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ABSTRACT. For noetherian schemes of finite dimension over a field of characteris-
tic exponent p, we study the triangulated categories of Z[1/p]-linear mixed motives
obtained from cdh-sheaves with transfers. We prove that these have many of the
expected properties. In particular, the formalism of the six operations holds in this
context. When we restrict ourselves to regular schemes, we also prove that these
categories of motives are equivalent to the more classical triangulated categories of
mixed motives constructed in terms of Nisnevich sheaves with transfers. Such a pro-
gram is achieved by comparing these various triangulated categories of motives with
modules over motivic Eilenberg-MacLane spectra.
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The main advances of the actual theory of mixed motivic complexes over a field
come from the fact they are defined integrally. Indeed, this divides the theory in
two variants, the Nisnevich one and the étale one. With rational coefficients, the
two theories agree and share their good properties. But with integral coefficients,
their main success comes from the comparison of these two variants, the so-called
Beilinson-Lichtenbaum conjecture which was proved by Voevodsky and gave the so-
lution of the Bloch-Kato conjecture.

One of the most recent works in the theory has been devoted to extend the def-
initions in order to get the 6 operations of Grothendieck and to check they satisfy
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the required formalism; in chronological order: an unpublished work of Voevodsky,
[Ayo07a], [CDb]. While the project has been finally completely realized with rational
coefficients in [CDb], the case of integral coefficients remains unsolved. In fact, this
is half true: the étale variant is now completely settled: see [Ayo14], [CDa].

But the Nisnevich variant is less mature. Markus Spitzweck [Spi] has constructed
a motivic ring spectrum over any Dedekind domain, which allows to define motivic
cohomology of arbitrary schemes, and even triangulated categories of motives on a
general base (under the form of modules over the pullbacks of the motivic ring spec-
trum over Spec(Z)). However, at this moment, there is no proof that Spitzweck’s
motivic cohomology satisfies the absolute purity theorem, and we do not know how
to compare Spitzweck’s construction with triangulated categories of motives con-
structed in the language of algebraic correspondences (except for fields). What is
concretely at stake is the theory of algebraic cycles: we expect that motivic cohomol-
ogy of a regular scheme in degree 2n and twist n agrees with the Chow group of
n-codimensional cycles of X . Let us recall for example that the localization long ex-
act sequence for higher Chow groups and the existence of a product of Chow groups
of regular schemes are still open questions in the arithmetic case (i.e. for schemes
of unequal residual characteristics). For sake of completeness, let us recall that
the localization long exact sequence in equal characteristic already is the fruit of
non trivial contributions of Spencer Bloch [Blo86, Blo94] and Marc Levine [Lev01].
Their work involves moving lemmas which are generalizations of the classical mov-
ing lemma used to understand the intersection product of cycles [Ful98].

Actually, Suslin and Voevodsky have already provided an intersection theoretic
basis for the integral definition of Nisnevich motivic complexes: the theory of rel-
ative cycles of [VSF00, chap. 2]. Then, along the lines drawn by Voevodsky, and
especially the homotopy theoretic setting realized by Morel and Voevodsky, it was
at least possible to give a reasonable definition of such a theory over an arbitrary
base, using Nisnevich sheaves with transfers over this base, and the methods of A1-
homotopy and P1-stabilization: this was done in [CDb, Sec. 7]. Interestingly enough,
the main technical issue of this construction is to prove that these motivic complexes
satisfy the existence of the localization triangle:

j! j∗(M)→ M → i∗ i∗(M)→ j! j∗(M)[1]

for any closed immersion i with open complement j. This echoes much with the
question of localization sequence for higher Chow groups.

In our unsuccessful efforts to prove this property with integral coefficients, we
noticed two things: the issue of dealing with singular schemes (the property is true
for smooth schemes over any base, and, with rational coefficients, for any closed
immersion between excellent geometrically unibranch scheme); the fact this prop-
erty implies cdh-descent (i.e. Nisnevich descent together with descent by blow ups).
Moreover, in [CDa], we show that, at least for torsion coefficients, the localization
property for étale motivic complexes is true without any restriction, but this is due
to rigidity properties (à la Suslin) which only hold étale locally, and for torsion coef-
ficients.

Therefore, the idea of replacing Nisnevich topology by a finer one, which allows
to deal with singularities, but remains compatible with algebraic cycles, becomes
obvious. The natural choice goes to the cdh-topology: in Voevodsky’s work [VSF00],
motivic (co)homology of smooth schemes over a field is naturally extended to schemes
of finite type by cdh-descent in characteristic zero (or, more generally, if we admit
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resolution of singularities), and S. Kelly’s thesis [Kel12] generalizes this result to
arbitrary perfect fields of characteristic p > 0, at least with Z[1/p]-linear coefficients.

In this work, we prove that if one restricts to noetherian schemes of finite dimen-
sion over a prime field (in fact, an arbitrary perfect field) k, and if we invert solely
the characteristic exponent of k, then mixed motives built out of cdh-sheaves with
transfers (Definition 1.5) do satisfy the localization property: Theorem 5.11. Using
the work of Ayoub, it is then possible to get the complete 6 functors formalism for
these cdh-motives. Note that we also prove that these cdh-motives agree with the
Nisnevich ones for regular k-schemes – hence proving that the original construction
done in [CDb, Def. 11.1.1] is meaningful if one restricts to regular schemes of equal
characteristic and invert the residue characteristic (see Corollary 3.2 for a precise
account).

The idea is to extend a result of Röndigs and Østvær, which identifies motivic
complexes with modules over the motivic Eilenberg-MacLane spectrum over a field
of characteristic 0. This was recently generalized to perfect fields of characteris-
tic p > 0, up to inverting p, by Hoyois, Kelly and Østvær [HKØ]. Our main result,
proved in Theorem 5.1, is that this property holds for arbitrary noetherian k-schemes
of finite dimension provided we use cdh-motives and invert the exponent character-
istic p of k in their coefficients. For any noetherian k-scheme of finite dimension X
with structural map f : X → Spec(k), let us put HZX /k = L f ∗(HZk). Then there is a
canonical equivalence of triangulated categories

HZX /k[1/p]-Mod'DMcdh(X ,Z[1/p]) .

One of the ingredients is to prove this result for Nisnevich motivic complexes with
Z[1/p]-coefficients if one restricts to noetherian regular k-schemes of finite dimen-
sion: see Theorem 3.1. The other ingredient is to use Gabber’s refinement of de Jong
resolution of singularities by alteration via results and methods from Kelly’s thesis.

We finally prove the stability of the notion of constructibility for cdh-motives up
to inverting the characteristic exponent in Theorem 6.4. While the characteristic 0
case can be obtained using results of [Ayo07a], the positive characteristic case follows
from a geometrical argument of Gabber (used in his proof of the analogous fact for
torsion étale sheaves). We also prove a duality theorem for schemes of finite type
over a field (7.3), and describe cycle cohomology of Friedlander and Voevodsky using
the language of the six functors (8.11). In particular, Bloch’s higher Chow groups
and usual Chow groups of schemes of finite type over a field are are obtained via the
expected formulas (see 8.12 and 8.13).

We would like to thank Offer Gabber for pointing out Bourbaki’s notion of n-gon-
flement, 0 ≤ n ≤ ∞. We also want to warmly thank the referee for many precise
and constructive comments and questions, which helped us to greatly improve the
readability of this article.

CONVENTIONS

We will fix a perfect base field k of characteristic exponent p – the case where k
is a prime field is enough. All the schemes appearing in the paper are assumed to be
noetherian of finite dimension.

We will fix a commutative ring R which will serve as our coefficient ring.
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1. MOTIVIC COMPLEXES AND SPECTRA

In [VSF00, chap. 5], Voevodsky introduced the category of motivic complexes
DMeff

− (S) over a perfect field with integral coefficients, a candidate for a conjectural
theory described by Beilinson. Since then, several generalizations to more general
bases have been proposed.

In [CDb], we have introduced the following ones over a general base noetherian
scheme S:

1.1. The Nisnevich variant.– Let Λ be the localization of Z by the prime numbers
which are invertible in R. The first step is to consider the category Smcor

Λ,S whose
ojects are smooth separated S-schemes of finite type and morphisms between X and
Y are finite S-correspondences from X to Y with coefficients in Λ (see [CDb, Def.
9.1.8] with P the category of smooth separated morphisms of finite type).1 Taking
the graph of a morphism between smooth S-schemes, one gets a faithful functor γ
from the usual category of smooth S-schemes to the category Smcor

Λ,S .
Then one defines the category Shtr

Nis(S,R) of sheaves with transfers over S as the
category of presheaves F of R-modules over Smcor

Λ,S whose restriction to the category
of smooth S-schemes F◦γ is a sheaf for the Nisnevich topology. Essentially according
to the original proof of Voevodsky over a field (see [CDb, 10.3.3 and 10.3.17] for
details), this is a symmetric monoidal Grothendieck abelian category.

The category DM(S,R) of Nisnevich motivic spectra over S is defined by applying
the process of A1-localization, and then of P1-stabilization, to the (adequate model
category structure corresponding to the) derived category of Shtr

Nis(S,R); see [CDb,
Def. 11.1.1]. By construction, any smooth S-scheme X defines a (homological) motive
MS(X ) in DM(S,R) which is a compact object. Moreover, the triangulated category
DM(S,R) is generated by Tate twists of such homological motives, i.e. by objects of
the form MS(X )(n) for a smooth S-scheme X , and an integer n ∈Z.

Remark 1.2. When S = Spec(K) is the spectrum of a perfect field, the triangulated
category DM(S,Z) contains as a full and faithful subcategory the category DMeff

− (K)
defined in [VSF00, chap. 5]. This follows from the description of A1-local objects in
this case and from the cancellation theorem of Voevodsky [Voe10] (see for example
[Dég11, Sec. 4] for more details).

1.3. The generalized variants.– This variant is an enlargement2 of the previous con-
text. However, at the same time, one can consider several possible Grothendieck
topologies t: the Nisnevich topology t =Nis, the cdh-topology t = cdh, the étale topol-
ogy t = ét, or the h-topology t = h.

1Recall: a finite S-correspondence from X to Y with coefficients in Λ is an algebraic cycle in X ×S Y
with Λ-coefficients such that:

(1) its support is finite equidimensional over X ,
(2) it is a relative cycles over X in the sense of Suslin and Voevodsky (cf. [VSF00, chap. 2]) -

equivalently it is a special cycle over X (cf. [CDb, def. 8.1.28]),
(3) it is Λ-universal (cf. [CDb, def. 8.1.48]).

When X is geometrically unibranch, condition (2) is always fulfilled (cf. [CDb, 8.3.26]). When X is regular
of the characteristic exponent of any residue field of X is invertible inΛ, condition (3) is always fulfilled (cf.
[CDb, 8.3.29] in the first case). Everything gets much simpler when we work locally for the cdh-topology;
see [VSF00, Chap. 2, 4.2].

Recall also for future reference this definition makes sense even if X and Y are singular of finite type
over S.

2See [CDb, 1.4.13] for a general definition of this term.



INTEGRAL MIXED MOTIVES IN EQUAL CHARACTERISTIC 5

Instead of using the category Smcor
Λ,S , we consider the larger category S f t,cor

Λ,S made
by all separated S-schemes of finite type whose morphisms are made by the finite S-
correspondences with coefficients in Λ as in the previous paragraph (see again [CDb,
9.1.8] with P the class of all separated morphisms of finite type).

Then we can still define the category Shtr
t (S,R) of generalized t-sheaves with

transfers over S as the category of additive presheaves of R-modules over S f t,cor
Λ,S

whose restriction to S f t
S is a sheaf for the cdh topology. This is again a well suited

Grothendieck abelian category (by which we mean that, using the terminology of
[CDb], when we let S vary, we get an abelian premotivic category which is compati-
ble with the topology t; see [CDb, Sec. 10.4]). Moreover we have natural adjunctions:

(1.3.1) Shtr
Nis(S,R)

ρ! // Shtr
Nis(S,R)

a∗
cdh //

ρ∗
oo Shtr

cdh(S,R)oo

where ρ∗ is the natural restriction functor and a∗
cdh is the associated cdh-sheaf with

transfers functor (see loc. cit.)
Finally, one defines the category DMt(S,R) of generalized motivic t-spectra over

S and coefficients in R as the triangulated category obtained by P1-stabilization
and A1-localization of the (adequate model category structure corresponding to the)
derived category of Shtr

t (S,R).
Note that in the generalized context, any S-scheme X defines a (homological) t-

motive MS(X ) in DMt(S,R) which is a compact object and depends covariantly on X .
This can even be extended to simplicial S-schemes (although we might then obtain
non compact objects). Again, the triangulated category DMt(S,R) is generated by
objects of the form MS(X )(n) for a smooth S-scheme X and an integer n ∈Z.

Thus, we have three variants of motivic spectra. Using the adjunctions (1.3.1)
(which are Quillen adjunctions for suitable underlying model categories), one de-
duces adjunctions made by exact functors as follows:

(1.3.2) DM(S,R)
Lρ! // DM(S,R)

La∗
cdh //

Rρ∗
oo DMcdh(S,R)oo

The following assertions are consequences of the model category structures used to
get these derived functors:

(1) for any smooth S-scheme X and any integer n ∈Z, Lρ!
(
MS(X )(n)

)= MS(X )(n).
(2) for any S-scheme X and any integer n ∈Z, La∗

cdh

(
MS(X )(n)

)= MS(X )(n).

The following proposition is a formal consequence of these definitions:

Proposition 1.4. The category DMcdh(S,R) is the localization of DM(S,R) obtained
by inverting the class of morphisms of the form:

MS(X•)
p∗−−→ MS(X )

for any cdh-hypercover p of any S-scheme X . Moreover, the functor acdh is the canon-
ical projection functor.

The definition that will prove most useful is the following one.

Definition 1.5. Let S be any noetherian scheme.
One defines the triangulated category DMcdh(S,R) of cdh-motivic spectra, as the

full localizing triangulated subcategory of DMcdh(S,R) generated by motives of the
form MS(X )(n) for a smooth S-scheme X and an integer n ∈Z.
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1.6. These categories for various base schemes S are equipped with a basic functo-
riality ( f ∗, f∗, f] for f smooth, ⊗ and Hom) satisfying basic properties. In [CDb], we
have summarized these properties saying that DM(−,R) is a premotivic triangulated
category – see 1.4.2 for the definition and 11.1.1 for the construction.

2. MODULES OVER MOTIVIC EILENBERG-MACLANE SPECTRA

2.a. Symmetric Tate spectra and continuity.

