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ABSTRACT

Equilibrium statistical mechanics of two-dimensional flows provides an explanation and a prediction for the

self-organization of large-scale coherent structures. This theory is applied in this paper to the description of

oceanic rings and jets, in the framework of a 1.5-layer quasigeostrophic model. The theory predicts the spon-

taneous formation of regions where the potential vorticity is homogenized, with strong and localized jets at their

interface. Mesoscale rings are shown to be close to a statistical equilibrium: the theory accounts for their shape,

drift, and ubiquity in the ocean, independently of the underlying generation mechanism. At basin scale, inertial

states presenting midbasin eastward jets (and then different from the classical Fofonoff solution) are described

as marginally unstable states. In that case, considering a purely inertial limit is a first step toward more com-

prehensive out-of-equilibrium studies that would take into account other essential aspects, such as wind forcing.

1. Introduction

Large-scale coherent structures are ubiquitous in the

ocean. Understanding the physical mechanism underlying

their formation and persistence remains a major theo-

retical challenge.

At mesoscale, oceanic turbulence is mostly organized

into westward-propagating rings, as for instance revealed

by altimetry (Chelton et al. 2007). Because typical eddy

turnover times are much shorter than dissipation and

forcing time scales, these rings can be studied in the in-

ertial limit, for which forcing and dissipation are neglected.

At basin scale, the dynamics are strongly influenced by

forcing and dissipation: wind forcing plays the leading

role in setting the gyre structures through the Sverdrup

balance, and the concomitant effect of planetary vorticity

gradients and dissipation explains their westward inten-

sification (Pedlosky 1998). Because none of these mech-

anisms are conservative processes, the inertial approach

does not take these essential aspects into account. Con-

versely, existing theories give no clear explanation of the

existence of strong and robust eastward jets in the inertial

part of these currents. The classical wind-driven ocean

theory and the inertial approach both give an incomplete

picture and complement each other. A useful step toward

a comprehensive nonequilibrium theory that would com-

bine both approaches is to study midbasin eastward jets in

the inertial limit. Such is the focus of this paper.

On the one hand, the problem of the self-organization

of a turbulent flow involves a huge number of degrees of

freedom coupled together via complex nonlinear inter-

actions. This situation makes any deterministic approach

illusory if not impossible. On the other hand, there can be

abrupt and drastic changes in the large-scale flow struc-

ture when varying a single parameter such as the energy of

the flow. It is then appealing to study this problem with a

statistical mechanics approach, which reduces the prob-

lem of large-scale organization of the flow to the study of

states depending on a few key parameters only.

Such a theory exists: this is the Robert–Sommeria–

Miller (RSM) equilibrium statistical mechanics (Robert

1990; Miller 1990; Robert 1991; Robert and Sommeria

1991). From the knowledge of the energy and the global

distribution of potential vorticity levels provided by an

initial condition, the theory predicts the large-scale flow

as the most probable outcome of turbulent mixing. Here
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we ask the following question: can rings and jets be in-

terpreted as RSM statistical equilibria in the framework

of a 1.5-layer quasigeostrophic (QG) model?

The first attempt to use equilibrium statistical mechanics

ideas to explain the self-organization of two-dimensional

(2D) turbulence was performed by Onsager (1949) in

the framework of the point vortex model. To treat flows

with continuous vorticity fields, another approach has

been proposed by Kraichnan in the framework of the

truncated Euler equations (Kraichnan and Montgomery

1980), which has then been applied to quasigeostrophic

flows over topography (Salmon et al. 1976; Carnevale

and Frederiksen 1987). The truncation has a drastic con-

sequence: only the energy and the enstrophy are conserved

quantities, whereas any function of the vorticity is con-

served for the Euler equation. The energy–enstrophy sta-

tistical theory predicts the emergence of large-scale mean

flows above topography, characterized by a linear re-

lationship between streamfunction and potential vorticity.

The existence of such a linear relation was assumed by

Fofonoff (1954) for analytical convenience, in earlier

work on inertial ocean circulation, independently of

statistical mechanics approaches. Fofonoff was able to

compute explicitly an inertial solution in the low energy

limit. The emergence of such flows has then been ob-

served in numerical simulations of freely evolving qua-

sigeostrophic flows (Zou and Holloway 1994; Wang and

Vallis 1994). The energy–enstrophy statistical theory

has therefore been proven successful to interpret these

Fofonoff flows as statistical equilibria. However,

Fofonoff flows are not observed in the real ocean.

There exists actually a richer variety of energy–

enstrophy states, as revealed by the computations of so-

lutions in various configurations (see, e.g., Majda and Wang

2006; Frederiksen and O’Kane (2008), and references

therein). The computation of any equilibrium state charac-

terized by a linear q–c relation for a given energy and cir-

culation (which includes the previous solutions but not only)

has been performed recently for a large class of models

including the 1.5-layer QG equations (Venaille and Bouchet

2011; Naso et al. 2010). None of the observed inertial fea-

tures of oceanic flows, such as coherent rings and midbasin

eastward jets, were found in this class of equilibrium states.

For the Euler or QG dynamics, a major drawback

of energy–enstrophy statistical theories is the loss of

the additional invariants of the dynamics. A first at-

tempt to include the effect of a higher-order invariant

was proposed by Carnevale and Frederiksen (1987). The

generalization of Onsager’s ideas to the Euler and qua-

sigeostrophic equations with continuous vorticity field,

taking into account all invariants, has led to the RSM

theory (Robert 1990; Miller 1990; Robert 1991; Robert

and Sommeria 1991) [see Eyink and Sreenivasan (2006),

Majda and Wang (2006), and Marston (2011) for recent

reviews and references].

An essential point of the RSM approach is that it

makes a distinction between fine-grained potential vor-

ticity distribution on one hand, which is conserved by

inviscid flows, and coarse-grained distribution of poten-

tial vorticity on the other hand, which is not conserved.

