S [ρ] | E [q] = E ,D [ρ] = γ } (MVP) (46)

and, thanks to the large deviation property [136] (see Section 2.3.5) an overwhelming number of potential vorticity fields
of the microcanonical ensemble will be close to the maximizer ρ of the variational problem (46).

Here MPV refers to ‘‘microcanonical variational problem’’. It says that the equilibrium entropy S(E, γ ) is the supremum
of the mixing entropy S [ρ] among all the normalized probability density field ρ(σ , r) that are characterized by a given
value of energy E and of the global potential vorticity distribution γ (σ ).

Two routes are now possible. The classical one is to look for the critical points of the variational problem (46). For this,
we introduce Lagrangemultipliers β , α(σ) and ζ (r) associated with the conservation of energy E (45), vorticity distribution
D(σ ) (43), and normalization constraint N (42), respectively. Then critical points ρ are solutions of

∀ δρ δS − βδE −


+∞

−∞

dσ α(σ)δDσ −


D

dr δN = 0,

where the entropy is given by (41). Solving this equation for ρ and using the normalization constraint, we obtain that the
critical points ρ verifies the Gibbs state equation [162,138,163,167]:

ρ (σ , r) =
eβσψ̄(r)−α(σ)

Zα

βψ̄ (r)

 with Zα (u) =


∞

−∞

dσ exp (σu − α (σ)) . (47)

We see that ρ depends on r through the average stream function ψ̄ . From (44) and (47) there is a functional relation between
the equilibrium average potential vorticity and the stream functions

q̄ = g

βψ̄


with g (u) =

d
du

log Zα. (48)

This last equation characterizes the statistical equilibrium. One can prove that g is amonotonously increasing function, such
that the relation between potential vorticity q and stream function ψ is increasing for positive temperatures (β > 0), and
decreasing for negative temperatures (β < 0). This equation has to be solved for any values of the Lagrange parameters β
and α (σ). Then one has to compute the energy E and potential vorticity distribution γ (σ ) as a function of β and α.

For a given energy E and distribution γ (σ ), among all the possible values of β , α and distribution ρ solving (47)–(48),
the one actually maximizing the entropy (46) is selected. In the general case, this program is not an easy one, and the aim
of part of the following discussion will be to solve this in simple cases and to describe methods that will possibly make this
program simpler.

The second route is to try to work directly with the variational problem (46) and to simplify it. In review we will try to
rely asmuch as possible on variational problems only. This routewill prove to be often physicallymore enlightening, at least
for the specific examples treated in this review.

In his original papers, in the beginning of the 1990s, Miller [138,139] justified formally the mean field variational
problem from a formal discretization of the microcanonical measure and its solution through direct computations
using the Hubbard–Stratonovich transformation. Robert and Sommeria [162,163,167] were assuming directly and
phenomenologically the mean-field variational problem. Only latter on, did the work of Michel and Robert [137,136] and
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Boucher et al. [12] justify the mean-field variational problem more rigorously through expliciting the relation with large
deviation theory.

We note that a similar mean field variational problem also describes the statistical mechanics of the violent relaxation of
the Vlasov equation, both for self-gravitating systems and plasma physics. Themean field variational problem for the Vlasov
equation has first been proposed on a phenomenological way by Lynden Bell in the end of the 1960s [127]. It can be justified
following the same route as for the 2D Euler equations (see for instance [164]). There is indeed a deep analogy, noticed from
the 1950s, between the Vlasov and the 2D-Euler equation: both are nonlinear conservation laws with an infinite number of
Casimir conservation laws, leading to similar properties at the level of both dynamics and statistical mechanics. This analogy
and its consequences froma statisticalmechanics point of viewhave been used and described in details for instance in [51]. A
larger class of systems have the same properties: systemswith long range interactions. The analogies between the dynamics
and statistical mechanics of these systems have been systematically studied during the last decade, see for instance [59,44,
37,38,22].

3.1.2. Ergodicity
Section 3.1 describes the statistical equilibria through the variational problem (46). The solution of this variational

problem is themost probable state and also, thanks to the large-deviation property, the state aroundwhich an overwhelming
majority of states do concentrate, for the microcanonical measure. Besides, the microcanonical measure is the most natural
invariant measure of the 2D Euler equations with the dynamical constraints.

Having described a natural invariant measure of the equations is an important theoretical step. Another important point
would be to know if this invariantmeasure is the only one having the right values for the dynamical invariants. The evolution
of one trajectory of the dynamical system also defines ameasure (through time averaging). If we knew the invariantmeasure
wereunique, then itwouldmean that averaging over themicrocanonicalmeasure is equivalent to averaging over time.When
this uniqueness property holds, we call the dynamical system ergodic.

Generally speaking, the ergodicity of a dynamical system is a property that is usually extremely difficult to prove. Such
proofs exist only for very few extremely simple systems. Ergodicity is actually thought to be wrong in general. For instance,
in Hamiltonian systems with a finite number of degrees of freedom, there often exist islands in phase space in which
trajectories are trapped. The common belief in the statistical mechanics community is that those parts of phase space where
the motion is trapped exist, but occupy an extremely small relative volume of the phase space, for generic systems with a
large number of degrees of freedom. Apart from a few systems which were proved to be integrable, this common wisdom
has successfully passed empirical tests of a century of statistical mechanics studies.

There is no reason to suspect that this general picture should be different in the case of the 2D Euler equations, in
general. It is thus thought that an overwhelming number of initial conditions will have a dynamics consistent with the
microcanonical measure predictions. However, similarly to most other Hamiltonian systems, the 2D Euler equations are
actually non-ergodic. The proof is quite simple.

Indeed, it is proved in [19] that any Young measure for which ω̄ (r) is a stationary solution of the 2D Euler equations is
either an invariant or a quasi-invariant measure. The class of invariant measures corresponding to ensemble of trajectories
with given values of the invariants, is then much, much larger than the class of statistical equilibrium invariant measures
with the same invariants. This proves that non-trivial sets of vorticity fields are dynamically invariant. In this restricted
sense, this proves that the 2D Euler equations are not ergodic.

This theoretical argument proving non-ergodicity is in accordance with previous remarks about the phenomenology
of the 2D Euler or quasi-geostrophic equations. For instance, it was observed numerically that initial conditions with
localized vorticity, in large domains, remain localized (see [49] and references therein; [49] actually proposes an interesting
phenomenological modification of the microcanonical measure approach to cope with this localized dynamics problem).
Another example of possible non-ergodicity is the dynamics close to stable dynamical equilibria of the equations. When
trajectories come close to such equilibria, they can be trapped (frozen) as was seen in some numerical simulations. A
classical argument by Isichenko [98] is that for initial conditions close to parallel flows, ‘‘displacement in certain directions
is uniformly small, implying that decaying Vlasov and 2D fluid turbulence are not ergodic’’. Even if the predicted algebraic
laws by Isichenko are most probably wrong, the fact that displacement in directions normal to the streamlines is uniformly
small is probably right, thus being another argument for non-ergodicity.

An important point to be noted, is that theNavier–Stokes equationwith stochastic forces can be proved to be ergodic [29].
This ergodicity refers to invariant measures of the Navier–Stokes equations, which are non-equilibrium invariant measures
with fluxes of conserved quantity. A very important point is to understand the limit of weak forces and dissipation for such
invariantmeasures and to study their relationswith the invariantmeasures of the 2D Euler equations. Some very interesting
results can be found in [115].

3.1.3. Canonical and grand canonical ensembles
The microcanonical equilibrium describes the most probable state, resulting from the microcanonical measure with

a given potential vorticity distribution and energy. From a mathematical point of view, we have to solve the variational
problem (46). This is a tricky task, one of the main difficulty being due to the vorticity distribution and energy constraints.
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We here define canonical, grand canonical ensembles, and corresponding equilibrium, that will help us a lot in simplifying
the description of the equilibrium states.

It is customary in statistical mechanics to consider statistical ensembles where the constraints coming from the
dynamical invariants are relaxed (a phrase that will be clarified soon). For instance, in classical statistical mechanics,
the canonical ensemble is obtained by relaxing the energy constraint, and the grand canonical ensemble by relaxing the
constraint corresponding to the number of particles. We follow the same paths here. We call grand canonical ensemble, any
ensemble where some or all of the constraints related to the potential vorticity distribution are relaxed. Themeaning of this
procedure is discussed in Section 3.2.

Whereas the microcanonical ensemble is built on the assumption that all microstates with a given energy are
equiprobable (microcanonical distribution), the canonical ensemble assumes a Boltzmann distribution of the microstates
(distribution weighted by the Boltzmann factor exp (−βE)). In Section 2.3.5, we explained why a mean field description of
the microcanonical measure is valid, and why it leads to the microcanonical variational problem (46). The same arguments
allow to conclude that, for the canonical distribution, the most probable state and the Helmholtz free energy can be
computed from the canonical variational problem

F(β, γ ) = inf
{ρ|N[ρ]=1}

{F [ρ] = −S [ρ] + β E [q] |D [ρ] = γ } (CVP). (49)

Here CVP refers to ‘‘canonical variational problem’’. The equilibrium free energy F(β, γ ) is the infimumof the free energy
functional F [ρ] for any normalized field of probability density ρ(σ , r) that are characterized by a given global potential
vorticity distribution γ (σ ).

The canonical equilibrium states q̄ =

dσσρ are the average potential vorticity fields where the free energyminima are

achieved. Comparing (46) and (49), the canonical variational problem (49) appears to be similar to the variational problem
associated with the microcanonical one, but with the energy constraint relaxed. This explains the expression ‘‘relaxation’’.
Thanks to the Lagrange multiplier rule, the canonical andmicrocanonical variational problems have the same critical points
(47)–(48), but the stability properties of the two variational problems may be different (free energy minima and entropy
maxima may be different). We discuss this last point in more detail in Sections 3.2 and 3.3.

A similar relaxation, this time of the potential vorticity constraint, leads to fixed-energy grand canonical ensembles. This
gives a new class of variational problems: the minimization of Casimir functionals

C(E0, s) = inf
q


Cs[q] =


D

d2r s(q) | E [q] = E0


(EC-VP), (50)

where Cs is a Casimir functionals, and s a convex function. Here EC-VP refers to ‘‘energy–Casimir variational problem’’. The
fixed-energy grand canonical equilibria are the minimizers of this variational problem. The relation of this last variational
problem to the microcanonical one is not obvious at a first sight. The mathematics of such a relation can be skipped, at first
reading. For a detailed account of the derivation of (50) from the grand canonical distribution, we refer to [15]. The convex
function s is related to the Lagrange parameters associated with the conservation of the vorticity distribution (the grand
canonical thermodynamic variables).12

Critical points of (50) are solutions of

∀ δq δCs − βδE = 0,

where β is the Lagrange parameter associatedwith the energy constraint. This yields to the following relation for the critical
points:

q =

s′
−1

(−βψ).

We conclude that if
s′
−1

(−u) = g(u), (51)

where g(u) is defined by Eq. (48), then the microcanonical variational problem (46) and canonical one (50) have the same
critical points. Moreover, it is proven in [15] that if (51) holds, then any stable canonical equilibrium (50) is a stable
microcanonical equilibrium (46).

Notice that the variational problem EC-VP (50) was classically used before this statistical mechanics theory, and
independently of it. It is called the Energy–Casimir variational problem, and was used in classical works on nonlinear
stability of Euler stationary flows [5,95], also allowing to prove the nonlinear stability of some of the statistical equilibrium
states [167,137], as discussed in Section 2.3.1. In addition, a minimum enstrophy principle has been previously proposed by
Bretherton–Haidvogel [28] to predict the large scale organization of freely evolving 2D and geophysical flows. This approach
led to the resolution of the variational problem (50) in the particular case s(q) = −q2 (then the enstrophy of the flow is
minimized at fixed energy). Although there is a priori no clear physical reason tomotivate such a choice on a general context,
the results of this subsection show that the Bretherton–Haidvogel theory is a particular case of the RSM statistical theory,
since any solution of (50) is an RSM statistical equilibrium state.

12 These relations are given by formulas (12) and (16) of [15].
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3.2. Physical interpretation of the canonical and grand canonical ensembles

We have just presented canonical and grand canonical ensembles, and the relaxed variational problems. It is essential to
understand their physical interpretation.

In classical statistical mechanics, two types of interpretations of canonical ensembles may be relevant, depending on
the physical problem under consideration. The first physical interpretation is that the statistics of a system in contact
with a thermal bath is actually described by the canonical distribution. The canonical distribution is thus the natural
distribution in many cases, in condensed matter for instance. But when the physical system can be considered isolated (this
is usually a matter of comparing the characteristic time for energy exchanges with the environment with the characteristic
time for relaxation towards equilibrium), then the microcanonical distribution and ensemble are the relevant ones. In
this case of an isolated system, the canonical distribution can still be considered, based on the fact that microcanonical
and canonical distributions are usually equivalent in the thermodynamic limit: they give the same predictions for the
average of macroscopic variables. In this second interpretation, the canonical distribution and ensemble appears as a very
useful mathematical way to avoid some tricky technical difficulties related to the energy constraint in the microcanonical
distribution.

Let us discuss more specifically the case of fluid dynamics, and the 2D Euler and quasi-geostrophic equations. First, there
seems to be no way so far to couple such flows with a thermal bath. Also, for the grand canonical ensemble, it is hard
to imagine what a potential vorticity bath could be. Then, only the second interpretation of the canonical ensemble can
be a relevant interpretation of the relaxed ensembles: it is a very useful mathematical trick, nothing more. We are thus
led to follow this second interpretation only. CVP (49) and EC-VP (50) are far more simple variational problems than the
microcanonical ones MVP (46). Besides all solutions of CVP and EC-VP are solutions of MVP for some energies and some
potential vorticity distributions (see [15] for a proof). The relaxed ensembles are thus very useful.

There is still a crucial difference between usual statistical mechanics and the statistical mechanics of two-dimensional
and geophysical flows: microcanonical and relaxed ensembles are often non-equivalent. This is reflected by the fact that
there may exist microcanonical equilibria that are not equilibria of the relaxed ensemble (the converse is not possible, as
just stated above). An affirmative point however, is that such a situation of ensemble inequivalence can be detected from
the analysis of relaxed ensembles only (see [16] for a thorough discussion). Therefore, it is always a good choice to begin
with the study of the least constrained ensemble. We show in Section 3.5 how to use this general idea in specific examples.

3.3. Long range interactions and possible statistical ensemble non-equivalence

We explained in Section 2.3.5 that the energy of the 2D Euler equations can be expressed in a form where interactions
between vorticity values appear explicitly, using the Laplacian’s Green function

E [ω] = −
1
2


D

drω∆−1ω = −
1
2


D


D

drdr′ ω (r)H(r, r′)ω

r′

. (52)

In formula (52), H

r, r′


appears as the coupling between vorticity at point r and vorticity at point r′. The Green function

of the Laplacian in a two-dimensional space is logarithmic, which is not integrable over the whole plane. The interaction
between vorticity at different points is thus a long-range interaction. This is themain reasonwhy for statistical equilibria, the
vorticity values at different points can be considered uncorrelated, and why mean-field variational problems (46) describe
the statistical equilibria.

In physics, there is a large set of systems with long-range interactions (in the sense of a non-integrable potential).
Self-gravitating stars [10,182], plasma [151,122], particles in accelerators, free-electron lasers, magnetic systems are
examples among others of systemswith long range interactions. For the same reasons as the ones presented in Section 2.3.5,
the equilibrium statistical mechanics of these systems will be described by mean-field variational problems similar to (46)
or (49). Moreover, unlike systems with short range interactions, systems with long range interactions are not additive
(in the limit of a large number of degrees of freedom, if the system is divided into two macroscopic sub-parts, the total
energy is not approximately equal to the sum of the energies of the two sub-parts). This non-additivity has drastic physical
consequences. For instance, the usual proof for the concavity of the entropy (in the context of short range interacting
systems) relies on the additivity of the energy. It is then possible to observe non-concave entropies, and henceforth negative
heat capacities (temperature decreases when energy increases!) for systems with long-range interactions, as first observed
in self-gravitating systems [127].

The study of the statistical mechanics of systems with long-range interactions has been a very active branch of statistical
mechanics over the past ten years (see articles in proceedings and reviews [59,44,38,17,37], among others). In two-
dimensional and geophysical flows, unusual thermodynamic properties related to long range interactions have also been
observed [177,109,33,69,70,196] and their consequence for the stability theory [70] and related phase transitions [16] has
been discussed.

The study of these thermodynamic peculiarities would be a natural extension of this review. Beyond their theoretical
interest, these studies give important practical outcomes, such as simple characterization of equivalence between the
variational problems (46) and (49) from the entropy curve [69], or actually from the free energy curve [16,196], classification
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of all possible phase transitions [16], which is a very useful guide in any particular study, or new proofs of flow stability [70].
A detailed presentation of these results is however beyond the scope of this review.

3.4. Statistical equilibria in the limit of affine relations between (potential) vorticity and stream function

In Section 3.1 we have described the variational problem which describe statistical equilibria (46). We have seen that
the critical points of this variational problems give a nonlinear relation between (potential) vorticity and stream function
(Eq. (48)), which we write again using the relation between stream function and potential vorticity (9)

q = ∆ψ −
ψ

R2
= g (βψ) (53)

(in order to simplify the discussion of this section we assume ηd = 0, the generalization to the case ηd ≠ 0 would be easy).
Eq. (53) is a nonlinear elliptic partial differential equation whose general solution is not easily found. Some algorithms
to solve numerically such an equation (or directly the variational problem (46)) will be described in Section 3.6. Explicit
analytic solution can be found only in some specific limit. A first limit, for which solutions are known is the limit when g is
an affine function (g(x) = ax + b), called affine q–ψ limit, that we describe in this section. This limit and normal forms due
to small nonlinear effects close phase transitions will also be used in the treatment of the example discussed in Section 3.5.
Another limit which can be treated analytically is a limit of very strong nonlinearity which will be the method used in
Sections 4 and 5.

Chavanis and Sommeria first solved statistical equilibria for an affine g [47]. This work describes phase transitions
related to the domain geometry; for instance in a rectangular box a phase transition occurs betweenmonopoles and dipoles
when the aspect ratio is changed. We refer to [47] for a more detailed discussion. Subsequent works [196,198], taking a
different perspective by solving directly the variational problems, and describing wider classes of solutions have shown
that the affine limit give examples of statistical ensemble inequivalence (see Section 3.3) and of bicritical points and second
order azeotropy, two phase transition types that were not observed before as statistical equilibria for turbulence problems.
Applications to oceanmodel flows, like Fofonoff flows have also been discussed recently [196,198,146,145]. All these results
show that the affine q–ψ limit is extremely rich from a physical point of view. The affine q–ψ limit is also extremely
interesting from a pedagogical point of view.

An essential point is to understand the physical circumstances for which the affine q–ψ limit is relevant. Two different
and complementary types of justification exist. In Section 2.3.4, studying the energy–enstrophy ensemble, we have seen
that taking into account enstrophy only as a Casimir invariant leads to an affine q–ψ relation. We however stressed that
there is no a priori reason to take into account only quadratic invariants. As first noticed in [47], when β is very small (very
large temperatures) the energy constraint has less effect than in other situations and the system has a nearly homogenized
potential vorticity.13 Such states correspond to peculiar values of the energy. In this ‘‘strong mixing’’ limit β → 0, an
asymptotic expansion of (47) can be performed, by considering σβψ as the small parameter. In this limit, statistical
equilibrium states are characterized by a affine q–ψ relations, whose properties depend on the energy and the circulation
only, even if the infinite number of constraints are a priori considered (see [47,146] for further discussions). This strong
mixing limit is the first type of justification of the affine q–ψ limit.