2.1. Given a scheme X we write SpX for the category of symmetric T-spectra, where
T denotes a cofibrant resolution of the projective line P1 over X (with the point at
infinity as a base point, say) in the projective model structure of pointed Nisnevich
simplicial sheaves of sets. We will consider SpX as combinatorial stable symmetric
monoidal model category, obtained as the T-stabilization of the A1-localization of the
projective model category structure on the category of pointed Nisnevich simplicial
sheaves of sets on the site SmX of smooth separated X -schemes of finite type. The
corresponding homotopy category

Ho(SpX )=SH(X )

is thus the stable homotopy category of schemes over X , as considered by Morel,
Voevodsky and various other authors. This defines a motivic triangulated category
in the sense of [CDb]: in other words, thanks to Ayoub’s thesis [Ayo07a, Ayo07b],
we have the whole formalism of the six operations in SH. We note that the cate-
gories SH(X ) can be defined as the homotopy categories of their (∞,1)-categorical
counterparts; see [Rob15, 2.3] and [Hoy14, Appendix C].

2.2. In [CDb], we have introduced the notion of continuity for a premotivic category
T which comes from the a premotivic model category. In the sequel, we will need
to work in a more slightly general context, in which we do not consider a monoidal
structure. Therefore, we will recast the definition of continuity for complete trian-
gulated Sm-fibred categories over Sch (see [CDb, 1.1.12, 1.3.13] for the definitions;
in particular, the adjective ‘complete’ refers to the existence of right adjoints for the
pullback functors).

Here Sch will be a full subcategory of the category of schemes stable by smooth
base change and F will be a class of affine morphisms in Sch.3

Definition 2.3. Let T be a complete triangulated Sm-fibred category over Sch and
c be a small family of cartesian sections (ci)i∈I of T .

We will say that T is c-generated if, for any scheme X in Sch, the family of objects
ci,X , i ∈ I, form a generating family of the triangulated category. We will then define
Tc(X ) as the smallest thick subcategory of T (X ) which contains the elements of of
the form f] f ∗(ci,X ) = f](ci,Y ), for any separated smooth morphism f : Y → X and
any i ∈ I. The objects of Tc(X ) will be called c-constructible (or simply constructible,
when c is clearly determined by the context).

Remark 2.4. If for any i ∈ I, the objects ci,X are compact, then Tc(X ) is the category
of compact objects of T (X ) and so does not depend on c.

When T has a symmetric monoidal structure, or in other words, is a premotivic
category, and if we ask that c is stable by tensor product, then c is what we call a

3The examples we will use here are: Sch is the category of regular (excellent) k-schemes or the cat-
egory of all noetherian finite dimensional (excellent) k-schemes; F is the category of dominant affine
morphisms or the category of all affine morphisms.
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set of twists in [CDb, 1.1.d]. This is what happens in practice (e.g. for T = SH, DM
or DMcdh), and the family c consists of the Tate twist 1X (n) of the unit object for
n ∈Z. Moreover, constructible objects coincide with compact objects for SH, DM and
DMcdh.

For short, a (Sch,F )-pro-scheme will be a pro-scheme (Sα)α∈A with values in Sch,
whose transition morphisms are in F , which admits a projective limit S in the cat-
egory of schemes such that S belongs to Sch. The following definition is a slightly
more general version of [CDb, 4.3.2].

Definition 2.5. Let T be a c-generated complete triangulated Sm-fibred category
over Sch.

We say that T is continuous with respect to F , if given any (Sch,F )-pro-scheme
(Xα) with limit S, for any index α0, any object Eα0 in T (Xα0 ), and any i ∈ I, the
canonical map

lim−−→
α≥α0

HomT (Xα)(ci,Xα ,Eα)→HomT (X )(ci,S ,E),

is bijective, where Eα is the pullback of Eα0 along the transition morphism Xα →
Xα0 , while E is the pullback of Eα0 along the projection X → Xα0

Example 2.6. (1) The premotivic category SH on the category of noetherian fi-
nite dimensional schemes satisfies continuity without restriction (i.e. F is
the category of all affine morphisms). This is a formal consequence of [Hoy14,
Proposition C.12] and of [Lur09, Lemma 6.3.3.6], for instance.

(2) According to [CDb, 11.1.4], the premotivic triangulated categories DM and
DMcdh, defined over the category of all schemes, are continuous with respect
to dominant affine morphisms. (Actually, this example is the only reason
why we introduce a restriction on the transition morphisms in the previous
continuity property.)

The following proposition is a little variation on [CDb, 4.3.4], in the present
slightly generalized context:

Proposition 2.7. Let T be a c-generated complete triangulated Sm-fibred category
over Sch which is continuous with respect to F . Let (Xα) be a (Sch,F )-pro-scheme
with projective limit X and let fα : X → Xα be the canonical projection.

For any index α0 and any objects Mα0 and Eα0 in T (Sα0 ), if Mα0 is c-constructible,
then the canonical map

lim−−→
α≥α0

HomT (Sα)(Mα,Eα)→HomT (S)(M,E),

is bijective, where Mα and Eα are the respective pullbacks of Mα0 and Eα0 along the
transition morphisms Sα→ Sα0 , while M = f ∗α0

(Mα0 ) and E = f ∗α0
(Eα0 ).

Moreover, the canonical functor:

2- lim−−→
α

Tc(Xα)
2- lim−→α

( f ∗α )
−−−−−−−→Tc(X )

is an equivalence of triangulated categories.

The proof is identical to that of loc. cit.

Proposition 2.8. Let f : X →Y be a regular morphism of schemes. Then the pullback
functor

f ∗ : SpY →SpX
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of the premotivic model category of Tate spectra (relative to simplicial sheaves) pre-
serves stable weak A1-equivalences as well as A1-local fibrant objects.

Proof. This property is local in X so that replacing X (resp. Y ) by a suitable affine
open neighbourhood of any point x ∈ X (resp. f (x)), we can assume that X and Y are
affine.

Then, according to Popescu’s theorem (as stated in Spivakovsky’s article [Spi99,
Th. 1.1]), the morphism f can be written as a projective limit of smooth morphisms
fα : Xα → Y . By a continuity argument (in the context of sheaves of sets!), as each
functor f ∗α commutes with small limits and colimits, we see that the functor f ∗ com-
mutes with small colimits as well as with finite limits. These exactness properties
imply that the functor f ∗ preserves stalkwise simplicial weak equivalences. One can
also check that, for any Nisnevich sheaves E and F on SmY , the canonical map

(2.8.1) f ∗Hom(E,F)→Hom( f ∗(E), f ∗(F))

is an isomorphism (where Hom denotes the internal Hom of the category of sheaves),
at least when E is a finite colimit of representable sheaves. Since the functor f ∗ pre-
serves projections of the form A1 ×U →U , this readily implies that, if L denotes the
explicit A1-local fibrant replacement functor defined in [MV99, Lemma 3.21, page
93], then, for any simplicial sheaf E on SmY , the map f ∗(E) → f ∗(L(E)) is an A1-
equivalence with fibrant A1-local codomain. Therefore, the functor f ∗ preserves both
A1-equivalences and A1-local fibrant objects at the level of simplicial sheaves. Us-
ing the isomorphism (2.8.1), it is easy to see that f ∗ preserves A1-local motivic Ω-
spectra. Given that one can turn a levelwise A1-local fibrant Tate spectrum into a
motivic Ω-spectrum by a suitable filtered colimit of iterated T-loop space functors,
we see that there exists a fibrant replacement functor R in SpY such that, for any
Tate spectrum E over Y , the map f ∗(E) → f ∗(R(E)) is a stable A1-equivalence with
fibrant codomain. This implies that f ∗ preserves stable A1-equivalences. �

Corollary 2.9. Let A be a commutative monoid in Spk. Given a regular k-scheme
X with structural map f : X → Spec(k), let us put AX = f ∗(R). Then, for any k-
morphism between regular k-schemes ϕ : X → Y , the induced map Lϕ∗(AY ) → AX is
an isomorphism in SH(X ).

Proof. It is clearly sufficient to prove this property when Y = Spec(k), in which case
this is a direct consequence of the preceding proposition. �

We will use repeatedly the following easy fact to get the continuity property.

Lemma 2.10. Let

ϕ∗ : T �T ′ :ϕ∗

be an adjunction of complete triangulated Sm-fibred categories. We make the follow-
ing assumptions:

(i) There is a small family c of cartesian sections of T such that T is c-generated.
(ii) The functor ϕ∗ is conservative (or equivalently, T ′ is ϕ∗(c)-generated; by

abuse, we will then write ϕ∗(c)= c and will say that T ′ is c-generated).
(iii) The functor ϕ∗ commutes with the operation f ∗ for any morphism f ∈F .

Then, if T is continuous with respect to F , the same is true for T ′.
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Proof. Let c = (ci,?)i∈I . For any morphism f : Y → X in F , any object E ∈T ′(X ) and
any i ∈ I, one has a canonical isomorphism:

HomT ′(Y )(ci,Y , f ∗(E))=HomT ′(Y )(ϕ∗(ci,Y ), f ∗(E))'HomT (Y )(ci,Y ,ϕ∗ f ∗(E))

'HomT (Y )(ci,Y , f ∗ϕ∗(E)) .

This readily implies the lemma. �

Example 2.11. Let Regk be the category of regular k-schemes with morphisms all
morphisms of k-schemes.

Let (AX )X∈Regk be a cartesian section of the category of commutative monoids in
the category of Tate spectra (i.e. a strict commutative ring spectrum stable by pull-
backs with respect to morphisms in Regk). In this case, we have defined in [CDb,
7.2.11] a premotivic model category over Regk whose fiber AX -Mod over a scheme X
in Regk is the homotopy category of the symmetric monoidal stable model category of
AX -modules4 (i.e. of Tate spectra over S, equiped with an action of the commutative
monoid AX ). Since Corollary 2.9 ensures that (AX )X∈Regk is a homotopy cartesian
section in the sense of [CDb, 7.2.12], according to [CDb, 7.2.13], there exists a pre-
motivic adjunction:

LA : SH� A-Mod : OA

of triangulated premotivic categories over Regk, such that LA(E) = AS ∧E for any
spectrum E over a scheme S in Regk. Lemma 2.10 ensures that A-Mod is continuous
with respect to affine morphisms in Regk.

2.b. Motivic Eilenberg-MacLane spectra over regular k-schemes.

2.12. There is a canonical premotivic adjunction:

(2.12.1) ϕ∗ : SH�DM :ϕ∗

(see [CDb, 11.2.16]). It comes from an adjunction of the premotivic model categories
of Tate spectra built out of simplicial sheaves of sets and of complexes of sheaves
with transfers respectively (see 1.1):

(2.12.2) ϕ̃∗ : Sp�Sptr : ϕ̃∗.

In other words, we have ϕ∗ =Lϕ̃∗ and ϕ∗ =Rϕ̃∗ (strictly speaking, we can construct
the functors Lϕ̃∗ and Rϕ̃∗ so that these equalities are true at the level of objects). Re-
call in particular from [CDb, 10.2.16] that the functor ϕ̃∗ is composed by the functor
γ̃∗ with values in Tate spectra of Nisnevich sheaves of R-modules (without trans-
fers), which forgets transfers and by the functor induced by the right adjoint of the
Dold-Kan equivalence. We define, for any scheme X :

(2.12.3) HRX = ϕ̃∗(RX ) .

This is Voevodsky’s motivic Eilenberg-MacLane spectrum over X , originally defined
in [Voe98, 6.1]. In the case where X = Spec(K) for some commutative ring K , we
sometimes write

(2.12.4) HRK =HRSpecK .

4In order to apply this kind of construction, we need to know that the model category of symmetric
Tate spectra in simplicial sheaves satisfies the monoid axiom of Schwede and Shipley [SS00]. This is
proved explicitely in [Hoy, Lemma 4.2], for instance.
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According to [CDb, 6.3.9], the functor γ̃∗ preserves (and detects) stable A1-equiva-
lences. We deduce that the same fact is true for ϕ̃∗. Therefore, we have a canonical
isomorphism

HRX 'ϕ∗(RX )'Rϕ̃∗(RX ) .

The Tate spectrum HRX is a commutative motivic ring spectrum in the strict sense
(i.e. a commutative monoid in the category SpX ). We denote by HRX -Mod the homo-
topy category of HRX -modules. This defines a fibred triangulated category over the
category of schemes; see [CDb, Prop. 7.2.11].

The functor ϕ̃∗ being weakly monoidal, we get a natural structure of a commu-
tative monoid on ϕ̃∗(M) for any symmetric Tate spectrum with transfers M. This
means that the Quillen adjunction (2.12.2) induces a Quillen adjunction from the
fibred model category of HR-modules to the premotivic model category of symmetric
Tate spectra with transfers5, and thus defines an adjunction

(2.12.5) t∗ : HRX -Mod�DM(X ,R) : t∗

for any scheme X . For any object E of SH(X ), there is a canonical isomorphism
t∗(HRX ⊗L E) = ϕ∗(E). For any object M of DM(X ,R), when we forget the HRX -
module structure on t∗(M), we simply obtain ϕ∗(M).

Let f : X → S be a regular morphism of schemes. Then according to Proposition
2.8, f ∗ = L f ∗. In particular, the isomorphism τ f of SH(X ) can be lifted as a mor-
phism of strict ring spectra:

(2.12.6) τ̃ f : f ∗(HRS)→HRX .

Let Regk be the category of regular k-schemes as in Example 2.11.

Proposition 2.13. The adjunctions (2.12.5) define a premotivic adjunction

t∗ : HR-Mod�DM(−,R) : t∗

over the category Regk of regular k-schemes.

Proof. We already know that this is a an adjunction of fibred categories over Regk
and that t∗ is (strongly) symmetric monoidal. Therefore, it is sufficient to check that
t∗ commutes with the operations f] for any smooth morphism between regular k-
scheme f : X → S (via the canonical exchange map). For this, it is sufficient to check
what happens on free HRX -modules (because we are comparing exact functors which
preserve small sums, and because the smallest localizing subcategory of HRX -Mod
containing free HRX -modules is HRX -Mod). For any object E of SH(X ), we have, by
the projection formula in SH, a canonical isomorphism in HZS-Mod:

L f](HRX ⊗L E)'HRS ⊗L L f](E) .

Therefore, formula t∗(HRX ⊗L E) = ϕ∗(E) tells us that t∗ commutes with f] when
restricted to free HRX -modules, as required. �

5The fact that the induced adjunction is a Quillen adjunction is obvious: this readily comes from the
fact that the forgetful functor from HR-modules to symmetric Tate spectra preserves and detects weak
equivalences as well as fibrations (by definition).
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3. COMPARISON THEOREM: REGULAR CASE

The aim of this section is to prove the following result:

Theorem 3.1. Let R be a ring in which the characteristic exponent of k is invertible.
Then the premotivic adjunction of Proposition 2.13 is an equivalence of premotivic
categories over Regk. In particular, for any regular noetherian scheme of finite dimen-
sion X over k, we have a canonical equivalence of symmetric monoidal triangulated
categories

HRX -Mod'DM(X ,R) .

The preceding theorem tells us that the 6 operations constructed on DM(−,R) in
[CDb, 11.4.5], behave appropriately if one restricts to regular noetherian schemes of
finite dimension over k:

Corollary 3.2. Consider the notations of paragraph 2.12.

