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Introduction

Usual performance metric: makespan
(or other time-related metric)

Today: focus on memory

I Workflows with large temporary data

I Bad evolution of perf. for computation vs. communication:
1/Flops ⌧ 1/bandwidth ⌧ latency

I Gap between processing power and communication cost
increasing exponentially

annual improvements
Flops rate 59%

mem. bandwidth 26%
mem. latency 5%

I Avoid communications (I/O)

I Restrict to in-core memory (out-of-core is expensive)
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Model

Out-of-core execution:

I Fast memory of size M

I M is to small to accomodate all data

I Unlimited disk space

I Disk access are slow: minimize read/write (I/O)

Applies to other two-level systems:

I Fast but limited cache / Large and slower memory

I Fast but limited L1 cache / Large and slower L2/L3 cache
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Näıve and optimized algorithms for matrix product – 8/ 45

Basic matrix-product algorithm: analysis

naive-matrix-multiply(n,C,A,B)

for i = 1 to n

for j = 1 to n C[i,j] = 0

for k = 1 to n

C[i,j] = C[i,j] + A[i,k] * B[k,j]

end for

end for

end for

I how many I/O operations with a memory of size M

I assumption: M < n2/2

I all B elements accessed during outer loop: at least n2/2 reads

I total: at least n3/2 read (at most 4n3 read/write)
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Matrix-product algorithm: how to do better ?

Idea: use blocks of size
p
M/3

blocked-matrix-multiply(n,C,A,B)

b = square root of (memory size/3)

for i = 1 to n step b

for j = 1 to n step b

fill C[i:i+b-1,j:j+b-1] with zeros

for k = 1 to n step b

naive-matrix-multiply(b,C[i:i+b-1,j:j+b-1],

A[i:i+b-1,k:k+b-1],

B[k:k+b-1,j:j+b-1])

end for

end for

end for

I each iteration of the inner loop accesses only 3b2 = M data:
each data is read/written only once

I bound on the number of transfers:
(n/b)3 ⇥ 2M = (n/

p
M/3)3 ⇥ 2M = O(n3/

p
M))
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Matrix-product algorithm: can we do even better?
I Consider a “normal” matrix-product algorithm (not Strassen)

I Decompose a schedule into phases that transfer exactly M data

I ci,j is alive in phase p is it computes ai,kbk,j for some k

I alive ci,j either in memory or written: at most 2M alive ci,j in a
phase

I at most 2M elements of A (B) in memory during phase p: Ap (Bp)

I S1

p : set of rows of A with
p
M or more elements in Ap (|S1

p |  2

p
M)

I each row used in at most |Bp|  2M products
I at most 4M3/2 multiplications with elements from S1

p

I S2

p : set of rows of A with fewer elements in Ap

I each row used for a di↵erent alive ci,j
I at most

p
M ⇥ 2M multiplications with elements from S2

p

I total: at most 6M3/2 per phase

I number of full phases = bn3/6M3/2c � n3/6M3/2 � 1

I number of transfers � n3

6

p
M

�M
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Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).

With NA, NB, NC elements of A, B, C, we can perform at mostp
NANBNC elementary multiplications.

I in each phase of the previous proof: NA, NB, NC  2M

I at most 2
p
2M3/2 products

I number of transfers: � n3

2

p
2M

�M

Further improvement:

I NA = N received
A +N cached

A

I N received
A +N received

B +N received
C  M

I N cached
A +N cached

B +N cached
C  M

I NA +NB +NC  2M

I
p
NANBNC  (2M/3)3/2

I number of transfers: � 27

8

n3
p
M

�M
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I NA = N received
A +N cached

A

I N received
A +N received

B +N received
C  M

I N cached
A +N cached

B +N cached
C  M

I NA +NB +NC  2M

I
p
NANBNC  (2M/3)3/2

I number of transfers: � 27

8

n3
p
M

�M
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Matrix-product algorithm: parallel processing

Bounds on the number of transfers:
I For a processor computing W products:

I/OW � W

2

p
2M

�M

I If we use P processors, one of them computes at least n3/P
products

I/O � n3

2

p
2MP

�M

Example: 2D algorithms (Cannon, SUMMA, . . . ):
I 2D block distributions on a grid

p
P ⇥

p
P

I store A, B and C: 3n2/P elements on each processor
I at each step, each processors receives a block of A and B
I storage per processor: O(n2/P )

I communication volume per processor:
(n/

p
P )

