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Théorie ergodique des actions de
groupes et algebres de von Neumann

Résumé

Dans cette these, on s’intéresse a la théorie mesurée des groupes, a I'entropie sofique et aux
algébres d’opérateurs; plus précisément, on étudie les actions des groupes sur des espaces
de probabilités, des propriétés fondamentales de leur entropie sofique (pour des groupes
discrets), leurs groupes pleins (pour des groupes Polonais), et les algebres de von Neumann
et leurs sous-algébres moyennables (pour des groupes a caractere hyperbolique et des réseaux
de groupes de Lie). Cette thése est constituée de trois parties.

Dans une premiére partie j’étudie 1’entropie sofique des actions profinies. L'entropie so-
fique est un invariant des actions mesurées des groupes sofiques défini par L. Bowen qui
généralise la notion d’entropie introduite par Kolmogorov. La définition d’entropie sofique
nécessite de fixer une approximation sofique du groupe. Nous montrons que l’entropie so-
fique des actions profinies est effectivement dépendante de 1’approximation sofique choisie
dans le cas des groupes libres et certains réseaux de groupes de Lie.

La deuxieme partie est un travail en collaboration avec Frangois Le Maitre. Elle est consti-
tuée d’un article prépublié dans lequel nous généralisons la notion de groupe plein aux actions
préservant une mesure de probabilité des groupes polonais, et en particulier, des groupes lo-
calement compacts. On définit une topologie polonaise sur ces groupes pleins et on étudie
leurs propriétés topologiques fondamentales, notamment leur rang topologique et la densité
des éléments apériodiques.

La troisiéme partie est un travail en collaboration avec Rémi Boutonnet. Elle est consti-
tuée de deux articles prépubliés dans lesquels nous considérons la question de la maximalité
de la sous-algebre de von Neumann d’'un sous-groupe moyennable maximal, dans celle du
groupe ambiant. Nous résolvons la question dans le cas des groupes a caractére hyperbolique
en utilisant les techniques de Sorin Popa. Puis, nous introduisons un critére dynamique a
la Furstenberg, permettant de résoudre la question pour des sous-groupes moyennables de
réseaux des groupes de Lie en rang supérieur.

Mots-clés

Théorie ergodique, algébres de von Neumann, groupes polonais, groupes sofiques, groupes
pleins, maximale moyennabilité.






Groups, Actions and von Neumann
algebras

Abstract

This dissertation is about measured group theory, sofic entropy and operator algebras.
More precisely, we will study actions of groups on probability spaces, some fundamental
properties of their sofic entropy (for countable groups), their full groups (for Polish groups)
and the amenable subalgebras of von Neumann algebras associated with hyperbolic groups
and lattices of Lie groups. This dissertation is composed of three parts.

The first part is devoted to the study of sofic entropy of profinite actions. Sofic entropy
is an invariant for actions of sofic groups defined by L. Bowen that generalize Kolmogorov’s
entropy. The definition of sofic entropy makes use of a fixed sofic approximation of the group.
We will show that the sofic entropy of profinite actions does depend on the chosen sofic
approximation for free groups and some lattices of Lie groups.

The second part is based on a joint work with Frangois Le Maitre. The content of this part
is based on a prepublication in which we generalize the notion of full group to probability
measure preserving actions of Polish groups, and in particular, of locally compact groups. We
define a Polish topology on these full groups and we study their basic topological properties,
such as the topological rank and the density of aperiodic elements.

The third part is based on a joint work with Rémi Boutonnet. The content of this part is
based on two prepublications in which we try to understand when the von Neumann algebra
of a maximal amenable subgroup of a countable group is itself maximal amenable. We solve
the question for hyperbolic and relatively hyperbolic groups using techniques due to Popa.
With different techniques, we will then present a dynamical criterion which allow us to answer
the question for some amenable subgroups of lattices of Lie groups of higher rank.

Key-words

Ergodic Theory, von Neumann algebras, Polish groups, sofic groups, full groups, maximal
amenability.
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Introduction

By a probability measure preserving action of a countable group I' on the standard prob-
ability space (X, ), we mean an action of I' on X such that every element of I' induces a
measurable bijection of X which preserves the measure. We will say that the action of I' on
X is free if the set of fixed points of each element of I' has measure zero. We will say that
the action is aperiodic if almost every orbit is infinite and we will say that the action is ergodic
if every I'-invariant measurable subset of X has measure zero or one. Ergodic actions are
the fundamental pieces of measure preserving actions, every probability measure preserving
action admits a unique decomposition (up to measure zero) into ergodic actions.