(1) The functors ϕ∗ and ϕ∗ commute with the operations f ∗, f∗ (resp. p!, p!) for
any morphism f (resp. separated morphism of finite type p) between regular
k-schemes.

(2) The premotivic category DM(−,R) over Regk satisfies:
• the localization property;
• the base change formula (g∗ f! ' f ′! g′∗, with notations of [CDb, 11.4.5,

(4)]);
• the projection formula ( f!(M⊗ f ∗(N))' f!(M)⊗N, with notations of [CDb,

11.4.5, (5)]).

Proof. Point (1) follows from the fact the premotivic adjunction (LHR,OHR) satis-
fies the properties stated for (ϕ∗,ϕ∗) and that they are true for (t∗, t∗) because it
is an equivalence of premotivic categories, due to Theorem 3.1. The first statement
of Point (2) follows from the fact that the localization property over Regk holds in
HR-Mod, and from the equivalence HR-Mod ' DM(−,R) over Regk; the remaining
two statements follow from Point (2) and the fact they are true for SH (see [Ayo07a]
in the quasi-projective case and [CDb, 2.4.50] in the general case). �

The proof of Theorem 3.1 will be given in Section 3.c (page 18), after a few prepa-
rations. But before that, we will explain some of its consequences.

3.3. Let f : X → S be a morphism of schemes. Since (2.12.1) is an adjunction of fibred
categories over the category of schemes, we have a canonical exchange transforma-
tion (see [CDb, 1.2.5]):

(3.3.1) Ex( f ∗,ϕ∗) : L f ∗ϕ∗ →ϕ∗L f ∗.

Evaluating this natural transformation on the object 1S gives us a map:

τ f : L f ∗(HRS)→HRX .

Voevodsky conjectured in [Voe02] the following property:

Conjecture (Voevodsky). The map τ f is an isomorphism.

When f is smooth, the conjecture is obviously true as Ex( f ∗,ϕ∗) is an isomor-
phism.
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Remark 3.4. The preceding conjecture of Voevodsky is closely related to the local-
ization property for DM. In fact, let us also mention the following result which was
implicit in [CDb] – as it will not be used in the sequel we leave the proof as an
exercise for the reader.6

Proposition 3.5. We use the notations of Par. 3.3. Let i : Z → S be a closed immer-
sion. Then the following properties are equivalent:

(i) The premotivic triangulated category DM satisfies the localization property
with respect to i (see [CDb, 2.3.2]).

(ii) The natural transformation Ex(i∗,ϕ∗) is an isomorphism.

From the case of smooth morphisms, we get the following particular case of the
preceding conjecture.

Corollary 3.6. The conjecture of Voevodsky holds for any morphism f : X → S of
regular k-schemes.

Proof. By transitivity of pullbacks, it is sufficient to consider the case where f = p
is the structural morphism of the k-scheme S, with k a prime field (in particular,
with k perfect). Since DM is continuous with respect to projective systems of regular
k-schemes with affine transition maps (because this is the case for HR-modules,
using Theorem 3.1), we are reduced to the case where S is smooth over k, which is
trivial. �

Remark 3.7. The previous result is known to have interesting consequences for the
motivic Eilenberg-MacLane spectrum HRX where X is an arbitrary noetherian reg-
ular k-scheme of finite dimension.

For example, we get the following extension of a result of Hoyois on a theorem first
stated by Hopkins and Morel (for p = 1). Given a scheme X as above, the canonical
map

MGLX /(a1,a2, . . .)[1/p]→HZX [1/p]

from the algebraic cobordism ring spectrum modulo generators of the Lazard ring is
an isomorphism up to inverting the characteristic exponent of k. This was proved in
[Hoy], for the base field k, or, more generally, for any essentially smooth k-scheme
X .

This shows in particular that HZX [1/p] is the universal oriented ring Z[1/p]-
linear spectrum over X with additive formal group law.

All this story remains true for arbitrary noetherian k-schemes of finite dimension
if we are eager to replace HZX by its cdh-local version: this is one of the meanings of
Theorem 5.1 below. Note that, since Spitweck’s version of the motivic spectrum has
the same relation with algebraic cobordism (see [Spi, Theorem 11.3]), it coincides
with the cdh-local version of HZX as well, at least up to p-torsion.

Definition 3.8. Let X be a regular k-scheme with structural map f : X → Spec(k).
We define the relative motivic Eilenberg-MacLane spectrum of X /k by the formula

HRX /k = f ∗(HRSpec(k))

(where f ∗ : Spk →SpX is the pullback functor at the level of the model categories).

6Hint: use the fact that ϕ∗ commutes with j] ([CDb, 6.3.11] and [CDb, 11.4.1]).
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Remark 3.9. By virtue of Propositions 2.8 and Corollary 3.6, we have canonical iso-
morphisms

L f ∗(HRSpec(k))'HRX /k 'HRX .

Note that, the functor f ∗ being symmetric monoidal, each relative motivic Eilenberg-
MacLane spectrum HRX /k is a commutative monoid in SpX . This has the following
consequences.

Proposition 3.10. For any regular k-scheme X , there is a canonical equivalence of
symmetric monoidal triangulated categories

HRX /k-Mod'HRX -Mod .

In particular, the assignment X 7→HRX -Mod defines a premotivic symmetric monoidal
triangulated category HR-Mod over Regk, which is continuous with respect to any
projective system of regular k-schemes with affine transition maps.

Moreover the forgetful functor

HR-Mod→SH

commutes with L f ∗ for any k-morphism f : X → Y between regular schemes, and
with L f] for any smooth morphism of finite type between regular schemes.

Proof. Since the canonical morphism of commutative monoids HRX /k → HRX is a
stable A1-equivalence the first assertion is a direct consequence of [CDb, Prop. 7.2.13].
The property of continuity is a particular case of Example 2.11, with RX = HRX /k.
For the last part of the proposition, by virtue of the last assertion of [CDb, Prop.
7.1.11 and 7.2.12] we may replace (coherently) HRX by a cofibrant monoid RX (in
the model category of monoids in SpX ), in order to apply [CDb, Prop. 7.2.14]: The
forgetful functor from RX -modules to SpX is a left Quillen functor which preserves
weak equivalences and commutes with f ∗ for any map f in Regk: therefore, this
relation remains true after we pass to the total left derived functors. The case of L f]
is similar. �

We now come back to the aim of proving Theorem 3.1.

3.a. Some consequences of continuity.

Lemma 3.11. Consider the cartesian square of schemes below.

X ′ q //
g ��

X
f��

Y ′ p // Y

We assume that Y ′ is the projective limit of a projective system of Y -schemes (Yα) with
affine flat transition maps, and make the following assumption. For any index α, if
pα : Yα → Y denotes the structural morphism, the base change morphism associated
to the pullback square

Xα
qα //

gα ��

X
f��

Yα
pα // Y

in DM(Yα,R) is an isomorphism: Rp∗
αR f∗ 'Rgα,∗Lq∗

α.
Then the base change morphism Lp∗R f∗ →Rg∗Lq∗ is invertible in DM(Y ′,R).
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Proof. We want to prove that, for any object E of DM(X ,R), the map

Lp∗R f∗(E)→Rg∗Lq∗(E)

is invertible. For this, it is sufficient to prove that, for any constructible object M of
DM(Y ′,R), the map

Hom(M,Lp∗R f∗(E))→Hom(M,Rg∗Lq∗(E))

is bijective. Since DM(−,R) is continuous with respect to dominant affine mor-
phisms, we may assume that there exists an index α0 and a constructible object
Mα0 , such that M 'Lp∗

α0
(Mα0 ). For α>α0, we will write Mα for the pullback of Mα0

along the transition map Yα→Yα0 . By continuity, we have a canonical identification

lim−−→
α

Hom(Mα,Lp∗
αR f∗(E))'Hom(M,Lp∗R f∗(E)) .

On the other hand, by assumption, we also have:

lim−−→
α

Hom(Mα,Lp∗
αR f∗(E))' lim−−→

α

Hom(Mα,Rgα,∗Lq∗
α(E))

' lim−−→
α

Hom(Lg∗
α(Mα),Lq∗

α(E)) .

The flatness of the maps pβα ensures that the transition maps of the projective sys-
tem (Xα) are also affine and dominant, so that, by continuity, we get the isomor-
phisms

lim−−→
α

Hom(Lg∗
α(Mα),Lq∗

α(E))'Hom(Lg∗(M),Lq∗(E))

'Hom(M,Rg∗Lq∗(E)) ,

and this achieves the proof. �

Proposition 3.12. Let i : Z → S be a closed immersion between regular k-schemes.
Assume that S is the limit of a projective system of smooth separated k-schemes of
finite type, with affine flat transition maps. Then DM(−,R) satisfies the localization
property with respect to i (cf. [CDb, Def. 2.3.2]).

Proof. According to [CDb, 11.4.2], the proposition holds when S is smooth of finite
type over k – the assumption then implies that Z is smooth of finite type over k.

According to [CDb, 2.3.18], we have only to prove that for any smooth S-scheme
X , putting XZ ×S Z, the canonical map in DM(S,R)

(3.12.1) MS(X /X − XZ)→ i∗
(
MZ(XZ)

)
is an isomorphism. This property is clearly local for the Zariski topology, so that we
can even assume that both X and S are affine.

Lifting the ideal of definition of Z, one can assume that Z lifts to a closed sub-
scheme iα : Zα ,→ Sα. We can also assume that iα is regular (apply [GD67, 9.4.7] to
the normal cone of the iα). Thus Zα is smooth over k. Because X /S is affine of finite
presentation, it can be lifted to a smooth scheme Xα/Sα and because X /S is smooth
we can assume Xα/Sα is smooth.

Put XZ,α = Xα×Sα
Zα. Then, applying localization with respect to iα, we obtain

that the canonical map:

(3.12.2) MSα
(Xα/Xα− XZ,α)→ iα∗(MZα

(
XZ,α)

)
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is an isomorphism in DM(Sα,R). Of course the analogue of (3.12.2) remains an iso-
morphism for any α′ >α. Given α′ >α, let us consider the cartesian square

Zα′
iα′ //

g
��

Sα′

f��
Zα

iα // Sα

in which f : Xα′ → Xα denotes the transition map. Then according to [CDb, Prop.
2.3.11(1)], the localization property with respect to iα and iα′ implies that the canon-
ical base change map f ∗ iα,∗ → iα′,∗g∗ is an isomorphism. By virtue of Lemma 3.11,
if ϕ : S → Sα denote the canonical projection, the pullback square

Z i //

ψ
��

S
ϕ
��

Zα
iα // Sα

induces a base change isomorphism Lϕ∗ iα,∗ → i∗Lψ∗. Therefore, the image of the
map (3.12.2) by Lϕ∗ is isomorphic to the map (3.12.1), and this ends the proof. �

3.b. Motives over fields. This section is devoted to prove Theorem 3.1 when one
restricts to field extensions of k:

Proposition 3.13. Consider the assumptions of 3.1 and let K be an extension field
of k. Then the functor

t∗ : HRK -Mod →DM(K ,R)
is an equivalence of symmetric monoidal triangulated categories.

In the case where K is a perfect field, this result is proved in [HKØ, 5.8] in a
slightly different theoretical setting. The proof will be given below (page 17), after a
few steps of preparation.

3.14. In the end, the main theorem will prove the existence of very general trace
maps, but the proof of this intermediate result requires that we give a preliminary
construction of traces in the following case.

Let K be an extension field of k, and f : Y → X be a flat finite surjective morphism
of degree d between integral K-schemes. There is a natural morphism t f : RX →
f](RY ) in DM(X ,R), defined by the transposition of the graph of f . The composition

f](RY )→ RX
t f−→ f](RY )

is d times the identity of f](RY ); see [CDb, Prop. 9.1.13]. Moreover, if f is radicial
(i.e. if the field of functions on Y is a purely inseparable extension of the field of
functions of X ), then the composition

RX
t f−→ f](RY )

f−→ RX

is d times the identity of RX ; see [CDb, Prop. 9.1.14]. In other words, in the lat-
ter case, since p is invertible, the co-unit map f](RY ) → RX is an isomorphism in
DM(X ,R).

Lemma 3.15. Under the assumptions of the previous paragraph, if f is radicial, then
the pullback functor

L f ∗ : DM(X ,R)→DM(Y ,R)
is fully faithful.
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Proof. As the inclusion DM(−,R) ⊂ DM(−,R) is fully faithful and commutes with
L f ∗, it is sufficient to prove that the functor

f ∗ : DM(X ,R)→DM(Y ,R)

is fully faithful. In other words, we must see that the composition of f ∗ with its left
adjoint f] is isomorphic to the identity functor (through the co-unit of the adjunction).
For any object M of DM(X ,R), we have a projection formula:

f] f ∗(M)' f](RY )⊗L
R M .

Therefore, it is sufficient to check that the co-unit

f](RY )' RX

is an isomorphism. Since f is radicial, its degree must be a power of p, hence must
be invertible in R. An inverse is provided by the map t f : RX → f](RY ). �

3.16. These computations can be interpreted in terms of HR-modules as follows (we
keep the assumptions of 3.14).

Using the internal Hom of DM(X ,R), one gets a morphism

Tr f : R f∗(RY )→ RX

Since the right adjoint of the inclusion DM(−,R) ⊂ DM(−,R) commutes with R f∗,
the map Tr f above can be seen as a map in DM(X ,R). Similarly, since the functor
t∗ : DM(−,R)→HR-Mod commutes with R f∗, we get a trace morphism

Tr f : R f∗HRY →HRX

in HRX -Mod. For any HRX -module E, we obtain a trace morphism

Tr f : R f∗L f ∗(E)→ E

as follows. Since we have the projection formula

R f∗(HRY )=R f∗L f ∗(HRX )'R f∗(1Y )⊗L HRX ,

the unit 1X →HRX induces a map

T̃r f : R f∗(1Y )→R f∗(1Y )⊗L HRX 'R f∗L f ∗(HRX )'R f∗(HRY )
Tr f−−−→HRX .

For any HRX -module E, tensoring the map T̃r f with identity of E and composing
with the action HRX ⊗L E → E leads to a canonical morphism in HRX -Mod:

Tr f : R f∗L f ∗(E)'R f∗(1Y )⊗L E → E .

By construction of these trace maps, we have the following lemma.

Lemma 3.17. Under the assumptions of paragraph 3.14, for any HRX -module E,
the composition of Tr f with the unit of the adjunction between L f ∗ and R f∗

E →R f∗L f ∗(E)
Tr f−−−→ E

is d times the identity of E. If, moreover, f is radicial, then the composition

R f∗L f ∗(E)
Tr f−−−→ E →R f∗L f ∗(E)

is also d times the identity of R f∗L f ∗(E).
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This also has consequences when looking at the HRK -modules associated to X
and Y . To simplify the notations, we will write

HR(U)=HRK ⊗LΣ∞(U+)

for any smooth K-scheme U .