This is in complete agreement with the classical and well-

documented fact that potential vorticity invariants cas-

cade toward smaller and smaller scales (both for inviscid

and dissipative flows), (see, e.g., Chavanis 2008). Actu-

ally, the equilibrium statistical mechanics predicts the

ratio of potential vorticity invariants that remains to the

large scale and the ratio that cascades to smaller and

smaller scales for an inviscid dynamics.

Computing the RSM equilibrium states requires the

resolution of a variational problem with an infinite number

of constraints. This practical difficulty has been overcome

by treating canonically other invariants than the energy,

which lead to a variational easier to solve (Ellis et al. 2000).

This approach is sometimes referred to as statistical me-

chanics with prior vorticity distribution (Turkington 1999;

Ellis et al. 2002; Majda and Wang 2006; Chavanis 2008).

Any equilibrium state with prior vorticity distribution

can be interpreted as an RSM equilibrium state (Bouchet

2008). This is therefore a very useful trick to compute the

equilibrium states. However, we think that a physical in-

terpretation of the prior vorticity distribution is problem-

atic, because it would require us to define what a bath of

potential vorticity is. In the case of an isolated system (e.g.,

a freely evolving inviscid flow), the relevant ensemble to

consider is the one taking into account all the constraints

of the dynamics. For this reason, we ultimately interpret

the equilibrium states in terms of the RSM theory.

Several studies (e.g., Abramov and Majda 2003;

Dubinkina and Frank 2010) have specifically addressed

the importance of higher potential vorticity moments for

the equilibrium states. Taking into account these addi-

tional dynamical invariants provides a much richer vari-

ety of equilibrium states than previous energy–enstrophy

theories. It has been proven useful to describe the strato-

spheric polar vortex (Prieto and Schubert 2001), the self-

organization following deep convection events (Dibattista

and Majda 2000), or Jupiter’s Red Great Spot (Bouchet

and Sommeria 2002; Turkington et al. 2001).

Most of oceanic coherent structures are surface inten-

sified, with most of their kinetic energy located above the

thermocline. In addition, eastward jets and rings are char-

acterized by a jet width on the order of the first baroclinic

Rossby radius of deformation. In this paper, we consider

the simplest ocean model that takes into account this ver-

tical structure and this typical horizontal length scale:

namely an equivalent barotropic, 1.5-layer QG model.
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We consider the limit of small Rossby radius of de-

formation, which allows analytical computations of sta-

tistical equilibria, following the work of Bouchet and

Sommeria (2002). This assumption provides important

insights for more general situations, even when such a

scale separation does not exist. This is also a first step be-

fore considering the shallow-water model, which is con-

sistent with the scale separation between the Rossby

radius of deformation and the domain scale.

In the limit of small Rossby radius of deformation, it

has been shown that the computation of RSM statisti-

cal equilibria can be simplified into a Van der Waals–

Cahn–Hilliard variational problem (Bouchet 2008).

These variational problems explain the formation and

the shape of bubbles in thermodynamics. The existence

of this formal analogy has been very fruitful in the de-

scription of Jovian vortices. This paper puts forward this

approach in the oceanic context.

The paper is organized as follows: Equilibrium statis-

tical mechanics of the 1.5-layer QG model is presented in

the second section. The method to compute analytically

statistical equilibrium states in the limit of small Rossby

radius of deformation is presented on the third section. It

allows for a justification of the potential vorticity ho-

mogenization theory of Rhines and Young (1982) with-

out invoking any dissipation mechanism. The application

to oceanic rings is discussed in a fourth section, by con-

sidering the case of a zonal channel on a beta plane. The

application to midbasin eastward jets is discussed in a fifth

section, by considering the case of a closed domain. No-

tations and symbols are referenced in Table 1.

2. Statistical mechanics of the 1.5-layer equivalent
barotropic QG model

a. The 1.5-layer QG model, its dynamical invariants,
and its dynamical equilibria

The simplest possible inertial midlatitude ocean model

taking into account the stratification of the oceans and

the sphericity of the earth is considered in this paper. This

is the unforced, undissipated, 1.5-layer QG model on a

beta plane,

›q

›t
1 v � $q 5 0, with v 5 ez 3 $c, and (1)

q 5 =2c 2
c

R2
1 by. (2)

For the boundary conditions, two cases will be distin-

guished, depending on the domain geometry D. In the

case of a closed domain, there is an impermeability

constraint (no flow across the boundary), which amounts

to a constant streamfunction along the boundary. To

simplify the presentation, the condition c 5 0 at

boundaries will be considered.1 In the case of a zonal

channel, the streamfunction c is periodic in the x di-

rection, and the impermeability constraint applies on

northern and southern boundaries. In the remaining,

length scales are nondimensionalized such that the do-

main area jDj is equal to one.

According to Noether’s theorem, each symmetry of the

system is associated with the existence of a dynamical

invariant (see, e.g., Salmon 1998). These invariants are

crucial quantities, because they provide strong constraints

for the flow evolution. Starting from (1), (2), and the

aforementioned boundary conditions, one can prove that

QG flows conserve the energy,

E 5
1

2

ð
D

dr ($c)2
1

c2

R2

�
5 2

1

2

ð
D

dr(q 2 by)c

�

where d 5 $(›x, ›y) (3)

Additionally, the QG dynamics (1) is a transport by an

incompressible flow, so that the area g(s)ds occupied

by a given vorticity level s is a dynamical invariant. The

quantity g(s) will be referred to as the global distribution

of potential vorticity. The conservation of the distribution

g(s) is equivalent to the conservation of any moment of

the potential vorticity
Ð
D dr qn and is related to particle

relabeling symmetry (Ripa 1981; Salmon 1998).

The stationary points of the QG Eq. (1), referred to as

dynamical equilibrium states, satisfy v �$q 5 $c 3 $q 5

0. It means that dynamical equilibria are flows for which

streamlines are isolines of potential vorticity. Then, any

state characterized by a q–c functional relationship is a

dynamical equilibrium.

