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Abstract Using explicit analytical computations, generic occurrence of inequivalence be-
tween two or more statistical ensembles is obtained for a large class of equilibrium states
of two-dimensional and geophysical turbulent flows. The occurrence of statistical ensem-
ble inequivalence is shown to be related to previously observed phase transitions in the
equilibrium flow topology. We find in these turbulent flow equilibria, two mechanisms for
the appearance of ensemble equivalences, that were not observed in any physical systems
before. These mechanisms are associated respectively with second-order azeotropy (simul-
taneous appearance of two second-order phase transitions), and with bicritical points (bi-
furcation from a first-order to two second-order phase transition lines). The important roles
of domain geometry, of topography, and of a screening length scale (the Rossby radius of
deformation) are discussed. It is found that decreasing the screening length scale (making
interactions more local) surprisingly widens the range of parameters associated with ensem-
ble inequivalence. These results are then generalized to a larger class of models, and applied
to a complete description of an academic model for inertial oceanic circulation, the Fofonoff
flow.

Keywords Statistical ensemble inequivalence · Non-concave entropy · Long-range
interacting systems · Two-dimensional turbulence · Phase transitions · Fofonoff flows ·
Azeotropy · Bicritical points · Negative heat capacity

1 Introduction

One of the major interests and achievements of equilibrium statistical mechanics is the pre-
diction of phase transitions: without describing details of the system configuration at a mi-
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croscopic level, statistical mechanics predicts drastic changes in its macroscopic proper-
ties when varying only a few key parameters. Properties and computations of these phase
transitions can be very different depending on the long-rangedness or short-rangedness na-
ture of the interaction potential characterizing the physical system. We call long-range the
interaction for which the potential is non-integrable. In the case of an algebraic potential
V (r) ∼ 1/rα , this occurs when α is less than the (spatial) dimension of the system.

Classical examples of long-range interacting systems are two-dimensional1 and geophys-
ical flows [52], self-gravitating stars and galaxies [15, 34, 47], or unscreened plasmas [41].
All these systems have the property of self-organizing spontaneously into large-scale coher-
ent structures with a simultaneous complex small-scale dynamics: self-gravitating systems
form galaxies and clusters, plasmas are organized into clouds of particles and turbulent flows
create vortices and jets. Taking advantage of the long-rangedness of the interactions, statis-
tical mechanics approach is particularly suitable to study these systems: it should predict the
macroscopic organization of the system as the most probable outcome of its complicated
microscopic dynamics, with constraints provided by the dynamical invariants, see e.g. the
Miller-Robert-Sommeria equilibrium statistical theory (MRS theory hereafter) in the con-
text of two-dimensional and geophysical turbulent flows [44, 50–52].

Phase transitions and their related thermodynamic properties are well understood and
have been thoroughly studied in the context of short-range interacting systems [39]. By
contrast, despite the important progress in dynamics and thermodynamics of long-range
interacting systems achieved over the last decade (see e.g. [5, 8, 12, 21, 22, 25, 60]) and
despite many analytical examples of phase transitions in such systems (see e.g. [17] for
two-dimensional flows, [37] for plasmas, [16, 47, 57] for self-gravitating systems, [20] for
spin models), a clear understanding of phase transitions in the framework of long-range
interacting systems is still lacking.

One difficulty and challenging aspect associated with phase transitions in long-range
interacting systems is the possible inequivalence between statistical ensembles: a solution
in the microcanonical (constrained) ensemble is not necessarily a solution in the canon-
ical (unconstrained) ensemble [25]. The physical reason for this phenomenon is the non
additivity of the energy E ∼ ∫

dr rdV (r) (with d the spatial dimension): when dividing a
system into two subsystems, the energy of the whole system is not equal to the sum of the
energy of each subsystem, because of the non-integrability of the interaction potential V .
Then, many classical results of thermodynamics, obtained in the framework of short-range
interacting systems, and relying on the additivity of the energy, are no more valid: (i) sta-
tistical ensembles are not necessarily equivalent, (ii) the equilibrium entropy S(E) may be
non-concave. This implies that the heat capacity C = (∂T /∂E)−1 = −T −2∂2S/∂E2 may
be negative in the microcanonical ensemble: the temperature decreases when the energy in-
creases. Such a counter-intuitive property was first predicted in the context of astrophysics
by Lyden-Bell [40] and by Thirring [32, 33, 59].

The appearance of ensemble inequivalence and negative heat capacity is associated with
a zoology of phase transitions, with properties that would not be possible in systems with
short-range interactions or local interactions only (for instance, first-order phase transitions
with negative jump in temperature in the microcanonical ensemble). Such peculiarities have
first been revealed in astrophysical context [32, 33, 40, 59]. Further characterization of en-
semble inequivalence and its associated phase transitions have then been possible by analyt-
ical studies of toy models, as for instance (among others models) simple spin systems, see

1The interaction potential is logarithmic for two-dimensional turbulent flows.
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e.g. [2, 20] and references therein. Subsequently, a classification of all possible phase transi-
tions and their link with the occurrence (or not) of ensemble inequivalence when varying an
external parameter was given [5]. Some of the transitions predicted have not been observed
yet, neither in toy models, nor in real physical systems: this is the case for bicritical points
(bifurcation from a first order to two second-order phase transitions) and for second-order
azeotropy (simultaneous appearance of two second-order phase transitions).

Experimental observation of negative heat capacity and its related thermodynamic pecu-
liarities remains an open problem. Given a physical system, three necessary steps to tackle
this problem are (i) to predict a range of parameters associated with the occurrence of en-
semble inequivalence, (ii) to determine the nature of associated phase transitions, (iii) to
relate these phase transitions to qualitative changes in the systems organization. Such is the
focus of this paper, in the case of two-dimensional and turbulent geophysical flows.

Remarkably, any piece of progress achieved for a specific long-range interacting system
is useful for another one, since the computations of statistical equilibrium states generally
involve similar variational problems. Let us for instance consider a physical system charac-
terized by the mean field ρ at a macroscopic level, with one constraint given by the energy
conservation E [ρ] = E. Assuming that the mean-field approach is valid, which is proven to
be true for a large class of long-ranged interacting systems (see e.g. [10, 28, 35, 36] for the
point-vortex model, [43] for two-dimensional Euler equations, and [1, 25] for a larger class
of models), microcanonical and canonical problems can be described by two dual variational
problems, respectively,

S(E) = max
ρ

{S[ρ] | E [ρ] = E} and (1)

F(β) = max
ρ

{F [ρ] = −S[ρ] + βE [ρ]} , (2)

where S is a Boltzmann (mixing) entropy functional and F a (dual) Helmholtz free energy
functional. These variational problems are dual because they have the same critical points,
but not the same constraints. In presence of additional constraints, the only difference is the
introduction of additional statistical ensembles associated with additional dual variational
problems. The validity of the mean-field approach is due the fact that the dynamics of the
system at a particular location is not governed by local interactions, but rather by the whole
system configuration: because every (infinitesimal) part of the system contributes to the local
field, fluctuations around local mean-field values are small.

The aim of the present work is to present analytical computations of phase diagrams for
a large class of equilibrium states of two-dimensional and geophysical turbulent flows, in
the framework of the MRS theory, emphasizing the occurrence of ensemble inequivalence
and its related thermodynamic properties.

The interests are fourfold.
First, beyond the application to two-dimensional and geophysical flows, the method used

to compute the statistical equilibria is very general: in practice, we solve variational prob-
lems of the form (1) and (2), when the energy E and the entropy S are quadratic functionals,
and when an additional linear constraint is taken into account.2 Taking advantage of classi-
cal results about constrained and associated relaxed variational problems (a solution of (2) is
necessarily a solution of (1), see for instance [25]), the computation of statistical equilibria

2In the context of two-dimensional flows, it will be shown that this corresponds to a class of solutions char-
acterized by a linear relation between vorticity and streamfunction.
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will amount to demanding that a quadratic functional to be positive-definite. This compu-
tation will lead to an explicit criterion for the existence of statistical equilibria in different
ensembles.

Second, the computation of these equilibrium states relates previously observed phase
transitions to the occurrence of ensemble inequivalence, thus deciphering its nature and
physical origin. On the one hand, the existence of ensemble inequivalence in the context
of two-dimensional flows was proven mathematically for point-vortices [11, 36] some time
ago, numerically observed in quasi-geostrophic models [26], as well as in a Monte Carlo
study of point vortices in a disk [56]. On the other hand, phase transitions in the flow topol-
ogy of equilibrium states have been described by Chavanis and Sommeria in the context of
two-dimensional Euler flows [17]. The method used in the present paper to compute sta-
tistical equilibria allows for the simultaneous description of these phase transitions and the
appearance of ensemble inequivalence associated to them. In addition, we report in this con-
text the first observation of a bicritical point and second-order azeotropy in a long-range
interacting system (see also the recent works of [23, 58]), and discuss the related ensemble.

Third, the class of models we study includes a 1.5-layer quasi-geostrophic model, which
allows to discuss changes of phase diagrams in the presence of a screening length scale
(Rossby radius of deformation). When this parameter tends to zero, the energy is additive at
leading order. However, it will be shown that non-local first-order corrections of the energy
are essential to the computation of the equilibrium states, thereby explaining the apparent
paradox that decreasing the screening length scale widens the ensemble inequivalence area
in the phase diagram.

Fourth, a generalization of these results allows to describe a variety of “Fofonoff modes”
characterized by a flow structure differing from the classical low-energy solution of inertial
academic ocean models [30]. We provide a complete description of these modes, and explain
why high-energy states could not have been obtained in previous computations of Fofonoff
flows, for they did not take into account the possible existence of ensemble inequivalence.

Some of these results have been already presented in a letter [61]. We present in this
longer version detailed computations, discussions, and generalizations of this previous work.

The paper is organized as follows: In Sect. 2 we review a class of models for two-
dimensional and geophysical turbulent flows, as well as the statistical mechanics of these
systems. In Sect. 3 we recall classical results on the equivalence between statistical en-
sembles, and explain how they can be used efficiently to compute equilibrium states of
two-dimensional and geophysical flows; we then apply these methods to explicit calcula-
tions of the phase diagrams associated with any flow characterized by a linear relation be-
tween potential vorticity and stream function (q − ψ relation). In Sect. 4 we present the
thermodynamic properties of these systems first in the case of the Euler dynamics for two-
dimensional turbulent flows; we report the generic existence of ensemble inequivalence, and
describe phase transitions in the flow structure associated with it, including a bicritical point.
In Sect. 5 we discuss generalization of these computations to a wider class of models and
apply these results to a complete description of Fofonoff flows. This generalization makes it
possible to describe second-order azeotropy.