Lemma 3.18. Under the assumptions of paragraph 3.14, if d is invertible in R, and if
both X and Y are smooth over K , then HR(X ) is a direct factor of HR(Y ) in HRK -Mod.

Proof. Let p : X → Spec(K) and q : Y → Spec(K) be the structural maps of X and Y ,
respectively. Since pf = q, for any HRK -module E, we have:

Hom(HR(X ),E)=Hom(HRX , p∗(E))

Hom(HR(Y ),E)=Hom(HRX ,R f∗L f ∗p∗(E)) .

Therefore, this lemma is a translation of the first assertion of Lemma 3.17 and of the
Yoneda Lemma. �

Proof of Proposition 3.13. We first consider the case of a perfect field K . The refer-
ence is [HKØ, 5.8]. We use here a slightly different theoretical setting than these
authors so we give a proof to convince the reader.

Because t∗ preserves the canonical compact generators of both categories, we need
only to prove it is fully faithful on a family of compact generators of HRK -Mod (see
[CDb, Corollary 1.3.21]). For any HRK -modules E, F belonging to a suitable gener-
ating family of HRK -Mod, and and any integer n, we want to prove that the map

(3.18.1) HomHRK -Mod(E,F[n]) t∗−→HomDM(K ,R)(t∗(E), t∗(F)[n])

For this purpose, using the method of [Rio05, Sec. 1], with a small change indicated
below, we first prove that HRK -Mod is generated by objects of the form HR(X )(i) for
a smooth projective K-scheme X and an integer i. Since these are compact, it is
sufficient to prove the following property: for any HRK -module M such that

HomHRK -Mod(HR(X )(p)[q], M)= 0

for any integers p and q, we must have M ' 0. To prove the vanishing of M, it is suf-
ficient to prove the vanishing of M⊗Z(`) for any prime ` 6= p. On the other hand, for
any compact object C, the formation of Hom(C,−) commutes with tensoring by Z(`);
therefore, we may assume R to be a Z(`)-algebra for some prime number ` 6= p. Under
this additional assumption, we will prove that, for any smooth connected K-scheme
X , the object HR(X ) = HRk ⊗L Σ∞(X+) is in the thick subcategory P generated by
Tate twists of HRK -modules of the form HR(W) for W a smooth projective K-scheme.
Using the induction principle explained by Riou in loc. cit., on the dimension d of X ,
we see that, given any couple (Y ,V ), where Y is a smooth K-scheme of dimension
d, and V is a dense open subscheme of Y , the property that HR(Y ) belongs to P is
equivalent to the property HR(V ) belongs to P . Therefore, it is enough to consider
the case of a dense open subscheme of X which we can shrink at will. In particular,
applying Gabber’s theorem [ILO14, IX, 1.1], we can assume there exists a flat, finite,
and surjective morphism, f : Y → X which is of degree prime to `, and such that Y is
a dense open subscheme of a smooth projective k-scheme. Since HR(Y ) ∈P , Lemma
3.18 concludes.

We now are reduced to prove that the map (3.18.1) is an isomorphism when E =
HR(X )(i) and F = HR(Y )( j) for X and Y smooth and projective over K . Say d is the
dimension of Y . Then according to [Dég08a, Sec. 5.4], HRK (Y ) is strongly dualizable
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with strong dual HRK (Y )(−d)[−2d]. Then the result follows from the fact that the
two members of (3.18.1) compute the motivic cohomology group of X ×K Y in degree
(n−2d, j− i−d) (in a compatible way, because the functor t∗ is symmetric monoidal).
This achieves the proof of Proposition 3.13 in the case where the ground field K is
perfect.

Let us now consider the general case. Again, we are reduced to prove the map
(3.18.1) is an isomorphism whenever E and F are compact (hence constructible). Let
K be a finite extension of k, and let L/K be a finite totally inseparable extension of
fields, with corresponding morphism of schemes f : Spec(L) → Spec(K). According
to Lemma 3.15, the functor L f ∗ : DM(K ,R) → DM(L,R) is fully faithful. Moreover,
the pullback functor L f ∗ : HRK -Mod → HRL-Mod is fully faithful as well; see the
last assertion of Lemma 3.17 (and recall that the degree of the extension L/K must
be a power of p, whence is invertible in R). Thus, by continuity of the premotivic
categories DM(−,R) and HR-Mod (see Examples 2.6(2) and 2.11), Proposition 2.7
gives the following useful lemma:

Lemma 3.19. Let K s be the inseparable closure of K (i.e. the biggest purely insep-
arable extension of K in some algebraic closure of K). Then the following pullback
functors:

DMc(K ,R)→DMc(K s,R) and HRK -Modc →HRK s -Modc

are fully faithful.

With this lemma in hands, to prove that (3.18.1) is an isomorphism for con-
structible HRK -modules E and F, we can replace the field K by the perfect field
K s, and this proves Proposition 3.13 in full generality. �

3.c. Proof in the regular case. In the course of the proof of Theorem 3.1, we wil
use the following lemma:

Lemma 3.20. Let T and S be regular k-schemes and f : T → S be a morphism of
k-schemes.

(1) If T is the limit of a projective system of S-schemes with dominant affine
smooth transition morphisms, then t∗ commutes with f ∗.

(2) If f is a closed immersion, and if S is the limit of a projective system of smooth
separated k-schemes of finite type with flat affine transition morphims, then
t∗ commutes with f ∗.

(3) If f is an open immersion, then t∗ commutes with f!.

Proof. The forgetful functor OHR : HR-Mod → SH is conservative, and it commutes
with f ∗ for any morphism f and with j! for any open immersion; see the last asser-
tion of [CDb, Prop. 7.2.14]. Therefore, it is sufficient to check each case of this lemma
after replacing t∗ by ϕ∗.

Then, case (1) follows easily by continuity of DM and SH with respect to dominant
maps, and from the case where f is a smooth morphism. Case (2) was proved in
Proposition 3.12. (taking into account 3.5). Then case (3) finally follows from results
of [CDb]: in fact ϕ∗ is defined as the following composition:

DM(S,R)
Lγ∗−−−→DA1 (S,R) K−→SH(S)

with the notation of [CDb, 11.2.16] (Λ= R). The fact K commutes with j! is obvious
and for Lγ∗, this is [CDb, 6.3.11]. �
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To be able to use the refined version of Popescu’s theorem proved by Spivakovsky
(see [Spi99, Th. 10.1], “resolution by smooth sub-algebras”), we will need the follow-
ing esoteric tool extracted from an appendix of Bourbaki (see [Bou93, IX, Appendice]
and, in particular, Example 2).

Definition 3.21. Let A be a local ring with maximal ideal m.
We define the ∞-gonflement (resp. n-gonflement) of A as the localization of the

polynomial A-algebra A[(xi)i∈N] (resp. A[(xi)0≤i≤n]) with respect to the prime ideal
m.A[xi, i ∈N] (resp. m.A[xi,0≤ i ≤ n]).

3.22. Let B (resp. Bn) be the ∞-gonflement (resp. n-gonflement) of a local noetherian
ring A. We will use the following facts about this construction, which are either
obvious or follow from loc. cit., Prop. 2:

(1) The rings B and Bn are noetherian.
(2) The A-algebra Bn is the localization of a smooth A-algebra.
(3) The canonical map Bn → Bn+1 is injective.
(4) B = lim−−→n∈N Bn, with the obvious transition maps.

We will need the following easy lemma:

Lemma 3.23. Consider the notations above. Assume that A is a local henselian ring
with infinite residue field. Then for any integer n ≥ 0, the A-algebra Bn is a filtered
inductive limit of its smooth and split sub-A-algebras.

Proof. We know that Bn is the union of A-algebras of the form A[x1, . . . , xn][1/ f ] for a
polynomial f ∈ A[x1, ..., xn] whose reduction modulo m is non zero. Let us consider the
local scheme X =Spec(A), s be its closed point and put Un( f )=Spec(A[x1, . . . , xn][1/ f ])
for a polynomial f as above. To prove the lemma, it is sufficient to prove that Un( f )/X
admits a section. By definition, the fiber Un( f )s of Un( f ) at the point s is a non empty
open subscheme. As κ(s) is infinite by assumption, Un( f )s admits a κ(s)-rational
point. Thus Un( f ) admits an S-point because X is henselian and Un( f )/X is smooth
(see [GD67, 18.5.17]). �

Combining properties (1)-(4) above with the preceding lemma, we get the follow-
ing property:

(G) Let A be a noetherian local henselian ring with infinite residue field, and B
be its ∞-gonflement. Then B is a noetherian A-algebra which is the filtering
union of a family (Bα)α∈I of smooth split sub-A-algebras of B.

Lemma 3.24. Consider the notations of property (G). Then the pullback along the
induced map p : X ′ = Spec(B) → X = Spec(A) defines a conservative functor Lp∗ :
SH(X )→SH(X ′).

Proof. Let E be an object of SH(X ) such that Lp∗(E)= 0 in SH(X ′). We want to prove
that E = 0. For this, it is sufficient to prove that, for any constructible object C of
SH(X ), we have

Hom(C,E)= 0 .

Given the notations of property (G), and any index α ∈ I, let Ci and E i be the respec-
tive pullbacks of C and E along the structural map pα : Spec(Bα) → Spec(A). Then,
by continuity, the map

lim−−→
α

Hom(Cα,Eα)→Hom(Lp∗(C),Lp∗(E))
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is an isomorphism, and thus, according to property (G), the map

Hom(C,E)→Hom(Lp∗(C),Lp∗(E))

is injective because each map pα is a split epimorphism. �

In order to use ∞-gonflements in HR-modules without any restriction on the size
of the ground field, we will need the the following trick, which makes use of transfers
up to homotopy:

Lemma 3.25. Let L/K be a purely transcendental extension of fields of transcendence
degree 1, with K perfect, and let p : Spec(L) → Spec(K) be the induced morphism of
schemes. Then, for any objects M and N of DM(K ,R), if M is compact, then the
natural map

HomDM(K ,R)(M, N)→HomDM(K ,R)(M,Rp∗ p∗(N))=HomDM(K ,R)(Lp∗(M),Lp∗(N))

is a split embedding. In particular, the pullback functor

Lp∗ : DM(K ,R)→DM(L,R)

is conservative.

Proof. Let I be the cofiltering set of affine open neighbourhoods of the generic point
of A1

K ordered by inclusion. Obviously, Spec(L) is the projective limit of these open
neighbourhoods. Thus, using continuity for DM with respect to dominant maps, we
get that:

Hom(M,Rp∗Lp∗(N))= lim−−→
V∈Iop

Hom(M(V ),Hom(M, N)) .

We will use the language of generic motives from [Dég08b]. Recall that M(L) =
“lim←−−M(V )” is a pro-motive in DM(K), so that the preceding identification now takes
the following form.

Hom(M,Rp∗Lp∗(N))=Hom(M(L),Hom(M, N)) .

Since, according to [Dég08b, Cor. 6.1.3], the canonical map M(L) → M(K) is a split
epimorphism of pro-motives, this proves the first assertion of the lemma. The second
assertion is a direct consequence of the first and of the fact that the triangulated
category DM(K ,R) is compactly generated. �

Proof of Theorem 3.1. We want to prove that for a regular noetherian k-scheme of
finite dimension S, the adjunction:

t∗ : HRS-Mod �DM(S,R) : t∗
is an equivalence of triangulated categories. Since the functor t∗ preserves compact
objects, and since there is a generating family of compact objects of DM(S,R) in the
essential image of the functor t∗, it is sufficient to prove that t∗ is fully faithful on
compact objects (see [CDb, Corollary 1.3.21]): we have to prove that, for any compact
HRS-module M, the adjunction map ηM : M → t∗t∗(M) is an isomorphism.
First case: We first assume that S is essentially smooth – i.e. the localization of
a smooth k-scheme. We proceed by induction on the dimension of S. The case of
dimension 0 follows from Proposition 3.13.

We recall that the category HR-Mod is continuous on Regk (3.10). Let x be a point
of S and Sx be the localization of S at x, px : Sx → S the natural projection. Then it
follows from [CDb, Prop. 4.3.9] that the family of functors:

p∗
x : HRS-Mod→HRSx -Mod, x ∈ S
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is conservative.
Since p∗

x commutes with t∗ (trivial) and with t∗ (according to Lemma 3.20), we
can assume that S is a local essentially smooth k-scheme.

To prove the induction case, let i (resp. j) be the immersion of the closed point x
of S (resp. of the open complement U of the closed point of S). Since the localization
property with respect to i is true in HR-Mod (because it is true in SH, using the last
assertions of Proposition 3.10) and in DM (because of Proposition 3.12 that we can
apply because we have assumed that S is essentially smooth), we get two morphisms
of distinguished triangles:

j! j∗(M) //

��

M //

��

i∗ i∗(M)
��

// j! j∗(M)[1]
��

j! j∗(t∗t∗(M)) //

o��
t∗t∗(M) // i∗ i∗(t∗t∗(M))

o��

// j! j∗(t∗t∗(M))[1]
o��

j!t∗t∗ j∗(M) // t∗t∗(M) // i∗t∗t∗ i∗(M) // j!t∗t∗ j∗(M)[1]

The vertical maps on the second floor are isomorphisms: both functors t∗ and t∗
commute with j∗ (as t∗ is the left adjoint in a premotivic adjunction, it commutes
with j! and j∗, and this implies that t∗ commutes with j∗, by transposition); the
functor t∗ commutes with i∗ because it commutes with j!, j∗ and i∗, and because the
localization property with respect to i is verified in HR-Mod as well as in DM); finally,
applying the third assertion of Lemma 3.20 for f = j, this implies that the functor t∗
commutes with i∗. To prove that the map ηM is an isomorphism, it is thus sufficient
to treat the case of j!η j∗(M) and of i∗ηi∗(M). This means we are reduced to the cases
of U and Spec(κ(x)), which follow respectively from the inductive assumption and
from the case of dimension zero.

General case: Note that the previous case shows in particular the theorem for any
smooth k-scheme. Assume now that S is an arbitrary regular noetherian k-scheme.
Using [CDb, Prop. 4.3.9] again, and proceeding as we already did above (but consid-
ering limits of Nisnevich neighbourhoods instead of Zariski ones), we may assume
that S is henselian. Let L = k(t) be the field of rational functions, and let us form the
following pullback square.

S′ q //

g
��

S

f
��

Spec(k(t))
p // Spec(k)

Then the functor
Rp∗Lp∗ : HRk-Mod→HRk-Mod

is conservative: this follows right away from Lemma 3.25 and Proposition 3.13. This
implies that the functor

Lq∗ : HRS-Mod→HRS′ -Mod

is conservative. To see this, let us consider an object E of HRS-Mod such that
Lq∗(E) = 0. To prove that E = 0, it is sufficient to prove that Hom(M,E) = 0 for
any compact object M of HRS-Mod. Formula

Hom(HRk,R f∗Hom(M,E))'Hom(M,E)
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implies that it is sufficient to check that R f∗Hom(M,E) = 0 for any compact object
M (where Hom is the internal Hom of HRS-Mod).