Every measure preserving action of a countable group I' gives rise to a unitary represen-
tation on a Hilbert space: the Koopman representation. In fact, if I' acts on the probability space
(X, i) preserving the measure, then we can define a unitary representation x of I' on L?(X, u)
by 1, f(x) = f(77'x).

Let us give some examples of free, ergodic and probability measure preserving actions.

e Every countable infinite group I' admits a free, ergodic and probability measure preserv-
ing action: the Bernoulli shift. Let (Y,v) be a probability space and set (X, u) = (YT, ).
The group I acts on X by shifting the sequences yo(y,), = (y%_lnr)w and this action
preserves the measure. It is easy to observe that the action is free and ergodic.

e Let K'be a compact group and let I' < K be a countable subgroup. The action induced by
the multiplication on the left of I' on K is free and preserves the Haar measure. Moreover
if the group I' is dense in K, then the action is also ergodic.

e LetI' > Ty > I, > ... bea chain of finite index subgroups. The group I' acts on the
finite quotients I'/T,, and hence it acts on the profinite limit of the sequence {I'/T},.
The profinite limit can be identified with the space of ends of a tree and therefore it
has a natural topology which makes it homeomorphic to a Cantor space. If we equip
the finite spaces I'/T’, with the renormalized uniform counting measure, then we obtain
a measure on the profinite limit which is I'-invariant. The action of I' on this space is
called the profinite action of T with respect to the chain {I',}, and it is always ergodic.
If the subgroups I';, are normal in I and their intersection is trivial, then the profinite
action is free.

We will now briefly describe some important notions related to actions of groups. Our pur-
pose is not to give an overview of the theory, which the interested reader can find in the
surveys of Furman [Furll] and Gaboriau [Gab10]. We just want to recall the basic definitions
and some important theorems that one should have in mind before reading this dissertation.
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Introduction

Conjugacy and entropy

Two measure preserving actions of a countable group I' on the probability spaces (X, p)
and (Y, v) are conjugate if there are I'-invariant full measure subsets A C X and B C Y and a
measure preserving isomorphism ¢ : A — B such that ¢(yx) = y¢(x) for every x € A and
v el

It is straightforward to check that if two actions of I' are conjugate, then their Koopman
representations are isomorphic, so any spectral invariant of the representation is a conjugacy
invariant. However Koopman representations are not complete invariants, for example all
Bernoulli shifts over a finite base are associated to the same unitary representation. However
these actions are not conjugate, Bernoulli shifts may have different entropy.

Entropy for measure preserving actions of the integer group has been defined by Kol-
mogorov in the fifties. One of the first striking application is that entropy can be used to
classify Bernoulli shifts. In fact, the entropy of a Bernoulli shift over a finite base is equal to
the Shannon entropy of the base, namely — Y, cy v({y}) log(v({y})) and a deep theorem of
Ornstein tells us that this non-negative number is in fact a complete invariant. The classifica-
tion of Bernoulli shifts is only one of the many applications of entropy, which gives rise to a
fascinating theory, outlined for example in Katok’s survey [Kat07].

In order to classify Bernoulli shifts of more general groups, one is led to generalize the
concept of entropy. This has been done in the context of amenable groups by Ornstein and
Weiss, using the notion of tilings and quasi tilings. Using this new entropy, Ornstein and
Weiss were able to completely classify Bernoulli shifts exactly as for actions of Z, [OW87].

While the entropy of actions of amenable groups was widely studied, there were some
evidences pointing out that it would not have been possible to extend the definition to non
amenable groups: some of the crucial properties of the entropy can not be true in the more
general setting. In particular the question about Bernoulli shifts was unsolved. Several years
later in 2008, Bowen introduced a new concept of entropy for actions of sofic groups which
extends the previous definition, see [Bow10a] and [Bow10b]. He was able to classify Bernoulli
shifts of a large class of sofic groups as for amenable groups: the entropy of the base space
is an invariant. This classification was extended to all sofic groups shortly later by Kerr and
Li in [KL11], where they also proposed a definition of sofic topological entropy and stated a
variational principle.