2 Equilibrium States of Two-Dimensional Flows

The aim of this section is to introduce a model for inviscid two-dimensional and geophysical
turbulence (Euler equations and quasi-geostrophic equations), and to review the equilibrium
statistical mechanics of these systems.
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2.1 Models: Euler and Quasi-Geostrophic Equations

We consider in this paper a class of models that can be expressed as the transport of a scalar
quantity q(r) by an incompressible, two-dimensional velocity field, where r = (x, y) is the
spatial coordinate:

∂tq + u ·∇q = 0 with u =
(

−∂ψ

∂y
,
∂ψ

∂x

)

and q = �ψ − ψ

R2
+ h, (3)

where ψ(r) is a streamfunction, h(r) a prescribed two-dimensional field interpreted as a
topography (in addition, and without loss of generality, it will be assumed in the follow-
ing that

∫
D drh = 0), and R the Rossby radius of deformation, an intrinsic length scale

of the system. One must in addition specify a boundary condition for ψ : we consider in
this paper the case of a closed domain D, with impermeability constraint: there is no flow
across the boundary ∂D. This means that the streamfunction is constant along the boundary.
We consider here the simplest case ψ = 0. Generalization to different ways of specifying
the constant streamfunction at the boundary,3 or even to other domain geometries (channel,
doubly periodic) is straightforward.

When R = +∞ and h = 0, q is the vorticity and (3) are the two-dimensional Euler equa-
tions [27]. When R = +∞ with possibly h �= 0, this is the barotropic quasi-geostrophic
dynamics in presence of topography, which has been thoroughly studied in oceanic or at-
mospheric context [48], and in which case q is the potential vorticity. When R is finite, this
is the 1.5 layer quasi-geostrophic model (also called equivalent barotropic), a refinement of
the barotropic model which includes the effect of stratification. This model is also relevant
to describe plasma turbulence, in which case R is interpreted as the Larmor radius. When
the topography is h = by, this is the Charney-Hazegawa-Mima model for either geophysical
quasi-geostrophic turbulence on a beta plane or drift plasma turbulence [14, 31].

Conserved Quantities

According to Noether’s theorem, there is a dynamical invariant associated with each sym-
metry of the system, see e.g. [54] for a detailed discussion in the framework of geophysical
flows. These dynamical invariants provide important constraints for the admissible states.

The constraint associated with time invariance is the conservation of the total energy:

E [q] = 1

2

〈

(∇ψ)2 + ψ2

R2

〉

= −1

2
〈(q − h)ψ〉 , (4)

where 〈·〉 stands for a spatial integration over the whole domain D, of area |D| = 1, and
where the last equality is obtained by performing an integration by parts.

Because the dynamics is the transport of potential vorticity q by an incompressible flow,
it conserves any Casimir functional

Cg[q] = 〈g(q)〉 ,

3In geophysical context, it is more physically relevant to consider ψ = ψf r at boundaries, with ψf r is
determined by a mass conservation constraint reading

∫
D drψ = 0. The result presented in this paper would

not be different in that case, but this lead to slightly more complicated computations.
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where g is any continuous function on D. These conservation laws are equivalent to the
conservation of the global distribution of potential vorticity, and are related to the particle
relabelling symmetry [49]. In the present study, a Casimir functional that will be of particular
interest (because of its simple, linear form), is the integral of the potential vorticity over the
whole domain:

C[q] = 〈q〉 . (5)

If the domain has particular additional symmetries, for instance translational invariance
(case of a channel), or rotational invariance (case of a circular geometry), then additional
conserved quantities have to be taken into account. We do not consider these situations in
the present paper.

Long-Range Interactions

The energy (4) is the sum of a kinetic term ( 1
2 〈(∇ψ)2〉) and a gravitational potential term

( 1
2 〈ψ2

R2 〉), but it can formally be expressed as a single potential energy term

E [q] = −1

2
〈(q − h)ψ〉 = −1

2

∫
(q(r) − h(r)) G(r, r′)

(
q(r′) − h(r′)

)
dr dr′, (6)

where G(r, r′) is the Green function solution of

�G − G
R2

= δ(r − r′) with G = 0 for r on ∂D. (7)

Far from boundaries, the green function is G = 1
2π

K0(|r − r′|/R) where K0 is the mod-
ified Bessel function of order zero. At short distance (|r − r′| 	 R), the potential vor-
ticity reads q ≈ �ψ + h, and the dynamics is that of the 2D Euler equations (or of
the barotropic model if h �= 0), so the interaction potential has the classical logarithmic
form: K0 ∼ − ln |r − r′|/R. At large distance (|r − r′| � R), the interaction potential be-
comes K0 ∼ ( π

2|r−r′| )
1/2e−|r−r′|/R and is screened at scale R. If the screening parameter is

much smaller than the typical length scale L ≡ √|D| of the domain where the flow take
place (R 	 L), then the system is short-ranged. Otherwise the system is long-range (for
R = O(L) or R � L). The screening length scale R is thus a parameter that allows one to
pass from a short-range to a long-range interacting systems.

2.2 Statistical Mechanics of Two-Dimensional and Geophysical Turbulent Flows

The class of models we study are known to develop complex vorticity filaments at finer and
finer scales. This makes almost impossible any attempt to have a deterministic approach of
these systems, i.e. to describe the temporal evolution of the fine grained structure of the flow.
Rather than describing these fine-grained structures, equilibrium statistical theories, assum-
ing ergodicity, predict the final organization of the flow on a coarse grained level [44, 52,
53]. To keep track of the conservation laws of the transport equation, one needs to introduce
the probability density ρ(r, σ ) of finding the potential vorticity level σ at point r = (x, y),
with a local normalization constraint

N [ρ] =
∫

�

dσ ρσ = 1,
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where � stands for the admissible set of potential vorticity levels. The conservation of the
global vorticity distribution of potential vorticity is expressed as

D [ρ] (σ ) = 〈ρ〉 .

Finally, another constraint is provided by the mean-field energy

E [ρ] =
〈∫

�

dσ (σ − h)ρψ

〉

,

where ψ is the solution of

q − h =
∫

�

dσ σρ − h = �ψ − ψ

R2
.

The energy of the microscopic potential vorticity fluctuations is negligible with respect to the
mean-field energy of the statistical equilibrium state [52], which can be rigorously justified
using large deviation theory [42].

A macroscopic or coarse-grained state is then fully described by the probability density
ρ. The microscopic states are the fine-grained potential vorticity field of the flow. The num-
ber of microscopic states (any fine-grained field q) associated with a given macroscopic state
(the probability density field ρ) can be quantified by the Boltzmann-Gibbs mixing entropy

SMRS[ρ] = −
〈∫

�

dσ ρ lnρ

〉

.

This has been rigorously justified using large deviations tools [25, 43]. Large deviation the-
ory allows in addition to prove that an overwhelming number of microstates is associated
with the most probable macroscopic state, i.e. the one that maximizes the mixing entropy
while satisfying the constraints of the problem. To conclude, MRS statistical equilibria are
solutions of the variational problem

SMRS (E,d (σ )) = max
{ρ}

{SMRS[ρ] | E [ρ] = E&Dσ [ρ] = d(σ )&N [ρ] = 1} , (8)

where E and d(σ ) are prescribed values of energy and given distribution of potential vortic-
ity levels. SMRS(E,d(σ )) is the equilibrium entropy. Because this variational problem takes
into account all the invariants of the dynamics, we call it full microcanonical variational
problem.4

Computing the solutions of this variational problem (8) requires the knowledge of the
infinity of Casimir constraints (or equivalently the knowledge of the distribution d(σ )). This
is a huge practical limitation to apply this theory, for two reasons. First, one does generally
not know precisely what is the initial condition. Second, and more importantly, a variational
problem with an infinite number of constraints is very difficult to handle. Many efforts have
recently been devoted to alternative approaches which could lead to practical and mathe-
matical simplification of this problem, see e.g. [4, 25]. We present one of these methods in
the following, and apply it to the actual computation of MRS equilibrium states.

4The term microcanonical will be used in the following when energy and circulation are the only constraints
taken into account.
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2.3 Simplification of the Variational Problem of the MRS Theory

Following the idea that less constrained, dual variational problems are easier to solve than
more constrained ones (see e.g. [25]), it has been proposed to treat the Casimir invariants
canonically to compute MRS equilibria [4], by studying the following variational problem:

S(E,�) = max
q

{S[q] = 〈s(q)〉 | E [q] = E&C[q] = �} , (9)

where s(q) is a concave function. Any solution to (9) is a MRS equilibrium, i.e. a solution
of (8), but the converse may be wrong. A proof and a wider explanation of this statement
is developed in [4]. The important point is that considering the coarse-grained potential
vorticity fields q as an order parameter rather than the full distribution function (and treating
canonically the constraints on the potential vorticity distribution) simplify the solution of
the variational problem, not modifying the structure of critical points.

We call this problem microcanonical by analogy with usual problems in thermodynam-
ics, involving a constraint on the energy, and on the number of particle (here the circu-
lation) in the maximization of a functional. Note that since a maximizer qMC of (9) is a
coarse-grained potential vorticity field, saying that this solution is a MRS statistical equilib-
ria means that there exists at least a set of constraints (the energy and the global vorticity
distribution) for which the MRS equilibrium states ρMRS satisfy

∫
�

dσ ρMRS = qMC .
The full microcanonical ensemble is relevant to describe an isolated system, in which

the infinite number of constraints is fixed. In practice, this applies to situations where the
inertial time scale of turbulent organization of the flow is much smaller than the dissipation
and forcing time scales.

We emphasize that considering a simpler variational problem, in a dual, less constrained
statistical ensemble has no other reason that simplifying the mathematics. We interpret all
the states that we compute as MRS equilibrium state in the full microcanonical ensemble.

A physical meaning of the other, less constrained ensembles would require the introduc-
tion of a bath of potential vorticity distribution, which would lead to fuzzy discussions, and
has no reasonable physical justifications.

Similarly, because the Casimir functional S[q] is maximized in the microcanonical prob-
lem (9), it will be referred to as an entropy in the following, but only the Boltzmann-Gibbs
(or mixing) entropy functional SMRS of the variational problem (8) has the physical meaning
of an entropy.

2.4 Critical Points of the MRS Variational Problem

2.4.1 Statistical Equilibria are Dynamical Equilibria

Critical points of the microcanonical variational problem satisfy δS −βδE −γ δ� = 0, where
the first variations are taken with respect to the potential vorticity field q , and where β and
γ are the Lagrange multipliers associated with the energy and the circulation conservation
respectively. This yields

q = s ′−1 (−βψ + γ ) , (10)

where s ′−1 is the inverse of the derivative of s, and where the inverse temperature β and the
fugacity γ are prescribed by the constraints on E and �. We conclude that critical points of
(9) are flows characterized by a q − ψ relation directly related to the function s. Such flows
satisfy u · ∇q = 0 and are therefore dynamical equilibria of the transport equation (3).
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2.4.2 The Case of the Maximization of a Quadratic Functional

In the following, we shall compute solutions of the microcanonical problem (9) in the case
of a quadratic functional by considering s(q) = − 1

2q2:

S[q] = −1

2

〈
q2

〉
. (11)

The functional S[q] is the opposite of the enstrophy in that case.
There are two reasons for studying this particular functional. First, it is a class of gen-

uine statistical equilibria, with the property of being technically very simple. This example
allows for a direct computation of the variational problem (9) and gives analytic examples
of ensemble inequivalence. Second, whatever the function s(q) is, computation of statistical
equilibria in the limit of low-energy require studying the quadratic problem (11).