A second type of justification for the affine q–ψ limit relies on the general results about equivalence between variational
problems discussed in Section 3.1.3 (please see also [15,196]). We explained in the last paragraph of Section 3.1.3 that the
resolution of the variational problem (50) in the particular case s(q) = −q2, leading to affine q–ψ relation give access to
an admissible class of statistical equilibria. We note, that actual potential vorticity distribution leading to affine or close
to affine relations may be different in the two cases of the strong mixing limit, or using the mathematical properties of
ensemble between variational problems. However, the coarse-grained potential vorticity fields will be the same as they are
both described by the same class of affine q–ψ relations. The phase diagram structure and phase transitions will also be the
same in the two cases

3.5. Example of doubly-periodic flows

As an example of application of the equilibrium theory, we treat the case of the 2D Euler equations (q = ω) on a doubly-
periodic domain (torus) (x, y) ∈ D = (0, 2πδ) × (0, 2π); where δ is the aspect ratio. We believe this is a very good
pedagogical example because of its simplicity. We will easily solve the problem analytically in the linearized limit, and
make a nonlinear bifurcation analysis, leading to an interesting phase transition diagram.

This problem is also an interesting one from an academic point of view, as many direct numerical simulations (DNS) of
the Euler or Navier–Stokes equations are performed in this geometry. The reason is that Fourier pseudo-spectral codes in
periodic domains allow for much more efficient simulations than any other methods in bounded domains. This geometry
is also advantageous because it does not involve the physics associated to boundary layers that make the situation more

13 For a given global distribution γ (σ ), the macroscopic field ρ (47) does not depend on the spatial coordinates r when β = 0 (infinite temperatures).
The corresponding potential vorticity field q̄, given by Eq. (48), is therefore fully homogenized.
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complex. This can also be considered a drawback, as it is hardly conceivable to make experimental realizations of this
geometry in the lab.

Several generic properties of the theory should emerge through the study of this example. The first essential point is that
the domain geometry always plays a crucial role. The second point is that the energy constraint is the one that prevents a
completemixing of the potential vorticity, it is thus also a key parameter. The last thing is that, like in usual thermodynamics,
phase transitions also play an essential role for fluid dynamics applications. Indeed, they correspond to specific values of the
physical parameters where drastic changes to the system occur. As such, these points are particularly interesting and any
theoretical study should emphasize phase transitions.

This study in doubly periodic domains describes phase transitions between dipoles and parallel flows. The existence of
these two types of statistical equilibria (dipole and parallel flows) were observed in direct numerical computations and
numerical computations of statistical equilibria in [205]. The bifurcation theory we present here, predicting the phase
diagram, the type of phase transitions, and the relevant physical control parameter (a balance between nonlinearity a4
and domain geometry g) was first presented in [24,142].

3.5.1. Variational problem
We consider the solutions of the variational problem:

C(E, s) = inf
ω


Cs[ω] =


D

d2r s(ω) | E [ω] = E


(EC-VP) (54)

where E is the energy and s a convex function of the vorticityω (the second derivative of swith respect toω are positive). This
variational problem is the grand canonical variational problem (50) of Section 3.1.3, in the case of the 2D Euler equations.
We recall that any solution to (54) is a microcanonical statistical equilibrium, but that all microcanonical equilibria may not
be solutions to (54), as discussed in Section 3.2. We also recall (see Eq. (51)) that the relation between s and the function g
appearing in the solution of the microcanonical variational problem (48), is given by

ω = g(ψ) =

s′
−1

(−βψ), (55)

where β is the Lagrange parameter associated with the energy constraint.

3.5.2. Quadratic Casimir functionals
We first study the case of a quadratic Casimir functional s (ω) = ω2/2. This leads to a linear relation between ω and ψ

(see (55)). As discussed in Section 3.4, a detailed study of microcanonical equilibria with linear ω–ψ relation was carried
out in [47] (see also Section 3.4), and a detailed study of variational problems with quadratic functional in relation with
ensemble inequivalence is presented in [196,198]. We note that in the case of the doubly periodic geometry, the strong
mixing limit coincide with the weak energy limit.

We want to solve the variational problem

C2(E) = inf
ω


C2[ω] ≡

1
2


D

d2rω2
| E [ω] = E


. (56)

It is convenient to decompose the fields on the Laplacian eigenmodes. Let us call {ei}i≥1 the orthonormal family of
eigenfunctions of the Laplacian on the domain D:

−∆ei = λiei, with


D

dr eiej = δij. (57)

The eigenvalues λi are arranged in increasing order. For a doubly periodic domain (x, y) ∈ (0, 2πδ) × (0, 2π), ei (x, y) are
sines and cosines. For instance, for δ > 1: e1 (x, y) = sin (x/δ) /2π

√
δ, λ1 = 1/δ2, e2 (x, y) = sin (y) /2π

√
δ and λ2 = 1.

We note that cosines are also eigenmodes, with the same eigenvalues λ1 and λ2. This degeneracy is due to translational
invariance. In the following, we do not take them into account: this amounts to fixing two arbitrary phases associated with
the translational invariance in the directions of ex and ey.

We decompose the vorticity on the eigenbasis: ω =


i≥1 ωiei. The energy (3) is then

E [ω] =
1
2


i≥1

λ−1
i ω

2
i . (58)

The energy constraint is absorbed into ω1, giving ω2
1 = 2λ1E −


i≥2(λ1/λi)ω

2
i . The condition ω2

1 ≥ 0 imposes that the
vector


i≥2 ωiei be inside a volume VE defined by

VE =


i≥2

ωiei |


i≥2

λ−1
i ω

2
i ≤ 2E


. (59)
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Substituting the expression for ω2
1 in (56), the variational problem becomes

C2(E) = λ1E + inf
{ωi}i≥2∈VE


1
2


i≥2

λi − λ1

λi
ω2

i


. (60)

Since for all i ≥ 2, λi − λ1 > 0, one concludes that the minimizer of (60) verifies ωi = 0 for all i ≥ 2:

ω = (2λ1E)1/2 e1 and C2(E) = λ1E. (61)

We thus conclude that the equilibrium for a quadratic Casimir functional with an energy constraint is proportional to the
first eigenmode of the domain. From the relation between vorticity and stream function, we see that the vorticity field e1
corresponds to a parallel flow along the direction of maximum elongation of the domain

v =
(2E)1/2

2πδ1/2
cos


x + φ

δ


ey. (62)

This example illustrates general properties of statistical equilibria:

1. The equilibrium structure is most of the times at the largest scales of the domain. This result is in agreement with the
widely accepted empirical rule that the energy piles up to the largest scales of the domain.

2. The geometry of the domain plays a crucial role for the structure of the equilibria (in this case, we observe a transition
from flows along the x direction towards flows along the y direction, as the aspect ratio crosses through the critical value
δc = 1).

The degenerate case. A very interesting case is that of the periodic square domain D = (0, 2π) × (0, 2π). In this case, the
first eigenvalue λ1 is degenerate, i.e. λ1 = λ2 (this degeneracy is not the degeneracy due to the translational invariance:
there are actually four eigenmodes for the Laplacian corresponding to eigenvalues λ1 = λ2). Then, for a quadratic functional,
a whole family of extrema exists: ω = ω1e1 + ω2e2 with ω2

1 + ω2
2 = 2λ1E, and with entropy C2(E) = λ1E.

This family of flows includes the parallel flows described previously, but also dipole flows. For instance, the symmetric
dipoles of vorticity

ω (x, y) =
(2E)1/2

2π


sin (x + φ)+ sin


y + φ′


. (63)

We thus conclude that the maximization of a quadratic Casimir functional with energy constraint does not select the flow
topology in a square domain; because of the degeneracy, it can be the topology of either parallel flows or dipoles.

3.5.3. Weak-energy limit for the maximization of symmetric Casimir functionals
We now consider the more general case of a Casimir functional

Cs(E) = inf
ω


Cs[ω] ≡


D

d2r s (ω) | E [ω] = E

, (64)

where s is a convex function. We suppose that s is even: s(−ω) = s(ω). This is the case for any even initial distribution of
the vorticity (an extension of the following discussion to the more general case would be easy).

It is clear that the multiplication of s by a constant will not change the minimizers of (64). Then we can assume, without
loss of generality that s′′ (0) = 1.

We consider theweak-energy limit of the variational problem (64). Because the energy is positive-definite, it is clear that
for weak energies,ω is small. Then s (ω) ∼ ω2/2. Then at leading order, in theweak-energy limit, the equilibrium structures
are given by the minimization of a quadratic functional. They are thus close to the first eigenmodes of the Laplacian of the
domain.

In the previous section, we saw that in a doubly periodic square domain, the minimization of a quadratic functional
does not determine the flow topology, due to the degeneracy of the first Laplacian eigenvalues. An interesting issue is to
understand how this degeneracy is removed by the next order contribution of a non-quadratic functional. We thus consider

s (ω) =
1
2
ω2

−
a4
4
ω4

+ o

ω4 . (65)

Parameter a4. The parameter a4 appearing in (65) plays a crucial role. It determines the first correction to a quadratic
entropy. Moreover, it is intimately related to the shape of the relation ω = f (ψ) =


s′
−1

(βψ). Indeed, s′(x) =

x − a4x3 + o(x3) and thus

s′
−1

(x) = x + a4x3 + o(x3). For instance, when a4 > 0, the curve

s′
−1

(x) bends upward
for positive x, similarly to a hyperbolic sine; recalling that β < 0, the curve f (ψ) is decreasing and similar to the opposite
of a hyperbolic sine. When a4 < 0,


s′
−1

(x) will bend downward, similar to an hyperbolic tangent. We will refer later on
the case a4 > 0 as the sinh-like case and the case a4 < 0 as the tanh-like case.
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3.5.4. Normal forms and selection between degenerate states in the weak energy limit
Wenow study how the degeneracy between eigenstates for a doubly periodic square is lifted.We saw in Section 3.5.2 that

the modification of the domain geometry (aspect ratio) removes the degeneracy. We suggested in the previous section that
the contribution a4ω4 of the Casimir functional may also remove the degeneracy. We study how these two effects compete,
by making a quasilinear study of the variational problem (64) in the weak energy limit.

We first evaluate the range of parameters for these two effects to be of the same order. We have seen that at leading
order (maximization of a quadratic Casimir), the vorticity scales like (λ1E)1/2. The fourth order term a4ω4 is thus of order
a4λ21E

2. The leading order correction due to the geometry in (56) is of order (λ2 − λ1)E. Therefore, one may omit non-
quadratic corrections provided a4λ21E

2
≪ (λ2 − λ1)E (case dominated by the geometry), and one could omit geometry

effect for a4λ21E
2

≫ (λ2 − λ1)E (case dominated by non-quadratic contributions to the Casimir functional). This suggests
that interesting phenomenamay occur in the weak-energy limit when λ2 −λ1 = O(a4E) (we assume λ1 of order one, which
is the case if the domain area is of order one).

Given the preceding discussion, it is natural to define a geometry parameter g by

g =
λ2 − λ1

E
. (66)

g > 0 is a measure of the degeneracy removal by the domain geometry (λ2 − λ1), scaled by E, the scale of relative non-
quadratic corrections in the small energy limit.14 For a doubly periodic rectangular domain (x, y) ∈ (0, 2πδ)×(0, 2π), with
aspect ratio δ, we have λ1 = 1/δ2 and λ2 = 1 (see Section 3.5.2). Then g = (δ2 − 1)/(δ2E).

We now maximize the Casimir (54) using (66) and consider the limit a4E → 0 for fixed values of g .
At leading order, the flow is dominated by the degenerate eigenmodes of the Laplacian. We thus have

ω = (ω1e1 + ω2e2) (1 + o (a4E)) . (67)

The energy constraint (58) can be expressed as

ω2
2 = 2Eλ2X + o (a4E) and ω2

1 = 2λ1E(1 − X)+ o (a4E) (68)

with 0 ≤ X ≤ 1. The expression for the quadratic part (60) of the Casimir functional is

C2(E) = E (λ1 + gXE + o (gE)) . (69)

Similarly, we compute the fourth-order contribution to the entropy. Let define the structure coefficients by

γn,k =


D

d2r ek1e
n−k
2 . (70)

Given the symmetric role played by x and y, we have γ4,0 = γ4,4 and γ4,1 = γ4,3 = 0 for the doubly-periodic square domain.
These equalities will be used in the following for slightly rectangular domains, which is correct at leading order in λ2 − λ1
(or δ − 1). We also define γ = 3γ2,2 − γ4,0. We note that γ = 3/8π2 > 0, which can be verified by a direct computation.

Straightforward computations then give

a4


D

d2r
ω4

4
= E


λ21γ4,0 + 2γ λ21X(1 − X)


a4E + o (a4E)


. (71)

From (64), (65), (69) and (71) we conclude, that at leading order, the minimum of the Casimir functional (64) is given by

C(E) = λ1E − γ4,0λ
2
1a4E

2
+ E2 max

0≤X≤1
h(X), (72)

with

h(X) = −gX + 2γ λ21a4X(1 − X). (73)

Square geometry. In order to understand the effects of the non-quadratic part only, let us first consider the case of the doubly
periodic square domain, where the geometry parameter g = 0. The function X(1−X) in h has a singlemaximumat X = 1/2.
This solutionwhere both eigenmodes e1 and e2 coexist equally is called amixed state. From (67)–(68), we see that this mixed
state is the vorticity of a symmetric dipole (see the description of (63)).

For the square geometry g = 0, there are also two global minima to X(1 − X): X = 0 (ω2 = 0 corresponding to e1, see
(67)–(68)), and X = 1 (ω1 = 0, corresponding to e2). We call e1 and e2 pure states; we recall that e1 and e2 corresponds to
parallel flows (see (62)).

From (73), we see that themaximization of the Casimir functional (72) depends crucially on the sign of a4. For the square
geometry g = 0, for the sinh-like case a4 > 0, the non-quadratic contribution selects the dipole (mixed state), whereas for
the tanh-like case a4 < 0, the non-quadratic contribution selects the parallel flows (pure states).

14 As may be noticed, the actual small parameter in the low energy expansion is a4E. One could have defined g by rescaling λ2 − λ1 by a4E rather than
by E only. This would however be inconvenient in the following discussion, as the sign of a4 plays an essential role.



256 F. Bouchet, A. Venaille / Physics Reports 515 (2012) 227–295

Equilibria in the sinh-like case (a4 > 0) in a rectangular geometry. In a rectangular doubly periodic geometry g ≠ 0, when
a4 > 0, the function h(X) is a concave parabola. It thus has a single maximum for

X⋆ =
1
2

−
g

4γ λ21a4
. (74)

Clearly X⋆ ≤ 1/2: the dipole is stretched in the same direction as the domain. The constraint X⋆ ≥ 0 must be verified (see
(68)). This is the case only if g ≤ g⋆ with

g⋆ = 2γ λ21a4. (75)

The discussion follows:

1. For g > g⋆ the effect of the geometry dominates and only the parallel flow associated with e1(X = 0) is observed. The
Casimir minima is

Cs(E) = λ1E − γ4,0a4λ21E
2
+ o


a4E2 . (76)

2. For g < g⋆ the effect of the non-quadratic term dominates, we then observe a mixed state corresponding to X = X⋆. The
entropy is

Cs(E) = λ1E +


−γ4,0λ

2
1a4 +

1
8γ λ21a4


g − g∗

2 E2. (77)

The solution X = 0 is a local maximizer of (64) (unstable state).

We thus conclude that in the sinh-like case (a4 > 0), there exists a second order phase transition (i.e. a discontinuity in
the second order derivative of the equilibrium entropy with respect to the energy) where the flow bifurcates from a dipole
when the non-quadratic part dominates (g < 2γ λ21a4) to a parallel flow when the geometry dominates (g > 2γ λ21a4).

Equilibria in the tanh-like case (a4 < 0) in a rectangular domain. In a rectangular doubly periodic geometry g ≠ 0, when
a4 > 0, h(X) is a convex parabola. Since −gX favors the state e1, the global statistical equilibrium is always the pure state
e1 (X = 0). The equilibrium value of the Casimir functional is

Cs(E) = λ1E − γ4,0λ
2
1a4E

2. (78)

We now study the metastable and unstable equilibria. The function h(X) has a single minimum for X = X⋆ (see (74)),
but because now a4 < 0, X⋆ ≥ 1/2. Depending on the position of X⋆ with respect to 1, two cases occur:

1. For g > −g⋆, then X⋆ < 1, the mixed state exists as an unstable state. The pure state e2 (X = 1) is a local maximum
(metastable state).

2. For g < −g⋆, then themixed state is nomore a critical point. The pure state e2 corresponding to X = 1 is a localminimum
(unstable).

The results for the equilibrium structures are summarized on Fig. 5. There is thus a second order phase transition along the
line g = g⋆ = 2γ λ21a4

The second order phase transition from the energy point of view. In the preceding computations, we have worked with a
rescaled geometry parameter g (66), because this is the correct scaling for studying the phase transition (balance between
the effect of quartic part of the Casimir functional and the effect of the geometry). From a physical point of view, in many
situations it is more natural to think in terms of energy, for a fixed geometry configurations.

We now consider fixed aspect ratio δ and a4 parameters. Using (66), from the phase transition criteria (75), we deduce
that a phase transition occurs for a critical energy E∗ given by

E∗
=

4π2δ2

δ2 − 1


3a4

; (79)

we have used γ = 3/8π2, λ1 = δ−2 and λ2 = 1. The phase transition line is thus a hyperbola in the (E–a4 plane). For
energies E < E∗, we have g > g∗ and equilibria are dipoles, while for E > E∗ equilibria are parallel flows.

The computations of last sections are obtained as an expansion in powers of a4E. The result (79) is thus valid for small
a4E∗ or equivalently for small values of δ − 1. The transition lines for larger values of the parameter δ − 1 is discussed in
next section.
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Fig. 5. Bifurcation diagram for the statistical equilibria of the 2D Euler equations in a doubly periodic domain with aspect ratio δ, in the limit where the
normal form treatment is valid, in the g–a4 parameter plane. The geometry parameter g is inversely proportional to the energy and proportional to the
difference between the two first eigenvalues of the Laplacian (or equivalently to δ − 1 in the limit of small δ − 1), the parameter a4 measures the non-
quadratic contributions to the Casimir functional. The solid line is a second order phase transition between a dipole (mixed state) and a parallel flow along
the y direction (pure state X = 0). Along the dashed line, a metastable parallel flow (along the x direction, pure state X = 1) loses its stability.

Fig. 6. Bifurcation diagrams for statistical equilibria of the 2D Euler equations in a doubly periodic domain (a) in the g–a4 plane (see Fig. 5) (b) obtained
numerically in the E–a4 plane, in the case of doubly periodic geometry with aspect ratio δ = 1.1. The colored insets are stream function and the inset curve
illustrates good agreement between numerical and theoretical results in the low energy limit. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

3.5.5. Larger energy phase diagram
In order to look at the phase diagram for larger energies,weuse a continuation algorithm tonumerically compute solution

to (55) corresponding to fa4(x) = (1/3 − 2a4) tanh x + (2/3 + 2a4) sinh x. Using f =

s′
−1, one can check that (65) is

verified. The results are shown in Fig. 6. The inset of Fig. 6(a) shows good agreement for transition lines obtained either with
the continuation algorithm or the low-energy limit theoretical result, for δ = 1.01. Fig. 6(b) shows the bifurcation diagram
for δ = 1.1; in such a case the transition line is still very close to a hyperbola provided energy is small.
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In this section, we have computed the phase diagrams for the statistical equilibria of the 2D Euler equations in a doubly
periodic geometry. This is an illustration of the type of results provided by a statistical mechanics approach: prediction of
large scale flow pattern, of phase transitions between these, explanation from statistical mechanics ideas the stability of
these flows, and description of the few key parameters that characterize these flows.

We will come back to the doubly periodic geometry in Section 6.4, and show how prediction of equilibrium phase
transitions can be useful also for out of equilibrium situations, when dissipation and forcing are present.