Since the functor Rp∗Lp∗ is conservative, it is thus sufficient to prove that

Rp∗Lp∗R f∗Hom(M,E)= 0 .

We thus conclude with the following computations (see [CDb, Propositions 4.3.11 and
4.3.14]).

Rp∗Lp∗R f∗Hom(M,E)'Rp∗Rg∗Lq∗Hom(M,E)

'Rp∗Rg∗Hom(Lq∗(M),Lq∗(E))= 0

In conclusion, since the functor Lq∗ commutes with t∗ (see Lemma 3.20 (1)), we may
replace S by S′ and thus assume that the residue field of S is infinite. Let B be the
∞-gonflement of A = Γ(S,OS) (Definition 3.21), and f : T = Spec(B) → S be the map
induced by the inclusion A ⊂ B. We know that the functor

L f ∗ : HRS-Mod→HRT -Mod

is conservative: as the forgetful functor HR-Mod → SH is conservative and com-
mutes with L f ∗, this follows from Lemma 3.24 (or one can reproduce the proof of
this lemma, which only used the continuity property of SH with respect to projective
systems of schemes with dominant affine transition morphisms). Similarly, it follows
again from Lemma 3.20 (1) that the functor t∗ commutes with L f ∗. As the functor t∗
commutes with L f ∗, it is sufficient to prove that the functor t∗ is fully faithful over
T, and it is still sufficient to check this property on compact objects. Since the ring
B is noetherian and regular, and has a field of functions with infinite transcendance
degree over the perfect field k (see 3.22), it follows from Spivakovsky’s refinement
of Popescu’s Theorem [Spi99, 10.1] that B is the filtered union of its smooth subal-
gebras of finite type over k. In other terms, T is the projective limit of a projective
system of smooth affine k-schemes of finite type (Tα) with dominant transition maps.
Therefore, by continuity (see Examples 2.11 and 2.6(2)), we can apply Proposition 2.7
twice and see that the functor

2-lim−−→
α

HRTα -Modc 'HRT -Modc → 2-lim−−→
α

DMc(Tα,R)'DMc(T,R)

is fully faithful, as a filtered 2-colimit of functors having this property. �

4. MORE MODULES OVER MOTIVIC EILENBERG-MACLANE SPECTRA

4.1. Given a scheme X , let Mon(X ) be the category of unital associative monoids in
the category of symmetric Tate spectra SpX . The forgetful functor

U : Mon(X )→SpX

has a left adjoint, the free monoid functor:

F : SpX →Mon(X ) .

Since the stable model category of symmetric Tate spectra satisfies the monoid axiom
(see [Hoy, Lemma 4.2]), by virtue of a well known theorem of Schwede and Shipley
[SS00, Theorem 4.1(3)], the category Mon(X ) is endowed with a combinatorial model
category structure whose weak equivalences (fibrations) are the maps whose image
by U are weak equivalences (fibrations) in SpX ; furthermore, any cofibrant monoid
is also cofibant as an object of SpX .
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4.2. We fix once and for all a cofibrant resolution

HR′ →HRk

of the motivic Eilenberg-MacLane spectrum HRk in the model category Mon(k).
Given a k-scheme X with structural map f : X →Spec(k), we define

HRX /k = f ∗(HR′)

(where f ∗ denotes the pullback functor in the premotivic model category Sp). The
family (HRX /k)X is a cartesian section of the Sm-fibred category of monoids in Sp
which is also homotopy cartesian (as we have an equality L f ∗(HRk) = HRX /k). We
write HRX /k-Mod for the homotopy category of (left) HRX /k-modules.

This notation is in conflict with the one introduced in Definition 3.8. This conflict
disappears up to weak equivalence7: when X is regular, the comparison map

f ∗(HR′)→ f ∗(HRk)

is a weak equivalence (Proposition 2.8). For X regular, HRX /k is thus a cofibrant
resolution of HRX in the model category Mon(X ). In particular, in the case where X
is regular, we have a canonical equivalence of triangulated categories:

HRX /k-Mod'HRX -Mod .

Proposition 4.3. The assignment X 7→ HRX /k-Mod defines a motivic category over
the category of noetherian k-schemes of finite dimension which has the property of
continuity with respect to arbitrary projective systems with affine transition maps.
Moreover, when we let X vary, both the free HRX /k-algebra (derived) functor

LHRX /k : SH(X )→HRX /k-Mod

and its right adjoint
OHRX /k : HRX /k-Mod→SH(X )

are morphisms of premotivic triangulated categories over the category of k-schemes.
In other words both functors commute with L f ∗ for any morphism of k-schemes f ,
and with Lg] for any separated smooth morphism of k-schemes g.

Proof. The first assertion comes from [CDb, 7.2.13 and 7.2.18], the one about con-
tinuity is a direct application of Lemma 2.10, and the last one comes from [CDb,
7.2.14]. �

Remark 4.4. Since the functor OHRX /k : HRX /k-Mod→SH(X ) is conservative and pre-
serves small sums, the family of objects of the form HRX /k ⊗L Σ∞(Y+)(n), for any
separated smooth X -scheme Y and any integer n, do form a generating family of
compact objects. In particular, the notions of constructible object and of compact ob-
ject coincide in HRX /k-Mod (see for instance [CDa, Remarks 5.4.10 and 5.5.11], for a
context in which these two notions fail to coincide).

7In the proof of Theorem 3.1, we used the fact that the spectra HRX /k , as defined in Definition 3.8,
are commutative monoids of the model category of symmetric Tate spectra (because we used Poincaré
duality in an essential way, in the case where X is the spectrum of a perfect field). This new version of
motivic Eilenberg-MacLane spectra HRX /k is not required to be commutative anymore (one could force
this property by working with fancier model categories of motivic spectra (some version of the ‘positive
model structure’, as discussed in [Hor13] for instance), but these extra technicalities are not necessary for
our purpose. We shall use Theorem 3.1 in a crucial way, though.
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4.5. For any k-scheme X , we have canonical morphisms of monoids in SpX :

HRX /k → f ∗(HRk)→HRX .

In particular, we have a canonical functor

HRX /k-Mod→HRX -Mod , E 7→HRX ⊗L
HRX /k

E .

If we compose the latter with the functor

HRX -Mod t∗−→DM(X ,R)
Lρ!−−→DM(X ,R)

a∗
cdh−−−→DMcdh ,

we get a functor
HRX /k-Mod→DM(X ,R)

which defines a morphism a premotivic categories. In particular, this functor takes
it values in DMcdh(X ,R), and we obtain a functor

τ∗ : HRX /k-Mod→DMcdh(X ,R) .

As τ∗ preserves small sums, it has a right adjoint τ∗, and we finally get a premotivc
adjunction

τ∗ : HR(−)/k-Mod�DMcdh(−,R) : τ∗ .
Moreover, the functor τ∗ preserves the canonical generating families of compact ob-
jects. Therefore, the functor τ∗ is conservative and commutes with small sums.

5. COMPARISON THEOREM: GENERAL CASE

The aim of this section is to prove:

Theorem 5.1. Let k be a perfect field of characteristic exponent p. Assume that
p is invertible in the ring of coefficients R. For any noetherian k-scheme of finite
dimension X , the canonical functor

τ∗ : HRX /k-Mod→DMcdh(X ,R)

is an equivalence of categories.

The proof will take the following path: we will prove this statement in the case
where X is separated and of finite type over k. For this, we will use Gabber’s re-
finement of de Jong’s resolution of singularities by alterations, as well as descent
properties for HRk-modules proved by Shane Kelly to see that it is sufficient to con-
sider the case of a smooth k-scheme. In this situation, Theorem 5.1 will be a rather
formal consequence of Theorem 3.1. The general case will be obtained by a continuity
argument.

5.2. Let ` be a prime number. Following S. Kelly [Kel12], one defines the `dh-
topology on the category of noetherian schemes as the coarsest Grothendieck topol-
ogy such that any cdh-cover is an `dh-cover and any morphism of the form f : X →Y ,
with f finite, surjective, flat, and of degree prime to ` is an `dh-cover. For instance,
if {Ui → X }i∈I is a cdh-cover, and if, for each i one has a finite surjective flat mor-
phism Vi → Ui of degree prime to `, we get an `dh-cover {Vi → X }i∈I . In the case
where X is noetherian, one can show that, up to refinement, any `dh-cover is of this
form; see [Kel12, Prop. 3.2.5]. We will use several times the following non-trivial
fact, which is a direct consequence of Gabber’s theorem of uniformization prime to
` [ILO14, Exp. IX, Th. 1.1]: locally for the `dh-topology, any quasi-excellent scheme
is regular. In other words, for any noetherian quasi-excellent scheme X (e.g. any
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scheme of finite type over field), there exists a morphism of finite type p : X ′ → X
which is a covering for the `dh-topology and has a regular domain.

Proposition 5.3. Let F be a cdh-sheaf with transfers over X which is Z(`)-linear.
Then F is an `dh-sheaf and, for any integer n, the map

Hn
cdh(X ,F)→ Hn

`dh(X ,F)

is an isomorphism.

Proof. See [Kel12, Theorem 3.4.17]. �

Corollary 5.4. Assume that X is of finite dimension, and let C be a complex of Z(`)-
linear cdh-sheaves with transfers over X . Then the comparison map of hypercoho-
mologies

Hn
cdh(X ,C)→ Hn

`dh(X ,C)

is an isomorphism for all n.

Proof. Note that, for t = cdh or t = `dh, the forgetful functor from Z(`)-linear t-
sheaves with tranfers to Z(`)-linear t-sheaves on the big site of X is exact (this fol-
lows from the stronger results given by [Kel12, Prop. 3.4.15 and 3.4.16] for instance).
Therefore, we have a canonical spectral sequence of the form

Ep,q
2 = Hp

t (X ,Hq(C)t)⇒ Hp+q
t (X ,C) .

As the cohomological dimension with respect to the cdh-topology is bounded by the
dimension, this spectral sequence strongly converges for t = cdh. Proposition 5.3
thus implies that, for t = `dh, the groups Ep,q

2 vanish for p < 0 or p > dim X , so that
this spectral sequence also converges in this case. Therefore, as these two spectral
sequences agree on the E2 term, we conclude that they induce an isomorphism on
E∞. �

Corollary 5.5. For X of finite dimension and R an Z(`)-algebra, any object of the
triangulated category DMcdh(X ,R) satisfies `dh-descent (see [CDb, Definition 3.2.5]).

Lemma 5.6. Assume that X is of finite type over the perfect field k. Consider a prime
` which is distinct from the characteristic exponent of k. If R is a Z(`)-algebra, then
any compact object of HRX /k-Mod satisfies `dh-descent.

Proof. As X is allowed to vary, it is sufficient to prove that, for any constructible
HRX /k-modules M and any `dh-hypercover p• : U• → X , the map

(5.6.1) RΓ(X , M)→R lim←−−
∆n

RΓ(Un, p∗
nM)

is an isomorphism. The category of compact objects of HRX -Mod is the thick subcat-
egory generated by objects of the form R f∗HRY /k(p) for f : Y → X a projective map
and p an integer (this follows right away from the fact that te analogous property
is true in SH). We may thus assume that M = R f∗HRY /k(p). We can then form the
following pullback in the category of simplicial schemes.

V•
g //

q•
��

U•
p•
��

Y
f // X
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Using the proper base change formula for HR(−)/k-modules, we see that the map
(5.6.1) is isomorphic to the map

(5.6.2) RΓ(Y ,HRY /k(p))→R lim←−−
∆n

RΓ(Vn,HRVn/k(p)) .

By virtue of Kelly’s `dh-descent theorem [Kel12, Theorem 5.3.7], the map (5.6.2) is
an isomorphism. �

Lemma 5.7. Let X be a k-scheme of finite type. Assume that R is a Z(`)-algebra for
` a prime number distinct from the characteristic exponent of k. Let M be an object
of DM(X ,R) satisfying `dh-descent on the site of smooth k-schemes over X : for any
X -scheme of finite type Y which is smooth over k and any `dh-hypercover p : U• →Y
such that Un is smooth over k for any n ≥ 0, the map

RHomDM(X ,R)(R(Y ), M(p))→R lim←−−
∆n

RHomDM(X ,R)(R(Un), M(p))

is an isomorphism in the derived category of R-modules. Then, for any X -scheme Y
which is smooth over k and any integer p, the canonical map

RHomDM(X ,R)(R(Y ), M(p))→RHomDMcdh(X ,R)(R(Y ), Mcdh(p))

is an isomorphism.

Proof. Let us denote by R{1} the complex

R{1}= R(1)[1]= ker(R(A1
X − {0})→ R)

induced by the structural map A1 − {0}× X → X . We may consider that the object
M is a fibrant R{1}-spectrum in the category of complexes of R-linear sheaves with
transfers on the category of X -schemes of finite type. In particular, M corresponds
to a collection of complexes of R-linear sheaves with transfers (Mn)≥0 together with
maps R{1}⊗R Mn → Mn+1 such that we have the following properties.

(i) For any integer n ≥ 0 and any X -scheme of finite type Y , the map

Γ(Y , Mn)→RΓ(Y , Mn)

is an isomorphism in the derived category of R-modules (where RΓ stands
for the derived global section with respect to the Nisnevich topology).

(ii) For any integer n ≥ 0, the map

Mn →RHom(R{1}, Mn+1)

is an isomorphism in the derived category of Nisnevich sheaves with tranfers
(where RHom stands for the derived internal Hom).

We can choose another R{1}-spectum N = (Nn)n≥0 of cdh-sheaves with transfers,
together with a cofibration of spectra M → N such that Mn → Nn is a quasi-isomor-
phism locally for the cdh-topology, and such that each Nn satisfies cdh-descent: we do
this by induction as follows. First, N0 is any fibrant resolution of (M0)cdh for the cdh-
local model structure on the category of complexes of cdh-sheaves with transfers. If
Nn is already constructed, we denote by E the pushout of Mn along the map R{1}⊗R
Mn → R{1}⊗R Nn, and we factor the map Ecdh → 0 into a trivial cofibration followed
by a fibration in the cdh-local model structure.

Note that, for any X -scheme Y which is smooth over k, the map

H i(Y , Mn)→ H i(Y , Nn)
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is an isomorphism of R-modules for any integers i ∈ Z and n ≥ 0. Indeed, as, by
virtue of Gabber’s theorem of resolution of singularities by `dh-alterations [ILO14,
Exp. IX, Th. 1.1], one can write both sides with the Verdier formula in the following
way (because of our hypothesis on M and by construction of N):

H i(Y ,E)' lim−−→
U•→Y

H i(R lim←−−
∆ j

Γ(U j, Mn)) for E = Mn or E = Nn,

where U• → Y runs over the filtering category of `dh-hypercovers of Y such that
each U j is smooth over k. It is also easy to see from this formula that each Nn is
A1-homotopy invariant and that the maps

Nn →Hom(R{1}, Nn+1)

are isomorphisms. In other words, N satisfies the analogs of properties (i) and (ii)
above with respect to the cdh-topology. We thus get the following identifications for
p ≥ 0:

Γ(Y , Mp)=RHomDM(X ,R)(R(Y ), M(p))

Γ(Y , Np)=RHomDMcdh(X ,R)(R(Y ), Mcdh(p)) .