Let us be more precise, considering the simple case when h = 0. The energy E is then a
positive-definite functional of q . The limit of vanishing energy implies then that q is small.
A multiplication of s(q) by a positive constant and the addition of a term linear in q does not
change solutions of (9). Assuming s twice differentiable, one can therefore consider without
loss of generality that s(0) = 0, s ′(0) = 0, and s ′′(0) = −1. A Taylor expansion gives then

s(q) = −1

2
q2 + O(q3). (12)

In the case of a purely quadratic functional, using (10), we find that the corresponding
q − ψ relation is linear:

q = βψ − γ.

This linear relation depends on two parameters, β and γ . These two parameters have to be
computed by considering the two independent constraints of the problem (9), namely the
energy E and the circulation �.

In the context of the Euler equations (R = +∞, h = 0), Chavanis and Sommeria have
computed and classified MRS equilibrium states corresponding to a linear q − ψ relation,
in an arbitrary closed domain [17]. They found two classes of phase diagrams, depending
on the domain geometry. When the domain has a symmetry axis and is sufficiently stretched
in the direction perpendicular to this axis, a transition from a monopole to a dipole is ob-
served when varying the parameter E/�2 above a critical threshold. When the domain is not
stretched enough along the direction perpendicular to the symmetry axis, no such transition
is observed when varying the parameter E/�2.

In [17], the method to compute the MRS equilibrium states was, first to compute all the
stationary solutions associated with a linear q − ψ relation, and then to compute their en-
tropy in order to select the entropy maxima. This made possible the observation (through
analytical calculations) of the intriguing phase transitions described above, but the precise
nature of these transitions is still unknown, as well as the underlying physical mechanism
responsible for it. We show in the following that the use of another analytical method, tak-
ing advantage of the aforementioned relation between constrained and dual, less constrained
variational problems, allows for the first time (i) to compute explicitly statistical ensemble
inequivalence in two-dimensional turbulent flows, (ii) to relate this statistical ensemble in-
equivalence to the occurrence of the phase transitions mentioned in previous paragraphs,
(iii) to generalize these results to a larger class of models.
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3 Computation of MRS Equilibrium States and Ensemble Inequivalence

In this section we solve the variational problem (9) when S[q] = −〈q2〉/2, and classify the
solutions according to their energy and circulation.

3.1 General Method

The strategy to solve (9) is to introduce and solve dual variational problems for which one
or two of the constraints are relaxed. The natural first step is to consider the less constrained
problem, referred to as grand-canonical, which is the easiest to solve:

J (β, γ ) = min
q

{
J [q] = −S[q] + βE [q] + γ C

[
q
]}

, (13)

where J is a thermodynamic potential. We compute its solutions, their energy and circula-
tion. We then check which part of the plane E,� is filled by these solutions. Then we use
the central result that any solution qgc of the relaxed variational problem (13) is also a so-
lution of the more constrained variational problem (9) with constraints given by E = E [qc]
and � = C[qgc]. If some range of admissible parameters E,� are not achieved by grand-
canonical solutions, one must consider a more constrained ensemble, and so on. In our case,
it will be sufficient to consider the problem with only one constraint on the circulation, re-
ferred to as the canonical variational problem, in order to find all the solutions on the plane
E,�:

F(β,�) = min
q

{F [q] = −S[q] + βE [q] | C[q] = �} , (14)

where F is a free energy. The fact that any value of the parameter (E,�) will be achieved by
a canonical solution proves the equivalence between this ensemble and the microcanonical
one. We will show in addition the existence of a range of parameter E,� for which grand-
canonical and canonical problems are not equivalent: for this range of parameters, there is a
canonical solutions, but no grand-canonical solutions.

In the present case, the functional E and S are quadratic and the functional C is linear. It is
possible to take advantage of the linearity of this constraint in order to express the canonical
problem (14) in the form of an unconstrained variational problem involving the minimiza-
tion of a quadratic constraint. Then both problem (13) and (14) are solved by finding the
minimum of a quadratic functional, with a possible linear part and no constraints. Let Q and
L be the linear operators associated to the purely quadratic part and to the purely linear part
of this functional respectively. Then we have three cases:

Case 1: The smallest eigenvalue of Q is positive: the minimum exists and is achieved by an
unique minimizer.

Case 2: At least one eigenvalue of Q is strictly negative. There is no minimum.
Case 3: The smallest eigenvalue of Q is zero (with eigenmode eneutral). If L[eneutral] = 0

(Case 3a), the minimum exists, and each state of the neutral direction {αeneutral}α∈R is a
minimizer. If L[eneutral] �= 0 (Case 3b), then no minimum exists.

We see that in the present case, the computation of statistical equilibria involves only the
diagonalization of a quadratic operator. Application of this general method and detailed
computations are provided in the remaining of this section.
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3.2 Decomposition on Laplacian Eigenmodes

In order to compute eigenvalues of the quadratic operators involved in the grand-canonical
problem (13) and in the canonical problem (14), it is convenient to project the different
fields (q , h and ψ ) on Laplacian eigenmodes. We introduce the complete, orthonormal basis
{ei(r)}i∈N of Laplacian eigenmodes on the domain D

(
� − R−2

)
ei = −μiei = − (

λi + R−2
)
ei . (15)

The Laplacian eigenvalues λi are all positive, in increasing order.
Potential vorticity q and topography h can be decomposed on this basis, as well as the

streamfunction, computed by inverting the relation q − h = (� − R−2)ψ :

q =
∑

i

qiei , h =
∑

i

hiei , ψ =
∑

i

hi − qi

μi

ei .

The functionals S , E and C given by (11), (4), and (5) respectively can then be expressed in
terms of the coordinates {qi}:

S[q] = −1

2

∑

i

q2
i , (16)

E [q] = 1

2

∑

i

1

μi

(qi − hi)
2 , (17)

C[q] =
∑

i

qi 〈ei〉 , (18)

where

〈ei〉 =
∫

D
dr ei(r).

We introduce two independent subspaces:

– the subspace of the Laplacian eigenmodes having zero mean value (〈e′
i〉 = 0, i ∈ N

∗) and
– the subspace of the Laplacian eigenmodes having non-zero mean value (〈e′′

i 〉 �= 0, i ∈ N
∗).

The notation “prime” and “double prime” will be used to distinguish (when necessary) one
subspace from the other.

The subspace of zero mean Laplacian eigenmode {e′
i} is generically empty when the do-

main geometry D admits no particular symmetry: a small perturbation of the domain would
change the mean value of the eigenmode. If, by contrast, one imposes a symmetry axis in
the domain geometry, then it exits generically eigenmodes having a zero mean: these eigen-
modes are antisymmetric with respect to the symmetry axis. This is for instance the case for
a rectangular domain, for which the eigenmodes and eigenvalues are given in Appendix C.

We assume that the smallest Laplacian eigenvalue on a closed domain is not degenerate,
and that the corresponding eigenmode is positive everywhere, which turn out to be the case
for simply connected bounded domains. It is thus an eigenmode of non-zero mean value:
e1 = e′′

1 , and μ1 = μ′′
1 . Then, we have necessarily μ′′

1 < μ′
1.
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3.3 Solution for the Grand-Canonical Problem

We consider the grand-canonical problem (13). Using expressions (16), (17) and (18) for
entropy, energy and circulation functionals, we find:

J [q] = 1

2

∑

i≥1

(

1 + β

μi

)

q2
i +

∑

i≥1

(

− β

μi

hi + γ 〈ei〉
)

qi. (19)

Since the quadratic part of J is diagonal in the Laplacian eigenmode basis, we can imme-
diately see that there is a unique solution to the variational problem if and only if β > −μ1

(Case 1 of Sect. 3.1), whatever the value of γ . If β < −μ1 (Case 2 of Sect. 3.1), there is no
solution to the variational problem. If β = −μ1, then Q[e1] = 0 (Case 3 of Sect. 3.1) and
there is a neutral direction if and only if L[e1] = 0, which yields γ = h1/〈e1〉.

We show in Appendix B that each point in the plane (E,�) located on the set of parabolas
{Eβ(�) | β > −μ1} corresponds to a unique grand-canonical solution, where Eβ(�) is given
by

Eβ(�) = Aβ[h] + Bβ[h]� +
(

1

2(f (β))2

∑

i≥1

μi〈ei〉2

(μi + β)2

)

�2, (20)

(see (33)), and where Aβ[h] = Bβ[h] = 0 for h = 0, and with

f (β) =
∑

i≥1

μi〈ei〉2

μi + β
. (21)

Interestingly, the curvature of the parabola Eβ(�) (20) does not depend on the topog-
raphy h, and is a decreasing function of β . Notice also that the lower bound for the (ad-
missible) energies among all flows with a given circulation is achieved when the inverse
temperature tend to infinity β → +∞. By taking this limit in (20), (21) and using 〈h〉 = 0
(see Sect. 2.1), we find that these energy minima are located on the parabola

Em(�) = Bm[h]� + 1

2

(
∑

i≥1

μi〈ei〉2

)−1

�2, (22)

where Bm[h] = 0 for h = 0.
We conclude that grand-canonical solutions cover the whole area above the parabola

Em(�), given by (22) and below the parabola E−μ1(�) obtained by taking β → −μ1 in (20)
(see also (35) in Appendix B).

Energies located above the parabola E−μ1(�) are not achieved by grand-canonical so-
lutions, and the values located below Em(�) are not admissible. Because it exists a range
of admissible energies and circulations not reached by grand-canonical solutions, we are
in a situation of ensemble inequivalence. We then turn to the more constrained canonical
problem to find solutions in this area.

3.4 Solution for the Canonical Problem

We now consider the canonical problem (14). It is possible to transform this constrained
problem into an unconstrained variational problem, taking advantage of the linearity of the
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circulation constraint. Using this constraint, and recalling that 〈e1〉 �= 0, one coordinate can
be expressed in terms of the others:

q̃ ≡ q − q1e1(r) with q1 = � − ∑
i≥2 qi〈ei〉

〈e1〉 . (23)

This expression is injected into the functional F = −S +βE appearing in the variational
problem (14):

F [̃q] = 1

2

∑

i≥2

(

1 + β

μ′
i

)

q ′
i

2 −
∑

i≥2

β

μ′
i

h′
iq

′
i

+ 1

2

∑

i,j≥2

(

δij

(

1 + β

μ′′
i

)

+
(

1 + β

μ′′
1

) 〈e′′
i 〉〈e′′

j 〉
〈e′′

1〉2

)

q ′′
i q ′′

j

−
∑

i≥2

(

�
〈e′′

i 〉
〈e′′

1〉2

(

1 + β

μ′′
1

)

− β

μ′′
i

h′′
i + 〈e′′

i 〉
〈e′′

1〉
β

μ′′
1

h′′
1

)

q ′′
i , (24)

where we have made the distinction made in Sect. 3.2 between the two (independent) sub-
spaces of Laplacian eigenmodes. The problem is now to find the minimizer q̃ of this func-
tional, with no constraint.