3.6. Numerical methods to compute statistical equilibria

We have seen previously that it is possible to compute analytically equilibrium states of the RSM theory in some limit
cases, and to get important insights on their physical properties through these computations. However, one might in
practice want to be able to compute these equilibrium states for more general situations. One can distinguish three different
numerical algorithms to find equilibrium states:

1. The use of an iterative algorithm proposed by Turkington and Whitaker, that computes local entropy maxima by
linearizing the constraints of the variational problem [203,193].

2. The use of relaxation equations that maximize the entropy production of the system while keeping constant the
constraints of the problem (potential vorticity distribution and energy) [168]. Thismethod also drives the system towards
a local entropymaximum. Generalization of relaxation equations to large classes of variational problems, with orwithout
constrains have been devised, see for instance [45] for a recent review.

3. The use of continuation methods to compute the critical points of the variational problems (48). This method is very
useful to follow a branch of stationary states by changing one parameter, and to detect bifurcations [186,24].

One has to be aware that nonlinear optimization, with or without constraint is not an easy task. One has to be able to follow
several bifurcate branches of solutions, and actually be able to track the good one!

Each of these three methods have its own advantages and drawbacks. The advantage of methods 1 and 2 is that they
actually deal with constrained variational problems. For instance if we speak about the energy constraint only, the control
parameter of methods 1 and 2 will be the energy E of the flow and not the inverse temperature. The associated drawback
is that they have to be initialized with fields having either the energy of interest (method 2) or an energy larger than the
energy of interest (method 1, then one has to be able to compute energy extrema). Another advantage of methods 1 and
2 is that they actually compute local extrema. The associated drawback is that it is not possible to compute saddle or local
minima, which is often necessary.

The advantage of method 3 is that it allows to actually follow branches of solution, whereas methods 1 and 2 lead to
jump from one branch to an other in rather uncontrolled way. It also allows to precisely tracks bifurcations, and thus finds
all the branches of solutions connected to the initial one. It thus gives a precise and complete view of the ensemble of critical
points. It is however more difficult to master.

The main drawback of all of these methods is that there is never any insurance to have caught the actual extrema.

3.7. Past studies of statistical equilibria and relaxation towards equilibrium

Most of theoretical contributions are described along this review. As far as applications are concerned, we have described
only few examples of statistical equilibrium studies. Our choice was based on their pedagogical interest or on their interest
for modeling natural phenomena. There have been however lots of other studies of statistical equilibria, comparisons
with direct numerical simulations or experiments, see e.g. [179,128] and references therein. We give in this section a
brief overview of these works. We also discus briefly phenomenological approaches based on statistical mechanics ideas,
discussing relaxation towards equilibrium, the closure problem in turbulence.

During the first stage following the appearance of RSM theory, there have been attempt to consider its application
to classical fluid mechanics problems, like shear layer problems [181], or von-Karman vortex streets [186], and to check
the prediction of statistical mechanics, as well as to describe symmetry breaking phenomena during the self-organization
of initial conditions containing negative and positive vortex patches with equal strength and area, in various domain
geometries [105]. Statistical equilibria computations were mainly done numerically. It was found that in any of these
situation, statistical equilibrium predict that the most probable flow is a self-organized large scale structure, qualitatively
very similar to the numerically observed one. Quantitative agreement has to be discussed on a case by case basis
[181,186,105]. Similarly, phase diagrams of statistical equilibrium states in a disk (for asymmetric vorticity distribution),
and comparison with numerical simulations are provided in [54,55,53]. In the case of a doubly periodic domain, [205] found
that freely evolving turbulent flow may for some classes of initial conditions be self-organized into ‘‘bar’’ (parallel flows)
equilibrium states, different from the dipole associated with the gravest horizontal mode. An analytical understanding of
this phenomenon is given in [24], see also Section 3.5.

Note that theymay also exist some class of initial conditions for which the final statemay be unsteady (presenting quasi-
periodic movements), which is not described by the statistical mechanics approach [175].

Some numerical studies of decaying 2D turbulence have specifically addressed the temporal evolution of themicroscopic
and macroscopic vorticity distribution [27,39], or the effect of boundaries in closed domains [57].
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The first analytical computations of RSM equilibrium states have been performed in the framework of the 2D Euler
equations, for states characterized by a linear q–ψ relation [47], which is justified in a strong mixing limit, see Section 3.4.
Generalization to a larger class of flow models (including quasi-geostrophic equations with topography), and relation with
possible inequivalence between ensembles is given in [196,198].

As explained in Section 3.4, some of the states characterized by a linear q–ψ relation had been previously described in
the framework of the energy–enstrophy theory (and all are RSM equilibrium states). This includes the original description of
‘‘Fofonoff flows’’ as statistical equilibria [171], see also [40] for further discussions and results, and [207,199] for a comparison
with direct numerical simulations. Generalization to continuously stratified quasi-geostrophic turbulence in doubly periodic
domains (with bottom topography, but without beta effect) is discussed in [134]. Generalization to barotropic flows above
finite topography is discussed in [135].

Energy–enstrophy equilibrium states on a sphere have also been computed for a two-layers quasi-geostrophic
model [81], and for a spin–lattice model of fluid vorticity [124,125].

Because linear q–ψ relations were also predicted by a phenomenological minimum enstrophy principle [28], the relation
between such states and RSM theory has been widely discussed in earlier studies on the RSM theory, see e.g. [47,26]. It is
now understood that minimum enstrophy states are only a particular class of RSM equilibrium states [47,15,146].

In some cases, the final state flow organization observed in laboratory or numerical experiments is different from the one
predicted by the RSM theory. This has lead to several phenomenological approaches inspired by the RSM theory. In most of
these approaches, some additional constraints (different from the dynamical invariants) are imposed to the system.

In order to describe the self-organization of turbulent flow in unbounded domains, [49] proposed to impose an additional
kinetic constraint of entropy maximization in a prescribed ‘‘bubble’’.

Another phenomenological approach, assuming a priori the existence of different ‘‘mixing regions’’ has been proposed
to describe the self-organization following the equilibration of an unstable baroclinic jet in a two-layer quasi-geostrophic
model in a channel [72].

It has been observed experimentally and numerically that in some cases, two slightly different initial conditions can lead
to very different final states, one being predicted by the RSM theory, the other being a quasi-stationary state inwhich several
vortex are organized into a long-lived crystal configuration, which persists during the time of the experiments, see e.g.
[173,110] for an application to mesoscale vortices in cyclones. A phenomenological ‘‘regional entropy maximization’’
approach, assuming a priori the existence of several vortex, has been proposed to describe these vortex crystals [99,100].

The idea of an application of equilibrium statistical mechanics to the description of Jovian vortices was mentioned in the
early development of the theory (see for instance [180,139,137]). The fact that the ring shape of the Great Red Spot velocity
field is related to the small value of the Rossby deformation radius in a Quasi-Geostrophic model has been understood
in [180]. The first theoretical modeling and quantitative predictions are given in [25,21] in the framework of 1.5 layer
quasi-geostrophic equation. In particular, analytical result were obtained by considering the limit of small Rossby radius
of deformation (and then strongly nonlinear q–ψ relations), see [25] and Section 4. At the same time, the conditions for the
appearance of the spot on the south hemisphere rather than on the south one, have been discussed in [192]. The small
Rossby radius of deformation theory has been further developed in the oceanic context to describe rings and jets, see
[201,197] and Sections 4 and 5.

Another attempt to apply equilibrium statistical mechanics to oceanic flows had been performed by [60,61] in
the framework of the Heton model of [93] for the self-organization phenomena following deep convection events, by
numerically computing statistical equilibrium states of a two-layer quasi-geostrophic model.

In the atmospheric context, the equilibrium statistical theory has been applied by [159] to predict final state organization
of the stratospheric polar vortex.

In the ocean context, there has been many attempts to propose subgrid-scale parameterizations inspired by the
equilibrium statistical mechanics,15 as first advocated by Holloway in the framework of the energy–enstrophy approach
(see e.g. [94,82] for a review and further references), and further developed by [106] to take into account higher order
invariants.

The parameterization of [106] is actually a direct application to the oceans of the relaxation equations proposed by
Robert and Sommeria in the case of the Euler equations [168]. The relaxation equations are obtained through an interesting
systematic approach based on a maximum entropy production principle (MEPP) in order to obtain equations, preserving
the invariant structure of the initial equation but converging towards the equilibrium states. At a phenomenological
level, they can be considered as a turbulent closure for the parameterization of small scale mixing. It has been shown
empirically that they do not describe the actual turbulent fluxes [14]. This is however a drawback shared bymost of existing
parameterizations, and the essential fact that they preserve the mathematical properties (conservation laws, and so on)
make relaxation equation better model candidates than most of other parameterizations. The relaxation equations were
further developed in a number of works, see for instance [165,166,48,14,46] and references therein.

Other closures based on statistical mechanics ideas have been proposed by the group of Majda, sometime at a
phenomenological level [89,88], sometimes at a more fundamental level for specific problems [129].

15 We emphasize that such parameterization are phenomenological approaches, contrary to the equilibrium statistical mechanics.
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4. Statistical equilibria and jet solutions, application to ocean rings and to the Great Red Spot of Jupiter

In Section 3.5, we have described analytically the equilibrium flows with a normal form study close to a linear relation
between potential vorticity and stream function (or equivalently in the limit of a quadratic Energy–Casimir functional). We
have pointed out thatmore general solutions are very difficult to find analytically, andmay require numerical computations,
for instance using continuation algorithms.

There are however other limits where an analytical description becomes possible. This is for instance the case in the limit
of large energies [190]. This is a very interesting, non-trivial and subtle limit; we do not describe it this review. The second
interesting limit applies to the quasi-geostrophic model with 1.5 layers. It is the limit of Rossby deformation radius Rmuch
smaller than the size of the domain16 (R ≪ L), where the nonlinearity of the potential vorticity–stream function relation
becomes essential. This limit case and its applications to the description of coherent structures in geostrophic turbulence is
the subject of this section.

In the limit R ≪ L, the variational problems of the statistical theory are analogous to the Van der Waals–Cahn–Hilliard
model that describes phase separation and phase coexistence in usual thermodynamics. The Van der Waals–Cahn–Hilliard
model describes for instance the equilibrium of a bubble of a gas phase in a liquid phase, or the equilibria of soap films
in air. For these classical problems, the essential concepts are the free energy per unit area, the related spherical shape of
the bubbles, the Laplace equation relating the radius of curvature of the bubble with the difference in pressure inside and
outside the bubble (see Section 4.1), or properties of minimal surfaces (the Plateau problem). We will present an analogy
between those concepts and the structures of quasi-geostrophic statistical equilibrium flows.

For these flows, the limit R ≪ L leads to interfaces separating phases of different free energies. In our case, each phase
is characterized by a different value of average potential vorticity, and corresponds to sub-domains in which the potential
vorticity is homogenized. The interfaces correspond to strong localized jets of typical width R. This limit is relevant for
applications showing such strong jet structures.

From a geophysical point of view, this limit R ≪ L is relevant for describing some of Jupiter’s features, like for instance
the Great Red Spot of Jupiter (a giant anticyclone) (here R ≃ 500–2000 km and the length of the spot is L ≃ 20,000 km) (see
Section 4.3).

This limit is also relevant to ocean applications, where R is the internal Rossby deformation radius (R ≃ 50 km at mid-
latitude). We will apply the results of statistical mechanics to the description of robust (over months or years) vortices such
as ocean rings, which are observed around mid-latitude jets such as the Kuroshio or the Gulf Stream, and more generally in
any eddying regions (mostly localized near western boundary currents) as the Agulhas current, the confluence region in the
Argentinian basin or the Antarctic Circumpolar circulation (see Section 4.4). The length L can be considered as the diameters
of those rings (L ≃ 200 km).

We will also apply statistical mechanics ideas in the limit R ≪ L to the description of the large scale organization of
oceanic currents (in inertial region, dominated by turbulence), such as the eastward jets like the Gulf Stream or the Kuroshio
extension (the analogue of the Gulf Stream in the Pacific ocean). In that case the length L could be thought as the ocean basin
scale L ≃ 5000 km (see Section 5).

4.1. The Van der Waals–Cahn–Hilliard model of first order phase transitions

We first describe the Van der Waals–Cahn–Hilliard model. We give in the following subsections a heuristic description
based on physical arguments. Some comments and references on the mathematics of the problem are provided in
Section 4.1.4.

This classical model of thermodynamics and statistical physics describes the coexistence of phase in usual
thermodynamics. It involves the minimization of a free energy with a linear constraint:

F = min {F [φ] | A [φ] = −B} with F =


D

dr

R2 (∇φ)2

2
+ f (φ)


and A [φ] =


D

drφ (80)

where φ is the non-dimensional order parameter (for instance the non-dimensionality local density), and f (φ) is the non-
dimensional free energy per unit volume. We consider the limit R ≪ L where L is a typical size of the domain. We assume
that the specific free energy f has a doublewell shape (see Fig. 7), characteristic of a phase coexistence related to a first order
phase transition. For a simpler discussion, we also assume f to be even; this does not affect the properties of the solutions
discussed below.

4.1.1. First order phase transition and phase separation
At equilibrium, in the limit of small R, the function f (φ) plays the dominant role. In order to minimize the free energy,

the system will tend to reach one of its two minima (see Fig. 7). These two minima correspond to the value of the order
parameters for the two coexisting phases, the two phases have thus the same free energy.

16 The study of equilibria of the quasi-geostrophic model is a first step before studying equilibria of the shallow water model, for which taking the limit
R ≪ L give similar results.
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Fig. 7. The doublewell shape of the specific free energy f (φ) (see Eq. (80)). The function f (φ) is even and possesses twominima atφ = ±u. At equilibrium,
at zeroth order in R, the physical system will be described by two phases corresponding to each of these minima.

Fig. 8. At zeroth order, φ takes the two values ±u on two sub-domains A± . These sub-domains are separated by strong jets. The actual shape of the
structure, or equivalently the position of the jets, is given by the first order analysis.

The constraint A (see Eq. (80)) is related to the total mass (due to the translation on φ to make f even, it can take both
positive andnegative values).Without the constraintA , the twouniform solutionsφ = u orφ = −uwould clearlyminimize
F : the system would have only one phase. Because of the constraint A , the system has to split into sub-domains: part of it
with phase φ = u and part of it with phase φ = −u. In a two dimensional space, the area occupied by each of the phases are
denoted A+ and A− respectively. They are fixed by the constraint A by the relations uA+ − uA− = −B and by A+ + A− = 1
(where 1 is the total area). A sketch of a situation with two sub-domains each occupied by one of the two phases is provided
in Fig. 8.

Up to now, we have neglected the term R2 (∇φ)2 in the functional (80). In classical thermodynamics, this term is related
to non-local contributions to the free energy (proportional to the gradient rather than to only point-wise contributions).
Moreover the microscopic interactions fix a length scale R above which such non-local interactions become negligible.
Usually for a macroscopic system such non-local interactions become negligible in the thermodynamic limit. Indeed as
will soon become clear, this term gives finite volume or interface effects.

We know from observations of the associated physical phenomena (coarsening, phase separations, and so on) that the
system has a tendency to form larger and larger sub-domains. We thus assume that such sub-domains are delimited by
interfaces, with typical radius of curvature r much larger than R.17 Actually the term R2 (∇φ)2 is negligible except on
an interface of width R separating the sub-domains. The scale separation r ≫ R allows to consider independently what
happens in the transverse direction to the interface on the one hand and in the along interface direction on the other hand.
As described in next sections, this explains the interface structure and interface shape respectively.

17 This can indeed be proved mathematically, see Section 4.1.4.
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4.1.2. The interface structure
At the interface, the value of φ changes rapidly, on a scale of order R, with R ≪ r . What happens in the direction along

the interface can thus be neglected at leading order. To minimize the free energy (80), the interface structure φ(ζ ) needs
thus to minimize a one dimensional variational problem along the normal to the interface coordinate ζ

Fint = min


dζ


R2

2


dφ
dζ

2

+ f (φ)


. (81)

Dimensionally, Fint is a free energy F divided by a length. It is the free energy per unit length of the interface.
We see that the two terms in (81) are of the same order only if the interface has a typical width of order R. We rescale

the length by R: ζ = Rτ . The Euler–Lagrange equation of (81) gives

d2φ

dτ 2
=

df
dφ
. (82)

This equation is a very classical one. For instance making an analogy with mechanics, if φ would be a particle position, τ
would be the time, Eq. (82) would describe the conservative motion of the particle in a potential V = −f . From the shape
of f (see Fig. 7) we see that the potential has two bumps (two unstable fixed points) and decays to −∞ for large distances.
In order to connect the two different phases in the bulk, on each side of the interface, we are looking for solutions with
boundary conditions φ → ±u for τ → ±∞. It exists a unique trajectory with such limit conditions: in the particle analogy,
it is the trajectory connecting the two unstable fixed points (homoclinic orbit).

This analysis shows that the interface width scales like R. Moreover, after rescaling the length, one clearly sees that the
free energy per length unit (81) is proportional to R: Fint = eR, where e > 0 could be computed as a function of f (see e.g.
[25,197]).

4.1.3. The interface shape: an isoperimetrical problem
In order to determine the interface shape, we come back to the free energy variational problem (80). In the previous

section, we have determined the transverse structure of the interface, by maximizing the one dimensional variational
problem (81). We have discussed the quantity Fint = Re, a free energy per unit length, which is the unit length contribution
of the interface to the free energy. The total free energy is thus

F = eRL, (83)

where we have implicitly neglected contributions of relative order R/r , where r is the curvature radius of the interface.
In order to minimize the free energy (83), we thus have to minimize the length L. We must also take into account that

the areas occupied by the two phases, A+ and A− are fixed, as discussed in Section 4.1.1. We thus look for the curve with the
minimal length, that bounds a surface with area A+

min {eRL|Area = A+} . (84)

This type of problem is called an isoperimetrical problem. In three dimensions, the minimization of the area for a fixed
volume leads to spherical bubbles or plane surface if the boundaries does not come into play.When boundaries are involved,
the interface shape is more complex (it is a minimal surface -or Plateau- problem). This can be illustrated by nice soap films
experiments (Fig. 9), asmay be seen in very simple experiments or inmany sciencemuseums. Here, for our two dimensional
problem, it leads to circle or straight lines, as we now prove.

It is a classical exercise of variational calculus to prove that the first variations of the length of a curve is proportional to
the inverse of its curvature radius r . The solution of the problem (84) then leads to

eR
r

= α, (85)

where α is a Lagrange parameter associated with the conservation of the area. This proves that r is constant along
the interface: solutions are either circles or straight lines. The law (85) is the equivalent of the Laplace law in classical
thermodynamics, relating the radius of curvature of the interface to the difference of pressure inside and outside of the
bubble.18

Wehave thus shown that theminimization of the Van derWaals–Cahn–Hilliard functional, aimed at describing statistical
equilibria for first order phase transitions, predicts phase separation (formation of sub-domains with each of the two phases
corresponding to the two minima of the free energy). It predicts the interface structure and that its shape is described by
an isoperimetrical problem: the minimization of the length for a fixed enclosed area. Thus equilibrium structures are either
bubbles (circles) or straight lines. In the following sections, we see how this applies to the description of statistical equilibria
for quasi-geostrophic flows, describing vortices and jets.

18 Indeed, at next order, the Lagrange parameter α leads to a slight imbalance between the two phase free energy, which is related to a pressure difference
for the two phases. This thus gives the relation between pressure imbalance, radius of curvature and free energy per unit length (or unit surface in the 3D
case).
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Fig. 9. Illustration of the Plateau problem (or minimal area problem) with soap films: the spherical bubble minimizes its area for a given volume (Jean
Simeon Chardin, Les bulles de savon, 1734).