The case where p < 0 follows from the fact that, for d = −p, R(Y )(d)[2d] is then a
direct factor of R(Y ×Pd) (by the projective bundle formula in DMcdh(X ,R)). �

Lemma 5.8. Let X be a smooth separated k-scheme of finite type. Assume that R is
a Z(`)-algebra for ` a prime number distinct from the characteristic exponent of k. If
M and N are two constructible objects of DM(X ,R), then the comparison map

RHomDM(X ,R)(M, N)→RHomDMcdh(X ,R)(M, N)

is an isomorphism in the derived category of R-modules.

Proof. It is sufficient to prove this in the case where M = R(Y )(p) for Y a smooth
X -scheme and p any integer. By virtue of Lemma 5.7, it is sufficient to prove that
any constructible object of DM(X ,R) satisfies `dh-descent on the site of X -schemes
which are smooth over k. By virtue of Theorem 3.1, it is thus sufficient to prove
the analogous property for constructible HRX -modules, which follows from Lemma
5.6. �

Proof of Theorem 5.1. It is sufficient to prove that the restriction of the comparison
functor

(5.8.1) HRX /k-Mod→DMcdh(X ,R) , M 7→ τ∗(M)

to constructible HRX /k-modules is fully faithful (by virtue of [CDb, Corollary 1.3.21],
this is because both triangulated categories are compactly generated and because the
functor (5.8.1) preserves the canonical compact generators). It is easy to see that this
functor is fully faithful (on constructible objects) if and only if, for any prime ` 6= p, its
R⊗Z(`)-linear version has this property (this is because the functor (5.8.1) preserves
compact objects, which implies that its right adjoint commutes with small sums,
hence both functors commute with the operation of tensoring by Z(`)). Therefore, we
may assume that a prime number ` 6= p is given and that R is a Z(`)-algebra. We will
then prove the property of being fully faithful first in the case where X is of finite
type over k, and then, by a limit argument, in general.
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Assume that X is of finite type over k, and consider constructible HRX /k-modules
M and N. We want to prove that, the map

(5.8.2) RHomHRX /k-Mod(M, N)→RHomDMcdh(X ,R)(τ∗(M),τ∗(N))

is an isomorphism (here all the RHom’s take their values in the triangulated cat-
egory of topological S1-spectra; see [CDb, Theorem 3.2.15] for the existence (and
uniqueness) of such an enrichment). By virtue of Gabber’s theorem of resolution of
singularities by `dh-alterations [ILO14, Exp. IX, Th. 1.1], we can choose an `dh-
hypercover p• : U• → X , with Un smooth, separated, and of finite type over k for any
non negative integer n. We then have the following chain of isomorphisms, justi-
fied respectively by `dh-descent for constructible HRX /k-modules (Lemma 5.6), by
the comparison theorem relating the category of HR-modules with DM over regular
k-schemes (Theorem 3.1), by Lemma 5.8, and finally by the fact that any complex
of R-modules with transfers on the category of separated X -schemes of finite type
which satisfies cdh-descent must satisfy `dh-descent as well (Corollary 5.4):

RHomHRX /k-Mod(M, N)'R lim←−−
∆n

RHomHRUn -Mod(Lp∗
nM,Lp∗

nN)

'R lim←−−
∆n

RHomDM(Un,R)(Lp∗
n t∗(M),Lp∗

n t∗(N))

'R lim←−−
∆n

RHomDMcdh(Un,R)(Lp∗
n τ

∗(M),Lp∗
n τ

∗(N))

'RHomDMcdh(X ,R)(τ∗(M),τ∗(N)) .

It remains to treat the case of an arbitrary noetherian k-scheme X . It is easy to
see that the property that the functor (5.8.1) is fully faithful (on constructible ob-
jects) is local on X with respect to the Zariski topology. Therefore, we may assume
that X is affine with structural ring A. We can then write A as a filtering colimit of
k-algebras of finite type A i ⊂ A, so that we obtain a projective system of k-schemes
of finite type {X i = Spec A i}i with affine and dominant transition maps, such that
X = lim←−−i

X i. But then, by continuity (applying Proposition 2.7 twice, using Lemma
2.10 for HRX /k-Mod, and Example 2.6(2) for DMcdh(X ,R)), we have canonical equiv-
alences of categories at the level of constructible objects:

HRX /k-Modc ' 2-lim−−→
i

HRX i /k-Modc

' 2-lim−−→
i

DMcdh(X i,R)c

'DMcdh(X ,R)c .

In particular, the functor (5.8.1) is fully faithful on constructible objects, and this
ends the proof. �

Corollary 5.9. Let X be a regular noetherian k-scheme of finite dimension. Then the
canonical functor

DM(X ,R)→DMcdh(X ,R)

is an equivalence of symmetric monoidal triangulated categories.

Proof. This is a combination of Theorems 3.1 and 5.1, and of Proposition 3.10. �

Remark that we get for free the following result, which generalizes Kelly’s `dh-
descent theorem:
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Theorem 5.10. Let k be a field of characteristic exponent p, ` a prime number dis-
tinct from p, and R a Z(`)-algebra. Then, for any noetherian k-scheme of finite dimen-
sion X , any object of HRX /k-Mod satisfies `dh-descent.

Proof. This follows immediately from Theorem 5.1 and from Corollary 5.5. �

Similarly, we see that DMcdh is continuous is a rather general sense.

Theorem 5.11. The motivic category DMcdh(−,R) has the properties of localization
with respect to any closed immersion as well as the property of continuity with re-
spect to arbitrary projective systems with affine transition maps over the category of
noetherian k-schemes of finite dimension.

Proof. Since HR(−)/k-Mod has these properties, Theorem 5.1 allows to transfer it to
DMcdh(−,R). �

6. FINITENESS

6.1. In this section, all the functors are derived functors, but we will drop L or R
from the notations. The triangulated motivic category DMcdh(−,R) is endowed with
the six operations ⊗R , HomR , f ∗, f∗, f! and f ! which satisfy the usual properties; see
[CDb, Theorem 2.4.50] for a summary.

Recall that an object of DMcdh(X ,R) is constructible if and only if it is compact.
Here is the behaviour of the six operations with respect to constructible objects in
DMcdh(−,R), when we restrict ourselves to k-schemes (see [CDb, 4.2.5, 4.2.6, 4.2.10,
4.2.12]):

(i) constructible objects are stable by tensor products;
(ii) for any morphism f : X → Y , the functor f ∗ : DMcdh(Y ,R) → DMcdh(X ,R)

preserves constructible objects;
(iii) The property of being constructible is local for the Zariski topology;
(iii) given a closed immersion i : Z → X with open complement j : U → X , an

object M of DMcdh(X ,R) is constructible if and only if i∗(M) and j∗(M) are
constructible;

(iv) the functor f! : DMcdh(X ,R) → DMcdh(Y ,R) preserves constructible objects
for any separated morphism of finite type f : X →Y .

Proposition 6.2. Let i : Z → X be a closed immersion of codimension c between
regular k-schemes. Then there is a canonical isomorphism i!(RX ) ' RZ(−c)[−2c] in
DMcdh(Z,R).

Proof. In the case where X and Z are smooth over k, this is a direct consequence
of the relative purity theorem. For the general case, using the reformulation of the
absolute purity theorem of [CDa, Appendix, Theorem A.2.8(ii)], we see that it is suf-
ficient to prove this proposition locally for the Zariski topology over X . Therefore we
may assume that X is affine. Since DMcdh(−,R) is continuous (5.11), using Popescu’s
theorem and [CDb, 4.3.12], we see that it is sufficient to treat the case where X is
smooth of finite type over k. But then, this is a direct consequence of the relative
purity theorem. �

Proposition 6.3. Let f : X → Y be a morphism of noetherian k-schemes. Assume
that both X and Y are integral and that f is finite and flat of degree d. Then, there
is a canonical natural transformation

Tr f : R f∗L f ∗(M)→ M
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for any object M of DMcdh(X ,R) such that the composition with the unit of the ad-
junction (L f ∗,R f∗)

M →R f∗L f ∗(M)
Tr f−−→ M

is d times the identity of M.

Proof. As in paragraphs 3.14 and 3.16 (simply replacing DM(X ,R) and DM(X ,R) by
DMcdh(X ,R) and DMcdh(X ,R), respectively), we construct

Tr f : R f∗(RX )=R f∗L f ∗(RY )→ RY

such that the composition with the unit

R →R f∗(RX )
Tr f−−→ RY

is d. Then, since f is proper, we have a projection formula

R f∗(RX )⊗L
R M 'R f∗L f ∗(M)

and we construct
Tr f : R f∗L f ∗(M)→ M

as

M⊗L
R

(
R f∗(RX )

Tr f−−→ RY
)
.

This ends the construction of Tr f and the proof of this proposition. �

Theorem 6.4. The six operations preserve constructible objects in DMcdh(−,R) over
quasi-excellent k-schemes. In particular, we have the following properties.

(a) For any morphism of finite type between quasi-excellent k-schemes, the functor
f∗ : DMcdh(X ,R)→DMcdh(Y ,R) preserves constructible objects.

(b) For any separated morphism of finite type between quasi-excellent k-schemes
f : X →Y , the functor f ! : DMcdh(Y ,R)→DMcdh(X ,R) preserves constructible
objects.

(c) If X is a quasi-excellent k-scheme, for any constructible objects M and N of
DMcdh(M, N), the object HomR(M, N) is constructible.

Sketch of proof. It is standard that properties (b) and (c) are corollaries of property
(a); see the proof of [CDa, Cor. 6.2.14], for instance. Also, to prove (a), the usual
argument (namely [Ayo07a, Lem. 2.2.23]) shows that it is sufficient to prove that,
for any morphism of finite type f : X → Y , the object f∗(RX ) is constructible. As
one can work locally for the Zariski topology on X and on Y , one may assume that
f is separated (e.g. affine) and thus that f = p j with j an open immersion and p
a proper morphism. As p! = p∗ is already known to preserve constructible objects,
we are thus reduced to prove that, for any dense open immersion j : U → X , the
object j∗(RU ) is constuctible. This is where the serious work begins. First, using
the fact that constructible objects are compact, for any prime ` 6= p, the triangulated
category DMcdh(X ,R⊗Z(`)) is the idempotent completion of the triangulated category
DMcdh(X ,R)⊗Z(`). Therefore, using [CDa, Appendix, Prop. B.1.7], we easily see
that it is sufficient to consider the case where R is a Z(`)-algebra for some prime
` 6= p. The rest of the proof consists to follow word for word a beautiful argument of
Gabber: the very proof of [CDa, Lem. 6.2.7]. Indeed, the only part of the proof of
loc. cit. which is not meaningful in an abstract motivic triangulated category is the
proof of the sublemma [CDa, 6.2.12], where we need the existence of trace maps for
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flat finite surjective morphisms satisfying the usual degree formula. In the case of
DMcdh(X ,R), we have such trace maps natively: see Proposition 6.3. �

7. DUALITY

In this section, we will consider a field K of exponential characteristic p, and will
focus our attention on K-schemes of finite type. As anywhere else in this article, the
ring of coefficients R is assumed to be a Z[1/p]-algebra.

Proposition 7.1. Let f : X →Y be a surjective finite radicial morphism of noetherian
K-schemes of finite dimension. Then the functor

L f ∗ : DMcdh(Y ,R)→DMcdh(X ,R)

is an equivalence of categories and is canonically isomorphic to the functor f !.

Proof. By virtue of [CDb, Prop. 2.1.9], it is sufficient to prove that pulling back along
such a morphism f induces a conservative functor L f ∗ (the fact that L f ∗ ' f ! come
from the fact that if L f ∗ is an equivalence of categories, then so is its right adjoint
f! ' R f∗, so that L f ∗ and f ! must be quasi-inverses of the same equivalence of cat-
egories). Using the localization property as well as a suitable noetherian induction,
it is sufficient to check this property generically on Y . In particular, we may assume
that Y and X are integral and that f is moreover flat. Then the degree of f must
be some power of p, and Proposition 6.3 then implies that the functor L f ∗ is faithful
(and thus conservative). �

Proposition 7.2. Let X be a scheme of finite type over K , and Z a fixed nowhere dense
closed subscheme of X . Then the category of constructible motives DMcdh,c(X ,R) is the
smallest thick subcategory containing objects of the form f!(RY )(n), where f : Y → X
is a projective morphism with Y regular, such that f −1(Z) is either empty, the whole
scheme Y itself, or the support of a strict normal crossing divisor, while n is any
integer.

Proof. Let G be the family of objects of the form f!(RY )(n), with f : Y → X a pro-
jective morphism, Y regular, f −1(Z) either empty or the support of a strict normal
crossing divisor, and n any integer. We already know that any element of G is con-
structible. Since the constructible objects of DMcdh(X ,R) precisely are the compact
objects, which do form a generating family of the triangulated category DMcdh(X ,R),
it is sufficient to prove that the family G is generating. Let M be an object of
DMcdh(X ,R) such that Hom(C, M[i]) = 0 for any element C of G and any integer
i. We want to prove that M = 0. For this, it is sufficient to prove that M⊗Z(`) = 0 for
any prime ` which not invertible in R (hence, in particular, is prime to p). Since, for
any compact object C of DMcdh(X ,R), we have

Hom(C, M[i])⊗Z(`) 'Hom(C, M⊗Z(`)[i]) ,

and since f! commutes with tensoring with Z(`) (because it commutes with small
sums), we may assume that R is a Z(`)-algebra for some prime number ` 6= p. Under
this extra hypothesis, we will prove directly that G generates the thick category
of compact objects. Let T be the smallest thick subcategory of DMcdh(X ,R) which
contains the elements of G .

For Y a separated X -scheme of finite type, we put

MBM(Y /X )= f!(RY )
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with f : Y → X the structural morphism. If Z is a closed subscheme of Y with open
complement U , we have a canonical distinguished triangle

MBM(U /X )→ MBM(Y /X )→ MBM(Z/X )→ MBM(Z/X )[1] .