To find the solutions to this problem, we use the same method as in the grand-canonical
case. We call Q and L the linear operators associated with the purely quadratic and linear
parts of F .

In the subspace of zero-mean Laplacian eigenmodes, Q is diagonal. Its smallest eigen-
value is strictly positive if and only if β > −μ′

1, where μ′
1 is the smallest eigenvalue of the

linear operator −(� − R−2) associated with an eigenmode with zero mean-value.
In the subspace of non zero-mean Laplacian eigenmodes, Q is not diagonal, so this case

requires more computations. We look for the value β = −μ∗ such that the smallest eigen-
value of Q is zero in this subspace (that corresponds to Case 3 of Sect. 3.1). We thus look
for the eigenmode

ẽ∗ =
∑

i≥2

e∗
i ei such that Q[̃e∗] = 0,

which yields:

∀i ≥ 2,

(

1 − μ∗

μi

)

e∗
i + 〈ei〉

〈e1〉2

(

1 − μ∗

μ1

)∑

j≥2

〈ej 〉e∗
j = 0. (25)

Let us first assume
∑

j≥2〈ej 〉e∗
j = 0. Equation (25) then implies that there exists an inte-

ger k > 2 such that μ∗ = μk , with e∗
i = 0 for i �= k, and e∗

k = α, where α a real. But then we
have

∑
j≥2〈ej 〉e∗

j = α, which contradicts the initial hypothesis if α �= 0. We conclude that∑
j≥2〈ej 〉e∗

j �= 0.
Using this result, and multiplying (25) by μi〈ei〉/(μi − μ∗) yields then

∀i ≥ 2, e∗
i = A

μi〈ei〉2

μi − μ∗ ,
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where A can be determined by using a normalization condition for the eigenmode. In addi-
tion, multiplying (25) by 〈ei〉/(1 − μ∗/μi) and summing on i ≥ 2 yields

1 + μ1 − μ∗

μ1〈e1〉2

∑

i≥2

μi〈ei〉2

μi − μ∗ = 0.

Finally, we obtain a condition that must satisfy μ∗ and the expression of ẽ∗:

∑

i≥1

μi〈ei〉2

μi − μ∗ = 0 with ẽ∗ = A
∑

i≥2

μi〈ei〉2

μi − μ∗ ei . (26)

The main result is then that −μ∗ is the smallest zero of the function5 f given by (21). Note
that the class of solutions associated with β = −μ∗ are q̃ = αẽ∗, with α any real number.
Using (23), we find that the corresponding potential vorticity field are

q = �

〈e1〉e1 + αe∗ with e∗ = ẽ∗ −
∑

i≥2 e∗
i 〈ei〉

〈e1〉 e1. (27)

We conclude that whatever the value of �, there is a single solution to the varia-
tional problem (14) if and only if β > −min{μ∗,μ′

1} (Case 1 of Sect. 3.1). When β <

−min{μ∗,μ′
1}, there is no solution to the variational problem (Case 2 of Sect. 3.1). When

β = −min{μ∗,μ′
1} (Case 3 of Sect. 3.1), we have to consider two cases depending on the

sign of μ∗ − μ′
1 in order to discuss the existence of a neutral direction:

– For β = −μ∗, with μ∗ < μ′
1. Then a neutral direction with minimizers exists (Case 3a of

Sect. 3.1) if L[̃e∗] = 0. This leads to

∑

i≥2

(

�
〈ei〉
〈e1〉2

(

1 + β

μ1

)

− β

μi

hi + 〈ei〉
〈e1〉

β

μ1
h1

)

e∗
i = 0.

By using (26) and a straightforward manipulation of the previous equation, it yields the
condition

�∗ = μ∗ ∑

i≥1

〈ei〉hi

μi − μ∗ . (28)

For � �= �∗, there is no minimizer (Case 3b of Sect. 3.1).
– For β = −μ′

1, with μ′
1 < μ∗. Then a neutral direction with minimizers exists (Case 3a of

Sect. 3.1) if L[e′
1] = 0. This gives the condition h′

1 = 0. If h′
1 �= 0, there is no minimizer

(Case 3b of Sect. 3.1).

From this analysis, we conclude that three different cases have to be considered to describe
the solutions in the phase diagram (�,E), depending on the sign of μ′

1 −μ∗ and on the value
of h′

1 (the projection of the topography on the smallest zero-mean Laplacian eigenmode):

(i) μ∗ < μ′
1 or

(ii) μ∗ > μ′
1 and h′

1 = 0
(iii) μ∗ > μ′

1 and h′
1 �= 0.

5Using 1 = ∑
i≥1〈ei 〉ei and averaging this expression on the horizontal gives

∑
i≥1〈ei 〉2 = 1

∑
i≥1〈ei 〉2 =

1. Plugging this expression in (21) yields f (β) = −1 +β
∑

i≥1 < ei >2 /(λi +β), which corresponds to the
function (3.8) obtained by Chavanis and Sommeria [17], using another method.
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For each of the three cases, the solutions of the canonical variational problem, as well as their
energy and circulation, are computed in Appendix C. In all cases we find that all admissible
values of circulation � and energy E are reached by these canonical solutions. We conclude
the canonical problem is equivalent to the microcanonical one.

In addition, since there is no grand-canonical solutions above the parabola E−μ1(�) given
by (35), grand-canonical and canonical ensembles are not equivalent for this range of pa-
rameters.

The detailed computations of equilibriums states carried in Appendix C also lead to three
different classes of phase diagrams, corresponding to the three cases above:

Case (i) (μ∗ < μ′
1): there is a single equilibrium state at each point (�,E) of the phase

diagram, except on the half line (�∗, E > E∗) where each point is associated with two
states parameterized by two different values of γ. The parameters �∗ and E∗ are given by
(28, 36). At high energy, the flow structure is dominated by the eigenmode e∗ defined by
(26) and (27).

Case (ii) (μ∗ > μ′
1 and h′

1 = 0): there is a single equilibrium state at each point (�,E)

below the parabola E−μ′
1
(�) given by (38), and two equilibrium states at each point (�,E)

above this parabola. These two equilibrium states are parameterized by the value of their
projection on e′

1. This value is zero on the parabola E−μ′
1
(�), and tends to infinity with

increasing energy. High-energy states are dominated by the eigenmode e′
1, which is a dipole

with a neutral line along the symmetry axis of the domain.
Case (iii) (μ∗ > μ′

1 and h′
1 �= 0): there is a single minimizer at each point (�,E), and no

peculiar canonical transition line. At high energy, the flow structure is dominated by the
eigenmode e′

1.

The aim of the next sections is to detail an illustrate the peculiar thermodynamic prop-
erties of the system for these three classes of phase diagrams. In particular, we will clarify
the nature of the phase transitions occurring on the half line �∗,E > E∗ in Case (i) phase
diagrams, and on the parabola E−μ′

1
(�) in Case (ii) phase diagrams. Notice that these tran-

sition lines all stand in the ensemble inequivalence area, i.e. above the parabola E−μ1(�)

described by (35).

4 Phase Diagrams in the Euler Case

For the sake of simplicity, we restrict ourself in this section to the case of the Euler equation
(with h = 0,R → +∞ in (3)) in order to present the main striking features of the phase
diagrams, namely the role played by the domain geometry, the changes in the flow structure
associated with phase transitions, and the observation of a bicritical point.

4.1 A Geometry Governed Criterion

In the case of the Euler equations, we have q = �ψ , so the eigenvalues μi defined equation
(15) are simply the Laplacian ones: μi = λi . According to the previous section, there are
only two types of phase diagrams when h = 0. The criterion for one phase diagram or
another depends solely on the sign of μ∗ −μ′

1 = λ∗ −λ′
1, where λ∗ is the smallest zero of the

function (21) (
∑

i λi〈ei〉/(λi − λ∗) = 0) and where λ′
1 is the smallest eigenvalue associated

with a zero-mean Laplacian eigenmode.
This criterion depends only on Laplacian eigenvalues, which depends themselves only on

the domain geometry. We distinguish Case (i) diagrams for which (λ∗ < λ′
1) from Case (ii)

diagrams for which (λ∗ > λ′
1).
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If the domain admits no symmetry axis, only Case (i) is possible, since there is gener-
ically no zero-mean Laplacian eigenmodes in that case. If the domain admits a symmetry
axis, the sign of λ′

1 − λ∗ must be computed. In the case of a rectangular domain, there is
a critical aspect ratio that can be computed numerically. This computation gives τc � 1.12,
where the aspect ratio is defined by τ = Lx/Ly with Lx and Ly the lengths of the rectangular
domain), and which was already reported by Chavanis and Sommeria [17]. For aspect ratios
smaller than τc , the phase diagram is in Case (i), since λ′

1 − λ∗ > 0. For aspect ratios greater
than τc , the phase diagram is included in Case (ii), since λ′

1 − λ∗ < 0. It is expected (but not
proven) that any domain geometry admitting a symmetry axis, and sufficiently stretched in
a direction perpendicular to this axis, is in Case (ii).

The figures presented in this section are computed in the case of a rectangular domain,
in which case the Laplacian eigenvalues and eigenmodes are explicitly known (see Ap-
pendix A). According to the analysis of the previous section, these results are however
generic to any domain geometry. Since all the two-dimensional fields (q,h,ψ ) are decom-
posed on Laplacian eigenvalues in the present study, the explicit computation of these quan-
tities (and of the associated functionals E [q], C[q] and S[q]) in an arbitrary geometry would
require in practice a truncation of this decomposition, and the use of a numerical solver to
compute Laplacian eigenmodes and eigenvalues in the given domain geometry.

4.2 Thermodynamic Properties of the Phase Diagrams

From the knowledge of the Laplacian eigenvalues, one is able to draw the equilibrium en-
tropy S(E,�) in terms of the internal parameters E and �, using the computations carried
out in the previous section (the expression of the entropy in terms of the projections qi is
given by (11), and the expressions of these projections qi are given by (29) and (37)).

We present such plot of S(E,�) on Figs. 1c (for Case (i) phase diagrams) and 2c (for
Case (ii) phase diagrams). All the thermodynamic properties of the phase diagrams can be
deduced from these plots.

Ensemble Inequivalence Area

The most striking feature appearing on Figs. 1c and 2c is the existence of a region of param-
eters E,� for which S(E,�) and its concave hull do not coincide. Following the analysis
of the previous section, this region of parameters is the one above the parabola

E−λ1(�) = 1

2λ1〈e1〉�
2,

obtained by taking h = 0 and μ1 = λ1 in (35). This parabola is represented as a blue line on
Figs. 1a and 2a, and corresponds to the upper boundary for grand-canonical solutions. This
illustrates the result of [25]: there is ensemble inequivalence whenever the entropy does not
coincide with its concave hull.