4.1.4. The mathematics of the Van der Waals–Cahn–Hilliard problem
The mathematical study of the Van der Waals–Cahn–Hilliard functional (80) was a mathematical challenge during the

1980s. It’s solution has followed from the analysis in the framework of spaces of functions with bounded variations, and on
results from semi-local analysis. One of the main contributions to this problemwas achieved by Modica, in 1987 [140]. This
functional analysis study proves the assumptions of the heuristic presentation given in the previous subsections: φ takes
the two values ±u in sub-domains separated by transition area of width scaling with R.

As a complement to these mathematical works, a more precise asymptotic expansion based on the heuristic description
above, generalizable at all order in R, with mathematical justification of the existence of the solutions for the interface
equation at all order in R, is provided in [13]. Higher order effects are also discussed in this work.

4.2. Quasi-geostrophic statistical equilibria and first order phase transitions

The first discussion of the analogy between statistical equilibria in the limit R ≪ L and phase coexistence in usual
thermodynamics, in relationwith the Van derWaals–Cahn–Hilliardmodel is given in [13,25]. This analogy has been recently
put on a more precise mathematical ground, by proving that the variational problems of the RSM statistical mechanics and
the variational problem are indeed related [15]. More precisely, any solution to the variational problem:

F = min {F [φ] | A [φ] = −B} with F =


D

dr

R2 (∇φ)2

2
+ f (φ)− Rφh


and A [φ] =


D

drφ (86)

where ψ = R2φ (ψ is the stream function defined by Eq. (10)), is a RSM equilibria of the quasi-geostrophic equations (8).
It is easy to prove that any critical point to (86) is a critical point to the grand canonical Energy–Casimir functional (50),

and is a critical point of the entropy maximization. Considering the problem (86), using a part integration and the relation
q = R2∆φ − φ + Rh yields

δF =


dr


f ′(φ)− φ − q


δφ and δA =


dr δφ.

Critical points of (86) are therefore solutions of δF − αδA = 0, for all δφ, where α is the Lagrange multiplier associated
with the constraint A . These critical points satisfy

q = f ′


ψ

R2


−
ψ

R2
− α.

We conclude that this equation is the same as (48), provided that f ′


ψ

R2


= g(βψ)+

ψ

R2
− α.

The proof that any solution to (86) is a RSM equilibria involves more complicated mathematical considerations; we
assume this in the following and refer the interested readers to [15] for more details.

In the case of an initial distribution γ (43) with only two values of the potential vorticity: γ (σ ) = (aδ(σ − σ1) +

(1 − a)δ(σ − σ2)), only two Lagrange multipliers α1 and α2 are needed, associated with σ1 and σ2 respectively, in order
to compute g (Eq. (48)). In that case, the function g is exactly tanh function. There exists in practice a much larger class of
initial conditions for which the function g would be an increasing function with a single inflexion point, similar to a tanh
function, especially when one considers the limit of small Rossby radius of deformation. The works [25,197] give physical
arguments to explain why it is the case for Jupiter’s troposphere or oceanic rings and jets.
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When g is a tanh-like function, the specific free energy f has a double well shape, provided that the inverse temperature
β is negative, with sufficiently large values.

4.2.1. Topography and anisotropy
The topography term ηd = Rh (y) in (86) is the main difference between the Van der Waals–Cahn–Hilliard functional

(80) and the quasi-geostrophic variational problem (86).We recall that this term is due to the beta plane approximation and
a prescribed motion in a lower layer of fluid (see Section 2.1.3). This topographic term provides an anisotropy in the free
energy. Its effect will be the subject of most of the theoretical discussion in the following sections.

Sincewe suppose that this term scales with R, the topography termwill not change the overall structure at leading order:
there will still be phase separations in sub-domains, separated by an interface of typical width R, as discussed in Section 4.1.
We now discuss the dynamical meaning of this overall structure for the quasi-geostrophic model.

4.2.2. Potential vorticity mixing and phase separation
In the case of the quasi-geostrophic equations, the order parameter φ is proportional to the stream functionψ:ψ = R2φ.

At equilibrium, there is also a functional relation between the stream functionψ and the coarse-grained potential vorticity
q (48). Then the sub-domains of constant φ are domains where the (coarse grained) potential vorticity q is also constant.
It means that the level of mixing of the different fine grained potential vorticity levels are constant in those sub-domains.
We thus conclude that the coarse grained potential vorticity is homogenized in sub-domains that corresponds to different
phases (with different values of potential vorticity), the equilibriumbeing controlled by an equality for the associatedmixing
free energy.

4.2.3. Strong jets and interfaces
In Section 4.1.3, we have described the interface structure. The order parameter φ varies on a scale of order R mostly in

the normal to the interface direction, reaching constant values far from the interface. Recalling that φ is proportional to ψ ,
and that v = ez ∧ ∇ψ (10), we conclude that:

1. The velocity field is nearly zero far from the interface (at distances much larger than the Rossby deformation radius R).
Non zero velocities are limited to the interface areas.

2. The velocity is mainly directed along the interface.

These two properties characterize strong jets. In the limit R ≪ L, the velocity field is thus mainly composed of strong jets of
width R, whose path is determined from an isoperimetrical variational problem.

4.3. Application to Jupiter’s Great Red Spot and other Jovian features

Most of Jupiter’s volume is gas. The visible features on this atmosphere, cyclones, anticyclones and jets, are concentrated
on a thin outer shell, the troposphere, where the dynamics is described by similar equations to the ones describing the Earth
atmosphere [62,97]. The inner part of the atmosphere is a conducting fluid, and the dynamics is described by Magneto-
hydrodynamics (MHD) equations.

The most simple model describing the troposphere is the 1-1/2 quasi-geostrophic model, described in Section 2.1.3.
This simple model is a good one for localized mid-latitude dynamics. Many classical work have used it to model Jupiter’s
features, taking into account the effect of a prescribed steady flow in a deep layer acting like an equivalent topography h (y)
(see Section 2.1.3). We emphasize that there is no real bottom topography on Jupiter.

Someworks based on soliton theory aimed at explaining the structure and stability of the Great Red Spot. However, none
of these obtained a velocity field qualitatively similar to the observed one, which is actually a strongly nonlinear structure.
Structures similar to the Great Red Spot have been observed in a number of numerical simulations, but without reproducing
in a convincing way both the characteristic annular jet structure of the velocity field and the shape of the spot. Detailed
observations and fluidmechanics analysis described convincingly the potential vorticity structure and the dynamical aspects
of the Great Red Spot (see [62,97,130] and references therein). The potential vorticity structure is a constant vorticity inside
the spot surroundedby a gentle shear outside,which gives a good fluidmechanics theory [130]. In this sectionweexplain this
potential vorticity structure thanks to statisticalmechanics. Statisticalmechanics provides alsomore detailed, and analytical
theory of the shape of Jupiter vortices.

The explanation of the stability of the Great Red Spot of Jupiter using the statistical mechanics of the quasi-geostrophic
model is cited by nearly all the papers from the beginning of the Robert–Sommeria–Miller theory. Some equilibria having
qualitative similarities with the observed velocity field have been computed in [180]. The theoretical study in the limit of
small Rossby deformation radius, especially the analogy with first order phase transitions [25,21] gave the theory presented
below: an explanation of the detailed shape and structure and a quantitative model. These results have been extended to
the shallow-water model [18]. The work [192] argued on the explanation of the position of the Great Red Spot based on
statistical mechanics equilibria.
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Fig. 10. Observation of the Jovian atmosphere fromCassini (Courtesy of NASA/JPL-Caltech). One of themost striking feature of the Jovian atmosphere is the
self-organization of the flow into alternating eastward and westward jets, producing the visible banded structure and the existence of a huge anticyclonic
vortex ∼20,000 km wide, located around 20 South: the Great Red Spot (GRS). The GRS has a ring structure: it is a hollow vortex surrounded by a jet of
typical velocity ∼100 m s{−1} and width ∼1000 km. Remarkably, the GRS has been observed to be stable and quasi-steady for many centuries despite the
surrounding turbulent dynamics. The explanation of the detailed structure of the GRS velocity field and of its stability is one of the main achievement of
the equilibrium statistical mechanics of two dimensional and geophysical flows (see Fig. 11 and Section 4).

Observation (Voyager) Statistical Equilibrium

Fig. 11. Left: the observed velocity field is from Voyager spacecraft data, from Dowling and Ingersoll [63]; the length of each line is proportional to
the velocity at that point. Note the strong jet structure of width of order R, the Rossby deformation radius. Right: the velocity field for the statistical
equilibriummodel of the Great Red Spot. The actual values of the jet maximum velocity, jet width, vortex width and length fit with the observed ones. The
jet is interpreted as the interface between two phases; each of them corresponds to a different mixing level of the potential vorticity. The jet shape obeys
a minimal length variational problem (an isoperimetrical problem) balanced by the effect of the deep layer shear.

We describe in the following the prediction of equilibrium statistical mechanics for the quasi-geostrophic model with
topography. The start from the Van der Waals–Cahn–Hilliard variational problem in presence of small topography (86),
recalling that its minima are statistical equilibria of the quasi-geostrophic model (see Section 4.2).

The Rossby deformation radius at the Great Red Spot latitude is evaluated to be of order of 500–2000 km, which has to
be compared with the size of the spot: 10,000 × 20,000 km. This is thus consistent with the limit R ≪ L considered in the
description of phase coexistence within the Van der Waals–Cahn–Hilliard model (Section 4.1), even if the criteria r ≪ R is
only marginally verified where the curvature radius r of the jet is the larger.

In the limit of small Rossby deformation radius, the entropy maxima for a given potential vorticity distribution and
energy, are formed by strong jets, bounding areas where the velocity is much smaller. Fig. 11 shows the observation of the
Great Red Spot velocity field, analyzed from cloud tracking on spacecraft pictures. The strong jet structure (the interface)
and phase separation (much smaller velocity inside and outside the interface) is readily visible. Themain differencewith the
structure described in the previous section is the shape of the vortex: it is not circular as was predicted in the case without
topography or with a linear topography. We consider the effect of a more general topography in the next section.
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Fig. 12. Left panel: typical vortex shapes obtained from the isoperimetrical problem (curvature radius Eq. (85)), for two different values of the parameters
(arbitrary units). The characteristic properties of Jupiter’s vortex shapes (very elongated, reaching extremal latitude ym where the curvature radius is
extremely large) are well reproduced by these results. Central panel: the Great Red Spot and one of the White Ovals. Right panel: one of the Brown Barge
cyclones of Jupiter’s north atmosphere. Note the very peculiar cigar shape of this vortex, in agreement with statistical mechanics predictions (left panel).

4.3.1. Determination of the vortex shape: the typical elongated shape of Jupiter’s features
In order to determine the effect of topography on the jet shape, we consider again the variational problem (86). We

note that the topography ηd = Rh has been rescaled by R in the term Rh(y)φ appearing in the variational problem. This
corresponds to a regimewhere the effect of the topography is of the same order as the effect of the jet free energy. Two other
regimes exist: one for which topography would have a negligible impact (this would lead to circular vortices, as treated in
Section 4.2) and another regime where topography would play the dominant role. This last regime may be interesting in
some cases, but we do not treat it in this review.

Due to the scaling Rhφ, the topography does not play any role at zeroth order.We thus still conclude that phase separation
occurs, with sub-domains of areas A+ and A− fixed by the potential vorticity constraint (see Section 4.1.1), separated by jets
whose transverse structure is described in Section 4.1.3. The jet shape is however given by minimization of the free energy
contributions of order R. Let us thus compute the first order contribution of the topography term RH =


D

dr (−Rφh(y)).
For this we use the zeroth order result φ = ±u. We then obtain H = −u


A+

dr h + u

A−

dr h = H0 − 2u

A+

dr h, where
H0 ≡ u


D

dr h. We note that H0 does not depend on the jet shape.
Adding the contribution of the topography to the jet free energy (83), we obtain the first order expression for themodified

free energy functional

F = RH0 + R

eL − 2u


A+

dr h(y)

, (87)

which is valid up to correction of order e (R/r) and of order R2H . We recall that the total area A+ is fixed. We see that, in
order to minimize the free energy, the new term tends to favor as much as possible the phase A+ with positive values of
stream function φ = u (and then negative values of potential vorticity q = −u) to be placed on topography maxima. This
effect is balanced by the length minimization.

In order to study in more details the shape of the jet, we look at the critical points of the minimization of (87), with fixed
area A+. Recalling that first variations of the length are proportional to the inverse of the curvature radius, we obtain

2uRh(y)+ α =
eR
r
, (88)

where α is a Lagrange parameter associated with the conservation of the area A+. This relates the vortex shape to the
topography and parameters u and e. From this equation, one can write the equations for X and Y , the coordinates of the
jet curve. These equations derive from a Hamiltonian, and a detailed analysis allows to specify the initial conditions leading
to closed curves and thus to numerically compute the vortex shape (see [25] for more details)

Fig. 12 compares the numerically obtained vortex shapes, with the Jovian ones. This shows that the solution to Eq. (88)
has the typical elongated shape of Jovian vortices, as clearly illustrated by the peculiar cigar shape of Brown Barges,
which are cyclones of Jupiter’s north troposphere. We thus conclude that statistical mechanics and the associated Van der
Waals–Cahn–Hilliard functional with topography explain well the shape of Jovian vortices.

Fig. 13 shows a phase diagram for the statistical equilibria, with Jupiter like topography and Rossby deformation radius.
This illustrates the power of statistical mechanics: with only few parameters characterizing statistical equilibria (here the
energy E and a parameter related to the asymmetry between positive and negative potential vorticity B), we are able to
reproduce all the features of Jupiter’s troposphere, from circular white ovals, to the GRS and cigar shaped Brown Barges.
The reduction of the complexity of turbulent flow to only a few order parameters is the main interest and achievement of a
statistical mechanics theory.

Moreover, as seen on Fig. 13, statistical mechanics predicts a phase transition from vortices towards straight jets. The
concept of phase transition is an essential one in complex systems, as the qualitative physical properties of the system
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Fig. 13. Phase diagram of the statistical equilibrium states versus the energy E and a parameter related to the asymmetry between positive and negative
potential vorticity B, with a quadratic topography. The inner solid line corresponds to a phase transition, between vortex and straight jet solutions. The
dash line corresponds to the limit of validity of the small deformation radius hypothesis. The dot lines are constant vortex aspect ratio lines with values
2, 10, 20, 30, 40, 50, 70, 80, respectively. We have represented only solutions for which anticyclonic potential vorticity dominate (B > 0). The opposite
situation may be recovered by symmetry. For a more detailed discussion of this figure, the precise relation between E, B and the results presented in this
review; please see [21].

drastically change at a given value of the control parameters. This is also an essential point, to be bring such a concept in
turbulent problems. This will be further emphasized in Section 6.4.3.

4.3.2. Quantitative comparisons with Jupiter’s Great Red Spot
In the preceding section, we have made a rapid description of the effect of a topography to first order phase transitions.

Wehave obtained and compared the vortex shapewith Jupiter’s vortices. Amuchmoredetailed treatment of the applications
to Jupiter and to the Great Red Spot can be found in [25,21]. The theory can be extended in order to describe the small shear
outside of the spot (first order effect on φ outside of the interface), on the Great Red Spot zonal velocity with respect to the
ambient shear, on the typical latitudinal extension of these vortices. A more detailed description of physical considerations
on the relations between potential vorticity distribution and forcing is also provided in [25,21].

4.4. Application to ocean rings

Application of equilibrium statistical mechanics to the description of oceanic flows is a long-standing problem, starting
with the work of Salmon–Holloway–Hendershott [171] in the framework of energy–enstrophy theory.

Another attempt to apply equilibrium statistical mechanics to oceanic flows had been performed by [60,61] in
the framework of the Heton model of [93] for the self-organization phenomena following deep convection events, by
numerically computing statistical equilibrium states of a two-layer quasi-geostrophic model.

None of these previous approaches have explained the ubiquity of oceanic rings. We show in the following that such
rings can actually be understood as statistical equilibria by similar arguments that explain the formation of Jovian vortices
(see [197] for more details).

4.4.1. Rings in the oceans
The ocean has long been recognized as a sea of eddies. This has been first inferred from in situ data by Gill, Green and

Simmons in the early 1970s [86]. During the last two decades, the concomitant development of altimetry [52,184] and
realistic ocean modeling [90,6] has made possible a quantitative description of those eddies. The most striking observation
is probably their organization into westward propagating rings of diameters (Le ∼ 200 km), as for instance seen in Fig. 14.
In that respect, they look like small Jovian Great Red Spots.

Those eddies plays a crucial role for the general ocean circulation and its energy cycle, since their total energy is one
order of magnitude above the kinetic energy of the mean flow.

Those rings are mostly located around western boundary currents, which are regions characterized by strong baroclinic
instabilities,19 such as the Gulf Stream, the Kuroshio, the Agulhas currents below South Africa or the confluence region of
the Argentinian basin, as seen on Figs. 14 and 17. The rings can also propagate far away from the regions where they are
created.

19 When the mean flow present a sufficiently strong vertical shear, baroclinic instabilities [155,194] release part of the available potential energy
associated with this mean flow, which is generally assumed to be maintained by a large scale, low frequency forcing mechanism such as surface wind
stress or heating [194].
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Fig. 14. Snapshot of surface velocity field from a comprehensive numerical simulation of the southern Oceans [90]. Left: coarse resolution, the effect of
mesoscale eddies (∼ 100 km) is parameterized. Right: higher resolution, without parameterization of mesoscale eddies. Note the formation of large scale
coherent structure in the high resolution simulation: there is either strong and thin eastward jets or rings of diameter ∼ 200 km. Typical velocity and
width of jets (be it eastward or around the rings) are respectively∼ 1m s−1 and∼ 20 km.We give a statistical mechanics explanation andmodel for these
rings.

Most of those rings have a baroclinic structure, i.e. a velocity field intensified in the upper layer (H ∼ 1 km) of the oceans.
This baroclinic structure suggest that the 1.5 layer quasi-geostrophic model introduced in the previous sections is relevant
to this problem. The horizontal scale of the rings (Le ∼ 200 km) are larger than the width R ∼ 50 km of the surrounding jet,
of typical velocities U = 1 m s−1.

The organization of those eddies into coherent rings can be understood by the same statistical mechanics arguments that
have just been presented in the case of Jupiter’s Great Red Spot. The rings correspond to one phase containing most of the
potential vorticity extracted from themean flow by baroclinic instability, while the surrounding quiescent flow corresponds
to the other phase (Fig. 15). This statistical mechanics approach, the only one to our knowledge to describe the formation
of large scale coherent structures, might then be extremely fruitful to account for the formation of such rings. It remains an
important open question concerning the criteria that select the size of such coherent structures. This is an ongoing subject
of investigation.

4.4.2. The westward drift of the rings
In this section, we consider the consequences of the beta effect (see Section 2.1.3), which corresponds to linear

topography ηd = βcy in (9). We prove that this term can be easily handled and that it actually explains the westward
drift of oceanic rings with respect to the mean surrounding flow.

We consider the quasi-geostrophic equations on a domain which is invariant upon a translation along the x direction
(either an infinite or a periodic channel, for instance). Then the quasi-geostrophic equations are invariant over a Galilean
transformation in the x direction. We consider the transformation

v′
= v + Vex,

where v is the velocity in the original frame of reference and v′ is the velocity in the new Galilean frame of reference.
From the relation v = ez ∧ ∇ψ (10), we obtain the transformation law for ψ: ψ ′

= ψ − Vy and from the expression
q = ∆ψ − ψ/R2

+ βcy (9) we obtain the transformation law for q: q′
= q + Vy/R2. Thus the expression for the potential

vorticity in the new reference frame is

q = ∆ψ −
ψ

R2
+


βc +

V
R2


y.

From this last expression,we see that a change of Galilean reference frame translates as a beta effect in the potential vorticity.
Moreover, in a reference frame moving at velocity −βcR2ex, the βc effect is exactly canceled out.