2 ⇥
p
P = n2/

p
P
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Näıve and optimized algorithms for matrix product
Lower bound on the I/O volume
Extending lower bounds to other operations
Cache-oblivious algorithms

Memory-Aware DAGs scheduling
Pebble game
Optimal depth-first and general traversals
Complexity of parallel tree processing
Practical solutions for limited memory

Conclusion



2. Minimize I/O in out-of-core matrix computations
Extending lower bounds to other operations – 15/ 45

Generalized expression and model

Generalized matrix computation:

C(i, j) = fi,j(gi,j,k(A(i, k), B(k, j)) for k 2 Si,j ,K)

where

I A(i, j), B(i, j), C(i, j) are any reordering of A,B,C

I K represents any other arguments

I fi,j , gi,j,k depends non-trivially on their arguments

I A, B and C may overlap

Trivial application to matrix product:

I gi,j,k: product

I Si,j = {(i, j, k) for k = 1 . . . n}
I fi,j : sum
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I/O analysis for extended model

I As previously, decompose into phases of M transfers

I consider operands (of A, B or C) in memory during a phase
I Root: how it came to be in memory?

I R1: already in memory at the beginning of the phase, or read
during the phase (at most 2M)

I R2: created during the phase (not bounded)
I Destination: what happens when it disappears?

I D1: still in memory at the end of the phase, or written during
the phase (at most 2M)

I D2: discarded (not bounded)

I Discard R2/D2 for now

I
Alive values of A in a phase  4M (= R1/* + */D1)

I Using Loomis-Whitney inequality:
at most

p
(4M)

3 computations in a phase

I For a computation of size G: at least G/(8
p
M)�M

transfers
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Extending to solving linear equations

I TRSM kernel (C = A1B) for A upper triangular (solve linear
equations)

Ci,j = (Bi,j �
nX

k=i+1

Ai,k · Ck,j)/Ai,i

(any order of j, decreasing i)

I May be transformed to

C(i, j) = fi,j(gi,j,k(A(i, k), B(k, j)) for k 2 Si,j ,K)

with:
I C = B
I gi,j,k multiplies Ai,k · Ck,j
I fi,j performs the sum, subtracts from Bi, j divides by Ai,i

I Same bound as for matrix multiplication!

I Achieved by some algorithms



2. Minimize I/O in out-of-core matrix computations
Extending lower bounds to other operations – 18/ 45

Extending to LU factorization

I Gaussian elimination: A = L · U where L is lower triangular,
U is upper triangular

Li,j = (Ai,j �
X

k<j

Li,k · Uk,j)/Uj,j for i > j

Ui,j = Ai,j �
X

k<i

Li,k · Uk,j for i  j

I May be transformed to

C(i, j) = fi,j(gi,j,k(A(i, k), B(k, j)) for k 2 Si,j ,K)

with:
I A = B = C
I gi,j,k multiplies Li,k · Uk,j
I fi,j performs the sum, subtracts from Ai, j (divides by Uj,j)

I Same bound
I Achieved by some algorithms
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What if we don’t know the memory size M ?

I Back to the matrix product (square matrix of size n⇥ n)

C =

✓
C
1,1 C

1,2

C
2,1 C

2,2

◆
= A·B =

✓
A

1,1 A
1,2

A
2,1 A

2,2

◆
·
✓

B
1,1 B

1,2

B
2,1 B

2,2

◆

I Recursive matrix multiplication algorithm:

RMM(n,A,B)

if n == 1 then C=A*B else {

C_11 = RMM(n/2,A_11,B_11) + RMM(n/2,A_12,B_21)

C_12 = RMM(n/2,A_11,B_12) + RMM(n/2,A_12,B_22)

C_21 = RMM(n/2,A_21,B_11) + RMM(n/2,A_22,B_21)

C_22 = RMM(n/2,A_21,B_12) + RMM(n/2,A_22,B_22)

return C
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Analysis of the recursive algorithm

RMM(n,A,B)

if n == 1 then C=A*B else {

C_11 = RMM(n/2,A_11,B_11) + RMM(n/2,A_12,B_21)

C_12 = RMM(n/2,A_11,B_12) + RMM(n/2,A_12,B_22)

C_21 = RMM(n/2,A_21,B_11) + RMM(n/2,A_22,B_21)

C_22 = RMM(n/2,A_21,B_12) + RMM(n/2,A_22,B_22)

return C

I C(n): Number of arithmetic operations in RMM(n,A,B)