This is to our knowledge the first analytical description of such a generic occurrence of
ensemble inequivalence in two-dimensional flows. Chavanis and Sommeria observed (using
analytical computations) phase transitions in the flow structure for the Euler equations, but
without relating them to the appearance of ensemble inequivalence [17]. Ellis, Haven and
Turkington did compute numerically a specific case of statistical equilibria showing ensem-
ble inequivalence, but without understanding of what control the appearance of this situa-
tion, and without deciphering the link between the ensemble inequivalence and the phase
transitions [26].

We describe in the following peculiar microcanonical phase transitions associated with
the existence of such ensemble inequivalence.
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Fig. 1 (Color online) Phase diagram in Case (i) (for a rectangular domain of aspect ratio τ = 1.1 < τc):
Examples of flow structures are given on panel b. The ensemble inequivalence area is located above the blue
parabola Eλ1 (�). The red line at � = 0 is a first-order transition line, associated with a positive jump of γ

Fig. 2 (Color online) Phase diagram in Case (ii) (for a rectangular domain of aspect ratio τ = 1.8 > τc):
Examples of flow structures are given on panel b. The ensemble inequivalence area is located above the blue
parabola Eλ1 (�). The green dashed parabola Eλ′

1
(�) is a second-order transition line. Inside this parabola,

∂2S/∂�2 > 0
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Phase Transitions for Case (i) Phase Diagrams

By taking h = 0 in equations (28) and (36), we obtain �∗ = 0,E∗ = 0. The half line

(� = 0,E > 0)

is represented as a thick red line in Fig. 1a. We observe on panels 1c and 1e the occurrence of
a discontinuity of γ = ∂S/∂� across this line (see Appendix D for explicit computations).
This is the signature of a first-order phase transition. We also note that this discontinuity cor-
responds to a positive jump of γ . Such a thermodynamic peculiarity would not be possible in
an ensemble equivalence area: a positive jump of the derivative of the entropy (∂S/∂�) can
only occur in a region where the entropy S(E,�) and its concave envelope do not coincide.

Whatever the values of the energy E and of the circulation �, there is a single equilib-
rium state, having the structure of a monopole, as represented at low- and high-energies on
Fig. 1d, except on the first-order transition line, represented in red on Fig. 1a. When the
first-order transition line is crossed, the flow structure changes from a monopole of a given
sign to a similar monopole with the opposite sign, with coexistence of both states on the
transition line. Notice that the high-energy states tend to a solution dominated by eigen-
mode e∗ (when β → −λ∗), given by (26) and (27). The structure of this eigenmode can be
computed numerically. In the case of a rectangular domain of aspect ratio τ < 1.12, it is
always a monopole.

Phase Transitions for Case (ii) Phase Diagrams

We have shown in the previous section that above the parabola E−λ′
1
(�) given by (38) with

∀i,μi = λi ,

E−λ′
1
(�) =

(
1

2(f (λ′
1))

2

∑

i≥1

λi〈ei〉2

(
λi − λ′

1

)2

)

�2,

there are two entropy maxima (depending of the sign of their projection on the eigen-
mode e′

1) for each point �,E of the phase diagram, while it exists only one such entropy
maximum for each point of the phase diagram below this parabola. This parabola is repre-
sented as a green line on Fig. 2b.

When the parabola E−λ′
1
(�) is crossed, there is a discontinuity of ∂2S/∂�2 and of

∂2S/∂E2, as observed on Figs. 2c, e and as explicitly computed in Appendix D. This is
the signature of a second-order phase transition.

Notice the existence of positive values of ∂2S/∂�2 in Fig. 2. This last property is similar
to negative heat capacity, but for the parameter � rather than for the energy E. This corre-
sponds to a region of parameters E,� for which the entropy S(E,�) is convex: it does not
then coincide with its concave envelope. We conclude that such a peculiarity can occur only
in the ensemble inequivalence area.

Below the parabola E−λ′
1
(�), there is a unique equilibrium state associated with each

point (E,�). These low-energy states have the structure of a monopole.
Above the parabola E−λ′

1
(�), each point corresponds to two equilibrium states. For a

given circulation, the different states above the parabola differ only by the value of their
projection on e′

1 (a dipole). The choice of one state among the two possibilities above the
parabola breaks the system’s symmetry. At high energy, this contribution dominates: the
flow is therefore a dipole.

For a fixed circulation, there is thus a continuous transition from a monopole (at low-
energy) to a dipole (at high energy).
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Fig. 3 (Color online) Bicritical point: bifurcation from a first-order phase transition line (in red) to two
second-order phase transitions lines (in green). Case of a rectangular domain, for the 2-D Euler equation. The
aspect ratio τ is taken as an external parameter, the circulation � as an internal parameter, and the energy is
fixed. Small insets are schematic representations of the entropy S[q] in which the two directions correspond
to projection onto the eigenmodes e∗(horizontal) and e′

1 (vertical). M, m and s stand respectively for M
aximum, m inimum and s addle

Observation of a Bicritical Point

Let us fix the energy and vary the aspect ratio τ in the case of a rectangular domain. Our
previous analysis predicts a transition from Case (i) to Case (ii) phase diagrams, above a
critical value τc of the aspect ratio. The corresponding phase diagram (�, τ ) is presented in
Fig. 3. There is a bifurcation from a first-order transition line (corresponding to the red line in
Case (i) phase diagram plotted in Fig. 1) to two second-order transition lines (corresponding
to the green plain-dashed double line in Case (ii) phase diagram plotted in Fig. 2), at the
point τc = 1.12,� = 0. Such a bifurcation from a first-order to two second-order transitions
is referred to as a bicritical point.

Bicritical points have already been observed (and actually defined) in the context of short-
range interacting systems, see e.g. [29]. However, there is to our knowledge no example of
such bifurcations for systems with long-range interactions, while their possible existence
was predicted in [5]. More importantly, the previous analysis shows that this bicritical point
occurs in the ensemble inequivalence area, and is in that respect a signature of ensemble
inequivalence, associated with drastic changes in the flow structure (a transition from a
monopole to a dipole).

Small insets on Fig. 3 are schematic representations of the functional S[q] = −〈q2〉/2
for a fixed energy and different values of the parameters �, τ . The horizontal direction
corresponds to the eigenmode e∗ defined by (26) and (27) and associated with eigenvalue λ∗.
The vertical direction corresponds to the eigenmode e′

1, the smallest Laplacian eigenmode
with zero mean-value, associated with λ′

1.
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Fig. 4 Schematic representation
of ensemble inequivalence, for a
fixed energy and a functional
S = 〈s(q)〉 with s(q) = s(−q).
Inserts represent S[q] for a given
value of the parameter �. There
are two symmetric solutions for
� = 0

Below the green dashed line (corresponding to β = −λ′
1) the maxima of S[q] have no

contribution along e′
1, consistently with the computation of the corresponding equilibrium

states, given by (29).
On the line � = 0, for aspect ratio τ < τc , there are two entropy maxima propor-

tional to e∗, with β = −λ∗. (When varying circulation, one of these two maxima becomes
metastable.)

On the line �, for aspect ratio τ > τc, there are two entropy maxima proportional to e′
1,

with β = −λ′
1.

The bicritical point corresponds to the transition from Case (i) to Case (ii), for which
λ′

1 = λ∗. Equilibrium states are degenerate at this point, since any linear combination of the
two corresponding eigenmodes (satisfying the constraint) are entropy maxima.

4.3 Fixed Energy and Varying Circulation: Generic Occurrence of Ensemble
Inequivalence, Analogy with a Magnetic System

Strikingly, in all the phase diagrams described above, the ensemble inequivalence, visualized
when the entropy does not coincide with its concave hull, is visible when drawing S(E,�)

with E fixed and � varied, but not visible when drawing S(E,�) with � fixed and E varied.
This phenomenon were already mentioned in [26]. Similarly, we report positive values of
∂2S/∂�2, but not of ∂2S/∂E2 (that would correspond in that case to negative heat capacity).

One can understand why ensemble inequivalence occurs generically for the parameter �

in variational problems of the form (9) when C = 〈q〉, and with the symmetry s(q) = s(−q).
Let us consider to simplify the case of a domain without symmetry, for a given, fixed energy.

Then the symmetry q → −q is associated with the generic occurrence of a first-order
transition line for � = 0, on the plane E �. The reason for the occurrence of this phase
transition is that they are necessarily two symmetric equilibrium states on the line � = 0: if
q is a solution of the variational problem (9), then −q is also a solution. These two states
are on two branches of solutions, symmetric with respect to � = 0, see Fig. 4. Varying
the circulation � at fixed energy E favors one of the configurations (the other becoming
metastable), which leads to a microcanonical first-order phase transition.
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Using then the fact that first-order phase transition in the constrained (microcanonical)
ensemble generically implies inequivalence with the less constrained (canonical) ensemble
(see Fig. 2 of [5]), we conclude that there is necessarily ensemble inequivalence for the
parameter � around the line � = 0.

This case of ensemble inequivalence is associated with the breaking of the discrete sym-
metry q → −q . It would similarly occur in a magnetic system with long-range interactions,
for which the computation of statistical equilibria would lead to solve the problem:

S(etot , h̃) = max
m

{
s(m) | etot = e(m) + h̃m

}
,

where m is the magnetization, h̃ is an imposed magnetic field, and where e(m) = e(−m)

and s(m) = s(−m). Considering a fixed energy etot such that the equilibrium states have
a non zero magnetization when h̃ = 0, and considering the magnetic field h̃ as an external
parameter, there is an ensemble inequivalence area associated with the occurrence of a first
order microcanonical phase transition at h̃ = 0. In that respect the circulation � of a two-
dimensional flow plays the role of an external magnetic field h̃ in a magnetic system. It has
to be noted however that this symmetry breaking is partial as the “field” � acts only on the
eigenmodes ei with 〈ei〉 �= 0.

5 Generalization and Application to Fofonoff Flows

We explain in this section how the phase diagrams of the Euler case are changed when a
non zero topography or a finite Rossby radius are taken into account. Considering the effect
of the Rossby radius of deformation allows for a discussion of the behavior of the system
in presence of a scale that screens the interactions. Considering the effect of topography
can breaks some of the system symmetries, and allows for the description of a new peculiar
thermodynamic properties, namely second-order azeotropy. It also allows for a description
of Fofonoff flows in the framework of RMS statistical theory.

5.1 Effect of the Topography h(x, y): Symmetry Breaking and Second-Order Azeotropy

We consider the effect of a topographic term h in (3) by considering:

q = �ψ + h,

which has two physical consequences: (i) a symmetry breaking, (ii) the possible presence of
second-order azeotropy.