From this remark, we conclude that taking into account the beta effect, the equilibrium structures should be the one
described by theminimization of the Van derWaals–Cahn–Hilliard variational problem, butmoving at a constant westward
speed V = βcR2. A more rigorous treatment of the statistical mechanics for the quasi-geostrophic model with translational
invariance would require to take into account an additional conserved quantity, the linear momentum, which would lead
to the same conclusion: statistical equilibria are rings with a constant westward speed V = βcR2. See also [197] for more
details and discussions on the physical consequences of this additional constraint.

This drift is actually observed for the oceanic rings, see for instance Fig. 16.



F. Bouchet, A. Venaille / Physics Reports 515 (2012) 227–295 269

10

5

0

–5

–10
–10 0 10 –10 0 10

10

5

0

–5

–10

0.8

0.6

0.4

0.2

0.4

0.3

0.2

0.1

Stream function Velocity modules

Fig. 15. Vortex statistical equilibria in the quasi-geostrophic model. It is a circular patch of (homogenized) potential vorticity in a background of
homogenized potential vorticity, with two different mixing values. The velocity field (right panel) has a very clear ring structure, similarly to the Gulf-
Stream rings and to many other ocean vortices. The width of the jet surrounding the ring has the order of magnitude of the Rossby radius of deformation R.

Fig. 16. Altimetry observation of the westward drift of oceanic eddies (including rings) from [52], Fig. 4. The red line is the zonal average (along a latitude
circle) of the propagation speeds of all eddies with life time greater than 12 weeks. The black line represents the velocity βcR2 where βc is the meridional
gradient of the Coriolis parameter andR the first baroclinic Rossby radius of deformation. This eddypropagation speed is a prediction of statisticalmechanics
(see Section 4.4.2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5. Are the Gulf-Stream and the Kuroshio currents close to statistical equilibria?

In Section 4.4, we have discussed applications of statistical mechanics ideas to the description of ocean vortices, like
the Gulf-Stream rings. We have also mentioned that statistical equilibria, starting from the Van der Waals–Cahn–Hilliard
functional (86), maymodel physical situations where strong jets, with a width of order R, bound domains of nearly constant
potential vorticity.

This is actually the case of the Gulf Stream in the North Atlantic ocean or of the Kuroshio extension in the North Pacific
ocean. This can be inferred from observations, or this is observed in high resolution numerical simulations of idealized wind
driven mid-latitude ocean, see for instance Fig. 18 (and Ref. [7] for more details).

It is thus very tempting to interpret the Gulf Stream and the Kuroshio as interfaces between two phases corresponding
to different levels of potential vorticity mixing, just like the Great Red Spot and ocean rings in the previous section. The aim
of this chapter is to answer this natural question: are the Gulf-Stream and Kuroshio currents close to statistical equilibria?

More precisely, we address the following problem: is it possible to find a class of statistical equilibria with a strong
mid-basin eastward jet similar to the Gulf Stream of the Kuroshio, in a closed domain? The 1-1/2 layer quasi-geostrophic
model (see Section 2.1.3) is the simplest model taking into account density stratification for mid-latitude ocean circulation
(in the upper first 1000m) [156,194]. We analyze therefore the class of statistical equilibria which are minima of the Van
der Waals–Cahn–Hilliard variational problem (86), as explained in Section 4.2. We ask whether it exists solutions to

F = min {F [φ] | A [φ] = −B} with F =


D

dr

R2 (∇φ)2

2
+ f (φ)− Rβ̃cyφ


and A [φ] =


D

drφ (89)
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Fig. 17. Observation of the sea surface height of the north Atlantic ocean (Gulf Stream area) from altimetry REF. As explained in Section 2.1, for geophysical
flows, the surface velocity field can be inferred from the see surface height (SSH): strong gradients of SSH are related to strong jets. The Gulf stream appears
as a robust eastward jet (in presence of meanders), flowing along the east coast of north America and then detaching the coast to enter the Atlantic ocean,
with an extension L ∼ 2000 km. The jet is surrounded by numerous westward propagating rings of typical diameters L ∼ 200 km. Typical velocities and
widths of both the Gulf Stream and its rings jets are respectively 1 m s−1 and 50 km, corresponding to a Reynolds number Re ∼ 1011 . Such rings can be
understood as local statistical equilibria, and strong eastward jets like the Gulf Stream and obtained as marginally unstable statistical equilibria in simple
academic models (see Section 4.4–5).

a b c

Fig. 18. (b) and (c) represent respectively a snapshot of the stream function and potential vorticity (red: positive values; blue: negative values) in the
upper layer of a three layer quasi-geostrophic model in a closed domain, representing a mid-latitude oceanic basin, in the presence of wind forcing. Both
figures are taken from numerical simulations [1]; see also [7]. (a) Stream function predicted by statistical mechanics; see Section 5 for further details.
Even in an out-equilibrium situation like this one, the equilibrium statistical mechanics predicts correctly the overall qualitative structure of the flow.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in a bounded domain (let say a rectangular basin) with strong mid-basin eastward jets. At the domain boundary, we fix
φ = 0 (which using φ = R2ψ , and (10) turns out to be an impermeability condition). We note that the understanding of the
following discussion requires the reading of Sections 4.1–4.3.

The term Rβ̃cy is an effective topography including the beta effect and the effect of a deep zonal flow (see Section 2.1.3).
Its significance and effects will be discussed in Section 5.2. As in the previous section, we consider the limit R ≪ L and
assume f be a double well function.

As discussed in Section 4.1, with these hypothesis, there is phase separation in two sub-domains with two different
levels of potential vorticity mixing. These domains are bounded by interfaces (jets) of width R. In view of the applications
to mid-basin ocean jets, we assume that the area A+ occupied by the value φ = u is half of the total area of the domain
(this amounts to fix the total potential vorticity constraint Γ1 (2.2.2)). The question is to determine the position and shape
of this interface. The main difference with the cases treated in Section 4.1 is due to the effect of boundaries and of the linear
effective topography Rβ̃cy.



F. Bouchet, A. Venaille / Physics Reports 515 (2012) 227–295 271

Fig. 19. (a) Eastward jet: the interface is zonal, with positive potential vorticity q = u on the northern part of the domain. (b) Westward jet: the interface
is zonal, with negative potential vorticity q = −u in the northern part of the domain. (c) Perturbation of the interface for the eastward jet configuration, to
determine when this solution is a local equilibrium (see Section 5.2). Without topography, both (a) and (b) are entropy maxima. With positive beta effect
(b) is the global entropy maximum; with negative beta effect (a) is the global entropy maximum.

5.1. Eastward jets are statistical equilibria of the quasi-geostrophic model without topography

The value φ = ±u for the two coexisting phases is not compatible with the boundary condition φ = 0. As a consequence,
there exists a boundary jet (or boundary layer) in order to match a uniform phase φ = ±u to the boundary conditions. Just
like inner jets, treated in Section 4, these jets contribute to the first order free energy, which gives the jet position and shape.
We now treat the effect of boundary layer for the case h = 0 (βc = 0 in this case). As explained in Section 4.1.3, the jet free
energy is the only contribution to the total free energy.

We first quantify the unit length free energy, Fb, for the boundary jets. Following the reasoning of Section 4.1.3, we have

Fb = min


dζ

R2

2
d2φ

dζ 2
+ f (φ)


.

This expression is the same as (81), the only difference is the different boundary conditions: it was φ→ζ→+∞ u and
φ→ζ→−∞ −u, it is now φ→ζ→+∞ u and φ (0) = 0. Because f is even, one easily see that a boundary jet is nothing else
than half of a interior domain jet. Then

Fb =
1
2
Fint =

e
2
R,

where Fint and e are the unit length free energies for the interior jets, as defined in Section 4.1.3. By symmetry, a boundary
jet matching the value φ = −u to φ = 0 gives the same contribution.20 Finally, the first order free energy is given by

F = eR

L +

Lb
2


,

where Lb is the boundary length. Because the boundary length Lb is a fixed quantity, the free energy minimization amounts
to the minimization of the interior jet length. The interior jet position and shape is thus given by the minimization of the
interior jet length with fixed area A+. We recall that the solutions to this variational problem are interior jets which are
either straight lines or circles (see Section 4.1.3).

In order to simplify the discussion, we consider the case of a rectangular domain of aspect ratio τ = Lx/Ly. Generalization
to an arbitrary closed domain could also be discussed.We recall that the two phases occupy the same area A+ = A− =

1
2 LxLy.

We consider three possible interface configurations with straight or circular jets:

1. the zonal jet configuration (jet along the x axis) with L = Lx,
2. the meridional jet configuration (jet along the y axis with L = Ly,
3. and an interior circular vortex, with L = 2

√
πA+ =


2πLxLy.

The minimization of L for these three configurations shows that the zonal jet is a global minimum if and only if τ < 1. The
criterion for the zonal jet to be a global RSM equilibrium state is then Lx < Ly. We have thus found zonal jet as statistical
equilibria in the case h = 0.

An essential point is that both the Kuroshio and the Gulf Stream are flowing eastward (from west to east). From the
relation v = ez ×∇ψ (10), we see that the jet flows eastward (vx > 0) when ∂yψ < 0. Recalling that φ = R2ψ , the previous
condition means that the negative phase φ = −u has to be on the northern part of the domain, and the phase φ = u on

20 We have treated the symmetric case when f is even. The asymmetric case could be also easily treated.
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the southern part. From (9), we see that this corresponds to a phase with positive potential vorticity q = u on the northern
sub-domains and negative potential vorticity q = −u on the southern sub-domain, as illustrated in the panel (a) of Fig. 19.

Looking at the variational problems (89), it is clear that in the case βc = 0, the minimization of φ is invariant over the
symmetry φ → −φ. Then solutions with eastward or westward jets are completely equivalent. Actually there are two
equivalent solutions for each of the case 1, 2 and 3 above. However, adding a beta effect h = Rβcywill break this symmetry.
This is the subject of next section.

We conclude that in a closed domain with aspect ratio Lx/Ly < 1, without topography, equilibrium states exist with an
eastward jet at the center of the domain, recirculating jets along the domain boundary and a quiescent interior. For Lx/Ly > 1,
these solutions become metastable states (local entropy maximum). This equilibrium is degenerated, since the symmetric
solution with a westward jet is always possible.

5.2. Addition of a topography

For ocean dynamics, the beta effect plays a crucial role. Let us now consider the case where the topography is ηd =

βcy +
ψd
R2

. The first contribution comes from the beta-effect (the variation of the Coriolis parameter with latitude). The
second contribution is a permanent deviation of the interface between the upper layer and the lower layer. For simplicity, we
consider the casewhere this permanent interface elevation is driven by a constant zonal flow in the lower layer:ψd = −Udy,
which gives ηd =


βc −

Ud
R2


y = Rβcy. Then the combined effect of a deep constant zonal flow and of the variation of the

Coriolis parameter with latitude is an effective linear beta effect.
In the definition of βc above, we use a rescaling with R. This choice is considered in order to treat the case where the

contribution of the effective beta effect appears at the same order as the jet length contribution. This allows to easily study
how the beta effect breaks the symmetry φ → −φ between eastward and westward jets. Following the arguments of
Section 4.3.1, we minimize

F = RH0 + R

eL − 2u


A+

dr β̃cy

, (90)

(see Eq. (87)), with a fixed area A+. The jet position is a critical point of this functional: e/r − 2uβ̃cyjet = α (see Eq. (88)),
where α is a Lagrange parameter and yjet the latitude of the jet. We conclude that zonal jets (curves with constant yjet and
r = +∞) are solutions to this equation for α = −2uRβ̃cyjet . Eastward and westward jets described in the previous section
are still critical points of entropy maximization.

5.2.1. With a negative effective beta effect, eastward jets are statistical equilibria
We first consider the caseβc < 0. This occurs when the zonal flow in the lower layer is eastward and sufficiently strong

(Ud > R2βc). If we compute the first order free energy (90) for both the eastward and the westward mid-latitude jet, it is
easy to see that in order tominimize F , the domain A+ has to be located at the lower latitudes: taking y = 0 at the interface,
the term −2u


A+

d2r β̃cy = uβ̃cLxLy/4 gives a negative contribution when the phase with φ = u (and q = −u) is on the

southern part of the domain (A+ = (0, Lx)× (−
Ly
2 , 0)). This term would give the opposite contribution if the phase φ = u

would occupy the northern part of the domain. Thus the statistical equilibria is the one with negative stream function φ
(corresponding to positive potential vorticity q) on the northern part of the domain. As discussed in the end of Section 5.1
and illustrated on Fig. 19, panel (b), this is the case of an eastward jet.

Thus, we conclude that taking into account an effective negative beta-effect term at first order breaks the westward–
eastward jet symmetry. Whenβc < 0, statistical equilibria are flows with mid-basin eastward jets.

5.2.2. With a positive effective beta effect, westward jets are statistical equilibria
Let us now assume that the effective beta coefficient is positive. This is the case when Ud < R2βc , i.e. when the lower

layer is either flowing westward, or eastward with a sufficiently low velocity. The argument of the previous paragraph can
then be used to show that the statistical equilibrium is the solution presenting a westward jet.

5.2.3. With a sufficiently small effective beta coefficient, eastward jets are local statistical equilibria
We have just proved that mid-basin eastward jets are not global equilibria in the case of positive effective beta effect.

They are however critical points of entropy maximization. They still could be local entropy maxima. We now consider this
question: are mid-basin strong eastward jets local equilibria for a positive effective beta coefficient? In order to answer, we
perturb the interface between the two phases, while keeping constant the area they occupy, and compute the free energy
perturbation.

The unperturbed interface equation is y = 0, the perturbed one is y = l(x), see Fig. 19. Qualitatively, the contributions
to the free energy F (90), of the jet on one hand and of the topography on the other hand, are competing with each
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other. Any perturbation increases the jet length L =

dx


1 +

 dl
dx

2
and then increases the second term in Eq. (90) by

δF1 = Re

dx (dl/dx)2. Any perturbation decreases the third term in Eq. (90) by δF2 = −2Ruβ̃c


dx l2.

We suppose that l = lk sin kπ
Lx
xwhere k ≥ 1 is an integer. Then

δF = δF1 + δF2 = −2uβ̃c + e

kπ
Lx

2

.

Because we minimize F , we want to know if any perturbation leads to positive variations of the free energy. The most
unfavorable case is for the smallest value of k2, i.e. k2 = 1. Then we conclude that eastward jets are local entropy maxima
when

βc < βc,cr =
1
2
e
u
π2

L2x
.

We thus conclude that eastward zonal jets are local equilibria for sufficiently small values ofβc .
The previous result can also be interpreted in terms of the domain geometry, for a fixed value of βc . Eastward jets are

local entropy maxima if

Lx < Lx,cr = π


e

2uβc,cr

.

Let us evaluate an order of magnitude for Lx,cr for the ocean case, first assuming there is no deep flow (Ud = 0). Then Rβ̃c
is the real coefficient of the beta plane approximation. Remembering that a typical velocity of the jet is U ∼ uR, and using
e ∼ u2 (see [197] for more details). Then Lx,cr ≈ π


U
βc,cr

. This length is proportional to the Rhines scale of geophysical fluid

dynamics [194]. For jets like the Gulf Stream, typical jet velocity is 1 m s−1 and βc ∼ 10−11 m−1 s−1 at mid-latitude. Then
Lcr ∼ 300 km. This length is much smaller than the typical zonal extension of the inertial part of the Kuroshio or Gulf Stream
currents. We thus conclude that in amodel with a quiescent lower layer and the beta plane approximation, currents like the
Gulf Stream or the Kuroshio are not statistical equilibria, and they are not neither close to local statistical equilibria.

Taking the oceanic parameters (βc = 10−11 m−1s−1, R ∼ 50 km), we can estimate the critical eastward velocity in the
lower layer Ud,cr = 5 cm s−1 above which the strong eastward jet in the upper layer is a statistical equilibria. It is difficult
to make further conclusions about real mid-latitude jets; we conjecture that their are marginally stable. This hypothesis
of marginal stability is in agreement with the observed instabilities of the Gulf-Stream and Kuroshio current, but overall
stability of the global structure of the flow. A further discussion of these points will be the object of future works.

In all of the preceding considerations, we have assumed that the term Rβc was of order R in dimensionless units. This is
self-consistent to compute the unstable states. To show that a solution is effectively a statistical equilibria when Rβc in of
order one, one has to use much less straightforward considerations than in the preceding paragraphs, but the conclusions
would be exactly the same.

Notice that the description of an inertial solution presenting an eastward jet in a closed domain constitutes in itself an
important step towards theoretical studies of oceanicmid-latitude jets, beside the application to statisticalmechanics. It can
be for instance the starting point of stability studies, by applying classicalmethods to describe the evolution of perturbations
around this mean state.

5.3. Conclusion

We have shown that when there is a sufficiently strong eastward flow in the deep layer (i.e. when Ud > Ud,cr with
Ud,cr = R2βc,cr ), ocean mid-latitude eastward jets are statistical equilibria, even in presence of a beta plane. When the flow
in the deep layer is lower than the critical value Ud,cr but still almost compensate the beta plane (0 < βc −

Ud
R2
< 1

2
e
u
π2

L2x
R),

the solutions with the eastward jets are local equilibria (metastable states). When βc −
Ud
R2
> 1

2
e
u
π2

L2x
R the solution with an

eastward jet are unstable.
We have also concluded that the inertial part of the real Gulf-Stream or of the Kuroshio extension are likely to be

marginally stable from a statistical mechanics point of view.
The statistical equilibria that we have described in this section have a flow structure that differs notably from the

celebrated Fofonoff solution [80].
The Fofonoff solution is a stationary state of the quasi-geostrophic Eqs. (8)–(10) on a beta plane (ηd = βcy) obtained

by assuming a linear relationship between potential vorticity and stream function (q = aψ), in the limit a + R−2
≫ L−2,

where L is the domain size. In this limit, the Laplacian term in (9) is negligible in the domain bulk. Thenψ ≈ βc/(a+ R−2)y,
which corresponds to a weak westward flow, as illustrated Fig. 20. Strong recirculating eastward jets occur at northern and
southern boundaries, where the Laplacian term is no more negligible.
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Fig. 20. Phase diagrams of RSM statistical equilibrium states of the 1.5 layer quasi-geostrophic model, characterized by a linear q–ψ relationship, in
a rectangular domain elongated in the x direction. S(E,Γ ) is the equilibrium entropy, E is the energy and Γ the circulation. Low energy states are the
celebrated Fofonoff solutions [80], presenting a weak westward flow in the domain bulk. High energy states have a very different structure (a dipole).
Please note that at high energy the entropy is non-concave. This is related to ensemble inequivalence (see 3.3), which explain why such states were not
computed in previous studies. The method to compute explicitly this phase diagram is the same as the one presented in Section 3.5. See [196] for more
details.

The original work of Fofonoff was carried independently from statistical mechanics considerations. The linear
q–ψ relationship was chosen as a starting point to compute analytically the flow structure. Because both the
Salmon–Holloway–Hendershott statistical theory [171] (which is the extension of the Kraichnan energy–enstrophy
theory in presence of topography) and the Bretherton–Haidvogel minimum enstrophy principle [28] did predict a linear
relationship between vorticity and stream function, it has been argued that statistical equilibrium theory predicts the
emergence of the classical Fofonoff flows, which had effectively been reported in numerical simulations of freely decaying
barotropic flows on a beta plane for some range of parameters [199].