At this point, we need a theory (i) to support the idea

that the freely evolving flow dynamics will effectively

self-organize into a dynamical equilibrium state, (ii) to

determine the q–c relationship associated with this dy-

namical equilibrium, and (iii) to select the dynamical

equilibria that are likely to be observed. This is the goal

and the achievement of equilibrium statistical mechan-

ics theory, which is presented in the next subsection.

b. The equilibrium statistical mechanics of RSM

The RSM statistical theory is introduced on a heuristic

level in the following. There exists rigorous justifications

of the theory (see, e.g., Bouchet and Corvellec 2010, and

references therein).

1 The physically relevant boundary condition should be c 5 cfr,

where cfr is determined by using the mass conservation constraintÐ
dr c 5 0 (c is proportional to interface variations). Taking c 5

0 does not change quantitatively the solutions in the domain bulk

but only the strength of boundary jets.
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A microscopic state is defined by its potential vorticity

field q(r). If taken as an initial condition, such a fine-

grained field would evolve toward a state with fila-

mentation at smaller and smaller scales while keeping

in general a well-defined large-scale organization. Then,

among all the possible fine-grained states, an over-

whelming number are characterized by these complicated

small-scale filamentary structures. This phenomenology

gives a strong incentive for a mean-field approach, in

which the flow is described at a coarse-grained level.

For that purpose and following Robert and Sommeria

(1991), we introduce the probability r(s, r)ds to measure

a potential vorticity level s at a point r 5 (x, y). The

probability density field r defines a macroscopic state of

the system. The corresponding averaged potential vortic-

ity field, also referred to as coarse grained or mean field, is

TABLE 1. Symbols and notations used in the text.

Symbol Definition

ex,y,z unit vectors in the meridional (x), zonal (y), and vertical (z) directions

r 5 (x, y) coordinate of a point, with $ 5 (›x, ›y)

t time coordinate

R Rossby radius of deformation

f0 Coriolis parameter

b planetary vorticity gradient

D domain where the flow takes place (with jDj5 1)

u(r) velocity field

q(r, t) (fine grained) potential vorticity field

s level of potential vorticity, with s 2 � 5 ]2‘, 1‘[

q, c (coarse grained) mean-field potential vorticity and streamfunction

E energy of the flow

g(s) global distribution of potential vorticity levels

r(r, s) probability distribution function

S[r] mixing entropy

N [r] 5 N normalization constraint

Ds[r] 5 g(s) constraint on global potential vorticity distribution

«[r] 5 E constraint on the energy

z(r) Lagrange multiplier associated with the normalization N
a(s) Lagrange multiplier associated with the global vorticity

distribution Ds

l Lagrange multiplier associated with the energy «

ga(lc) q–c relation at equilibrium

f 5 c/R2 rescaled streamfunction

F [f], F free energy functional and equilibrium free energy

f(f) specific free energy

C 5 2lR2 rescaled Lagrange multiplier associated with the energy constraint

M 5
Ð
D dr f constraint for f

m Lagrange parameter associated with M

f1, f2 values of f in a given phase

q1, q2 values of q in a given phase

A1, A2 domain (and area) occupied by a given phase

L perimeter of the interface between phases

r curvature radius of the interface

h Lagrange multiplier associated with the constraint on A2 when

minimizing L

t 5 R~t coordinate across the interface

fjet(t) jet profile

Ujet 5 (f2 2 f1)R velocity of the jet

F
int

5 cRL(f22 f
1
)2 free energy of the interface, with c ; 1

L[q] 5Li 5Lf constraint on the linear momentum (i is initial and f is final)

yf, yjet latitude of the ring center of jet latitude
~b 5 b/R2 rescaled beta coefficient

F
b

contribution of the beta term to the free energy

l(x) perturbation of the zonal interface

FR 5F int 1F
b

first-order corrections to the free energy

Lx, Ly zonal and meridional extension of the closed domain

Lring diameter of the ring
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q(r) 5

ð
S

ds sr(s, r), (4)

with the average streamfunction c defined by q 5 =2c 2

c/R2 1 by and where � 5 ]2‘, 1‘[. Many microscopic

states q can be associated with a given macroscopic state

r. The cornerstone of the RSM statistical theory is the

computation of the most probable state req, which max-

imizes the mixing entropy given by the Boltzmann–Gibbs

formula,

S[r] [ 2

ð
D

dr

ð
S

ds r logr, (5)

while satisfying the constraints associated with each

dynamical invariant. The mixing entropy (5) is a quan-

tification of the number of microscopic states q corre-

sponding to a given macroscopic state r. The state req is

not only the most probable one: an overwhelming

number of microstates are effectively concentrated close

to it (Michel and Robert 1994). This gives the physical

explanation and the prediction of the large-scale orga-

nization of the flow.

In the remaining of this paper, the expression ‘‘global

entropy maximum,’’ or stable equilibrium state, will be

used for any global maximizer r of the entropy (5) satis-

fying the constraints. The expression ‘‘local entropy max-

imum,’’ or metastable equilibrium state, will be used for

any state r that is a local maximizer of the entropy (5),

satisfying the constraints.

To compute statistical equilibria, the constraints must

be expressed in term of the macroscopic state r:

d the local normalization N[r](r) [
Ð

S ds r(s, r) 5 1;
d the global potential vorticity distribution D

s
[r] [Ð

D dr r(s, r) 5 g(s); and
d the energy E[r] [ 2 ½

Ð
D dr

Ð
S ds r(s 2 by)c 5 E.

Because of the overwhelming number of states with only

small-scale fluctuations around the mean-field potential

vorticity and because energy is a large-scale quantity,

contributions of these fluctuations to the total energy are

negligible with respect to the mean-field energy (Robert

and Sommeria 1991).

The first step toward computations of RSM equilibria

is to find critical points r of the mixing entropy (5). To

take into account the constraints, one needs to introduce

the Lagrange multipliers z(r), a(s), and l associated

with the local normalization, the conservation of the

global vorticity distribution, and the conservation of the

energy, respectively. Critical points are solutions of

"d rdS 2 ldE 2

ð
S

ds 3 adD
s

2

ð
D

dr zdN 5 0, (6)

where first variations are taken with respect to r. This

leads to r 5 N exp[lsc(r) 2 a(s)], where N is de-

termined by the normalization constraint (
Ð

ds r 5 1).