C(n) = 8 C(n/2) + 4 (n/2)2 if n > 1 otherwise 1

C(n) = 2n3 . . . as usual, in di↵erent order

I T (n): Number of transfers RMM(n,A,B) with memory M

T (n) = 8 T (n/2) + 12 (n/2)2 if 3n2 > M otherwise 3n2

T (n) = O(n3/
p
M + n2

) . . . same as blocked version
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Summary on cache-oblivious algorithms

I Designed for unknown cache (or memory) size

I Works well for operations naturally expressed by
divide-and-conquer algorithms (matrix multiplication, FFT,
sorting, matrix transposition, . . . )

I Asymptotically optimal algorithms

I Well adapted to memory/cache hierarchies:
L3 (large, slow) ! L2 (avg. size, avg. speed) ! L1 (small, fast)

I Extensions exist for parallel machines: Parallel External
Memory (PEM)

I In practice for matrix computations, usually outperformed by
optimized blocked algorithms
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Introduction

I Directed Acyclic Graphs: express task dependencies
I nodes: computational tasks
I edges: dependencies (data = output of a task = input of

another task)

I Formalism proposed long ago in scheduling

I Back into fashion thanks to task based runtimes

Here, we focus on task trees:

I Arise in multifrontal sparse matrix factorization

I Assembly/Elimination tree: application task graph is a tree

I Large temporary data

I Memory usage becomes a bottleneck
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Related Work: Register Allocation & Pebble Game

How to e�ciently compute the following arithmetic expression with
the minimum number of registers ?

7 + (1 + x)(5� z)� ((u� t)/(2 + z)) + v

+

u

�

�

+

7

+

v

�
2 z

5 1z x

⇥

/

+

t

Pebble-game rules:

I Inputs can be pebbled anytime

I If all ancestors are pebbled, a node can be pebbled

I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
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Related Work: Register Allocation & Pebble Game

How to e�ciently compute the following arithmetic expression with
the minimum number of registers ?

7 + (1 + x)(5� z)� ((u� t)/(2 + z)) + v

Complexity results

Problem on trees:

I Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):

I P-Space complete [Gilbert, Lengauer & Tarjan, 1980]

I Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:

I Inputs can be pebbled anytime

I If all ancestors are pebbled, a node can be pebbled

I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
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Notations: Tree-Shaped Task Graphs

f3f2

f5f4

n3n2

n5n4

0 0

0

n1

2

1

3

5

4

I In-tree of n nodes

I Output data of size fi

I Execution data of size ni

I Input data of leaf nodes
have null size

I Memory for node i: MemReq(i) =

0

@
X

j2Children(i)

fj

1

A
+ ni + fi

Two existing sequential algorithms:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]
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Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

f
nf2

r

P1 P2 . . .

P

n

f1

I For each subtree Ti: peak memory Pi, residual memory fi

I For a given processing order 1, . . . , n, the peak memory is:

max{P
1

, f

1

+ P
2

, f

1

+ f

2

+ P
3

, . . . ,
X

i<n

fi + Pn,
X

fi + nr + fr}

I Optimal order:

non-increasing Pi � fi

I Post-Order traversals are dominant for unit-weight trees
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Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in
non-increasing order Pi � fi.

Proof:
I Consider an optimal traversal which does not respect the

order:
I subtree j is processed right before subtree k
I Pk � fk � Pj � fj

peak when j, then k peak when k, then j
during first subtree mem before + Pj mem before + Pk

during second subtree mem before + fj + Pk mem before + fk + Pj

I fk + Pj  fj + Pk

I Transform the schedule step by step without increasing the
memory.
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Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

✏

M M

. . . . . .. . .

M/b

M/bM/b

M/b

✏ ✏ ✏

M M

I Minimum peak memory:
M

min

= M + ✏ +

2

(b� 1)✏

I Minimum post-order peak
memory:
M

min

=

M + ✏ +

2

(b� 1)M/b

actual assembly trees random trees
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Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%
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Post-Order is not optimal...but almost!
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There is no constant k such that the best post-order traversal is a
k-approximation.

M/b

. . .

M/b

M/b

. . .

✏✏✏✏

M/b

. . .