We know that the subcategory of constructible objects of DMcdh(X ,R) is the smallest
thick subcategory which contains the objects of the form MBM(Y /X )(n) for Y → X
projective, and n ∈ Z; see [Ayo07a, Lem. 2.2.23]. By cdh-descent (as formulated in
[CDb, Prop. 3.3.10 (i)]), we easily see that objects of the form MBM(Y /X )(n) for Y → X
projective, Y integral, and n ∈Z, generate the thick subcategory of constructible ob-
jects of DMcdh(X ,R). By noetherian induction on the dimension of such a Y , it is
sufficient to prove that, for any projective X -scheme Y , there exists a dense open
subscheme U in Y such that MBM(U /X ) belongs to T. By virtue of Gabber’s re-
finement of de Jong’s theorem of resolution of singularities by alterations [ILO14,
Exp. X, Theorem 2.1], there exists a projective morphism Y ′ → Y which is generi-
cally flat, finite surjective of degree prime to `, such that Y ′ is regular, and such that
the inverse image of Z in Y ′ is either empty, the whole scheme Y ′, or the support of
a strict normal crossing divisor. Thus, by induction, for any dense open subscheme
V ⊂ Y ′, the motive MBM(V /X ) belongs to T. But, by assumption on Y ′ → Y , there
exists a dense open subscheme U of Y such that, if V denote the pullback of U in
Y ′, the induced map V → U is a finite, flat and surjective morphism between inte-
gral K-schemes and is of degree prime to `. By virtue of Proposition 6.3, the motive
MBM(U /X ) is thus a direct factor of MBM(V /X ), and since the latter belongs to T,
this shows that MBM(Y /X ) belongs to T as well, and this achieves the proof. �

Theorem 7.3. Let X be a separated K-scheme of finite type, with structural mor-
phism f : X → Spec(K). Then the object f !(R) is dualizing. In other words, for any
constructible object M in DMcdh(X ,R), the natural map

(7.3.1) M →RHomR(RHomR(M, f !(R), f !(R)))

is an isomorphism. In particular, the natural map

(7.3.2) RX →RHomR( f !(R), f !(R))

is an isomorphism in DMcdh(X ,R).

Proof. By virtue of Proposition 7.2, it is sufficient to prove that the map (7.3.1) is an
isomorphism for M = p!(RY ) with p : Y → X projective and Y regular. We then have

RHomR(M, f !(R))' p!RHomR(RY , p! f !(R))' p! p!( f !(R)) ,

hence

RHomR(RHomR(M, f !(R), f !(R))'RHomR(p! p!( f !(R)), f !(R))

' p!RHomR(p! f !(R), p! f !(R)) .

The map (7.3.1) is thus, in this case, the image by the functor p! of the map RY →
RHomR(p! f !(R), p! f !(R)). In other words, it is sufficient to prove that the map (7.3.2)
is an isomorphism in the case where X is regular (and projective over K). But X is
then smooth on a finite purely inseparable extension L of K . By virtue of Proposi-
tion 7.1, we may assume that X is actually smooth over K . But then, if d is the
dimension of X , since DMcdh is oriented, we have a purity isomorphism f !(R) '
RX (d)(2d]. Since we obviously have the identification, RX 'RHomR(RX (d),RX (d)),
this achieves the proof. �
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Remark 7.4. The preceding theorem means that, if we restrict to separated K-schemes
of finite type, the whole formalism of Grothendieck-Verdier duality holds in the set-
ting of R-linear cdh-motives. In other words, for a separated K-scheme of finite type
X with structural map f : X →Spec(K), we define the functor DX by

DX (M)=RHomR(M, f !(R))

for any object M of DMcdh(X ,R). We already know that DX preserves constructible
objects and that the natural map M → DX (DX (M)) is invertible for any constructible
object M of DMcdh(X ,R). For any objects M and N of DMcdh(X ,R), if N is con-
structible, we have a natural isomorphism

(7.4.1) RHomR(M, N)' DX (M⊗L
R DX (N)) .

For any K-morphism between separated K-schemes of finite type f : Y → X , and for
any constructible objects M and N in DMcdh(X ,R) and DMcdh(Y ,R), respectively, we
have the following natural identifications.

DY ( f ∗(M))' f !(DX (M))(7.4.2)

f ∗(DX (M))' DY ( f !(M))(7.4.3)

DX ( f!(N))' f∗(DY (N))(7.4.4)

f!(DY (N))' DX ( f∗(N))(7.4.5)

8. BIVARIANT CYCLE COHOMOLOGY

Proposition 8.1. Let K be a field of characteristic exponent p, and K s its inseparable
closure.

(a) The map u : Spec(K s)→Spec(K) induces fully faithful functors

u∗ : DMeff (K ,R)→DMeff (K s,R) and u∗ : DMeff
cdh(K ,R)→DMeff

cdh(K s,R) .

(b) We have a canonical equivalence of categories

DMeff (K s,R)'DMeff
cdh(K s,R) .

(c) At the level of non-effective motives, we have canonical equivalences of cate-
gories

DM(K ,R)'DMcdh(K ,R)'DMcdh(K ,R) .

(d) The pullback functor

u∗ : DM(K ,R)→DM(K s,R)

is an equivalence of categories.

Proof. In all cases, u∗ has a right adjoint Ru∗ which preserves small sums (because
u∗ preserves compact objects, which are generators).

Let us prove that the functor

u∗ : DMeff (K)→DMeff (K s)

is fully faithful. By continuity (see [CDb, Example 11.1.25]), it is sufficient to prove
that, for any finite purely inseparable extension L/K , the pullback functor along the
map v : Spec(L)→Spec(K),

v∗ : DMeff (K ,R)→DMeff (L,R) ,
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is fully faithful. As, for any field E, we have a fully faithful embedding

DMeff (E,R)→DMeff (E,R)

which is compatible with pulbacks (see [CDb, Prop. 11.1.19]), it is sufficient to prove
that the pullback functor

v∗ : DMeff (K ,R)→DMeff (L,R)

is fully faithful. In this case, the functor v∗ has a left adjoint v], and we must prove
that the co-unit

v] v∗(M)→ M

is fully faithful for any object M of DMeff (K). The projection formula v] v∗(M) =
v](R)⊗L

R M reduces to prove that the co-unit v] v∗(R) → R is an isomorphism, which
follows right away from [CDb, Prop. 9.1.14]. The same arguments show that the
functor

u∗ : DMeff
cdh(K ,R)→DMeff

cdh(K s,R)
is fully faithful.

The canonical functor

DMeff (L,R)→DMeff
cdh(L,R)

is an equivalence of categories for any perfect field L of exponent characteristic p
by a result in Kelly’s thesis (more precisely the right adjoint of this functor is an
equivalence of categories; see the last assertion of [Kel12, Cor. 5.3.9]).

The fact that the functor

u∗ : DMc(K ,R)→DMc(K s,R)

is an equivalence of categories follows by continuity from the fact that the pullback
functor

DMc(K ,R)→DMc(L,R)
is an equivalence of categories for any finite purely inseparable extension L/K (see
[CDb, Prop. 2.1.9 and 2.3.9]). As the right adjoint of u∗ preserves small sums, this
implies that u∗ : DM(K ,R) → DM(K s,R) is fully faithful. Since any compact object
of DM(K s,R) is in the essential image and since DM(K s,R) is compactly generated,
this proves that u∗ : DM(K ,R)→DM(K s,R) is an equivalence of categories; see [CDb,
Corollary 1.3.21].

As we already know that the functor

DM(K ,R)→DMcdh(K ,R)

is an equivalence of categories (Cor. 5.9), it remains to prove that the functor

DMcdh(K ,R)→DMcdh(K ,R)

is an equivalence of categories (or even an equality). Note that we have

DMcdh(L,R)=DMcdh(L,R)

for any perfect field of exponent characteristic p. This simply means that motives
of the form M(X )(n), for X smooth over L and n ∈ Z, do form a generating family of
DM(L,R). To prove this, let us consider an object C of DMcdh(L,R) such that

Hom(M(X )(n),C[i])= 0

for any smooth L-scheme X and any integers n and i. To prove that C = 0, since,
for any compact object E and any localization A of the ring Z, the functor Hom(E,−)
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commutes with tensoring by A, we may assume that R is a Z(`)-algebra for some
prime number ` 6= p. Under this extra assumption, we know that the object C satis-
fies `dh-descent (see Corollary 5.5). Since, by Gabber’s theorem, any scheme of finite
type over L is smooth locally for the `dh-topology, this proves that C = 0.

Finally, let us consider an object C of DMcdh(K ,R) such that Hom(M,C) = 0 for
any object M of DMcdh(K ,R). Then, for any object N of DMcdh(K s,R), we have
Hom(N,u∗(C)) = 0: indeed, such an N must be of the form u∗(M) for some M in
DMcdh(K ,R), and the functor u∗ is fully faithful on DMcdh(−,R). Since K s is a per-
fect field, this proves that u∗(C) = 0, and using the fully faithfulness of u∗ one last
time implies that C = 0. This proves that DMcdh(K ,R) = DMcdh(K ,R) and achieves
the proof of the proposition. �

Corollary 8.2. Let K be a field of exponent characteristic p. Then the infinite sus-
pension functor

Σ∞ : DMeff
cdh(K ,R)→DMcdh(K ,R)=DMcdh(K ,R)

is fully faithful.

Proof. Let K s be the inseparable closure of K . The functor

Σ∞ : DMeff
cdh(K s,R)→DMcdh(K s,R)=DMcdh(K s,R)

is fully faithful: this follows from the fact that the functor

Σ∞ : DMeff (K s,R)→DM(K s,R)

is fully faithful (which is a reformulation of Voevodsky’s cancellation theorem [Voe10])
and from assertions (b) and (c) in Proposition 8.1.

Pulling back along the map u : Spec(K s) → Spec(K) induces an essentially com-
mutative diagram of the form

DMeff
cdh(K) Σ∞

//

u∗
��

DMcdh(K)

u∗

��

DMcdh(K ,R)

u∗

��
DMeff

cdh(K s) Σ∞
// DMcdh(K s) DMcdh(K s,R)

and thus, Proposition 8.1 allows to conclude. �

8.3. The preceding proposition and its corollary explain why it is essentially harm-
less to only work with perfect ground fields8. From now on, we will focus on our fixed
perfect field k of characteristic exponent p, and will work with separated k-schemes
of finite type.

Let X be a separated k-scheme of finite type and r ≥ 0 an integer. Let zequi(X , r)
be the presheaf with transfers of equidimensional relative cycles of dimension r over
k (see [VSF00, Chap. 2, page 36]); its evaluation at a smooth k-scheme U is the free
group of cycles in U × X which are equidimensionnal of relative dimension r over k;
see [VSF00, Chap. 2, Prop. 3.3.15]. If ∆• denotes the usual cosimplicial k-scheme,

∆n =Spec
(
k[t0, . . . , tn]/(

∑
i

ti = 1)
)
,

8Note however that the recent work of Suslin [Sus13] should provide explicit formulas such as the one
of Theorem 8.11 for separated schemes of finite type over non-perfect infinite fields.
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then, for any presheaf of ablian groups F, the Suslin complex C∗(F) is the complex
associated to the simplicial presehaf of abelian groups F((−)×∆•). Let Y be another
k-scheme of finite type. After Friedlander and Voevodsky, for r ≥ 0, the (R-linear)
bivariant cycle cohomology of Y with coefficients in cycles on X is defined as the
following cdh-hypercohomology groups:

(8.3.1) Ar,i(Y , X )R = H−i
cdh(Y ,C∗(zequi(X , r))cdh ⊗L R) .

Since Z(Y ) is a compact object in the derived category of cdh-sheaves of abelian
groups, we have a canonical isomorphism

(8.3.2) RΓ(Y ,C∗(zequi(X , r))cdh ⊗L R)'RΓ(Y ,C∗(zequi(X , r))cdh)⊗L R

in the derived category of R-modules. We also put Ar,i(Y , X )R = 0 for r < 0.
Recall that, for any separated k-scheme of finite type X , we have its motive M(X )

and its motive with compact support Mc(X ). Seen in DM(k,R), they are the objects
associated to the presheaves with transfers R(X ) and Rc(X ) on smooth k-schemes:
for a smooth k-scheme U , R(X )(U) (resp. Rc(X )(U)) is the free R-module on the set of
cycles in U×X which are finite (resp. quasi-finite) over U and dominant over an irre-
ducible component of U . We will also denote by M(X ) and Mc(X ) the corresponding
objects in DMcdh(k,R) through the equivalence DM(k,R)'DMcdh(k,R).

Theorem 8.4 (Voevodsky, Kelly). For any integers r, i ∈ Z, there is a canonical iso-
morphism of R-modules

Ar,i(Y , X )R 'HomDM(k,R)(M(Y )(r)[2r+ i], Mc(X )) .

Proof. For R =Z, in view of Voevodsky’s cancellation theorem, this is a reformulation
of [VSF00, Chap. 5, Prop.4.2.3] in characteristic zero; the case where the exponent
characteristic is p, with R = Z[1/p], is proved by Kelly in [Kel12, Prop. 5.5.11]. This
readily implies this formula for a general Z[1/p]-algebra R as ring of coefficients,
using (8.3.2). �

Remark 8.5. Let g : Y → Spec(k) be a separated morphism of finite type. The pull-
back functor

(8.5.1) Lg∗ : DMcdh(k,R)→DMcdh(Y ,R)

has a left adjoint

(8.5.2) Lg] : DMcdh(Y ,R)→DMcdh(k,R) .

Indeed, this is obviously true if we replace DMcdh(−,R) by DMcdh(−,R). Since we
have DM(k,R)'DMcdh(k,R)=DMcdh(k,R) (8.1 (c)), the restriction of the functor

Lg] : DMcdh(Y ,R)→DMcdh(k,R)

to DMcdh(Y ,R) ⊂ DMcdh(Y ,R) provides the left adjoint of the pullback functor Lg∗
in the fibred category DMcdh(−,R). This construction does not only provide a left
adjoint, but also computes it: the motive of Y is the image by this left adjoint of the
constant motive on Y :

(8.5.3) M(Y )=Lg](RY ) .

We also deduce from this description of Lg] that, for any object M of DMcdh(k,R), we
have a canonical isomorphism

(8.5.4) Rg∗Lg∗(M)'RHomR(M(Y ), M)
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(where HomR is the internal Hom of DMcdh(k,R)): again, this readily follows from
the analogous formula in DMcdh(−,R)).

If we wite z(X , r) for the cdh-sheaf asociated to zequi(X , r) (which is compatible
with the notations of Suslin and Voevodsky, according to [VSF00, Chap. 2, Thm. 4.2.9]),
we thus have another way of expressing the preceding theorem.

Corollary 8.6. With the notations of Remark 8.5, we have a canonical isomorphism
of R-modules:

Ar,i(Y , X )R 'HomDMcdh(Y ,R)(RY (r)[2r+ i],Lg∗(Mc(X ))) .

8.7. The preceding corollary is not quite the most natural way to express bivariant
cycle cohomology Ar,i(Y , X ). Keeping track of the notations of Remark 8.5, we can
see that there is a canonical isomorphism

(8.7.1) g! g!(R)' M(Y ) .

Indeed, we have:

RHomR(g! g!(R),R)=Rg∗RHomR(g!(R), g!(R)) .

But Grothendieck-Verdier duality (7.3) implies that

RY =RHomR(g!(R), g!(R)) ,

and thus (8.5.4) gives:

RHomR(g! g!(R),R)'Rg∗Lg∗(R)'RHomR(M(Y ),R) .