Finally, using (4), one finds that statistical equilibria are

dynamical equilibria characterized by a functional re-

lation between potential vorticity and streamfunction,

q 5

ð
S

ds 3 se lsc(r)2a(s)

ð
S

ds 3 eslc(r)2a(s)
[ g

a
(lc). (7)

It can be shown that ga is a monotonic, increasing, and

bounded function of lc for any global distribution g(s)

and energy E. These critical points can either be entropy

minima, saddle, or maxima. To find statistical equilibria,

one needs then to select the entropy maxima.

At this point, two different approaches could be fol-

lowed. The first one would be to consider a given small-

scale distribution g(s) and energy E and then to compute

the statistical equilibria corresponding to these parame-

ters. In practice, especially in the geophysical context, one

does not have empirically access to the fine-grained vor-

ticity distribution but rather to the q–c relation (7) of the

large-scale flow. The second approach, followed in the

remaining of this paper, is to study statistical equilibria

corresponding to a given class of q–c relations.

More precisely, we will consider the class of q–c re-

lations that admit an inflexion point, referred to as ‘‘tanh

like’’ relations (see Fig. 1). When the global distribution

g(s) is a double-delta function (a two-level system), one

can explicitly show that the q–c relation is a tanh func-

tion (Bouchet and Sommeria 2002), but the actual class

of initial conditions associated with tanh-like relations is

expected to be much larger. A pragmatic point of view is

that these tanh-like relations are the ones that allow for

statistical equilibria characterized by fronts of potential

vorticity. In that respect, there is the relevant class of q–c

relations to describe either rings or zonal jets.

c. Simplification of the variational problem

As explained in the introduction, a widely used

method to solve variational problems with many con-

straints (such as the RSM variational problem) is to

consider a dual variational problem, which has the same

critical points as the initial one but is less constrained.

Any solution of the less constrained (easier to solve)

problem is a solution of the more constrained problem

(see, e.g., Ellis et al. 2000).

Let us, for instance, consider the ensemble of rescaled

streamfunction fields f 5 c/R2 that satisfy the constraintÐ
D dr f 5 M. This constraint is equivalent to the conser-

vation of the first moment of potential vorticity
Ð
D dr q, at
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leading order in R. Let us then look for the minimizers of

the free energy functional

F 5

ð
D

dr
R2

2
($f)2

1 f (f) 2 bfy

�
,

�
(8)

where f(f) is a specific free energy to be defined precisely

in the next paragraph. This provides a variational problem

F 5 min
f
F [f]j

ð
D

dr f 5 M

� �
, (9)

which is much simpler than the one of the RSM statistical

theory, because only one constraint is kept. Critical points

of this problem are solutions of dF 2 m
Ð
D dr df 5 0, for

any perturbation df, where a is the Lagrange multiplier

associated with the constraint. A part integration and

the relation q 5 R2=2f 2 f 1 by give dF 5Ð
dr [ f 9(f) 2 f 2 q]df. Critical points therefore satisfy

the relation q 5 f9(f) 2 f 2 m. These critical points are

the same as the RSM critical points given by Eq. (7),

provided that

f 9(f) 5 g
a

(lR2f) 1 f 1 m. (10)

This relation defines the specific free energy f. One can

see that the tanh-like shape of ga with a sufficiently steep

slope at its inflection point leads to a double-well shape

for f, as illustrated in Fig. 1. This double-well shape is an

important ingredient for the computation of statistical

equilibria in the following.

It has been proven by Bouchet (2008) that, for each

minimizer f of the variational problem (9), there exists

a set of constraints E, g(s) such that f is the mean-field

streamfunction of the RSM statistical equilibrium state

r associated with the constraints E, g(s). In other words,

any local (global) free energy minimizer f can be in-

terpreted as a local (global) entropy maximum state of

the RSM theory.

3. Potential vorticity homogenization and jets as
statistical equilibria

Assuming that there is no beta effect (b 5 0) and that

f(f) has a double-well shape and considering the limit

R�L (L is the domain size), Bouchet (2001, 2008) found

that the variational problem (9) becomes analogous to

the Van der Waals–Cahn–Hilliard model that describes

phase separation and phase coexistence in thermody-

namics (Modica 1987). This formal analogy provides then

an interesting physical interpretation of self-organization

phenomena in geostrophic turbulence.

a. Solutions of the Van der Waals–Cahn–Hilliard
variational problem

At zeroth order in R, the function f(f) plays the domi-

nant role in the free energy functional F given by (8).

To minimize F , the streamfunction f must therefore be

equal to one of the two minima of the specific free en-

ergy f(f) (the points f1 and f2 in Fig. 1). Each of these

minima corresponds to one phase. Without the constraintÐ
D dr f 5 M, one of the two uniform solutions f 5 f1 or

f 5 f2 would minimizeF : the system would have only one

phase. However, to satisfy the constraint
Ð
D dr f 5 M, the

system has to split into subdomains: part of it with phase

f 5 f1 and part of it with phase f 5 f2. In terms of free

energy minimization, the coexistence of these two phases

is possible only if f(f1) 5 f(f2). Using Eq. (10), one can

always choose the Lagrange parameter m to satisfy this

condition (see Fig. 1 for a graphical interpretation). In

physical space, the areas occupied by each of the phases

are denoted as A1 and A2, respectively (see Fig. 2). These

values are fixed by the constraint
Ð
D dr f 5 M, which gives

at leading order f1A1 1 f2A2 5 M and by the geometrical

constraint A1 1 A2 5 1 (where 1 is the area of the domain).