We have seen in the last paragraph of Section 2.3.4 and at the end of Section 3.1.3 that all those theories are particular
cases of theRSMstatisticalmechanics theory. On the onehand it has been actually proven that the classical Fofonoff solutions
are indeed RSM statistical equilibria in the limit of low energies [196]. On the other hand, as illustrated by the results of this
section, there exists a much richer variety of RSM equilibrium states than the sole classical Fofonoff solution. Even in the
case of a linear q–ψ relation, high energy statistical equilibrium states are characterized by a flow structure that differs
notably from the original Fofonoff solution, as illustrated Fig. 20. These high energy states correspond actually to the RSM
equilibrium states of the Euler equation, originally computed by [47]. The transition from classical Fofonoff solutions to
those high energy states has been related the occurrence of ensemble inequivalence [196]. This explains also why such high
energy states have not been reported in earlier studies, where computations were always performed in the (unconstrained)
canonical ensemble (see the discussion at the end of Section 2.3.4).

The early work of Fofonoff [80] and the equilibrium statistical mechanics of geophysical flows presented in this review
are often referred to as the inertial approach of oceanic circulation, meaning that the effect of the forcing and the dissipation
are neglected.

Ocean dynamics is actually much influenced by the forcing and the dissipation. For instance the mass flux of a current
like the Gulf Stream is mainly explained by the Sverdrup transport. Indeed in the bulk of the ocean, a balance between
wind stress forcing and beta effect (the Sverdrup balance) lead to a meridional global mass flux (for instance towards the
south on the southern part of the Atlantic ocean). This fluxes is then oriented westward and explain a large part of the Gulf
Stream mass transport. This mechanism is at the base of the classical theories for ocean dynamics [156]. Because it is not
an conservative process, the inertial approach does not take this essential aspect into account. Conversely, the traditional
theory explains the Sverdrup transport, the westward intensification and boundary current, but gives no clear explanation
of the structure of the inertial part of the current: the strongly eastward jets.

Each of the classical ocean theory [156] or of the equilibrium statistical mechanics point of view give an incomplete
picture, and complement each other. Another interesting approach consider the dynamics from the point of view of
bifurcation theory when the Reynolds number (or some other controlled parameters) are increased. These three types
of approaches seem complimentary and we hope they may be combined in the future in a more comprehensive non-
equilibrium theory.

6. Non-equilibrium statistical mechanics of two-dimensional and geophysical flows

In the previous chapters, we dealt with equilibrium statistical mechanics for two-dimensional and geophysical flows.
Assuming ergodicity, equilibrium statistical mechanics describes long time outcome of the evolution of the 2D Euler
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equations or the quasi-geostrophic equations. Ergodicity was then our only assumption, and all the presented results can
be derived rigorously.

In laboratory experiments or geophysical situations, most flows are however subjected to dissipative processes. Very
often such flows are in statistically steady states, where forcing balance dissipation on average, and where fluxes of
energy and other conserved quantities characterize the system. This is a situation of Non-equilibrium Steady States (NESS),
following the terminology of statistical mechanics.

In many situations of interest the action of forces and dissipation mechanisms are weak compared to the inertial
(Hamiltonian) part of the dynamics. For instance, the turnover time scale can be small compared to forcing time scale (i.e. a
typical time needed to create the structure starting from rest) or to a dissipation time scale (i.e. a typical time needed to
dissipate the structure if the force would be switched off). In such situations of weak forces and dissipation, at leading order
one recovers the inertial dynamics: the Euler equations or the quasi-geostrophic dynamics. Then a natural question is to
know whether we are close or not to some statistical equilibria, and if statistical equilibrium could learn us something for
these non-equilibrium situations.

A further objective is to make an non-equilibrium theory that could predict the invariant measure and to predict the
properties of this NESS directly from the dynamics, for instance using a kinetic theory approach.

In order to discuss these issuesmore precisely, we consider in the following the 2DNavier–Stokes equationswith viscous
dissipation ν, linear friction α and stochastic forces η:

∂tω + (v · ∇)ω = ν∆ω − αω +
√
ση(t, x); (91)

where σ is the average energy injection rate by the stochastic force η (η will be defined precisely latter on; η is actually the
curl of a force, but without ambiguity we call it a stochastic force in the following). We recall that ω = ∆ψ is the vorticity,
and v = ez × ∇ψ the two-dimensional velocity field.

This is themost simple model for discussing the statistics of the large scales of 2D and geophysical flows, in a statistically
steady regime. The type of reasoning presented in the following can be easily generalized to other models.

In the case α = 0, many interesting mathematical results have been recently obtained for the stochastic Navier–Stokes
equations (91): the existence of an invariant measure, its properties in the Euler limit ν → 0, the validity of the law of large
numbers, central limit theorems, ergodicity (see [115,113,114,29,202,133] and references therein).We do not describe these
results, but only cite them when they are related to the more physical studies below.

This chapter is organized as follows. In Section 6.1 we explain that two different regimes exist for the NESS of the 2D
Navier–Stokes equations, depending on the values of the forcing parameter σ and the linear friction parameter α. The first
one is the classical regime of the self-similar direct cascade of enstrophy and inverse cascade of energy, first predicted by
Kraichnan and studied thoroughly during the last three decades. The second one is the regime dominated by the largest
scales of the flow. This turbulent large scale regime is the interesting one as soon as one is interested in predicting the
statistics of the largest scales of geophysical flows. We explain that it is natural to guess that this regime has some relations
with equilibrium statistical mechanics of the Euler equations, even if the microcanonical measure does not describe its
statistics.

In Section 6.4, we explain that we can predict many properties of this turbulent large scale regime from the equilibrium
statistical mechanics, for instance the topology of the average velocity field. For instance, we show that we can predict
non-equilibrium phase transitions: situations of bistability between two different topologies of the velocity fields. We also
explain the strong limitations to the use of equilibrium theory for such non-equilibrium situations.

In Section 6.5, we explain how a kinetic theory could be developed to describe the turbulent large scales of turbulent
flows in a non-equilibrium steady state. We explain what would be the minimal requirements for such a theory, and the
associated difficulties. In Section 6.6 we describe recent progresses in this direction.

6.1. Non-Equilibrium Steady States (NESS) for forced and dissipated turbulence

In this subsection, we show that depending on the values of the friction parameter α and the forcing parameter σ , there
are two main regimes for the stochastic Navier–Stokes equations (91). We begin by some general considerations on the
balance of energy and other conserved quantities.

6.1.1. Stochastic forces
We first define the stochastic force η(t, x). It is a sum of random noises:

η(t, x) =


k

fkek (x, y) ηk(t),

where {ek} is the orthonormal basis of the Laplacian eigenvectors with Dirichlet boundary conditions for the domain D:
−∆ek = λkek with


D

drekek′ = δkk′ . For a doubly periodic domain of size

Lx, Ly


we have k = 2π


nx/Lx, ny/Ly


with

integers nx and ny, ek (r) = exp (ik.r) /LxLy and λk = |k|
2. The terms ηk are independent white noises ⟨ηk (t) ηk′ (t)⟩ =

δkk′δ

t − t ′


, fk is the force spectrum and σ is the force amplitude that will be related to the energy and enstrophy injection
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rate later on. In all the followingwe assume that fk decays rapidly for large k: the stochastic force is white in time and smooth
in space.

We rewrite (91) in the usual stochastic form:

dω = [−(u · ∇)ω + ν∆ω − αω] dt +
√
σ


k

fkekdWk, (92)

where dWk are the Wiener processes associated with ηk.

6.1.2. Energy balance
For the deterministic dynamics (i.e. without stochastic forcing, σ = 0), the energy balance reads

dE
dt

= −νZ − 2αE,

where E =
1
2


D

dr v2 is the energy (3) and Z =


D
dr ω2 is the enstrophy (19). For the stochastic dynamics, application of

the Ito formula to the energy evolution, starting from (92), leads to

d ⟨E⟩

dt
= −ν ⟨Z⟩ − 2α ⟨Ec⟩ + σ , (93)

where the brackets are averages over the white noises realizations and where we assume

B0 ≡
1
2


k

|fk|2

λk
= 1. (94)

We see from (93) that σ is the average energy injection rate; the assumption B0 = 1 is just equivalent to defining σ . The
energy E is on units of m4 s−2, so the units for σ are m4 s−3 and the units for fk are m−1.

Similar balance relations can be easily derived for all the other conserved quantities. We do not discuss these relations
here as we will not need them in the following. More details can be found in [113] and [142].

6.2. First regime: the Kraichnan self-similar cascades

We first consider the case where the force spectrum is peaked around a given wave number kf . Following Kolmogorov
type of reasoning, if α and ν are small enough, it is then possible to define inertial ranges in which the effects of forcing and
dissipation will be negligible. Such inertial ranges will then be characterized by fluxes of conserved quantities, for instance
energy and enstrophy.When the fluxes are dominated by dynamical processes which are local in Fourier space, this is called
a cascade regime. Such cascades, in two-dimensional turbulence, have first been studied by Kraichnan using ideas similar
to Kolmogorov ideas for 3D turbulence. We give here a very rapid account, mainly based on dimensional arguments. More
details can be found in [112] and inmore recent reviews or lectures. Interesting recent results in this domain include study of
statistics of zero vorticity lines in relation with the stochastic Loewner equation (SLE) [8] and precise conditions for locality
of turbulent cascades with applications also to two-dimensional turbulence [73,74,3].

The system is forced at wave number kf with an energy injection rate per unit surface εf . Following the notations of the
previous subsection, we have ε = σ/L2. This corresponds to an enstrophy production rate η ∼ k

2

f ε. We suppose that the
system has reached a statistically steady state and that the energy is limited to scales k−1 much smaller that the domain size
L. A more precise statement of this hypothesis, and a condition for its validity will be given at the end of this section. In the
following of this section, we assume cascade regimes (for inertial scales k ≫ kf and k ≪ kf , we assume constant fluxes of
conserved quantities due to local dynamical processes in Fourier space).

In the limitwhere the large scale separation Lkf ≫ 1, it is then relevant towrite the total energy per unit surface Es = E/L2
on the form of a continuous spectrum: Es =


E(k)dk (see Section 2.3.2 for the definition of E (k)). We consider the energy

fluxes at scale k (the energy going from modes with wave numbers larger than k to wave numbers smaller than k, for a
precise definition see [83]). One could imagine a situation with both an upscale energy flux (k < kf ) and a downscale one
(k > kf ), both of the order of ε. However, at small scale (large k), thiswould imply an enstrophy flux of order εk2. But because
εk2 ≫ εk

2

f ∼ η, this would contradict the hypothesis of a steady regime, since there would be much more enstrophy going
downscale than the enstrophy injected. We conclude that the energy injected at kf goes mostly towards large scales, at a
fixed rate ε. Using a similar argument where the energy and enstrophy play a reverse role, we conclude that in the limit or
large scale separation Lkf ≫ 1, enstrophy injected at scale kf flows mostly towards small scales at a rate η.

We thus conclude that for statistically steady states, energy flowsmainly upscale and enstrophymainly downscale;more
precisely in the limit of infinite inertial ranges all the energy flows upscale and all enstrophy downscale. In Section 2.3.2,
using Fjortoft argument, we obtained a qualitatively similar result for the dynamics of decaying turbulence. In Sections 2.3.4
and 2.3.5we explained that for the Euler equation, statisticalmechanics predicts that all energy is concentrated in the largest
scale and the all the enstrophy or other invariant excess (a precise meaning being given by the entropy) flows towards
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Fig. 21. First experimental observation of the inverse energy cascade and the associated k−5/3 spectrum, from [178]. The 2D turbulent flow is approached
here by a thin layer of mercury and a further ordering from a transverse magnetic field. The flow is forced by an array of electrodes at the bottom, with
an oscillating electric field. The parameter Rh is the ratio between inertial to bottom friction terms. At low Rh the flow has the structure of the forcing
(left panel). At sufficiently high Rh the prediction of the self-similar cascade theory is well observed (right panel, bottom), and at even higher Rh, the break
up of the self-similar theory along with the organization of the flow into a coherent large scale flow is observed (see right panel above).

smaller and smaller scales. We see that these three precise results, for three different situations, give a precise meaning to
the statement that energy goes towards large scales and enstrophy towards small scales in two dimensional turbulence.

By using a dimensional analysis, Kraichnan gave a prediction for the slope of the energy spectrum Es(k) in the inertial
ranges, in the cascade regimes. Let us first consider the inertial range for scales above the injection scale (k < kf ). This is the
inverse energy cascade, as energy goes upscale in this region, with a given flux ε (with unit m2 s−3), and enstrophy flux is
negligible. Because of the locality hypothesis, at scale k−1 (unit L), the energy spectrum Es(k) (unit m3 s−2) can then depend
only on ε and k. Dimensional analysis then gives

Es(k) ∼ ε2/3k−5/3 for k ≪ kf .

Let us now consider the inertial region for scales below the injection scale. This the enstrophy cascade inertial range as
the enstrophy goes downscale in this region, with a given flux η (with unit s−2), and the energy flux is negligible. The energy
spectrum at scale k−1 can then depend only on k and η. Dimensional analysis then gives

Es(k) ∼ η2/3k−3 for k ≫ kf .

Predictions of the self-similar cascade theory have been followed by numerous experimental studies in many different
settings over the last three decades (see [8,9] and references therein), and this has led to beautiful experimental results
[179,154]. Among others, there have been measurements of the −5/3 slope of the backward energy cascade part of the
spectrum [178,154] (see also Figs. 21 and 22), as well as of the −3 slope of the forward enstrophy cascade part of the
spectrum [153].

In the previous paragraph, we dealt with the inertial range energy spectrum. For large enough scales, the friction −αω
is no more be negligible and the inertial range hypothesis no more valid. The energy is then be dissipated and no more flow
towards larger and larger scales. In experiments, this is visible as a maximum in the energy spectrum Es(k). Using a classical
argument based on dimensional analysis [123] (see also [58] for a critical discussion, or [194]), we predict the scale LI at
which the cascade stops. This scale can depend only on ε (m2 s−3) and on the friction α (s−1):

LI = c
ε1/2

α3/2
, (95)

where c is a non-dimensional constant.
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Fig. 22. Another experimental observation of the inverse energy cascade and the associated k−5/3 , from [154]. The 2D turbulent flow is approached by a
thin layer of (light) salty water lying above another thin layer of (dense) salty water. The stable stratification provides a further ordering. The flow is stirred
at small scales by the interaction between a horizontal electric field imposed across the experimental cell and a vertical magnetic field imposed by an array
of magnets located below the experimental cell. We see on the right panel that predictions of self-similar inverse energy cascade (the k−5/3 spectrum) are
well observed. Please note also the interesting transient evolution of the energy spectrum.

If the dynamics takes place in a finite box of size L, the energy flux towards largest scales can be stopped by the box
before it is dissipated by the friction. In such a case the energy pile up at the largest scale. The self-similar hypothesis for the
spectrum then break down, and we actually observe that energy fluxes are no more local. The Kraichnan picture then break
down. In a finite box, the Kraichnan picture can be valid only if the scale LI is much smaller than the box size L. Recalling
that σ = εL2, we thus conclude a necessary condition to observe a universal inverse energy cascade is21

Rα =
√
2
σ 1/2

L2α3/2
≪ 1. (96)

In the opposite case, Rα ≫ 1, for instance for too strong energy injection or too weak dissipation for a given box size, the
energy cascade will not be arrested by friction, but will begin to pile up at the largest scales. Then the largest scales self-
organize and create coherent vortices and jets. This is the second regime of two dimensional turbulence, to be discussed in
the next sections.

6.3. Second regime: the coherent large scale flow

We are now interested in the regime where the flow self-organize at the largest scale L. Because the energy will flow
towards the largest scales; it is natural to neglect the energy dissipation by viscous effect. We will give a more precise
criterion for this to be valid later on. From the energy balance (93), neglecting viscous effect, we have

⟨Ec⟩ ≃
σ

2α
.

A typical velocity for the large scale flow is thus U =
√

⟨Ec⟩/L =
1
L


σ
2α . A typical time scale for the largest scales (a turnover

time) is then τ = L/U = L2


2α
σ
. A natural non-dimensional parameter is Rα the ratio of the dissipation time scale 1/α over

the turnover time scale τ

Rα =
√
2
σ 1/2

α3/2L2
.

Rα is indeed a Reynolds number based on the linear friction α and the large scale flow velocities and length scale. We note
that the criteria for observing self-organization of the energy at the largest scale (96) is Rα > 1, as could have been expected.
The limit of large time scale separation, Rα ≫ 1, is particularly interesting.

21 The
√
2 is unimportant and is added for convenience in latter computations.
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It is natural to write non-dimensional dynamical equations using as a length unit the domain size L and as a time unit a

typical large scale turnover time τ = L2


2α
σ
: t = τ t ′ and (x, y) = L(x′, y′). In these non-dimensional units the dynamical

equations are

∂t ′ω
′
+ (u′

· ∇
′)ω′

=
1
Re
∆′ω′

−
1
Rα
ω′

+


2
Rα
η′, with ω′

= ∆′ψ ′,

where

Re = UL/ν = σ 1/2/ (2α)1/2 ν

is the Reynolds number based on the large scale velocity and domain size.
We rewrite the non-dimensional equations dropping the primes and identifying α to 1/Rα , A to a and ν to 1/Re. We then

obtain

∂tω + (u · ∇)ω = v∆ω − αω +
√
2αη, with ω = ∆ψ (97)

and with

η(t, x) =


k

fkek (x, y) ηk(t), (98)

where {fk} verifies the constraint (94).
We are interested in the limit where the viscous Reynolds number Re is much larger than the Reynolds number based

on the linear friction Rα (meaning that, as far as the large scales are concerned, viscous dissipation is negligible compared
to linear friction dissipation). In these non-dimensional units, this condition reads ν ≪ α. The regime of large scale self-
organization is α ≪ 1. We will thus study the limit ν ≪ α ≪ 1. We call this the limit of weak forces and dissipation.

In the non-dimensional units, the energy balance (93) is

d ⟨E⟩

dt
= −2ν ⟨Z⟩ + 2α (1 − ⟨E⟩) , (99)

giving the stationary balance

⟨E⟩S = 1 −
ν

α
⟨Z⟩S ≤ 1. (100)

We study the dynamics of the coherent large scale flow regime in the next sections.

6.4. Equilibrium statistical mechanics and NESS; prediction of non-equilibrium phase transitions

6.4.1. Are the largest scales of the 2D Navier–Stokes equations close to statistical equilibrium, in the limit of weak forces and
dissipation?

We have stressed in the introduction that the Non-equilibrium Steady States (NESS) of the two-dimensional equation
break detailed balance, and are the place of fluxes of conserved quantities. The microcanonical measure we built from the
Liouville theorem in Section 2.2.3 and the equilibrium states we have studied in Sections 3–5 have no such fluxes. Then the
microcanonical measure cannot describe the details of the statistics of these NESS. There is however the possibility that the
stationary measure be close to the microcanonical equilibrium one in the limit of weak forces and dissipation. We discuss
this subtle issue now.

In the limit of weak forces and dissipation, ν ≪ α ≪ 1, the non-Hamiltonian terms in the stochastic Navier–Stokes
equation (97) are vanishingly small. The associated fluxes are also vanishingly small. Because of these small parameters,
it is then natural to assume that the flows will be concentrated near to statistical equilibria. As the equilibrium statistical
mechanics predicts that the flow is concentrated close to stationary solutions to the 2D Euler equations, a natural conjecture
is that in the limit ν ≪ α ≪ 1, the stationary measure of the stochastic Navier–Stokes equations will be also concentrated
close to ensembles of stationary solutions to the 2D Euler equations.

That such a behavior is plausible is actually supported by several theorems. At the dynamical level, the Navier–Stokes
equation is actuallywell behaved in the limit ν ≪ α ≪ 1: for arbitrary large but finite times, its solutions remain close to the
solutions of the Euler equation. This is also true at a statistical level, as recently proved by Kuksin for the case α = 0 [115]:
in the limit ν → 0 the invariant measure for the stochastic Navier–Stokes equation is described by solutions to the Euler
equation. These mathematical theorems support the idea that the invariant measure will be related to the statistics of Euler
dynamics, but they do not prove that the measure is concentrated close to ensemble of stationary solutions to the Euler
equations. This remains a challenge for further mathematical results.