MMM M

I Minimum peak memory:
M

min

= M + ✏ +

2

(b� 1)✏

I Minimum post-order peak
memory:
M

min

=

M + ✏ +

2

(b� 1)M/b

actual assembly trees random trees
Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%



3. Memory-Aware DAGs scheduling
Optimal depth-first and general traversals – 33/ 45

Liu’s optimal traversal – sketch

I Recursive algorithm: at each step, merge the optimal ordering
of each subtree (sequence)

I Sequence: divided into segments:
I H1: maximum over the whole sequence (hill)
I V1: minimum after H1 (valley)
I H2: maximum after H1
I V2: minimum after H2
I . . .
I The valleys Vis are the boundaries of the segments

I Combine the sequences by non-increasing H � V

I Complex proof based on a partial order on the cost-sequences:
(H

1

, V
1

, H
2

, V
2

, . . . , Hr, Vr) � (H 0
1

, V 0
1

, H 0
2

, V 0
2

, . . . , H 0
r0 , V

0
r0)

if for each 1  i  r, there exists 1  j  r0 with Hi  H 0
j

and Vi  V 0
j .
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Model for Parallel Tree Processing

I p uniform processors

I Shared memory of size M

I Task i has execution times pi
I Parallel processing of nodes ) larger memory

I Trade-o↵ time vs. memory

f
3

f2

f
5

f
4

n
3

n2

n
5

n
4

0 0

0

n1

3

1

2

5

4
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NP-Completeness in the Pebble Game Model

Background:

I Makespan minimization NP-complete for trees (P |trees|C
max

)

I Polynomial when unit-weight tasks (P |pi = 1, trees|C
max

)

I Pebble game polynomial on trees

Pebble game model:

I Unit execution time: pi = 1

I Unit memory costs: ni = 0, fi = 1

(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.
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NP-Completeness – Proof

Reduction from 3-Partition:

I
3m integers ai and B with

P
ai = mB,

I find m subsets Sk of 3 elements with
P

i2Sk
ai = B

root

N
1

L1

1

L1

2

. . . L1

3m⇥a1

N
2

L2

1

L2

2

. . . L2

3m⇥a2

. . . N
3m

L3m
1

L3m
2

. . . L3m
3m⇥a3m

Schedule the tree using:

I p = 3mB processors,

I at most B = 3m⇥B + 3m pebbles,

I at most C = 2m+ 1 steps.
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Space-Time Tradeo↵

Not possible to get a guarantee on both memory and time
simultaneously:

Theorem 1

There is no algorithm that is both an ↵-approximation for
makespan minimization and a �-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan C
max

,
M ⇥ C

max

� 2(n� 1)

Proof: each edge stays in memory for at least 2 steps.
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Space-Time Tradeo↵ – Proof

root

a

1

b

1,1 b

1,2

...

b

1,m

a

2

b

2,1 b

2,2

...

b

2,m

. . .
am

bm,1 bm,2

...

bm,m

I With m2 processors: C⇤
max

= 3

I With 1 processor, sequentialize the ai subtrees: M⇤
= 2m

I By contradiction, approximating both objectives: C
max

 3↵
and M  2m�

I But M ⇥ C
max

� 2(n� 1) = 2m2

+ 2m

I
2m2

+ 2m  6m↵�

I Contradiction for a su�ciently large value of m
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Practical solutions for limited memory

I In practice: physical bound on the memory

I How to cope with this bound, and guarantee completion?
I Two approaches:

I Sequential activation order
I Memory booking
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Sequential activation order

Idea (Sequential Task Flow model):
I activate tasks using a prescribed order

(memory allocation: fi + ni)
I schedule active (and ready) tasks using another order/priority

When a node completes:
I Allocate as many tasks as possible
I Then, start processing allocated tasks

completed

2

3

4

5

7

8

9

10

11

1

6

allocated

running

I , minimum memory requirement: memory peak of the
activation traversal

I / no memory reuse
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Heuristic design: memory booking

I Design of scheduling heuristics with guaranteed peak memory

I Idea: re-use memory for parents, grand-parents, . . .

I Book memory only when starting new leaves
I Stronger assumptions:

I Reduction tree:
X

j2Children(i)

fj � fi

I No extra memory cost for task execution

I For trees that do not respect these constraints, add fictitious
nodes

20
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Conclusion

I Memory, I/O and cache impact performance

I Avoid data movement, re-use data as much as possible
I Many di↵erent approaches, depending on the target

application model:
I Cache-oblivious algorithms (recursive computations)
I Communication-avoiding algorithms (numerical algebra)
I Memory-Aware scheduling (task graphs)
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