Weak containment

Weak containment in the context of measure preserving actions was introduced by Kechris
in [Kecl0]. An action of the countable group I' on the probability space (X, u) is weakly
contained in an action of I' on the probability space (Y, v) if for every € > 0, for every finite
partition & = {Ay,..., Ay} of X and for every finite subset F C I, there is a finite partition
B ={Bi,...,By} of Y such that

Y. ) In(AinfA) —v(B;NfB))| <e.
i,j<n feF

The definition is inspired by the notion of weak containment for representations and it is
in fact stronger. If an action a is weakly contained in an action b, then the Koopman repre-

sentation of a is weakly contained in the Koopman representation of b, [Kec10, Proposition
10.5].
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We say that two actions are weakly equivalent if they are weakly contained one into the
other. By definition, if two actions are conjugate, then they are weakly equivalent. Note
however that weak equivalence is weaker than conjugacy. For example ergodicity is not an
invariant of weak equivalence: every ergodic, non strongly ergodic action of a countable group
is weakly equivalent to the product of the action with the trivial action.

Even though weak containment is a relatively new concept, in the last few years there has
been a big interest around it and several results were obtained.

e All free and ergodic actions of an amenable group are weakly equivalent, [FW04] and
[Kec10].

e Every free action of a countable group weakly contains the Bernoulli shift of the group
with respect to any base, [AW13].

e More generally, every free action is weakly equivalent to the product of itself with a
Bernoulli shift [TD12].

Abért and Elek studied deeply weak containment and weak equivalence for profinite ac-
tions in [AE12]. In particular, they proved that free groups, SL,(Z) and many other groups
admit an uncountable family of weakly inequivalent actions. It is still unknown whether the
result holds for every non-amenable group.

Orbit equivalence

Two measure preserving actions of the countable groups I' and A on the probability spaces
(X, ) and (Y, v) are orbit equivalent if there are invariant full measure subsets A C X and
B C Y and a measure preserving isomorphism S : A — B such that for every x,y € A we have
that x € T'y if and only if S(x) € AS(y). Orbit equivalence is clearly weaker than conjugacy,
we do not even ask I and A to be isomorphic. We will say that two groups are orbit equivalent
if they admit free, ergodic actions which are orbit equivalent.

e A pionier result of Dye [Dye59] states that all ergodic, free and probability measure pre-
serving actions of the integer group Z on a standard probability space are orbit equiva-
lent. Moreover all free, ergodic actions of all locally finite groups are orbit equivalent to
an action (and hence all) of Z.

e Ornstein-Weiss in [OW80] were able to describe the class of groups that are orbit equiva-
lent to the integers: it is the class of amenable groups. They proved that all free, ergodic
actions of an amenable group are orbit equivalent to an action (and hence all) of Z. The
result was shortly later generalized in [CFW81].

e Gaboriau proved that probability measure preserving actions of free groups of differ-
ent rank are not orbit equivalent, [Gab00]. By a result of Hjorth, [Hjo06], the class of
groups that are orbit equivalent to a free group is the class of treeable groups. This class
contains various surface groups but it is still unclear how to characterize it in more
group-theoretical terms, see [Gab05]. For example, it is unknown whether limit groups
are treeable.

e All non-amenable groups admit a continuum of orbit inequivalent actions see [Ioall]
and [Eps07] which is based on [GL09].



Introduction

Even though orbit equivalence is a weak notion, orbit equivalent groups share many prop-
erties. For example amenability, property (T) ([Zim81], [AD05]) and Haageroup’s property
([Jol05]) are invariants of orbit equivalence and two orbit equivalent groups have the same ¢?
Betti numbers ([Gab02]).

In some cases, orbit equivalence turns out to be equivalent to conjugacy. Furman proved
in [Fur99] that any action which is orbit equivalent to the standard action of SL,(Z) on the
torus for n > 3 is essentially conjugated to it. Actions which satisfy this property are often
called rigid actions. Since Furman'’s result, there have been several results of rigidity which
culminated in Popa’s cocycle superrigidity theorems [Pop07], [Pop08].

von Neumann algebras

A von Neumann algebra is a weakly closed *-subalgebra of the bounded operators on a
Hilbert space. For a countable group I', we denote by A the left-regular representation of I' on
2T ). The von Neumann algebra of I', denoted LI, is the weak closure of the linear span of the
unitary operators {A(7y)},er.

In a similar manner, one can also define the von Neumann algebra of an action. Suppose
that the countable group I' acts on the probability space (X, u) freely and preserving the
measure. Denote by Ax the diagonal representation of I' on L2(X, 1) ® /2(T') and we let
L®(X, u) act on L?(X, ). The von Neumann algebra of the action L*(X, 1) x T, called group
measure space construction, is the weak closure of the linear span of {Ax(y)},er and L®(X, u).

Orbit equivalence has its roots in the theory of von Neumann algebras. Murray and von
Neumann used probability measure preserving actions as a source of examples of von Neu-
mann algebras. Singer proved in [Sin55] that the group measure space construction depends
only on the orbit-equivalence class of the action. Feldmann and Moore then generalized
Singer’s theorem to the context of equivalence relations [FM77b].