FIG. 1. (a) In this paper, we consider the class of q–f relations

(with f 5 f/R2) having a tanh-like shape: namely, (i) decreasing

with f, (ii) bounded for c / 6‘, and (iii) with a single inflection

point. In addition, we assume that the slope at the inflection point is

sufficiently steep, so that the q–f relation represented as a solid line

crosses three times the dashed line q 5 2f 2 m. (b) The double-

well shape of the specific free energy f(f) appearing in the ex-

pression of the free energy functional (8). This function is related to

the q–c relation through Eq. (10). The Lagrange parameter m is

chosen such that the specific free energy of the two minima are the

same [ f(f1) 5 f(f2)], which allows for phase coexistence.
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The interface between the subdomains characterized

by f1 and f2 corresponds to an abrupt variation of

streamfunction. The term R2($f)2 in the expression (8)

of the free energyF is negligible everywhere but around

this interface, on a typical width of order R. The in-

terface is therefore associated with a strong and localized

jet directed along this interface, with a typical velocity

Ujet 5 (f1 2 f2)R and a typical width R. The actual jet

profile is computed in appendix A by minimizing the free

energy associated with this profile. The jet gives always

a positive contribution to the free energy,

F int 5 c(f2 2 f1)2RL, with c ; 1. (11)

To minimize this interfacial free energy, the perimeter

of the jet L must be minimal, taking into account the

constraints given by the fixed areas A1 and A2. We thus

look for the curve with the minimal length that bounds

a given surface. The solution of this classical problem is

that the interface is either a circle or a straight line.

To conclude, the computation of the statistical equi-

libria predicts (i) the formation of two phases of constant

streamfunction, with strong and localized jets at these

interface; (ii) the velocity profile across of these jets; and

(iii) the shape of the interface, which is determined by an

isoperimetrical problem: the minimization of the in-

terface length for a fixed enclosed area.

b. Link with potential vorticity homogenization
theories

The tanh-like shape of the q–c relations implies that

subdomains of constant streamfunction are also sub-

domains of constant coarse-grained potential vorticity. It

means that the potential vorticity is homogenized in each

subdomain. Statistical mechanics provides therefore a

physical explanation for the potential homogenization

theory of Rhines and Young (1982), without invoking any

dissipation mechanism.

In the case of freely evolving 1.5-layer QG dynamics,

statistical mechanics predicts not only the spontane-

ous formation of regions where potential vorticity is ho-

mogenized at a coarse-grained level but also the shape of

the interface between these regions, corresponding to jets,

where vorticity gradients are confined. Statistical mech-

anics arguments also account for the irreversible nature of

mixing: an overwhelming number of fine-grained micro-

scales are associated with a given coarse-grained equilib-

rium state. The only effect of a weak small-scale dissipation

process would be to smooth out locally fine-grained fluc-

tuations of potential vorticity, leaving unchanged its

coarse-grained structure.

Note that the formation of two subdomains of ho-

mogenized coarse-grained potential vorticity is essential

to ensure the energy conservation. Importantly, any eddy

parameterization based on local downgradient diffusiv-

ities could not represent this homogenization process: it

would lead to the formation of a single phase of homog-

enized potential vorticity, which would in general not

satisfy the energy constraint.

These results are complementary to previous work

focusing on the dynamics of potential vorticity mixing,

using chaotic advection theory (Pierrehumbert 1991).

Chaotic advection theory has been proven successful

to account for many observed features of potential vor-

ticity mixing, but, unlike statistical mechanics, it pro-

vides in general no prediction for the final state of the

large-scale flow, especially when there is no scale sepa-

ration between mean and eddies in the initial condition.

4. Application to oceanic rings

Observations show that mesoscale oceanic rings exist

everywhere in the ocean, particularly near western

boundary currents, where high levels of eddy kinetic en-

ergy levels are largely associated with their presence [see,

e.g., Olson (1991) for a review and Morrow et al. (2004)

FIG. 2. Resolution of the Van der Waals variational problem (9). (a) Example of an initial

condition for the potential vorticity field. Note that this initial condition could also have many

levels of potential vorticity. (b) At zeroth order in R, f takes two values, f1 and f2, on two

subdomains, A1 and A2, corresponding to the coexistence of two phases of homogenized po-

tential vorticity, q1 and q2. These subdomains are separated by strong jets of typical width ljet 5

R and velocity Ujet 5 (f2 2 f1)R. (c) The actual shape of the structure, or equivalently the

position of the jets, is obtained by minimizing its perimeter L for a fixed value of A2.
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and Chelton et al. (2007) for recent altimetry measure-

ments]. Both cyclonic and anticyclonic rings propagate

westward at speed bR2. They also present an additional

small meridional drift, poleward for cyclonic rings and

equatorward for anticyclonic rings.

Among others, contributions of McWilliams and Flierl

(1979), Nof (1981), Flierl (1987), and Cushman-Roisin

et al. (1990) have provided insights on the dynamics and

on the mechanisms responsible for the generation of the

rings, in a large class of models and configurations. Various

dynamical mechanisms accounting for the formation of

the rings have been pointed out: vortex shedding above

topography, pinch-off process during the nonlinear evo-

lution of a meandering jet, boundary layer separation, or

large-scale organization of initially small turbulent distur-

bances. Despite these very different generation mecha-

nisms, the striking resemblance between observed oceanic

rings in very different regions of the ocean, which has long

been recognized as a surprising result (Olson 1991), sug-

gests that at least some aspect of these coherent structures

can be studied independently of their generation mecha-

nism. This is precisely the interest of statistical mechanics,

which accounts for spontaneous formation of circular

structures surrounded by a jet: that is, the self-organization

of mesoscale turbulence into rings.

a. The westward drift of the rings

To show that westward-propagating circular rings can

be interpreted as equilibrium states, two important

ingredients must be taken into account: (i) the beta effect

by and (ii) a domain invariant by translation in the zonal

direction. A drifting ring could not exist as statistical

equilibria in a closed domain, because it would be de-

stroyed when arriving on the western boundary. The zonal

translational invariance of the problem has important

consequences. It is shown in appendix B that a change

of Galilean reference frame in the zonal direction trans-

lates as a beta effect in the expression of potential vorticity.