We note that the situation is completely different in three dimensional turbulence: as explained in Section 2.3.4,
equilibrium statistical mechanics of the 3D Euler equations predicts a trivial measure with no flow. Then 3D turbulence
is intrinsically a non-equilibrium problem.
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As we will see in the following, the conjecture that the invariant measure is concentrated near stationary solutions to
the 2D Euler equations is supported both by numerical simulations and experiments. Even in this non-equilibrium context
equilibrium statistical mechanics is useful. This is a common situation in statistical physics. For instance in non-equilibrium
systems with short range interactions, one expects local thermodynamic equilibrium to hold, when the temperature
gradient is small enough. In our case, interactions are non-local, but in the limit ν ≪ α ≪ 1, we expect to be close to
statistical equilibria. We see this as a zeroth order prediction from equilibrium statistical mechanics in a non-equilibrium
situation.

This zeroth order prediction already gives us strong qualitative results about the non-equilibrium dynamics. However
the predictive range of these arguments is very limited. For instance the energy distribution and Casimir distributions will
be determined by non-Hamiltonian processes. They cannot be derived from equilibrium processes. As energy and Casimirs
are the control parameters of the equilibrium statistical mechanics, we thus conclude that we can guess from equilibrium
statistical mechanics that we should be close to some ensemble of stationary solutions to the 2D Euler equations, but that
non-equilibrium theory is needed to predict which ones and with which probability.

Moreover as soon as statistics of fluctuations are concerned, it is meaningless to try to make predictions based on
equilibrium statistical mechanics, as fluctuations statistics will have to be consistent with non-equilibrium fluxes.

We thus conclude that we expect the stochastic Navier–Stokes invariant measure to be concentrated close to ensemble
of statistical equilibria (which are also stationary solutions of the 2D Euler equations). In Section 6.4.2 we show that this is
confirmed by numerical simulations and experiments. In Section 6.4.3, we show that this allows to predict non-equilibrium
phase transitions. To know which of the dynamical equilibrium states of the Euler equations is selected by forcing and
dissipation, and to predict the fluctuation statistics, one needs an non-equilibrium theory. Possible candidates for such
theories will be discussed in Section 6.5.

6.4.2. Non-equilibrium flows are close to statistical equilibria
In order to illustrate this discussion, we discuss the case of a doubly periodic domain. Whereas this case has no

experimental counterpart, it is extremely interesting from an academic point of view. Indeed because of the absence of
boundaries, boundary layers are absent and make the dynamical situation much more simple. Moreover, pseudo-spectral
codes allows for much more precise numerical simulations than in any other geometries.

Numerical simulations of the 2D Navier–Stokes equations in a self-similar transient regime, have been presented in [56],
for a square periodic box. This paper also show interesting power laws for the vortex profiles, in this regime. In the following,
we concentrate on the statistically steady regime and discuss relation with equilibrium statistical mechanics, and non-
equilibrium phase transitions [24,142].

We have described the equilibrium statistical mechanics of the 2D Euler equations in doubly periodic domains in
Section 3.5. Fig. 6, shows an equilibrium phase diagram. It shows that two types of flow topologies may be expected: dipole
flows or parallel flows, a crucial parameter being the aspect ratio of the domain δ.

Direct numerical simulations of the stochastic Navier–Stokes equations in a square domain δ = 1 exhibit a statistically
stationary flow ω with a dipole structure (Fig. 23(a)), whereas for δ ≥ 1.1, nearly unidirectional flows are observed
(Fig. 23(b)). This result has been confirmed both for α = 0 and α ≠ 0, and for different values of ν and force spectra.
The structure of statistical equilibria is thus observed also for non-equilibrium steady states.

As seen in Section 3, statistical equilibria are characterized by a functional relationship ω = f (ψ) between vorticity
and stream function. One observes in Fig. 23 a ω–ψ scatter-plot (light blue or gray), for the two cases of a dipole and a
unidirectional flow. In the dipole case, theω–ψ relationship is well observed for the larger values of |ω|, which corresponds
to the core of the vortices. In the area in between the vortices, the relationship between ω and ψ is more scattered. This
correspond to the small scale filaments visible on the vorticity picture (see Fig. 23).

When we average the vorticity fields and the stream-functions over several turnover times, we obtain the black curves
which are very niceω–ψ relationships. Theω–ψ relationship has the same convexity as a sinh (but is different from a sinh),
in the dipole case and the same convexity as a tan-h in the unidirectional case.We thus conclude that the observed flows are
composed of average quasi-stationary large scale structures, dipoles or unidirectional flows, over which are superimposed
fluctuations corresponding to small scale filamentation.

In this sense, the structures are close to equilibrium.We note that the parallel flows seems to be farther from equilibrium
than the dipole as the average relationship is a quite thick line. In this case this is due to the presence of intermediate scale
vortices as seen on the vorticity picture.

This confirms the usefulness of the predictions of equilibrium statistical mechanics in this non-equilibrium context.
More details about the analysis of the proximity of the flowwith stationary solutions to the 2D Euler equation for doubly

periodic conditions are given in [24,142]. A similar conclusion can also be drawn from the numerical results [56], even if the
notion of stationary solution to the 2D Euler equation is not used in this work.

In the limit of weak forces and dissipation, it is recognized for a long time that the flow should be close to stationary
solutions. For instance, the quasi-geostrophic flows on a beta plane are known to form zonal jets, which are dynamical
equilibrium states of the quasi-geostrophic equations, and this have been studied a lot recently. In laboratory experiments,
the importance of the formation of large scale coherent structure close to stationary solutions has also been recognized for
a long time [178].
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Fig. 23. ω–ψ scatter-plots (cyan). In black the same after time averaging (averaging windows 1 ≪ τ ≪ 1/ν, the drift due to translational invariance has
been removed). Left: dipole case with δ = 1.03. Right: unidirectional case δ = 1.10.

6.4.3. Non-equilibrium phase transitions in the 2D-Stochastic Navier–Stokes equations
Phase transitions are situationswhere the qualitative properties of the system change drastically. They are thus especially

important from a physical and a dynamical point of view.
We have stressed that we are not able to predict the probability of the energy and of the vorticity moments for non-

equilibrium situations. However these are the main control parameters of the equilibrium properties. For this reason the
use of equilibrium theory for slightly non-equilibrium situations give only qualitative results and does not provide a precise
prediction. However phase transitions give such drastic changes that they should also be clearly identified even in non-
equilibrium steady states.

We illustrate this idea in the case of 2D Navier–Stokes equations in the doubly periodic domain. Fig. 6, shows that
a phase transition occur between dipoles and parallel flows at equilibrium. A natural order parameter is |z1|, where
z1 =

1
(2π)2


D

drω(x, y) exp(iy). Indeed, for unidirectional flow ω = ae1, z1 = 0, whereas for a dipole ω = a (e1 + e2),
|z1| = a.

We have thus empirically looked for a non-equilibrium phase transition (for the Navier–Stokes equations with random
forces) that is the trace of the equilibrium phase transition. A crucial control parameter is the aspect ratio of the domain.
We have made numerical simulations for different values of δ. Fig. 24 shows |z1| time series for δ = 1.02 and δ = 1.04.
The remarkable observation is the bimodal behavior in this transition range. The switches from |z1| values close to zero to
values of order of 0.6 correspond to genuine transitions betweenunidirectional anddipole flows. Theprobability distribution
function (PDF) of the complex variable z1 (Fig. 24) exhibits a circle corresponding to the dipole state (a slow dipole random
translation corresponds into to a phase drift for z1, explaining the circular symmetry). The parallel flow state corresponds
to the central peak. As δ increases, one observes less occurrences of the dipole.

We thus conclude that situations of phase transitions are extremely important. Prediction of equilibriumphase transition
help at locating non-equilibrium phase transitions in slightly non-equilibrium situations. The ideas developed here in the
context of the 2D Navier–Stokes equation can be applied in amuch broader context, for quasi-geostrophic or shallow-water
dynamics. Indeed we conjecture that this would explain the observed bistability in recent quasi-geostrophic experiments
[189,200] (see Fig. 25).

We also conjecture that this is an explanation of the bistability of the Kuroshio current (Pacific ocean, east of Japan) (see
Figs. 26–28).

6.5. Towards a kinetic theory of NESS

We have explained in the previous sections that in the limit of weak forces and dissipation, we expect to be close to
some statistical equilibria. This allows to predict qualitative properties of the flow and non-equilibrium phase transitions.
However, in order to be able to predict which of these equilibria will be selected and to be able to make predictions about
the statistics of fluctuations, we cannot rely on the equilibrium theory and we have to develop a non-equilibrium theory. A
way to proceed is to make a kinetic theory of these Non-Equilibrium Steady States.

Such a kinetic theory approach, as any kinetic theory, will be based on an asymptotic expansion. Usually the small
parameter is the ratio of the typical time scale for the small scale fluctuations over the typical time scale for the evolution
of kinetic variables. For the 2D-stochastic Navier–Stokes equations, in the limit of small forces and dissipation ν ≪ α ≪ 1,
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Fig. 24. Dynamics of the 2D Navier–Stokes equations with stochastic forces in a doubly periodic domain of aspect ratio δ, in a non-equilibrium
phase transition regime. The two main plots are the time series and probability density functions (PDFs) of the modulus of the Fourier component
z1 =

1
(2π)2


D

drω(x, y) exp(iy) illustrating random changes between dipoles (|z1| ≃ 0.55) and unidirectional flows (|z1| ≃ 0.55). As discussed in
Section 6.4.3, the existence of such a non-equilibrium phase transition can be guessed from equilibrium phase diagrams (see Fig. 6).
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Fig. 25. Bistability in a rotating tank experiment with topography (shaded area) [189,200]. The dynamics in this experiment would be well modeled by a
2D barotropic model with topography (the quasi-geostrophic model with R = ∞). The flow is alternatively close to two very distinct states, with random
switches from one state to the other. Left: the stream function of each of these two states. Right: the time series of the velocity measured at the location of
the black square on the left figure, illustrating clearly the bistable behavior. The similar theoretical structures for the 2D Euler equations on one hand and
the quasi-geostrophic model on the other hand, suggest that the bistability in this experiment can be explained as a non-equilibrium phase transition, as
done in Section 6.4.3 (see also Fig. 24).

Fig. 26. Kuroshio: sea surface temperature of the pacific ocean east of Japan, February 18, 2009, infra-red radiometer from satellite (AVHRR, MODIS) (New
Generation Sea Surface Temperature (NGSST), data from JAXA (Japan Aerospace Exploration Agency)).
The Kuroshio is a very strong current flowing along the coast, south of Japan, before penetrating into the Pacific ocean. It is similar to the Gulf Stream in the
North Atlantic. In the picture, The strong meandering color gradient (transition from yellow to green) delineates the path of the strong jet (the Kuroshio
extension) flowing eastward from the coast of Japan into the Pacific ocean.
South of Japan, the yellowish area is the sign that, at the time of this picture, the path of the Kuroshio had detached from the Japan coast and was in a
meandering state, like in the 1959–1962 period (see Fig. 27). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 27. Bistability of the paths of the Kuroshio during the 1956–1962 period: paths of the Kuroshio in (left) its small meander state and (right) its large
meander state. The 1000-m (solid) and 4000-m (dotted) contours are also shown.
Source: Figure from Schmeits and Dijkstraa [174], adapted from Taft 1972.
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Fig. 28. Bistability of the paths of the Kuroshio, from Qiu and Miao [160]: time series of the distance of the Kuroshio jet axes from the coast, averaged
other the part of the coast between 132 degree and 140 degree East, from a numerical simulation using a two layer primitive equation model.

the natural small parameter is the friction coefficient α. It is indeed the ratio of the turnover time scale (the timescale at
which fluctuation are advected) over the time scale over which energy and other invariant of the inertial dynamics evolve.

In the limit of weak forces and dissipation, the flow remains close to statistically quasi-stationary states (evolving on a
time of order 1/α, for instance dipoles or parallel flows in the case of doubly periodic conditions, discussed in Section 6.4.2),
with vorticityΩ0 (r, t) and velocityV0 (r, t). At leading order in the theory, we naturally obtain thatΩ0 must be a dynamical
equilibrium state of the Euler equations V0.∇Ω0 = 0. For it to be quasi-stationary, it also has to be dynamically stable.

The fluctuations evolve rapidly. The velocity fluctuations are expected to be much smaller that the velocity V0. It is then
tempting to try a perturbative expansion using this time scale separation. We thus decompose the fields as

ω = Ω0 + δω and v = V0 + δv. (101)

In the more general case,Ω0 evolves slowly over time. It may also exist cases whereΩ0 is actually stationary. For technical
reasons, it will be simpler to discuss in the following the case where Ω0 is stationary; however the generalization to the
quasi-stationary case or to situations with self-similar growth is straightforward. We define ⟨.⟩ as an average over the noise
realization. ThenΩ0 = ⟨ω⟩.

We start from the stochastic Navier–Stokes equations

∂tω + (v · ∇)ω = ν∆ω − αω +
√
2αη(t, x). (102)

We will need along the discussion the linear operator

L [δω] = V0.∇δω + δv · ∇Ω0 − ν∆δω + αδω. (103)

Using (101) and (103), the 2D Navier–Stokes equations (102) are then equivalent to the dynamics of the fluctuations, given
by

∂tδω + L [δω] =
√
2αη(t, x)− δv · ∇δω − αΩ0 + ν∆Ω0. (104)

Taking the average of (104) gives

⟨δv · ∇δω⟩ = −αΩ0 + ν∆Ω0.
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This important equation just expresses that the mean vorticity profile is determined by a balance between the average of
the nonlinear contributions of the fluctuations (Reynolds stresses) on the one hand and the dissipation on the other hand.
The challenge is then to find a theory to compute these Reynolds stresses.

The Reynolds stress ⟨δv.∇δω⟩ is a quadratic quantity; it can thus be evaluated from the two point correlation function
φ2 (r1, r2, t) = ⟨δω (r1, t) δω (r2, t)⟩. The equation for the time evolution of the two-point correlation function is easily
obtained from (102), using the Ito formula and averaging. We obtain

∂tφ2 + L1φ2 + L2φ2 = 2αF2 + NL2, (105)

where L1 (resp L2) is the linearized Euler operator L (103) acting on the variable r1 (resp r2), NL2 (r1, r2) =

− ⟨δv (r1) .∇δω (r1) δω (r2)⟩ − ⟨δv (r2) .∇δω (r2) δω (r1)⟩ is the contribution of the nonlinear term and 2αF2 is the average
effect of the stochastic force on the two-point correlation function (with the stochastic force (98), we have F2 (r1, r2) =

k f
2
k ek (r1) ek (r2)).

Due to the nonlinearity, the equation for the two points correlation function (105) involves a three point quantity NL2.
One could easily write thewhole hierarchy for the n-point correlators. Any truncation of such a hierarchy is arbitrary, except
in cases where a small parameter allows to neglect the nonlinear terms in a self-consistent way. Such a situation occurs for
instance in kinetic theory,more specifically in the kinetic theory of systemswith long range interactions [20] that share deep
analogies with the present problem, one example being the kinetic theory of the point vortex model [43] (an application
of similar idea to the relaxation towards equilibrium of the 2D Euler equation as also been discussed, see [42] and further
discussion in Section 6.6). We then call such an approach a kinetic approach.

Such a kinetic theory approach is a classical one. Similar ideas have been discussed back in the seventies and
eighties in other contexts and are still studied currently (quasi-normal closures, rapid distortion theories, second or-
der cumulant truncations, and other related approaches). Very few of these works however consider inhomogeneous
flows dominated by the large scales, as is our interest here. Some exceptions are a series of theoretical and numeri-
cal works made during the last decade [68,118,149,148,42], among them a very interesting model of 2D wall turbu-
lence [148]. In the case of the large scales of geophysical flows, recent interesting works have used numerical sim-
ulations, for instance to study the limits of second order cumulants expansion [131], or to study numerically a self-
consistent closure describing the coupling of the mean flow and of the second order cumulant [77]. Another line
of research, on related issues, has been to search for crude closures [88,89], or more precise mathematical results
[129], when the system is subject to random bombardments.

In all of the previous works, some hypothesis of a phenomenological nature are made in order to simplify the problem at
some point (closure without small parameter, assumption of scale separations, Markovianization), that allows interesting
studies to be pushed forward. However, there still remains a lot of work to assess either numerically or theoretically the
validity or not of these hypothesis, and thus to be really able to propose a clear theory of the large scales of two dimensional
and geophysical flows. Our belief is that any progress in this direction requires a better theoretical understanding of the
basic objects appearing in the theory.

For instance any progress in the kinetic theory requires the understanding of Eq. (105), and thus requires a theoretical
understanding of the two-point linear operator on the rhs: ∂tφ2 + L1φ2 + L2φ2 = F . Similar n-point linear operators,
implying the linearized operator L, appear at each level of the hierarchy of the equations for the n point correlation function.
A prerequisite for any understanding of this linear operator is a detailed understanding of the linearized Euler equation and
of its asymptotic behavior. The current theoretical understanding of L is readily not sufficient to go forward with the kinetic
theory.

The results for the behavior of L cannot be universal. They depend a lot on the boundary conditions, on the topology of
the streamlines and on the specific model (Euler, quasi-geostrophic, etc...). For instance, any theory that would not depend
explicitly on boundary conditions would be promised to failure. The theoretical analysis of the linear operator L is one of the
aims of next section.

6.6. Relaxation towards equilibrium and asymptotic behavior of the 2D Euler and linearized Euler equation

6.6.1. Irreversibility of reversible dynamical systems
The 2D Euler equations

∂tω + (v · ∇)ω = 0 (106)

is time reversible: it is invariant over the time reversal symmetry t → −t , ω → −ω (or equivalently v → −v). However, it
has anyway an irreversible behavior. Indeed, as explained in Section 2, for large times, enstrophy and other Casimir invariant
cascade towards lower and lower scales and the largest scales of the flow converge towards a stationary solution to the 2D
Euler equations. Such an apparent paradox between the time reversal symmetry of themicroscopic dynamics (here the Euler
equations) and the irreversible evolution of macroscopic variables (here the largest scales of the flow) is a classic problem
of statistical mechanics.

This reversibility paradox is usually satisfactorily explained by introducing in the discussion, the discussion of relative
probabilities of types of initial conditions (see for instance the classical discussion [161] about irreversible behavior in
electromagnetism). In the statisticalmechanics this idea is formalized using the concepts ofmicroscopic versusmacroscopic
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variables and by introducing the notion of a probability for the macroscopic states. The entropy of a macrostate quantifies
the number of microstates corresponding to a given macrostate. Then for a sample of rare initial microscopic conditions
(corresponding to a low entropy macrostate), an overwhelming number of the trajectories evolve towards microscopic
configurations corresponding to a more probable (higher entropy) macrostate [87].

For this classical explanation of the reversibility paradox to be relevant, a clear distinction between microscopic and
macroscopic variable is essential; this requires to consider a limit with a large number of degrees of freedom (usually the
thermodynamic limit in classical physical systems). The Euler equation is different from those classical systems in the sense
that it is a partial differential equation that has from the beginning an infinite number of degrees of freedom.

Beside the general qualitative explanation of the reversibility paradox, there is only a few examples where one can prove
mathematically the irreversible evolution of the macroscopic variable directly from the microscopic dynamics. The most
famous example is probably Landford’s proof of the validity of theBoltzmannequation (and thusmacroscopic irreversibility),
for a system of dilute particles (Grad limit), with hard core interactions (see [183] for a very clear presentation). We want
to stress that the Euler equation may be another example where an irreversible behavior can be proved for a reversible
equation (see [23]).