The group measure space construction is not a complete invariant of orbit equivalence
[C]82]. By [Sin55] and [FM77b], we know exactly which isomorphisms of von Neumann al-
gebras are induced by orbit equivalence relations: those that respect the inclusion L (X, ) <
L®(X,u) xT.

The subalgebra L= (X, ) < L®(X, u) x T is a Cartan subalgebra, that is a maximal abelian
subalgebra whose normalizer generates the von Neumann algebra. By [Sin55] and [FM77b] a
von Neumann algebra that has a unique Cartan subalgebra (up to conjugation), is canonically
attached to the orbit equivalence class and a series of remarkable theorems shows that there
are several von Neumann algebras with this property, see [OP10a], [PV14a] and [PV14b]. In
particular, all group measure space constructions associated to actions of free (non-abelian)
groups have a unique Cartan, [PV14a] and hence these von Neumann algebras remember the
rank of the group.

Von Neumann algebras arising from groups are far less understood, even in the case of
free groups. Let us state two well-known open problems.

e Does the von Neumann algebra associated to a free group remember the rank of the
group?

e Is every amenable subalgebra of the von Neumann algebra associated to a free group
contained in a unique maximal amenable subalgebra?



The second question is known under the name of Peterson-Thom conjecture, [PT11] and
it will be the main motivation for the study of amenable subalgebras of the fourth and fifth
chapter.

Ultraproducts, weak containment and sofic entropy

Measure preserving actions of countable groups on standard probability spaces have been
studied for more than a century. Recently there has been some interest in ultraproduct of
actions and their connection with sofic groups, see for example [CKTD13], [AE11], [Pes08],
[ES05] and [KL13]. Ultraproducts are a natural limit procedure and the measure preserving
actions constructed in this way, remember many properties of the sequences of actions used
in their construction. One of the main difficulties of this construction, is that ultraproduct
actions are defined on the Loeb probability space, which as measure space is isomorphic to
{0,1}R equipped with the product measure (Theorem 1.1.10).

Some of the theory of measure preserving actions easily generalizes to general measure
spaces. For example Dye worked without any assumption on the probability space in [Dye59].
Anyway not much is known in the general setting. In the first chapter, we will try to under-
stand actions on general probability space under the point of view of weak containment. We
will prove the following.

Theorem 1. Every probability measure preserving action of a countable group on a diffuse space is
weakly equivalent to an action on a standard probability space.

More precisely, we will prove in Theorem 1.2.15 that every probability measure preserving
action on a diffuse space has a standard diffuse factor which is weakly equivalent to the action.

The family of all actions of G on finite or diffuse probability spaces is to big to be a set.
But the above theorem implies that the family of weakly equivalence classes of actions is a set
and it is isomorphic to the set of classes of actions on {1,...,n} for n € IN and on a fixed
standard probability space, say [0,1] with respect to the Lebesgue measure. Let us denote
the set of classes by Act(G). One of the avantages of working with Act(G) is that it is closed
under ultraproducts: for every sequence of (classes of) actions (a,), of Act(G) and for every
ultrafilter u, the (class of the) action on the ultraproduct space g, is still an element of Act(G).

Abért and Elek defined in [AE11] a compact, metric topology on the space of weak equiv-
alence classes of actions on a standard Borel space which, by Theorem 1, is isomorphic to
Act(G). Once we identify these two spaces, it is not hard to see that every converging se-
quence converges to the class of its ultraproduct (with respect to any ultrafilter). Since ul-
traproducts of sequences of actions always exist, the topology is necessarily compact and it
is completely determined by this property. This compact space was later studied in [TD12],
[Bur15b] and [Burl5a].

We introduce in Definition 1.2.9 a compact, metric topology on Act(G), which is equivalent
to the topology of Abért and Elek. This metric is essentially the metric used in [Burl5b].
A sequence is converging for this topology if the asymptotic of the statistics of the actions
converges to the statistics of the limit action and as in the case of Abért and Elek’s topology,
every converging sequence converges to its ultraproduct, see Theorem 1.2.22.

The aim of Chapter 2 is to give a concise, simple and self-contained proof of the compact-
ness of the space, Theorem 1 of [AE11]. We will then analyse limits of finite actions and we
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Introduction

will obtain an interesting corollary in the context of sofic entropy.

