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Statistical Mechanics of Large Scale Geophysical Flows

Large scale statistics of turbulent flows

In many applications of fluid dynamics, one of the most important prob-
lem is the prediction of the very high Reynolds’ large-scale flows. The
highly turbulent nature of such flows, for instance ocean circulation or at-
mosphere dynamics, renders a probabilistic description desirable, if not nec-
essary. A statistical mechanics explanation of the self-organization of geo-
physical flows has been proposed by Robert-Sommeria and Miller (RSM).

The RSM theory has been success-
fully applied to the Jupiter’s tro-
posphere : cyclones, anticyclones
and jets have been quantitatively
described by this theory (F. Bouchet
and J. Sommeria)

Observation (Voyager) Statistical Equilibrium
Velocity field of Jupiter’s Great Red Spot

For applications : statistical mechanics beyond equilibri um ?

The RSM theory starts from the conservative dynamics and parametrizes equilibria by the
energy and other dynamical invariants. However, the theory does not predict the long-
term effects of the forcing, which is a relevant issue for any application. It is a practical
and fundamental problem to understand how the invariants are selected by the presence
of a weak forcing and dissipation, what are the associated fluctuations, are all forcings
compatible with RSM equilibria ? The relaxation towards equilibrium of 2-D flows has
been considered in the past, however the out-of-equilibrium statistical mechanics has
never been considered yet. From a statistical mechanics point of view, this problem is a
logical continuation of the RSM theory.

Out-of-Equilibrium Phase Transitions in Geophysics
In many turbulent geophysical flows, one can see transitions, at random time, between
two states with different large scale flow. The most famous example are probably the
time reversal of the earth magnetic field, or the Milankovitch cylcle for the earth ice age
cycles. Such general phenomena correspond to systemswith a large number of degrees of
freedom. The case of simple turbulent flows may be studied in much details theoreticaly
and numericaly.

Velocity signal

Rotating tank experiment,
where a transition from a
blocking state to a zonal
state is observed.
Y. Tian and col, J. Fluid. Mech.

(2001)
Stream function for both states

J. Sommeria, JFM (1986)

Left : Amplitude of the first
mode vs time for an experi-
mental 2D flow, in a square
box.
Right : Earth (top) and
experimental (bottom) mag-
netic field reversal (VKS ex-
periment). M. Berhanu and col. arxiv:physics/0701076

The Stochastic Navier-Stokes Equation

We consider the 2-D Navier-Stokes equation with weak stochastic forcing and dissipation
(Euler limit).

∂w

∂t
+ u.∇w = ν∆w − αw + fd + fs

where fd is deterministic, fs is a random force. This is the usual framework of turbulence studies. How-
ever, we are interested on large scales :

• We don’t care with self-similar behavior

• Because it is relevant for applications, our forcing is not localized in Fourier space

• We use very small Rayleigh friction, to observe the large scale energy condensation

We study the out-of-equilibrium invariant measure resulting from the statistical balance
between forcing and dissipation. Some recent mathematical results : S. Kuksin (Sinai,
Shirikyan, Bricmont, Kupianen, ...) :

• Existence of a stationary measure µν. Existence of limν→0 µν

• In this limit, almost all trajectories are solutions of the Euler equation

We would like to obtain more physical results : what
determines the large scale flow, is the measure con-
centrated close to RSM equilibria, what is the fluctua-
tions level, ... ?
The forcing : fS(x, t) =

∑
k
fkηk(t)ek(x) where ek’s are the

Fourier modes and < ηk(t)ηk′(t
′) >= δk,k′δ(t − t′) (white in time).

For instance fk = A exp−(|k|−m)2

2σ2 with 1
2

∑ |fk|
2

|k|2
= 1 (smooth in

space).
Dipole stationary state (vorticity)

Out-of-Equilibrium Flows and the RSM Theory
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Out-of-equilibrium
(DNS of Navier Stokes)

These two figures help to compare
the predictions of equilibrium statis-
tical mechanics (conservative) to the
Quasi-Stationary large scale flows ob-
tained in the Navier-Stokes equation
(dissipative) with random forcing.
It illustrates that the qualitative prop-
erties of the later can be understood
using the former.

0 1 2 3 4 5 6

x 10
−3

−2

−1

0

1

2

3

4

Energy (L
x
/L

y
 = 1.1)

T
hi

rd
 d

er
iv

at
iv

e 
of

 O
m

eg
a(

P
si

)

DIPOLE D
x

ZONAL Z
x

DIPOLE D
y

ZONAL Z
y

Dipole D
x

x

y

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Zonal Z
y

x

y

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

DIPOLE D
y

x

y

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Dipole D
x

x

y

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Equilibrium
Phase Diagram

The convergence towards equilibrium occurs on a time scale scaling like ν.

Vorticity-Streamfunction Relation

Are out-of-equilibrium flow close to steady states of the Euler equation ? In order to
addrees this, we plot the vorticity-streamfunction relation, which is a curve for Euler
equilibria.
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Zonal (unidirectionnal) flow
We are close to some conservative steady states. The zonal case seems to show a non-
monotonic vorticity-streamfunction relationship. Such states would be uncompatible
with RSM equilibria (To be confirmed by computation at lower ν),

Out-of-Equilibrium Phase Transition
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Left : Energy (black), enstro-
phy (red) and fourth order
moment of the vorticity
(blue), versus time. This
clearly illustrates an out-
of-equilibrium dipole-zonal
phase transition.
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Idem, in a stationary
situation

In order to study this transition, we study the time evolution of the modulus of the
first Fourrier coefficient for the vorticity, |z1| (|z1| is close to zero for zonal states),
for different values of the control parameter (here the aspect ratio of the domain).
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The following are the pdf of |z1|, for the threes same values of the control parameter.
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Conclusion

• The large scales of out-of-equilibrium flows are close to Euler steady states.

• What is the link between the control parameters (forcing) and the observed flows ?

• This requires a theory (the RSM theory only gives a qualitative understanding)

• Letting the energy pile up to larger scales may lead to very interesting phenomena

• Poorly studied by experimentalists, and poorly studied by numericians

• Probably very relevant for geophysical applications (with other models)
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