5.1.1 First Physical Consequence: Symmetry Breaking

First, a term h(x, y) generically breaks the symmetry q → −q . Consequently, phase dia-
grams in parameter space (�,E) will generically be non-symmetric with respect to the axis
� = 0, unless one imposes a peculiar symmetry to h.

Second, even if the domain geometry admits some symmetry, the topographic term h

generically breaks this symmetry, unless one imposes this symmetry to h. This symmetry
breaking is associated with the possibility of a third class of phase diagrams, referred to as
Case (iii), when the domain has a symmetry axis and is sufficiently stretched in the direction
perpendicular to its axis. We have seen previously that in Case (ii) phase diagrams, i.e. when
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Fig. 5 Second-order azeotropy: simultaneous appearance of two second-order phase transition (at point A).
Case of a rectangular domain of aspect ratio τ = Lx/Ly > 1.12 with h = sin(πy/Ly)

h satisfies the symmetry of the domain geometry, there is a second-order phase transition
line in the parameter space (�,E), above which the system admits two possible equilibrium
states, differing only by the sign associated with the mode e′

1 (a dipole). In Case (iii) phase
diagrams, the topographic term favors one of these two degenerate equilibrium states (i.e. it
selects the sign of the dipole e′

1), and there is therefore no second-order transition line.
To conclude, in presence of topography, there are three classes of phase diagrams. The

criteria for these phase diagram are explicitly computed in Appendix C, as well as the corre-
sponding thermodynamic properties. The result depends only on the value of the projection
〈he′

1〉 of the topography on the eigenmode e′
1: either h′

1 = 0 (case with symmetry), or h′
1 �= 0

(generic case without symmetry), and on the eigenvalues μi defined (15), which, in the
present case (q = �ψ + h), are simply Laplacian eigenvalues (μi = λi ):

(i) (λ∗ > λ′
1): There is a first-order microcanonical transition half line, as in the Euler case,

but the minimum of this line (the point (�∗,E∗) defined by (28) and (36)), is located
strictly above the parabola E−λ1(�) given by (35).

(ii) (λ′
1 > λ∗ and h′

1 = 0): There is a second-order transition line as in the Euler case,
namely the parabola E−λ′

1
(�), given by (38). The curvature radius of the parabola does

not depend on h, but the minimum of the parabola does, and it is now located strictly
above E−λ1(�). This case corresponds to Fig. 5.

(iii) (λ′
1 > λ∗ and h′

1 �= 0): There is no microcanonical phase transition above E−λ1(�),
because the topography breaks the symmetry satisfied by the domain symmetry.

Note that in these three cases, there is still ensemble inequivalence above the parabola
E−λ1(�) given by (35). For h �= 0, the minimum of this parabola is no more located on
(� = 0,E = 0), but its curvature radius is left unchanged.
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Note also that except its role in breaking the symmetry of the system, the topography does
not induce qualitative changes in the phase diagrams described in the Euler case. As for the
structure of the equilibrium states, the topography plays an important role for low-energy
states, but high-energy states are those of the Euler dynamics.

The energy is a quadratic positive-definite functional of the field (q − h). Low energy
states are therefore those for which q ∼ h: the structure of the potential vorticity field (and
consequently of the streamline) is entirely determined by the topography field.

By contrast, the contribution of the topography becomes negligible for high-energy states
(for which q = �ψ + h ≈ �ψ ), which are therefore those of the Euler dynamics.

5.1.2 Second Physical Consequence: Second-Order Azeotropy

A Case (ii) phase diagram associated with a topographic term h(y) is represented in Fig. 5a.
Below the parabola E−λ1(�) represented as a blue plain line, the entropy is a concave func-
tion of the circulation, so γ = ∂S/∂� is a strictly decreasing function. When the minimum
C of the parabola E−λ1(�) is crossed with increasing energy, there is the occurrence of an
ensemble inequivalence area, associated with a first-order transition in the statistical ensem-
ble with fixed energy and relaxed circulation. This first-order transition is illustrated with
the Maxwell construction Fig. 5c. We conclude that point C is a critical canonical point.

When the minimum A of the parabola E−λ1
′(�) represented as a plain-dashed green line

is crossed with increasing energy, there is the simultaneous appearance of two second-order
phase transitions in the microcanonical ensemble. The discontinuity of ∂γ /∂� associated
with these two second-order phase transitions can be seen in Fig. 5d, point F .

The simultaneous appearance of two phase transitions was referred to as second-order
azeotropy in the classification [5]. The term azeotropic point is commonly used for binary
mixture to define the point of the phase diagram where there is the simultaneous appear-
ance of two first-order phase transitions. This term were originally used because there is
no change in the fractional composition of a binary mixture when the azeotropic point
is crossed. The term “second-order azeotropy” extends this definition to the outbreak of
two second-order phases transitions from nothing. However, contrary to the case of first-
order phase transitions in binary mixtures, there is no phase separation associated with
these second-order phase transitions, but rather a superpositions of one phase on the other
when the transitions occur: we have seen previously that the two phases involved in the
second-order transitions of Case (ii) phase diagrams represent two different flow structures:
a low-energy state superimposed with a “dipole phase” whose contribution increase with the
energy.

To our knowledge, second-order azeotropy has never been observed in any physical sys-
tem with long-range interactions, excepted in the recent study of [58] in the context of the
HFM model. First order azeotropy has also been reported for the first time only recently [23].
As explained in [5], there are two types of second-order azeotropy: one is visible in the
canonical ensemble, the other is not. The azeotropic point we describe fall in this second
class. All the thermodynamic properties related to the second-order azeotropy appear as
predicted in [5]:

– Sufficiently close to the azeotropic point A, the discontinuity of γ is not associated with
a change of concavity for the entropy: the slope of γ (�) does not change its sign.

– For energies sufficiently larger than the energy of the azeotropic point A, the discontinuity
of ∂γ /∂� is associated with a change of concavity of the entropy: the slope of γ (�)

changes sign, as for instance seen in Fig. 5e, point H .
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5.2 Application to an Academic Inertial Ocean Model, the Fofonoff Flow

We now apply the results obtained previously to the description of an academic ocean model
known as the Fofonoff solution, also referred to as Fofonoff modes or flows. Fofonoff flows
are stationary solutions of the undissipated unforced barotropic quasi-geostrophic model in
a closed domain D, described by (3), with h = −by, R = +∞ and q = βψ − γ :

�ψ − βψ = by − γ with ψ = 0 on ∂D.

Fofonoff computed and described the solutions of these equations independently of sta-
tistical theories, assuming β � 1 [30]. The only reason to consider such an approximation
was to be able to solve the mathematics. Within this approximation, the contribution of the
Laplacian term is negligible in the domain bulk:

ψ ≈ b

β
y − γ

β
.

It corresponds to a weak westward current (the velocity in the west-east direction is
ux = −∂yψ ≈ −b/β) taking place in the whole domain, and with strong boundary jets that
close the circulation. The emergence of such state in freely evolving numerical simulations
has been previously observed and discussed by [24, 63, 64], and interpreted as statistical
equilibrium states predicted by energy-enstrophy statistical theory in presence of topogra-
phy, which leads to linear q − ψ relations [9, 55].

Energy enstrophy theory has been first proposed by Kraichnan in the framework of the
statistical mechanics of truncated Euler equation [38]. A drastic consequence of the trun-
cation is that only the energy and the enstrophy are conserved quantities of the dynamics,
while any higher vorticity moments are conserved for the Euler dynamics. This energy-
enstrophy approach has then been generalized to a class of geophysical flows that include
the effect of bottom topography and of the variations of the Coriolis parameter with latitude,
as well as the stable stratification of these flows [55]. This energy-enstrophy approach has
been shown to be equivalent to the phenomenological minimum enstrophy principle of [9],
that were proposed independently in the same geophysical context [13]. It has subsequently
been shown that equilibrium states of these statistical mechanics approaches correspond to
a particular class of MRS statistical equilibria [4], namely the class of equilibrium states
computed in the present work.

Only low-energy states of barotropic ocean models on a beta plane (such as the original
solution of Fofonoff) were previously computed in the framework of statistical theories.
Our results make possible a direct computation of all MRS equilibrium states associated
with a linear q − ψ relationship model, whatever their energy and circulation. The interest
is twofolds:

– First, it shows that the classical Fofonoff flows are MRS equilibria located in the ensemble
equivalence area: there are low-energy states characterized by an inverse temperature β �
1, for which there exists corresponding to grand-canonical solutions.

– Second, we compute also high-energy states, and find that such states can have a flow
structure very different from the classical Fofonoff solution, when they are located in the
ensemble inequivalence area, see Fig. 6.

In addition, all the phenomenology related to phase transitions and ensemble inequivalence
applies for those models: according to the domain geometry, one can obtain the phase dia-
gram corresponding to Cases (i), (ii) or (iii) described in the previous sections (see Fig. 6).
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Fig. 6 Fofonoff flows, for the three possible phase diagrams (i), (ii) and (iii): The circulation is fixed, slightly
greater than zero, and h = by. The streamfunction is represented in a rectangular domain with different aspect
ratios (cold and hot colors are negative and positive values respectively). At low energy, the flow is always
the usual Fofonoff mode, with a weak westward flow in the domain bulk, and strong recirculating jets at
the boundaries. If the domain is not stretched enough (Case (i)), the high-energy state is a monopole. If the
domain is sufficiently stretched in the East-West direction (Case (ii)), there is a second-order phase transition:
the high-energy state is one dipole in the East-West direction. The choice of sign of this dipole breaks the
system symmetry. If the domain is sufficiently stretched in the North-South direction (Case (iii)), there is no
phase transition. The high-energy state is a dipole displaying the Fofonoff mode structure, but without strong
jets confined at the boundaries

In particular, any domain that admits a symmetry axis in the y direction, and that is suf-
ficiently stretched perpendicularly to this axis, corresponds to the phase diagram presented
on Fig. 5, for which there is second-order azeotropy.

5.3 The Effect of the Rossby Radius of Deformation

We now discuss the effect of a finite value for the Rossby radius of deformation R by con-
sidering:

q = �ψ − ψ

R2
,

see (3). The only change induced by this term is that the eigenvalues μi (solutions of
(� − R−2)ei = −μiei ) are now Laplacian eigenvalues λi shifted by −1/R2. The existence
and structure of the phase diagrams (i), (ii) and (iii) are left unchanged, since the criterion
μ′

1 − μ∗ = λ′
1 − λ∗ does not depend on R.

However, since the first Laplacian eigenvalue is of order L−2, where L is a typical length
scale of the domain, taking the limit R 	 L in (35) gives E−μ1(�) ∼ �2/(2R−2)〈e1〉2.
When R 	 L, the curvature radius of this parabola tends to infinity. Remembering that
this parabola is the boundary for ensemble inequivalence, the range of parameters E,� as-
sociated with the inequivalence between canonical and grand-canonical ensembles tends
therefore to fill the whole parameter space E,�.