Moreover, in a reference frame moving at velocity 2bR2ex,

the beta effect is exactly canceled out. We conclude that,

in a domain invariant by translation in the zonal direction,

statistical equilibria obtained by the minimization of the

Van der Waals–Cahn–Hilliard variational problem (9)

without beta effect are also statistical equilibria with beta

effect but drifting westward at speed V 5 2bR2.

b. The poleward drift of cyclones and the
equatorward drift of anticyclones

If the flow actually reaches a local statistical equilib-

rium, then not only the ring is composed of a homoge-

nized region of potential vorticity but also the background

flow. In Fig. 3, the case of an isolated patch of potential

vorticity (q 5 qi within the ring of area Ai centered on

y 5 0) on a beta plane is represented (q 5 by elsewhere).

This situation is common in the ocean: for instance, when

Agulhas rings arrive in quiescent regions of the Atlantic

Ocean. Because the background potential vorticity is not

homogenized, this state is not a statistical equilibrium state.

FIG. 3. Explanation of the meridional drift of rings, as a tendency to reach the statistical

equilibria. (left) Initial conditions, with (top) a white disk of positive potential vorticity and

(bottom) a black disk of negative potential vorticity. In both cases the disk evolves on an initial

beta plane with no background flow. (right) The corresponding statistical equilibrium.
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It is shown in the following that the observed asym-

metric small meridional drift of cyclonic and anticyclonic

rings can be understood as a tendency for the system to

reach the statistical equilibrium [see also Schecter and

Dubin (2001) for a similar argument in the context of

beta-plane turbulence]. One needs for that purpose to

consider the conservation of the linear momentum,

L 5

ð
D

dr qy,

which is the dynamical invariant associated with the

zonal translational symmetry. The linear momentum of

the initial condition is, at lowest order in R,

Li ’ b

ð
D

dr y2 2 b

ð
A

i

dr y2,

where Ai is the initial area of the ring. Considering the

limit of small rings compared to the domain size, the first

term of the right-hand side dominates the second one and

Li ’ bLxL3
y/24. Assuming the statistical equilibrium is

reached in the final state, the flow is made of two phases of

homogenized potential vorticity: the background phase,

with value q 5 qb, and the ring’s phase of area Af, centered

at latitude y 5 yf, with value q 5 qf (same sign as qi) and

with jqf j. jqbj. The linear momentum of this final state is

Lf ’ qb

ð
D

dr y 2 (qf 2 qb)

ð
A

f

dr y.

Finally, the linear momentum conservation Li 5Lf gives

b

24
LxL3

y ’ 2(qf 2 qb)yf Af .

Physically, this means that, for statistical mechanics rea-

sons, the background potential vorticity has to be ho-

mogenized, which leads to a loss of linear momentum that

must be compensated by a latitude shift of the ring center.

Rings with negative potential vorticity [(qf 2 qb) , 0]

decrease their latitude (yf , 0), whereas rings with pos-

itive potential vorticity [(qf 2 qb) . 0] increase their lat-

itude (yf . 0). Then, in order to reach the statistical

equilibrium, the ring has to drift northward if it is made of

an initial positive potential vorticity patch and southward

if it is made of an initial negative potential vorticity patch.

This corresponds always to a poleward drift for cyclonic

structures and an equatorward drift for anticyclonic

structures, just as what is reported from altimetry mea-

surements (Morrow et al. 2004; Chelton et al. 2007).

c. Conclusions: Oceanic rings are local
statistical equilibria

In the ocean, the scale separation between the size of

the rings and the Rossby radius of deformation is satisfied

only to a limited extent. This scale separation has been

assumed for technical reasons only: it allows for explicit

analytical computations of the equilibria. The results

obtained in this limit actually apply for far more general

situations. This is confirmed by numerical computations

of RSM equilibria, in which rings are obtained as local

equilibria even when the scale separation is not satisfied

(see, e.g., Fig. 4).

To conclude, the quasi-circular shape of oceanic rings

and their westward propagation suggest that these coherent

structures can be interpreted as local statistical equilibria.

The existence of a meridional drift shows a departure from

the prediction of the equilibrium theory. However, the fact

that this drift can be interpreted as a tendency to reach to

equilibrium state shows that these structures remain close

to an equilibrium state. Rings are local (metastable) and

not global statistical equilibria of the equivalent barotropic

model (a global equilibrium would imply the coalescence

of all existing rings into a single large-scale vortex) in order

to minimize the total interface between the different re-

gions of homogenized potential vorticity.

5. Application to midbasin eastward jets

Another region of the ocean where strong jets of

typical width given by the Rossby radius of deformation

R is localized along an interface separating two regions

of homogenized potential vorticity is the inertial part of

midlatitude eastward jets, such as the Kuroshio or the

Gulf Stream Current. The inertial part of these currents

is located in the regions where the western boundary

currents separate from the coastline and self-organize

downstream into a strong eastward jet. Because midbasin

eastward jets fill a large part of oceanic basins and because

the existence of a western boundary is an essential in-

gredient for their formation, one must look for statistical

equilibria in a close domain in that case. In view of the

applications to midbasin ocean jets, we assume a situation

in which the global distribution of potential vorticity is

symmetric: two phases characterized by symmetric values

of streamfunction [f1 5 2f2 5 Ujet/(2R)], with each

of them filling half the domain area (A1 5 A2 5 1/2). We

ask in this section whether configurations with midbasin

eastward jets are statistical equilibria.

a. Without beta effect, midbasin eastward jets are
statistical equilibria of the QG model

The value f 5 f1,2 for the two coexisting phases is not

compatible with the boundary condition f 5 0. As

a consequence, there exists a boundary jet in order to

match a uniform phase f 5 f1,2 to the boundary condi-

tions. Just like interior jets, treated in section 3, these jets

contribute to the first-order free energy, which gives the
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boundary jet structure and shape. The symmetry of the

problem (f1 5 f2) implies that boundary jets of each

phase give the same contribution to the free energy. Be-

cause the boundary length is a fixed quantity, the free

energy minimization amounts to the minimization of the

interior jet length only, just as in previous subsections. The

interior jet position and shape is thus given by the mini-

mization of the interior jet length with fixed area A2 5 ½.