The aim of the following discussion is to present the results in [23] related to the irreversibility problem. These results
moreover include a detailed study of the linearized Euler equation which is directly related to the discussion of Section 6.5
about the kinetic theory of the 2D Navier–Stokes equation. The general discussion in [23] is however rather technical, and
in this section we only derive the main results for the special case of a constant shear, for which explicit computation are
straightforward [41] and state the more general results.

6.6.2. Irreversible relaxation of the linearized Euler equation
We consider in the following the linearized 2D Euler equations close to a stable parallel flows, in a doubly periodic

domain or in a channel. We stress however that all the following results should be valid for a stable circular vortex in a disc
geometry.22

Any parallel flow v0 = U (y) ex is a stationary solution to the 2D Euler equations (106) in a doubly periodic domain or
in a channel. We consider the Euler equations with initial conditions close to this base flow:Ω = ω0 + ω and V = v + v0,
where ω0 (y) = −U ′ (y) is the base flow vorticity and ω and v are the perturbation vorticity and velocity, respectively. It
reads

∂tω + U (y) ∂xω − vyU ′′ (y) = 0, (107)

where vy is the transverse velocity component.
We assume that the base flow U (y) is linearly stable (there is no unstable mode to the linear equation (107)). We note

that anyω (y) independent of x is a trivial neutral mode of (107). If we decomposeω in Fourier modes along the longitudinal
direction ω(x, y) =


k ωk (y) eikx, the linearized Euler equation for ωk is

∂tωk + ikU (y) ωk − ikψkU ′′ (y) = 0, (108)

where ψk is the Fourier transform of the stream function. We assume that for all k ≠ 0, Eq. (108) have no neutral modes
(this situation of a linear operator with no modes may seem strange, it is however not unusual for a non-normal23 linear
operator; for instance one can prove that (108) has no mode as soon as U is monotonic in a channel geometry [64], this is
also true for the Kolmogorov flow in doubly periodic domains [23]).

The linear shear. Because of its third l.h.s. term, a general discussion of (107) is rather complex and requires the use of
complex mathematical tools [23]. It is often argued that this third term can be neglected, but this is usually a very bad
approximation (see [23]). However in the special case of a linear shear flow U(y) = σy, the third term vanishes and the
equation is then very simple

∂tω + σy∂xω = 0.

This equation can be easily solved:

ω (x, y, t) = ω(x − σyt, y, 0).

It is even more simple if we consider perturbation on the form ω(x, y, t) = ωk (y, t) exp (ikx), then

ωk (y, t) = ωk(y, 0) exp (−ikσyt) . (109)

22 For these results to be valid, some further conditions on the behavior of the vorticity at the core of the vortex may be required; this remains to be
studied.
23 A linear operator L is said to be normal if it commutes with its adjoint LL∗

= L∗L. In finite dimensional spaces, a normal operator can always be
diagonalized on an orthogonal base. This result often generalize to infinite dimensional space, for instance in the case of bounded self-adjoint operators
typical of quantum dynamics. By contrast, non-normal operator may not be diagonalizable, and may not have any mode as illustrated by many examples
in fluid mechanics for instance.
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Fig. 29. Evolution of ω(x, y, t) from an initial vorticity perturbation ω(x, y, 0) = ω1 (y, 0) cos (x), by the linearized 2D Euler equations close to a shear
flow U (y) = σy.

The velocity can be expressed from the vorticity using a Green function formalism. We have

vk(y, t) =


dy′ Gk(y, y′)ωk(y′, t), (110)

where, using ω = ∆ψ , vx = −
dψ
dy and vy =

dψ
dx , Gk is defined by

Gk(y, y′) =


−
∂Hk

∂y
, ikHk

 
y, y′


with

∂2Hk

∂y2
− k2Hk = δ


y − y′


, (111)

with for instance a channel boundary conditions: y ∈ (−L, L) with ψ (L) = ψ (−L) = Hk(L) = Hk(−L) = 0. Using (109),
we have

vk(y, t) =


dy′ Gk


y, y′


ωk(y′, 0) exp


−ikσy′t


. (112)

We consider the asymptotic behavior, for large times t , of the oscillating integral (112). Since Kelvin, very classical
results do exist for the asymptotic behavior of such integrals, the most well known results being the stationary phase
approximation. In our case there is no stationary phase, and the asymptotic behavior of the velocity field is obtained by
successive integrations by parts, which lead to

vk,x(y, t) ∼
t→∞

ωk (y, 0)
ik

exp (−ikyσ t)
σ t

and (113)

vk,y(y, t) ∼
t→∞

ωk (y)
ik

exp (−ikyσ t)
σ 2t2

. (114)

The exponents of the algebraic laws 1/t for vx and 1/t2 for vy are related to the singularities of the Green function Gk.
This shows that the velocity field decays algebraically for large time. As illustrated by Fig. 32 in the case of the Kolmogorov

flow, the velocity actually decays much faster (exponentially) for times of order 1/σ and then the decrease has algebraic
tails. This irreversible behavior of the velocity field for a reversible equation (the linearized 2D Euler equations) are time
reversible (symmetry t → −t , ω → −ω, v → −v, U → −U andΩ0 → −Ω0) is a striking result.

Heuristically, the vorticity field is strongly sheared and produce filaments at finer and finer scales as illustrated by Fig. 29.
The computation of the velocity field from the vorticity field involves an integration, the contribution of these fine scale
filaments is then weaker and weaker.
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Fig. 30. Evolution of the vorticity perturbation ω(x, y, t) = ω (y, t) exp (ikx), close to a parallel flow v0(x, y) = U(y)ex with U (y) = cos (y), in a doubly
periodic domainwith aspect ratio δ. The figure shows themodulus of the perturbation |ω (y, t)| as a function of time and y. One clearly sees that the vorticity
perturbation rapidly converges to zero close to the points where the velocity profile U (y) has extrema (U ′(y0) = 0, with yo = 0 and π ). This depletion of
the perturbation vorticity at the stationary streamlines y0 is a new generic self-consistent mechanism, understood mathematically as the regularization of
the critical layer singularities at the edge of the continuous spectrum (see [23]).

General parallel flow. The algebraic decay of the velocity field for the linearized 2D Euler equations close to a linear shear
has been first obtained by Case [41], using an explicit computation rather than the oscillating integral explanation given
above. For more general base flows with strictly monotonic profiles U (y) (without stationary streamline U ′ (y0) = 0), from
classical arguments [169,30] using the Laplace transform, one expects an asymptotic algebraic decrease of the velocity field
with the same 1/t and 1/t2 laws (see also an ansatz for large time asymptotic in [31]).

In the case of base flows U(y), the oscillating phase in the integral (112) is ikU (y) t . Then for base flows with stationary
streamlines U ′(y0) = 0, the oscillating integral (112) has a stationary phase and one expects other algebraic laws for
the asymptotic velocity fields (for instance 1/

√
t) (see discussions by [31,126]). It has however been proved recently that,

unexpectedly, the same power laws occur [23]. This is associated with a very surprising non-local mechanism of vorticity
depletion at the stationary streamlines, not described before (see [23] and Fig. 30).

The general result [23], valid for any stable flow U (y)without any mode for (108), is then

ω (y, t) ∼
t→∞

ω∞ (y) exp (−ikU(y)t)+ O


1
tγ


, (115)

with an algebraically decaying velocity for large times

vx(y, t) ∼
t→∞

ω∞ (y)
ik

exp (−ikU(y)t)
U ′(y)t

and (116)

vy(y, t) ∼
t→∞

ω∞ (y)
ik

exp (−ikU(y)t)

(U ′(y)t)2
; (117)

where the asymptotic vorticity profile ω∞ (see (115)–(117)) can be computed from the Laplace transform of the linearized
Eq. (108) (see [23]). The algebraic decay of the velocity field is illustrated on Figs. 31 and 32, in the case of the Kolmogorov
flow U(y) = cos (y) on doubly periodic domains.

6.6.3. Relaxation and asymptotic stability of parallel flows for the 2D Euler equations
In the previous section, we have obtained results for the asymptotic behavior of the linearized 2D Euler equations, with

initial conditions close to some parallel flows v0 (r) = U (y) ex. We now address the evolution of the same initial conditions
by the nonlinear Euler equation (106).

The asymptotic stability of an ensemble of parallel flows means that for any small perturbation of a parallel flow, the
velocity converges for large times towards another parallel flow close to the initial one. The aim of this section is to explain
why the linearized dynamics is a good approximation for the nonlinear dynamics for any time t , and to explain why the flow
velocity is asymptotically stable (in kinetic energy norm), for small initial perturbation of the vorticity (in the enstrophy
norm). Such an irreversible convergence is a striking phenomena for a reversible equation like the 2D Euler equations.
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Fig. 31. The space-time series of perturbation velocity components, |vδ,x(y, t)| (a) and |vδ,y(y, t)| (b), for the initial perturbation profile cos (x/δ) in a
doubly periodic domain with aspect ratio δ = 1.1. Both the components relax towards zero, showing the asymptotic stability of the Euler equations.

We consider the initial vorticity Ω (x, y, 0) = −U ′ (y) + εω (x, y, 0), where ε is small. We suppose, without loss of
generality, that


dxω = 0. The perturbation ω can be decomposed in Fourier modes along the x direction

ω (x, y, t) =


k

ωk (y, t) exp (ikx) .

From the Euler equation (106), the equation for ωk is

∂tωk + ikU (y) ωk − ikψkU ′′ (y) = −εNL

with NL =


l


−ik

∂ψl

∂y
(y, t) ωk−l (y, t)+

∂

∂y
[ilψl (y, t) ωk−l (y, t)]


. (118)

The left hand side is the linearized Euler equation, whereas the right hand side are the nonlinear corrections. We want to
prove that, for sufficiently small ε, neglecting the nonlinear terms is self-consistent.

For this we have to prove that the nonlinear terms remain uniformly negligible for large times. We then use the
asymptotic results for the linearized equation (115)–(117) and ωk = d2ψk/dy2 − k2ψk. We have, for any k,

ψk,L (y, t) ∼
t→∞

ωk,L,∞ (y)
(ikU ′ (y))2

exp (−ikU(y)t)
t2

and ωk,L (y, t) ∼
t→∞

ωk,L,∞ (y) exp (−ikU(y)t) , (119)

where the subscript L refers to the evolution according to the linearized dynamics. We call a quasilinear approximation
for the right hand side of Eq. (118), the approximation where ψk and ωk would be evaluated according to their linearized
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evolution close to the base flow U (y). From (119), one would expect at first sight that this quasilinear approximation
of the nonlinear term NLQL, would give contributions of order O (1/t). The detailed computation, easily performed from
(119), actually shows that the contributions of order O (1/t) identically vanish for large times. This cancelation of terms is a
remarkable property with important consequences. Then

εNLk,QL =
t→∞

O
 ε
t2


.

This important remark proves thatwithin a quasilinear approximation, the contribution of the nonlinear termsNLQL remains
uniformly bounded, and more importantly it is integrable with respect to time.

Thenwe conjecture that the contribution of the nonlinear terms remains always negligible.More precisely,we conjecture
that within the fully nonlinear equation, for sufficiently small ε:

ψk (y, t) ∼
t→∞

ωk,∞ (y)
(ikU ′ (y))2

exp (−ikU(y)t)
t2

and ωk (y, t) ∼
t→∞

ωk,∞ (y) exp (−ikU(y)t) ,

with

ωk,∞ (y) = ωk,L,∞ (y)+ O (ε)

A similar reasoning in order to evaluate the nonlinear evolution for the profile U (y) would lead to the conclusion that
for large times

Ω0 (y, t) ∼
t→∞

−U ′

∞
(y) with U ′

∞
(y) = U (y)+ δU (y) ,

where δU = O

ε2


.

This means that the parallel flow quickly stabilizes again towards another parallel flow which is close to the initial one.
This stabilization is very rapid, it occurs on times scales of order 1/σ where σ is a typical shear rate.

We thus conclude that the relaxation towards stationary solutions to the 2D Euler equations is a very fast and simple
process, leading to a stationary state on time scales given by the linearized dynamics. The velocity fluctuations areweakened
extremely fast by the dynamics, such that their effect becomes soon negligible. This is by contrast with the phenomenology
of particle models, like the point vortex model, where fluctuations are constantly produced due to the singularities of the
vorticity field, related to the discrete point particles.

The long term evolution of point vortex models close to quasi-stationary states of the 2D Euler equations is thought
to be described by a kinetic equation [43,4] analogous of the Lenard–Balescu equation of plasma physics. A very natural
hypothesis is that a similar kinetic equation could describe the long term evolution of initial conditions close to stationary
states of the 2D Euler equations, as interestingly proposed by [42]. Whether this is justified or not, and for which class of
solutions, is a very complex issue, that has not been settled yet, neither from a theoretical nor from an empirical point of
view. The results described in this section suggest that this is not the case for analytical initial conditions close to parallel
flows, as then the fluctuations decays very quickly and the flow settles to a stationary states before a regime of long term
quasi-stationary evolution could appear. As far as larger classes of initial conditions are concerned (close to other type of
base flow than parallel flows, or with non analytic classes of initial conditions) the answer is unclear yet.

One might then want to compute the modified profile. The preceding analysis leads to the quasilinear expression

δU (y) = −ε2


∞

0
dt NL0,QL (t)+ o


ε2


. (120)

This expression involves integrals over times of the linearized Euler equation. It is not amenable to any simple explicit
expression, but it can be evaluated using the Laplace transform of (108).

We conclude that for any profile U with no unstable nor neutral modes for (108), any perturbation corresponding to
a small vorticity, the assumption that the dynamics can be treated with a quasilinear approximation is a self-consistent
hypothesis. Then the velocity converges for large times towards a new parallel velocity profile which is close to the initial
profile U . Figs. 31 and 33, show that numerical computations confirm this conjecture.

From this discussion, we conclude that is natural to conjecture that any profile U verifying the hypothesis of this work
(no unstable and no neutral modes for (108)), any perturbation corresponding to a small vorticity will converge at large
times towards a new parallel velocity profile which is close to the initial profile U . A possible theorem expressing this more
precisely this would require a detailed analysis of subsequent terms in an asymptotic expansion for small ε, in a similar way
to the results recently obtained by Mouhot and Villani [144], for the Landau damping in the very close setup of the Vlasov
equation. A proof of such a theorem for the Euler equations is not known yet, even in the simplest case of a profile U without
stationary points.



290 F. Bouchet, A. Venaille / Physics Reports 515 (2012) 227–295

a

b

Fig. 32. The time series of perturbation velocity components |vδ,x(y, t)| (a) and |vδ,y(y, t)| (b) at three locations, y = 0 (vicinity of the stationary streamline)
(red), y = π/4 (green), and y = π/2 (blue), for the initial perturbation profile A(y) = 1 and the aspect ratio δ = 1.1. We observe the asymptotic forms
|vδ,x(y, t)| ∼ t−α , with α = 1, and |vδ,y(y, t)| ∼ t−β , with β = 2, in accordance with the theory for the asymptotic behavior of the velocity (Eqs. (113) and
(114)). The initial perturbation profile is cos (x/δ) in a doubly periodic domain with aspect ratio δ = 1.1. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

On the basis of the previous discussion, a further conjecture would be that the ensemble of shear flows without unstable
nor neutral modes for (108) is asymptotically stable24 in the sense given previously (initial perturbation controlled by a
vorticity norm, for instance the enstrophy and large time perturbation controlled in kinetic energy norm).25

7. Conclusion and perspectives

Statistical mechanics of two dimensional and geophysical flows brings a new perspective to the study of the self-
organization of turbulent flows. It is complimentary to other studies, based on fluid dynamics, nonlinear dynamics and

24 We think here to the notion of asymptotic stability of an ensemble of stationary solutions of an infinite dimensional Hamiltonian equations, see for
example the work [157] where stable solutions slightly perturbed are proved to converge for large times towards another slightly different solution.
Asymptotic stability has been proved for other solutions of infinite dimensional Hamiltonian systems.
25 A classical argument, presented in a rigorous framework by Caglioti and Maffei [34] in the context of the Vlasov equation implies that stationary
solutions to the Vlasov equation for which Landau damping would occur, would be unstable in a weak norm. At the core of the argument lies the time
reversal symmetry of the equations. These arguments would easily generalize to the Euler equations. This may seem in contradiction with the notion
of asymptotic stability. However the notion of stability discussed by Caglioti and Maffei involves weak topology for both the initial conditions and final
state. There is no contradiction with our definition of asymptotic stability, as we control here the initial perturbation in a vorticity norm and control the
convergence in a velocity norm.
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Fig. 33. The space-time series of the x-averagedperturbation vorticity,ω0(y, t) = ω(y, t)−Ω0 (y, 0). The initial condition isω (y, t) = Ω0 (y, 0)+ε cos (x),
in a doubly periodic domain with aspect ratio δ = 1.1.

numerical computations. The successes in modeling Jupiter’s troposphere or some aspects of the ocean vortices using the
drastic simplification provided by statisticalmechanics concepts is very encouraging. One of the current aim is to develop the
theory in order extend the range of validity and relevance of the approach, for instance in order to address further problems
in geophysical turbulence.

The equilibrium statisticalmechanics theory of the 2D Euler and quasi-geostrophic equations is still a actively developing
field. Recent results, not presented in this review, include a classification of phase transitions and of ensemble inequivalence
[16], which of important practical interest, and extension of the results of stability of stationary solutions [70]. A complete
theory of phase transitions, specifically addressing the specificity of two dimensional and quasi-geostrophic turbulence is
however still lacking.

Equilibrium statistical mechanics has also been extended recently tomagneto-hydrodynamics equations [102,120], non-
linear Schroedinger equations [101,71], the Shallow-Watermodel [50], ormodels of axisymmetric turbulence [121,141,147].
In experimental statistically stationary forced and dissipated turbulence, comparison of the PDF of velocity or vorticity fluc-
tuations, with prediction from equilibrium statistical mechanics, is discussed in [104] or in [121,141,147].

From a theoretical point of view, these new applications do not usually have the same level of rigor as the statistical
mechanics of the 2DEuler and quasi-geostrophic equations.More precisely, in the classical programof equilibrium statistical
mechanics, by building from the Liouville theorem and by computing the real entropy corresponding to the phase space
volume, the natural invariant measure of the dynamical equations (the microcanonical measure) is not achieved for these
models. In some of the works cited above, some very natural hypothesis are made, that will probably be proved to be true in
the future; in some others ad-hoc fixes are proposed the logic of which seems sometimes not to be based on clear principles.
Still some of the results are quite interesting and lead to very appealing applications. It is thus a very exciting challenge to
try to develop the theory for the equilibrium statistical mechanics of these models, in order to understand the validity or
not of the previous approaches, and to obtain more physical insights. It is also essential to assess the limits of the range of
validity of equilibrium statistical mechanics, also for other models of interest for geophysical flows.

As we explained is this review, equilibrium statistical mechanics may give, in some specific circumstances, interesting
results for actual non-equilibrium flows. We discussed the examples of Jupiter’s troposphere where it exists a large
separation between the time scales for the inertial (Hamiltonian) and non-inertial aspects of the dynamics (forces and
dissipation) or for instance for ocean rings where the dynamical process of their formation is extremely rapid. A large part
of the range of interest of equilibrium statistical mechanics, in the laboratory or for geophysical flows, has still to be studied,
and many progresses shall be made in this direction in future works.

For many applications, a non-equilibrium statistical mechanics is required. We discussed in the last section recent
progresses for the study of the relaxation towards stationary solutions of the 2D Euler equations and recent progresses
towards a kinetic description of the 2D Navier–Stokes equations with weak forces and dissipation. This is a promising field
of research, where theoretical physics andmathematical results are foreseen in a near future. This type of works is essential
to explain the large scale organization of geophysical turbulence.

Other approaches for non-equilibrium statistical mechanics, like linear response theory, large deviations or path integral
representations of stochastic processes will probably be part of future theories for turbulent flows.
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