This result might at first sight seem surprising: the screening length scale R tends to zero,
which means that the energy is an additive quantity at leading order, and yet one observes
an ensemble inequivalence area larger than in the Euler case! We have explained that such
inequivalence between statistical ensembles can occur for long-range interacting systems
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only,6 which means that non-local terms must remain important in some way to set the
structure of the equilibrium state, even if the energy is additive at leading order.

Let us be more precise: writing q = ζ + ψ/R2, with ζ = �ψ , the energy reads

E = −1

2

(

〈ζψ〉 + 1

R2

〈
ψ2

〉
)

.

In the limit R 	 L, the term 〈ψ2〉/R2 dominates over the term 〈ζψ〉, which is the one
involving long-range interaction. Similarly, the enstrophy reads

−S = 1

2

(
〈
ζ 2

〉 − 2

R2
〈ζψ〉 + 1

R4

〈
ψ2

〉
)

,

and is dominated by the term 〈ψ2〉/R4 when R 	 L. Then, at leading order, S = −R−2 E ,
which suggests to write β = −R−2 + β̃ . Finally, the dominant term of E and S cancel each
other when computing −S +βE . To find canonical solutions, one looks for the minimum of

−S + βE = 1

2R2

(

〈ζψ〉 + 〈
ψ2

〉 + o

(
R2

L2

))

,

with the constraint on the circulation. At leading order, this problem is then to find the
minimum of 〈ζψ〉 + 〈ψ2〉 with the constraint on the circulation; it is independent of R, and
involves the nonlocal term 〈ζψ〉. This shows that this non-local term, even if negligible with
respect to the total energy, is crucial to compute the statistical equilibrium state.

The fact that the screening length scale plays no peculiar role in the structure of the sta-
tistical equilibria can also by seen by considering critical points of the variational problems,
which satisfy q = β(ψ − 〈ψ〉) + �. Writing then β̃ = β + R−2 gives

β̃ (ψ − 〈ψ〉) + � = �ψ,

which is just the equation satisfied by statistical equilibria of the Euler dynamics in the case
of a linear q −ψ relationship. An important physical consequence is also that the parameter
R plays no particular role in the flow structure in that case.

These results and peculiarities rely on the strong assumption of a purely linear q − ψ

relation (related to a purely quadratic functional S ). Previous analytical studies of statistical
equilibria in the limit R 	 L, and in the case of tanh-like q − ψ relationship, lead to very
different flow structure and thermodynamic properties than in the linear case, with, for in-
stance, no ensemble inequivalence, and the formation of strong jets of width R in the flow
structure [3]. Such non-linear q − ψ relation are the relevant one for geophysical applica-
tions, as for instance the explanation of Jovian vortices [7] or oceanic rings and jets [62].

More detailed computations and studies will therefore be necessary to fully understand
the role played by the parameter R when non-linearities in the q − ψ relation are taken into
account. This will be the focus of a future work.

5.4 Generalization to a Larger Class of Models

The previous computations apply beyond the particular case of two-dimensional and geo-
physical flows. It can be extended to the computation of statistical equilibrium states of any

6Ensemble inequivalence can also occur in finite volume, small short-interacting systems, see e.g. [18], but
not when the thermodynamics limit is considered.
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Fig. 7 Schematic representation of the functional −S[q] + βE [q] in configuration space, where β is such
that (a) −S[q] + βE is negative-definite (only stable directions); (b) −S[q] + βE has a neutral direction;
(c) −S[q]+βE has an unstable direction. Only case (b) leads to non trivial solutions (the points of the neutral
direction are represented as a dashed red line)

system for which the energy is a quadratic functional, in the limit E → 0. This could for in-
stance be applied to the computation of statistical equilibria of the Vlasov equations. More
generally, the results presented in the present paper hold true whenever one has to solve
a variational problem that consists in maximizing a negative-definite quadratic functional
I[q] = −S[q] of a field q(r), with constraints given by another definite positive quadratic
functional E [q] = E and a linear functional C[q] = �.

If in addition the constraints are respectively purely quadratic (i.e. with no linear nor
constant part) and purely linear (i.e. with no constant part), then there is generical ensemble
inequivalence. For the sake of simplicity, let us (for instance) consider the line � = 0 in the
phase diagram (�,E): on this line, there are no grand-canonical solutions (i.e. no solution
in the ensemble without constraints), but there are canonical solutions (i.e. solutions in the
ensemble with only the circulation constraint. A schematic representation of the computa-
tion of such canonical solutions is given Fig. 7. It sums up the general method followed
in this paper to compute statistical equilibria: For β above some critical value, the (purely
quadratic) functional −S + βE is negative-definite, and its minimum is located at q = 0.
For β below some critical value, there is at least one unstable direction (one eigenmode with
negative eigenvalue). For β equal to the critical value, there is a neutral direction, corre-
sponding then to non trivial statistical equilibria: these are the solutions of the line � = 0 in
the phase diagram (�,E).

The important conclusion is the generic occurrence of ensemble inequivalence for this
class of systems. Properties of phase transitions inside the ensemble inequivalence area de-
pend on the properties of a system at hand (in particular the existence of particular symme-
tries).

6 Conclusion

The main result of this paper is the observation of a generic ensemble inequivalence re-
gion for a wide class of models, including two-dimensional and quasi-geostrophic turbu-
lent flows, through explicit analytical computations. We have shown that the ensemble in-
equivalence is related to the occurrence of peculiar phase transitions, associated with drastic
changes in the flow topology. Several possible phase transitions have been identified in pa-
rameter space (�,E), leading to three different kinds of phase diagrams. We have shown
that the criterion for these different phase diagrams depends on the domain geometry only,
and can be explicitly computed for a system at hand.

Strikingly, statistical ensemble inequivalence is generically observed for varying circu-
lation at fixed energy; we have explained that this is related to existence of a symmetry
q ↔ −q in the system when it admits no particular spatial symmetry.

When varying the energy at fixed circulation, we have shown the existence of marginal
cases of ensemble inequivalence at sufficiently high-energy (entropy then becomes a linear
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function of energy). Taking into account non-linearity is necessary to discuss these marginal
cases. We conjecture that tanh-like relations lead to ensemble equivalence (concave en-
tropies), while sinh-like relations could be associated with ensemble inequivalence areas.
Understanding the role of this nonlinearity will be the focus of a future work [19].

Some of the transitions and related ensemble inequivalence we described were predicted
in the classification [5], but they had not been observed in any physical system yet. This is
the case of

– Second-order azeotropy: the outbreak from nothing of two second-order phase transitions,
associated with a switch from a monopole to a dipole, breaking the system’s symmetry
when the energy is increased and the circulation � is kept fixed.

– Bicritical point: the bifurcation from a first-order transition line to two second-order tran-
sition lines when increasing the domain aspect ratio, at fixed energy, and considering the
circulation � as the only internal parameter. The first-order phase transition is associ-
ated with a switch from a monopole to another one; the two second-order transition lines
correspond respectively to a switch from a monopole to a dipole, and to a switch from
this dipole to another monopole, symmetric (equal and opposite) to the initial one, when
varying the circulation.

Finally, we have pointed out a surprising effect induced by a screening length scale (the
Rossby radius of deformation) in 1.5 quasi-geostrophic models. Decreasing this length scale
widens the ensemble inequivalence area in the phase diagrams while the interaction becomes
more local. We have explained this apparent paradox, showing that non-local first-order
corrections of the energy are essential to compute equilibrium states, even if the energy is
additive at leading order. We have shown that this phenomenon is peculiar to the class of
equilibrium states considered in this paper (states characterized by a linear q − ψ relation).
For such states, the flow structure does not depend on this screening length scale, which
can be absorbed in the q − ψ relation. We conjecture that such peculiarity would not be
observed in phase diagrams obtained by considering a varying energy and fixed distributions
of potential vorticity levels.

All states computed in this paper could have been observed in the framework of energy-
enstrophy theories, which all lead to the same variational problem as the one we have studied
in this paper. Most of the solutions to this variational problem were however not described
in previous studies, carried out in the framework of energy-enstrophy theories, because the
computations were only performed in the grand-canonical ensemble, where all the con-
straints are relaxed.

Kraichnan noted the existence of a “condensed states” for particular values of the tem-
perature, which correspond to the microcanonical states that we describe in the case � = 0
(no circulation) [38]. He concluded that such condensed states were the most interesting
ones, but that there was in average no mean flow: for all values of the parameter E, there
were always two equiprobable symmetrical states, cancelling each other in average. Conse-
quently to these studies, it has often been said that energy-enstrophy theories do not predict
the emergence of a mean flow when no topography is taken into account. The results of
the present paper clarify this issue: when performing computations in the microcanonical
ensemble, we have seen that there exist (possibly multiple) equilibrium states for each value
of the circulation and the energy, so that a mean flow is possible.

In the presence of topography, just as in the case of Fofonoff flows, computations in
the relaxed ensemble lead to low-energy statistical equilibria, even with zero circulation.
But just as in the Euler case, high-energy states could not be obtained in the most relaxed,
grand-canonical ensemble. It is necessary to work in the canonical ensemble to describe
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them. This explains why only low-energy, Fofonoff modes, had been described by previous
computations of statistical equilibrium states in the presence of topography, see e.g. [9, 55].

Some of statistical equilibria were already computed and described in the Euler case
by [17], in the framework of the MRS statistical theory, but using another method, and with-
out reference to thermodynamic properties of the phase diagrams in relating to the physics
of long-range interacting systems. Our contribution, following [61], has been to link these
previously observed phase transitions to the generic occurrence of statistical ensemble in-
equivalence, using a method that can be applied to a class of systems much larger than
two-dimensional and geophysical turbulent flows. Subsequently to our work, some of these
results on the thermodynamic properties of phase diagrams have also been presented in [46]
(case without topography) and [45] (case with topography), using the method and formalism
of [17].

One of the current challenging problems in physics of long-range interacting systems is
to come up with experimental setups for which ensemble inequivalence properties such as
negative heat capacity could be observed. So far, no physical system has been proposed to
realize such an experiment. The results presented in this paper indicate that two-dimensional
flows are serious candidates to first observe ensemble inequivalence.

Phase transitions associated with the existence of ensemble inequivalence are predicted
in the microcanonical ensemble. This ensemble can show up if the time scale for inertial
organization of the flow is much smaller than the forcing and dissipation time scales. When
such separation of time scale does not exist, it is more relevant to include effects of forcing
and dissipation. The understanding of phase transitions taking place at equilibrium is then a
starting point for studies out of equilibrium [6].
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Appendix A: Laplacian Eigenvalues of a Rectangular Domain

We give here the Laplacian eigenmodes (�ei = −λiei ) in a rectangular domain. Instead of
indexing the eigenmodes of the Laplacian by i, we use two indices m,n corresponding to
the wave numbers in the x- and y-directions, respectively:

emn = 2 sin
(
πnx/

√
τ
)

sin
(
πmy

√
τ
)
,

where τ = Lx/Ly and the domain is supposed to be of area unity (LyLx = 1). The corre-
sponding eigenvalues are

λmn = π2

(
n

τ

2 + τm2

)

,

and 〈emn〉 = 8/(nmπ2) for n and m odd, 〈emn〉 = 0 for n or m even. The zero-mean eigen-
mode associated with the greatest eigenvalue −λ1 is e1 = e11 and the zero-mean eigenmode
associated with the greatest eigenvalue −λ′

1 is e′
1 = e1 2 (if τ > 1). We see when considering

equation (22) that in this case, Em(�) is the line E = 0 in the plane (E,�).
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Appendix B: Computation of Energies and Circulations of Grand-Canonical
Solutions

Let us compute the energy and the circulation of all the grand-canonical solutions, by con-
sidering separately the cases β > −μ1 and β = −μ1. In any case, a direct computation of
the critical points of (19) gives

∀i ≥ 1, (μi + β)qi = − (γμi〈ei〉 + βhi) .