The jet has to be straight or circular. There are three

possible interface configurations with straight or circular

jets: (i) the zonal jet configuration (jet along the x axis),

with L 5 Lx; (ii) the meridional jet configuration (jet along

the y axis), with L 5 Ly; and (iii) an interior circular vortex,

with L 5
ffiffiffiffiffiffi
2p
p

. The zonal jet case is a global inter-

face minimum (and then a global equilibrium state) if and

only if the aspect ratio satisfies Lx /Ly , 1. For Lx /Ly . 1,

these solutions become metastable states (local entropy

maximum).

We conclude that, without beta effect, midlatitude

eastward jets are statistical equilibria. Because of the

symmetry f1 5 2f2, solutions presenting eastward and

westward jets are equivalent: westward jets are also

statistical equilibria.

b. With beta effect, eastward jets become
metastable or unstable

Contrary to the case of the zonal channel, the beta

effect cannot be cancelled out by a change of Galilean

reference frame in the case of a closed domain. One can

therefore not avoid taking into account this term in the

computation of the equilibrium free energy. One can

readily see on the expression (8) of the free energy that,

when b 6¼ 0, the additional term F
b

[ 2b
Ð
D dr fy

breaks the symmetry 6q. The westward jet case (with

f , 0 on the southern part of the domain and f . 0 on

the northern part) is more favorable in terms of free

energy minimization than the eastward jet case (with

f . 0 in the southern part of the domain and f , 0 in the

northern part): westward jets become the only global

equilibria for b . 0 and aspect ratio Lx/Ly . 1.

Let us be more precise by considering the limit of small

beta effect, with the scaling b ; R~b. With that scaling, the

equivalent topography does not play any role at zeroth

order in the variational problem (9). We thus still conclude

that phase separation occurs, with subdomains of fixed

areas A1 and A2, separated by jets whose transverse

structure is described in appendix A. It is shown in this

same appendix that the interface gives a contribution

F int 5 cRL(f22 f1)2. Using the zeroth-order result f 5

f1 on subdomain A1 and f 5 f2 on subdomain A2, one

obtains also F
b

5 2(f2 2 f1)b
Ð

A2
dr y, plus an unim-

portant constant. Finally, the total first-order contribution

to the free energy is

FR 5 cR(f2 2 f1)2L 2 (f2 2 f1)b

ð
A

2

dr y. (12)

Recalling that first variations of the length are pro-

portional to the inverse of the curvature radius r of the

interface (Gelfand and Fomin 1967), the minimization

of (12), with fixed area A2 gives

(f2 2 f1)R~by 1 h 5
cR(f2 2 f1)2

r
. (13)

Here, h is a Lagrange parameter associated with the

conservation of the area A2.

FIG. 4. Circular vortex as a statistical equilibrium of the QG model, with R , Lring. Although

analytical computations are carried in the limit R�Lring, the results are expected to hold when

this scale separation does not exist. It is a circular patch of (homogenized) potential vorticity in

a background of homogenized potential vorticity, with two different values. (right) The velocity

field has a ring structure. The width of the jet surrounding the ring has the order of magnitude of

the Rossby radius of deformation R.
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We conclude that zonal jets (i.e., an interface at latitude

y 5 yjet, with infinite curvature radius r) are solutions to

this equation for h 5 2R(f
2

2 f
1
)~by

jet
. This shows that

eastward and westward jets described in the previous

section are therefore still critical points of entropy max-

imization.

The eastward jet configuration is the one with the re-

gion A2 below the line y 5 0 at the center of the domain.

To determine if this configuration is a local statistical

equilibria, let us consider perturbations of this interface

[given by the line y 5 l(x)], while keeping constant the

area occupied by both phases (see Fig. 5). There are two

contributions competing with each other in the expression

(12) of the free energy FR. Any perturbation increases

the jet length L 5
Ð

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 (l9)2

q
, where l9 5 dl/dx, and

then increases the first term of the free energy (12) by

dF int 5 cR(f2 2 f1)2 Ð dx(l9)2. Any perturbation de-

creases the second term of the free energy (12) by

dF
b

5 2R(f
2

2 f
1
)~b
Ð

dx l 2. If the eastward jet solution

is not a free energy minimum, it exists a perturbation of

the interface leading to negative variations of the free

energy dFR 5 dF int 1 dF
b
. Let us consider the particular

case l 5 lk sin(kpx/Lx), where k $ 1 is an integer. Using

Ujet 5 (f2 2 f1)R and b 5 R~b, the condition dFR , 0

gives b . cUjet (kp/Lx)2. The most unfavorable case is for

the smallest value of k2: that is, k2 5 1.

It leads to the necessary condition b . cU
jet

p2/L2
x for

the eastward jet solution to be unstable (in term of statis-

tical mechanics). It can actually be shown, using less

straightforward considerations, that it is also a sufficient

condition for instability. The destabilizing effect of in-

creasing values of b contrasts with its stabilizing effect in

classical criteria for barotropic instability (see, e.g., Vallis

2006). It has actually been shown that such eastward jet

solutions can simultaneously be unstable for statistical

mechanics and stable for nonlinear perturbations (Venaille

2008).

For a fixed value of b, eastward jets are local free

energy maxima if the domain zonal extension is smaller

than a critical value, Lx , p(cUjet/b)1/2. The stream-

function of such a state is presented in Fig. 6. For jets like

the Gulf Stream, Ujet ’ 1 m s21 and b ’ 10211 m21 s21.