Since the natural map

M →RHomR(RHomR(M,R),R)

is invertible for any constructible motive M in DMcdh(k,R), we obtain the identifica-
tion (8.7.1) (note that M(Y ) is constructible; see [Kel12, Lemma 5.5.2]).

Corollary 8.8. With the notations of Remark 8.5, we have a canonical isomorphism
of R-modules:

Ar,i(Y , X )R 'HomDMcdh(Y ,R)(g!(R)(r)[2r+ i], g!(Mc(X ))) .

8.9. Let f : X →Spec(k) be a separated morphism of finite type. We want to describe
Mc(X ) in terms of the six operations in DMcdh(−,R).

Proposition 8.10. With the notations of 8.9, there are canonical isomorphisms

Mc(X )'R f∗ f !(R)'RHomR( f!(RX ),R)

in the triangulated category DMcdh(k,R).

Proof. If f is proper, then f!(RX ) = R f∗(RX ), while Mc(X ) = M(X ) (we really mean
equality here, in both cases). Therefore, we also have

RHomR(Mc(X ),R)=RHomR(M(X ),R)'R f∗(RX )= f!(RX )

in a rather canonical way: the identification RHomR(M(X ),R)'R f∗(RX ) can be con-
structed in DMcdh(K ,R), in which case it can be promoted to a canonical weak equiv-
akence at the level of the model category of symmetric Tate spectra of complexes of
(R-linear) cdh-sheaves with transfers over the category of separated K-schemes of
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finite type. In particular, for any morphism i : Z → X with g = f i proper, we have a
commutative diagram of the form

RHomR(M(X ),R) ∼ //

i∗

��

R f∗(RX )

i∗

��
RHomR(M(Z),R) ∼ // Rg∗(RZ)

in the (stable model category underlying the) triangulated category DMcdh(X ,R).
In the general case, let us choose an open embedding j : X → X̄ with a proper

k-scheme q : X̄ →Spec(k), such that f = q j. Let ∂X̄ be a closed subscheme of X̄ such
that X̄ \ ∂X̄ is the image of j, and write r : ∂X̄ → Spec(k) for the structural map.
What precedes means that there is a canonical identification between the homotopy
fiber of the restriction map

Rq∗(R X̄ )→Rr∗(R∂X̄ )

and the homotopy fiber of the restriction map

RHomR(M(X̄ ),R)→RHomR(M(∂X̄ ),R) .

But, by definition of f!(RX ), and by virtue of [VSF00, Chap. 5, Prop. 4.1.5] in char-
acteristic zero, and of [Kel12, Prop. 5.5.5] in general, this means that we have a
canonical isomorphism

RHomR(Mc(X ),R)' f!(RX ) .
By duality (7.3), taking the dual of this identification leads to a canonical isomor-
phism R f∗ f !(R)' Mc(X ). �

Theorem 8.11. Let Y and X be two separated k-schemes of finite type with structural
maps g : Y → Spec(k) and f : X → Spec(k). Then, for any r ≥ 0, there is a natural
identification

Ar,i(Y , X )R 'HomDMcdh(k,R)(g! g!(R)(r)[2r+ i],R f∗ f !(R)) .

Proof. We simply put Corollary 8.8 and Proposition 8.10 together. �

Corollary 8.12. Let X be an equidimensional quasi-projective k-scheme of dimen-
sion n, with structural morphism f : X →Spec(k), and consider any subring Λ⊂Q in
which the characteristic exponent of k is invertible. Then, for any integers i and j, we
have a natural isomorphism

HomDMcdh(X ,Λ)(ΛX (i)[ j], f !Λ)'CHn−i(X , j−2i)⊗Λ
(where CHn−i(X , j−2i) is Bloch’s higher Chow group.

Proof. In the case where k is of characteristic zero, this is a reformulation of the
preceding theorem and of [VSF00, Chap. 5, Prop. 4.2.9]. For the proof of loc. cit. to
hold mutatis mutandis for any perfect field k of characteristic p > 0 (and with Z[1/p]-
linear coefficients), we see that apart from Proposition 8.1 and Theorem 8.4 above,
the only ingredient that we need is the Z[1/p]-linear version of [VSF00, Theorem
4.2.2], which is provided by results of Kelly [Kel12, Theorems 5.4.19 and 5.4.21]. �

Corollary 8.13. Let X be a separated k-scheme of finite type, with structural mor-
phism f : X → Spec(k). For any subring Λ ⊂ Q in which p is invertible, there is a
natural isomorphism

CHn(X )⊗Λ'HomDMcdh(X ,Λ)(ΛX (n)[2n], f !Λ)
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for any integer n (where CHn(X ) is the usual Chow group of cycles of dimension n on
X , modulo rational equivalence).

Proof. Thanks to [VSF00, Chap. 4, Theorem 4.2] and to [Kel12, Theorem 5.4.19], we
know that

CHn(X )⊗Λ' An,0(Spec(k), X )Λ .
We thus conclude with Theorem 8.11 for r = n and i = 0. �

9. REALIZATIONS

9.1. Recall from paragraph 1.3 that, for a noetherian scheme X , and a ring a coef-
ficients Λ, one can define the Λ-linear triangulated category of mixed motives over
X associated to the h-topology DMh(X ,Λ). The latter construction is the subject of
the article [CDa], in which we see that DMh(X ,Λ) is a suitable version of the the-
ory of étale mixed motives. In particular, we have a natural functor induced by the
h-sheafification functor:

(9.1.1) DMcdh(X ,Λ)→DMh(X ,Λ) , M 7→ Mh .

These functors are part of a premotivic adjunction in the sense of [CDb, Def. 1.4.6].
From now on, we assume that the schemes X are defined over a given field k and

that the characteristic exponent of k is invertible in Λ. Since both DMcdh and DMh
are motivic categories over k-schemes in the sense of [CDb, Def. 2.4.45] (see Theorem
5.11 above and [CDa, Theorem 5.6.2], respectively), we have the following formulas
(see [CDb, Prop. 2.4.53]):

(M⊗L
Λ N)h ' Mh ⊗L

Λ Nh(9.1.2)

(L f ∗(M))h 'L f ∗(Mh) (for any morphism f )(9.1.3)

(L f](M))h 'L f](Mh) (for any smooth separated morphism f )(9.1.4)

( f!(M))h ' f!(Mh) (for any separated morphism of finite type f )(9.1.5)

Note finally that the functor (9.1.1) has fully faithful right adjoint; its essential image
consists of objects of DMcdh which satisfy the property of cohomological h-descent
(see [CDb, Def. 3.2.5]).

Lemma 9.2. Let f : X → Speck be a separated morphism of finite type. Then the
natural morphism

(R f∗(ΛX ))h →R f∗((ΛX )h)
is invertible in DMh(k,Λ).

Proof. We may assume that k is a perfect field (using Prop. 8.1 (d) as well as its
analogue for the h-topology (which readily follows from [CDa, Prop. 6.3.16])). We
know that DMcdh(k,Λ)=DMcdh(k,Λ) by Prop. 8.1 (c), and similarly that DMh(k,Λ)=
DMh(k,Λ) (since, by virtue of de Jong’s theorem of resolution of singularities by alter-
ations, locally for the h-topology, any k-scheme of finite type is smooth). The functor

DMcdh(k,Λ)→DMh(k,Λ) , M 7→ Mh

is symmetric monoidal and sends L f](ΛX ) to L f]((ΛX )h). On the other hand, the
motive L f](ΛX ) ' f!( f !(Λ)) is constructible (see (8.7.1) for g = f and Theorem 6.4),
whence has a strong dual in DMcdh(k,Λ) (since objects with a strong dual form a
thick subcategory, this follows from Proposition 7.2, by Poincaré duality; see [CDb,
Theorems 2.4.42 and 2.4.50]). The functor M 7→ Mh being symmetric monoidal, it
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preserves the property of having a strong dual and preserves strong duals. Since
R f∗(ΛX ) is the (strong) dual of L f](ΛX ) both in DMcdh(k,Λ) and in DMh(k,Λ), this
proves this lemma. �

Lemma 9.3. Let f : X → Y be a k-morphism between separated k-schemes of finite
type. Then the functors

R f∗ : DMcdh(X ,Λ)→DMcdh(Y ,Λ) and R f∗ : DMh(X ,Λ)→DMh(Y ,Λ)

commute with small sums.

Proof. In the case of cdh-motives follows from the fact that the functor

L f ∗ : DMcdh(Y ,Λ)→DMcdh(X ,Λ)

sends a family of compact generators into a family of compact objects. The case of
h-motives is proven in [CDa, Prop. 5.5.10]. �

Proposition 9.4. Let f : X → Y be a k-morphism between separated k-schemes of
finite type. Then, for any object M of DMcdh(X ,Λ), the natural map

R f∗(M)h →R f∗(Mh)

is invertible in DMh(Y ,Λ).

Proof. The triangulated category DMcdh(X ,Λ) is compactly generated by objects of
the form Rg∗(ΛX ′ (n) for g : X ′ → X a proper morphism and n any integer; see [CDb,
Prop. 4.2.13], for instance. Since the lemma is already known in the case of proper
maps (see equation (9.1.5)), we easily deduce from Lemma 9.3 that we may assume
M to be isomorphic to the constant motiveΛX . In this case, we conclude with Lemma
9.2. �

Corollary 9.5. Under the assumptions of paragraph 9.1, the restriction of the motivic
functor M 7→ Mh (9.1.1) to constructible objects commutes with the six operations of
Grothendieck over the category of separated k-schemes of finite type.

Proof. After Proposition 9.4, we see that it is sufficient to prove the compatibility
with internal Hom and with operations of the form g! for any morphism g between
separated k-schemes of finite type.

Let us prove that, for any separated k-scheme of finite type Y and any con-
structible objects A and N of DMcdh(Y ,Λ), the natural map

RHom(A, N)h →RHom(Ah, Nh)

is invertible in DMh(Y ,Λ). We may assume that A = f](ΛX ) for some smooth mor-
phism f : X →Y . Since we have the canonical identification

RHom(L f](ΛX ), N)'R f∗ f ∗(N) ,

we conclude by using the isomorphism provided by Proposition 9.4 in the case where
M = f ∗(N).
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Consider now a separated morphism of finite type f : X → Speck. For any con-
structible objects M and N of DMcdh(X ,Λ) and DMcdh(k,Λ), respectively, we have:

R f∗(RHom(Mh, f !(N)h))'R f∗(RHom(M, f !(N))h)

' (R f∗RHom(M, f !(N)))h
'RHom( f!(M), N)h
'RHom( f!(Mh), Nh)

'R f∗(RHom(Mh, f !(Nh))) .

Therefore, for any object C of DMh(k,Λ), there is an isomorphism:

RHom(L f ∗(C)⊗L
Λ Mh, f !(N)h)'RHom(L f ∗(C)⊗L

Λ Mh, f !(Nh)) .

Since the constructible objects of the form Mh are a generating family of DMh(k,Λ),
this proves that the natural map

f !(N)h → f !(Nh)

is an isomorphism. The functor M 7→ Mh preserves internal Hom’s of constructible
objects, whence it follows from Formula (7.4.1) that it preserves duality. Therefore,
Formula (7.4.2) shows that it commutes with operations of the form g! for any mor-
phism g between separated k-schemes of finite type. �

Remark 9.6. In the case where Λ is of positive characteristic, the trianguated cat-
egory DMh(X ,Λ) is canonically equivalent to the derived category D(X ét,Λ) of the
abelian category of sheaves of Λ-modules on the small étale site of X ; see [CDa,
Cor. 5.4.4]. Therefore, Corollary 9.5 then provides a system of triangulated functors

DMcdh(X ,Λ)→D(X ét,Λ)

which preserve the six operations when restricted to constructible objects. Moreover,
constructible objects of DMh(X ,Λ) correspond to the full subcategory Db

ctf (X ét,Λ) of
the category D(X ét,Λ) which consists of bounded complexes of sheaves of Λ-modules
over X ét with constructible cohomology, and which are of finite tor-dimension; see
[CDa, Cor. 5.5.4 (and Th. 6.3.11)]. Therefore, for ` 6= p, using [CDa, Prop. 7.2.21],
we easily get `-adic realizations which are compatible with the six operations (on
constructible objects) over separated k-schemes of finite type:

DMcdh,c(X ,Z[1/p])→Db
c (X ét,Z`)→Db

c (X ét,Q`) .

For instance, this gives an alternative proof of some of the results of Olsson (such as
[Ols15, Theorem 1.2]).

Together with Theorem 8.11, Corollary 9.5 is thus a rather functorial way to con-
struct cycle class maps in étale cohomology (and in any mixed Weil cohomology, since
they define realization functors of DMh(−,Q) which commute with the six operations
on constructible objects; see [CDb, 17.2.5] and [CDa, Theorem 5.2.2]). This provides a
method to prove independence of ` results as follows. Let X be a separated k-scheme
of finite type, with structural map a : X → Speck, and f : X → X any k-morphism.
Then f induces an endomorphism of Ra∗(Z[1/p]X ) in DMcdh(k,Z[1/p]). Since the
latter object is constructible (by Theorem 6.4 (a)), it has a strong dual (as explained
in the proof of Lemma 9.2), and thus one can define the trace of the morphism in-
duced by f , which is an element of Z[1/p] (since one can identify Z[1/p] with the ring
of endomorphisms of the constant motive Z[1/p] in DMcdh(k,Z[1/p]) using Corollary
8.13). Let ` be a prime number distinct from the characteristic exponent of k. Since
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the `-adic realization functor is symmetric monoidal, it preserves the property of
having a strong dual and preserves traces of endomorphisms of objects with strong
duals. Therefore, if k̄ is any choice of an algebraic closure of k, and if X̄ = k̄⊗k X , the
number ∑

i
(−1)iTr

[
f ∗ : H i

ét(X̄ ,Q`)→ H i
ét(X̄ ,Q`)

]
is independent of ` and belongs to Z[1/p]: Corollary 9.5 implies that it is the image
through the unique morphism of rings Z[1/p]→Q` of the trace of the endomorphism
of the motive Ra∗(Z[1/p]X ) induced by f . This might be compared with Olsson’s
proof in the case where f is finite; see [Ols, Theorem 1.2]. One may also replace
H i(X̄ ,Q`) with the evaluation at X of any mixed Weil cohomology defined on smooth
k-schemes, and still use the same argument.

Remark 9.7. If the ring Λ is a Q-algebra, the functor M 7→ Mh defines an equivalence
of categories DMcdh(X ,Λ) ' DMh(X ,Λ) (so that Corollary 9.5 becomes a triviality).
This is because, under the extra hypothesis that Q⊂Λ, the abelian categories of cdh-
sheaves of Λ-modules with transfers and of h-sheaves of Λ-modules are equivalent:
by a limit argument, it is sufficient to prove this when X is excellent, and then,
this is an exercise which consists to put together [CDb, Prop. 10.4.8, Prop. 10.5.8,
Prop. 10.5.11 and Th. 3.3.30].
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