For β > −μ1 and an arbitrary value of γ , the critical points are unique and given by

∀i ≥ 1, qi(β, γ ) = −1

μi + β
(γμi〈ei〉 + βhi) . (29)

A straightforward computation gives their circulation:

� =
∑

i

qi 〈ei〉 = −γf (β) − β
∑

i≥1

〈ei〉hi

μi + β
, (30)

where

f (β) =
∑

i≥1

μi〈ei〉2

μi + β
. (31)

Their energy E = 1
2

∑
i (qi − hi)

2/μi can be expressed either as a function of the La-
grange multiplier γ

Eβ(γ ) =
(

∑

i≥1

μih
2
i

2(μi + β)2

)

+ γ

(
∑

i≥1

μihi〈ei〉
(μi + β)2

)

+ γ 2

(
∑

i≥1

μi〈ei〉2

2(μi + β)2

)

, (32)

or as a function of the circulation �, by using expression (30):

Eβ(�) = Aβ[h] + Bβ[h]� +
(

1

2(f (β))2

∑

i≥1

μi〈ei〉2

(μi + β)2

)

�2, (33)

where Aβ [h] = Bβ[h] = 0 when h = 0, whatever the value of β .
For β = −μ1, the solutions of the neutral direction (γ = −h1/〈e1〉) are parameterized by

α ∈ R:

q1 = α and ∀i > 1, qi(β, γ ) = μ1

μi − μ1

( 〈ei〉
〈e1〉h1 + hi

)

. (34)

By computing the circulation � of these states, we find that α = �/〈e1〉: for a given
circulation, there is a single solution in the neutral direction. It is straightforward to check
that this solution corresponds to the solution (30) in the limit β → −μ1. Then, the solutions
of the neutral direction are located on the parabola

E−μ1(�) = A−μ1 [h] + B−μ1 [h]� + 1

2μ1〈e1〉2
�2, (35)

obtained either by using the expression (34) or by taking the limit β → −μ1 in (20).
We conclude that each point of the phase diagram (E,�) located on the set of parabolas

{Eβ(�) | β > −μ1} corresponds to a unique grand-canonical solution, where Eβ(�) is given
by (33).
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Appendix C: Computation of Energies and Circulations of Canonical Solutions

The aim of this Appendix is to compute energy and circulation of the solutions of the canon-
ical problem (14).

When β > −min{μ∗,μ′
1}, using (30), one can express γ as a function of � since

f (β) �= 0, and substitute this expression into (29) to obtain the expression of the solutions
q(β,�). The corresponding energy Eβ(�) is given by (20).

There is a single canonical solution at each point of the region spanned by the set of
parabolas {Eβ(�) | β > −min{μ′

1,μ
∗}}. Since min{μ′

1,μ
∗} > μ1, and since the curvature

of these parabolas is a decreasing function of β , we can see that the set of grand-canonical
solutions is included in the set of canonical solutions.

Three cases must be considered to describe the solutions in the phase diagram (�,E),

(i) μ∗ < μ′
1 or

(ii) μ∗ > μ′
1 and h′

1 = 0
(iii) μ∗ > μ′

1 and h′
1 �= 0.

(i) (μ∗ < μ′
1) There is a neutral direction for β = −μ∗ if and only if � = �∗ (where �∗ is

given by (28)). In that case, γ can not be determined by (30). Without specification of the
energy, γ can then be chosen arbitrarily on R. By considering the expression (29) we see
that the parameter γ parameterizes the equilibrium states of the neutral direction:

qγ (−μ∗,�∗) = γ e∗ + μ∗hi

μi − μ∗ ,

where e∗ is given by (26) and (27). The energy E−μ∗(γ ) of these states is given by (32). It
varies between a minimum value E∗ and +∞, where

E∗ = min
γ∈R

{
E−μ∗ (γ )

}
. (36)

Notice that for each point �∗,E > E∗, there are two states parameterized by two different
values of γ , and that if � �= �∗, then the energy (20) diverges when β → −μ∗. The set of
parabolas {Eβ(�) | β > −μ∗} hence covers the half plane E,� above Em(�), except the
half line (� = �∗,E > E∗) which is filled by equilibrium states of the neutral direction.

(ii) (μ′
1 < μ∗ and h′

1 = 0) There is a neutral direction whatever the value of �, when
β = −μ′

1. The states of this neutral direction are

q = q(−μ′
1,�) + αe′

1, α ∈ R, (37)

where q(−μ′
1,�) is given by combining (29) and (30). Their energy is

E = E−μ′
1
(�) + 1

2μ′
1

α2,

where E−μ′
1
(�) is obtained by taking β = −μ′

1 in (20):

E−μ′
1
(�) = A−μ′

1
[h] + B−μ′

1
[h]� +

(
1

2(f (μ′
1))

2

∑

i≥1

μi〈ei〉2

(μi − μ′
1)

2

)

�2. (38)
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The set of parabolas {Eβ(�) | β > −μ′
1} spans the whole range of parameters (E,�)

located above Em(�) and below Eμ′
1
(�). The canonical solutions of the neutral direction,

parameterized by � and α = q ′
1 (the projection on e′

1), are located on the set of parabolas
{Eμ′

1
(�) + α2/(2μ′

1) | α ∈ R}, which covers the half plane above Eμ′
1
(�).

(iii) (μ′
1 < μ∗ and h′

1 �= 0) In that case, there is no neutral direction. One can easily show
that the energy of the minimizers obtained in the case β > −μ′

1 diverges when β → −μ′
1.

The set of parabolas {Eβ(�) | β > −μ′
1} covers the whole half plane above Em(�).

Appendix D: Computation of Phase Transitions in the Euler Case

D.1 First-Order Phase Transitions

Let us compute the discontinuity of the entropy across the half line (� = 0,E > 0). We have

S = −1

2

〈
q2

〉 = −β

2
〈qψ〉 + γ

2
� = βE + γ

2
�. (39)

Let us consider the limit β → −λ∗ for a given value of the energy. The relation (30) with
μ∗ = λ∗ gives

� = γf ′ (−λ∗) (
β + λ∗) (40)

and then S = −λ∗E + γ�/2 + �E/(γf ′(−λ∗)) + O((β + λ∗)2). Similarly, the equilibrium
state (29) reads (with first-order correction) q = γ e∗ + O(β + λ∗), where e∗ is given by
(26) and (27), with ∀i,μi = λi . Then E = − 1

2γ 2〈e∗�−1e∗〉 + O(β + λ∗). By noticing that
〈e∗�−1e∗〉 = f ′(−λ∗) and by using (40), we obtain

γ = ±κ∗√E + O
(
�/

√
E

)
with κ∗ =

√
−2

f ′(−λ∗)
, (41)

which gives q = ±κ∗√Ee∗ + O(�/
√

E). To determine the sign of the maximizer of S at
fixed energy and circulation, we inject (41) in (39) an use (40) to find the equilibrium entropy

S = −λ∗E + κ∗
1

√
E|�| + O

(
�2

E

)

.

Thus, the sign of the maximizer q is determined by the sign of the circulation. When the
circulation zero, both states ±q are maximizers. Since κ∗

1 does not vary with �, there is a
positive jump of γ = ∂S/∂� on � = 0.

We conclude that the half line �∗,E > E∗ is a first-order transition line. Two states
(parameterized by two different values of γ = ∂S/∂�) coexists at each point of this line,
and any perturbation of the circulation select one of those states as the unique equilibrium
state. The entropy is a concave function of the energy (∂2S/∂E2 < 0 for � �= 0), with a
marginal situation on the first-order transition line (∂2S/∂E2 = 0 for � = 0).
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D.2 Second-Order Phase Transitions

Let us compute this second-order phase transition, by considering the limit β → −λ′
1 for

a given energy. We have S = βE + γ�/2. Two cases have to be considered: (a) β = −λ′
1,

(b) β < −λ′
1. In (a) (in which E,� are located above E−λ′

1
), γ = �/f (−λ′

1) and
S = −λ′

1E + �2/f (−λ′
1) whatever the circulation and the energy. Then ∂2S/∂E2 = 0 and

∂2S/∂�2 = ∂γ /∂� = 0. In (b), the relation (30) becomes

γ = �(f (−λ′
1) − f ′(−λ′

1)(β + λ′
1))

(f (−λ′
1))

2
+ o

(
�

(
β + λ′

1

))
.

The equilibrium state can be expanded at lowest order in β + λ′
1:

q = γ ec1 + γ
(
β + λ′

1

)
ec2 + O

(
�

(
β + λ′

1

))
.

with

ec1 = −
+∞∑

i=1

λi〈ei〉
λi − λ′

1

ei and ec2 =
+∞∑

i=1

λi〈ei〉
(λi − λ′

1)
2
ei .

The energy reads E = γ 2Ec1 + γ 2(β +λ′
1)Ec2 +O(β +λ′

1) with Ec1 = − 1
2 〈ec1�

−1ec1〉,
Ec2 = − 1

2 〈ec2�
−1ec1〉. By using the previous expression of γ , we obtain

E = �2

(f (−λ′
1))

2

((
1 − 2f ′ (−λ′

1

) (
β + λ′

1

))
Ec1 + (

β + λ′
1

)
Ec2

) + O
(
β + λ′

1

)
,

which gives β as a function of the energy and the circulation:

β + λ′
1 = E(f (−λ′

1)/�)2 − 1

Ec2 − 2Ec1f ′(−λ′
1)

.

Then

∂2S

∂E2
= ∂β

∂E
=

(
f (−λ′

1)

�

)2 1

Ec2 − 2Ec1f ′(−λ′
1)

,

and

∂2S

∂�2
= ∂γ

∂�
= 1

f (−λ′
1)

+ O
(
β + λ′

1

)
,

which is generically not equal to zero when � �= 0. We see that ∂2S/∂E2 and ∂2S/∂�2

are discontinuous when the parabola E−λ′
1
(�) is crossed, i.e. when β = −λ′

1. Since the
second-order derivative of the entropy toward the toward the energy and the circulation
are discontinuous when this parabola is crossed, we conclude that this is a second-order
transition line.
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