Using c ; 1, the critical domain length scale upon which

eastward jet become unstable is Lx ’ 300 km. This length

is smaller than the typical zonal extension of the inertial

part of the Kuroshio or Gulf Stream Current, but not by

an order of magnitude, which suggests that these struc-

tures are marginally unstable. The instability is consistent

with the fact that strong meanders and pinch-off process

occur downstream of oceanic eastward jets. However, the

marginal nature of this instability is also consistent with

the overall robustness of the global structure of the flow,

which becomes a statistical equilibrium when the exten-

sion of the jet is small enough.

6. Conclusions and prospects

The aim of this paper was to present a point of view

complementary to existing approaches that deal with

coherent structures in the ocean. It was shown that the

RSM statistical mechanics provides a unified framework

that may be useful to study mesoscale and basin-scale

inertial flows.

FIG. 5. (a) Eastward jet configuration; (b) westward jet configuration; and (c) perturbation of

the interface for the eastward jet configuration, to determine when this solution is a local

equilibrium. Without beta effect, both the eastward and the westward configurations are en-

tropy maxima. With positive beta effect, the westward jet becomes the global entropy maxi-

mum, and the eastward jet becomes metastable provided that beta is small enough.

FIG. 6. Streamfunction of the solution presenting an eastward jet

with beta effect, associated with Fig. 5a. The jet width is of order R.

This solution is a statistical equilibrium for Lx , p(Ujet/b)1/2.
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The theory gives a physical explanation and a prediction

for the self-organization of large-scale oceanic coherent

structure, independently of the underlying generation

mechanism. It predicts the formation of subdomains of

homogenized potential vorticity, with intense jets at the

interface. Mesoscale rings can be interpreted as local

equilibrium states of the RSM theory. Their shape and

their drift can be understood in this framework. Midbasin

eastward jets are found marginally unstable states of the

RSM theory, consistent with observations of these jets.

The interest of this approach relies on its generality (it

does not depends on a particular flow configuration) and

on its ability to describe qualitatively different observed

regimes of self-organization, such as rings and zonal jets.

The present study was achieved in the framework of

a 1.5-layer QG model, which is too simplistic to describe

oceanic eddies quantitatively; however, generalizations

and further investigations in the framework of more

complex models can be built upon these results.

A caveat of this approach is that forcing and dissipation

are not taken into account in the framework of the

equilibrium theory: the input of the RSM theory is given

by the dynamical invariants. In the case of mesoscale

rings, even if the dynamics can be considered close to an

equilibrium state, forcing and dissipation play an impor-

tant role in setting these dynamical invariants. In the case

of basin-scale jets, their marginal instability suggests that

one cannot avoid taking into account forcing and dissi-

pation mechanisms to explain these structures. So far, the

inertial part of wind-driven circulation has been mostly

studied from the point of view of bifurcation theory,

starting from a highly dissipated ocean and decreasing

progressively frictional parameters (see, e.g., Dijkstra

and Ghil 2005). We argue that this problem can be

tackled with another point of view, starting from the

purely inertial limit (this paper) and adding small forcing

and dissipation (future work built upon Bouchet and

Simonnet 2009). These two approaches are complemen-

tary and may be combined in the future in a more com-

prehensive nonequilibrium theory.
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APPENDIX A

Computation of the Jet Profile

At leading order, minimization of the free energy leads

to the formation of subdomains of constant stream-

function f 5 f1 and f 5 f2. The interface between these

subdomains is associated with strong and localized jets.

Let us assume that the curvature radius of the interface is

much larger than R, which allows us to neglect what

happens along the interface at leading order. Calling

t 5 R~t the coordinate in a direction along the normal to

the interface, the jet profile fjet(t) across the interface

must be such that it minimizes its contribution to the total

free energy (8). The jet profile is therefore determined by

solving a one-dimensional variational problem,

F int 5 LR min
f

jet

ð1‘

2‘

d~t
1

2

dfjet

d~t

 !" 2

1 f (fjet)

#8<
:

9=
;, (A1)

where L is the perimeter of the jet and F
int

is the free

energy associated with the existence of this interfacial

jet. Critical points of this variational problem are states

that cancel the first variations of the free energy with

respect to fint. They are solutions of

d2fjet

d~t2
5

df

dfjet

. (A2)

Making an analogy with mechanics, if fjet would be

a particle position and t would be the time, then Eq. (15)

would describe the conservative motion of the particle

in a potential 2f. To connect the two different phases in

the bulk, on each side of the interface, one has to con-

sider solutions with boundary conditions f / f1 for

t / 2‘ and f / f2 for t / 1‘. There is a unique

trajectory with such limit conditions. In the particle

analogy, it is the trajectory connecting the two unstable

fixed points f1 and f2, corresponding to the two bumps

of the potential 2f (see Fig. 1).

The energy (dfjet/dt)2/2 2 f(fjet) is conserved during

the evolution of f with time t. Using this conservation

property and the boundary condition f / f2 for t /
1‘, one obtains f(fjet) 5 (dfjet/dt)2/2, plus an un-

important constant. Injecting this expression into the

variational problem (14), one obtains

F int 5 LR

ð1‘

2‘

(dfjet/dt)2 dt 5 cRL(f2 2 f1)2,

with c ; 1. An important physical consequence is that the

jet at the interface always gives a positive contribution to
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the free energy of the equilibrium state, which is of order

R and proportional to the interface length L.

APPENDIX B

Galilean Invariance and Beta Effect

In the case of a zonal channel, the QG Eq. (1) is invariant

over a Galilean transformation in the zonal direction,

x / x9 5 x 2 Vt, y / y9 5 y, t / t9 5 t.

The velocity is transformed as v / v9 5 v 2 Vex, which,

using the relation v 5 ez 3 $c, gives the transformation

law for the streamfunction c / c9 5 c 2 Vy. From the

expression q 5 Dc 2 c/R2 1 by, one obtains finally the

transformation law for the potential vorticity q / q9 5

q 1 Vy/R2. Thus, the expression for the dynamics in the

new reference frame is

›q9

›t9
1 v9 � $9q9 5 0, with v9 5 ez 3 $9c9, and

q9 5 =92c9 2
c9

R2

1 b 1
V

R2

� �
y9.
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