It will follow easily from the definition of the topology on Act(G), that if {H,}, is a de-
scending chain of finite index subgroups of G, then the limit of the sequence of the finite
actions G/ H, is the (class of the) profinite action a(H). Since limits are always weakly equiv-
alent to the ultraproducts of the sequences, we get the following interesting corollary.

Corollary 2. Let G be a countable group and let (H,) be a chain of finite index subgroups. Then the
profinite action a\') associated to the sequence (H,), is weakly equivalent to the ultraproduct of the
sequence of finite actions on the quotients (G/H,) with respect to any ultrafilter.

We will give an application of Corollary 2 in the context of sofic entropy.

Sofic Entropy

A sofic approximation of a countable group G is given by sequence of natural numbers (1 )i
and a sequence of maps {6y : G — Sy, }x which is asymptotically multiplicative and free in
the sense that and for all g,h € G

lim — [{i € {1,...,m} : 0 ()0 ()i = O (gh)i}| = 1

k—o0 M

and for every g,h € G with g # h,

Jim nl i€ {1, me} s 0(g)i  Ou(h)i}| = 1.
—o0 Ny

A group is sofic if it admits a sofic approximation. The class of sofic groups is a large
class of groups and at the time of writing there is no group which is known to be non
sofic. For example, all residually finite groups are sofic, in fact every chain of finite in-
dex normal subgroups {H,}, of G such that N,H, = {1} gives a sofic approximation
{6, : G — Sym(G/Hy)},, where each 0, is induced by the left multiplication of G on the
quotients. Sofic groups also include amenable groups and is stable under various operations,
see [Pes08] and [ES05].

On the other hand, many conjectures are known to hold for sofic groups, for example sofic
groups are hyperlinear [ES05], they satisfy the Gottschak Surjunctivity conjecture [Gro99],
Kaplansky’s Direct Finitness conjecture [ES04], the Determinant conjecture [ES05] and others.
We invite the interested reader to look at Pestov’s survey [Pes08] and references therein.

Sofic entropy is a conjugacy invariant for actions of a sofic group G which is built using a
fixed sofic approximation of G. This invariant depends on the sofic approximation and once
the approximation is fixed, the entropy is only defined (as a non-negative number) for some
actions, which we will call its domain of definition. For the others the entropy is just declared
to be —co. This means that each sofic approximation gives us a possibly different notion
of entropy which has its proper domain. Bowen proved in [Bow10b], see also [Ker13], that
for Bernoulli shifts the entropy is always defined and its value does not depend on the sofic
approximation. This phenomenon was later extended to algebraic actions see [Bow11], [KL11]
and [Hay14].

At the end of the first chapter, we will try to clarify how the domain of definition of sofic
entropy depends on the sofic approximation. The answer appears extremely simple when the
sofic entropy is defined using a sofic approximation which comes from a chain of finite index
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subgroups. In fact if G is a residually finite group and (H,,), is a chain of subgroups such that
the associated profinite action is free, then the sequence of actions of G on the finite quotients
is a sofic approximation of G, which we will denote by X4 ). The following proposition is a
consequence of Corollary 2.

Proposition 3. Let G be a residually finite group and let (H,), be a chain of finite index subgroups
such that the associated profinite action a') is free. Then for every measure preserving action b of
G on a standard probability space (X, i), we have that hy (b) > —oo if and only if the action b is
weakly contained in the profinite action a(H»).

The proposition tells us that the domains of definition depend on the sofic approximation
and there are actions that are in some domains but not in others. Abért and Elek in [AE12]
proved an interesting result about rigidity of weak equivalence for profinite actions, which we
can combine with the previous proposition to get the following result.

Theorem 4. Let G be a countable free group or PSLy(Z) for k > 2. Then there is a continuum of
normal chains {(H},)n }rer such that hy .0 (aF0)) > —co if and only if r = s.

Observe that the entropy of profinite actions has been calculated in [CZ14] and it is always
0, when it is defined. Since profinite actions have a generating partition with finite (actually
arbitrarily small) entropy (Lemma 1.3.13 ), we can use Bowen’s computation of entropy for
products of actions with Bernoulli shifts [Bow10b] to get actions which have positive entropy
with respect to some sofic approximations and —oo with respect to others, see Theorem 1.3.12.

We do not know any action for which the sofic entropy can have two different non-negative
values.

More Polish full groups

The second chapter of this dissertation is based on a joint work with Francois Le Maitre.

For every action of a countable group I' on the standard probability space (X, y), the orbit
equivalence relation of the action Rr on X is defined by

Rr ={(x,y) € X x X : thereis y € I such that yx = y}.

It is easy to observe that two actions are orbit equivalent if and only if their equivalence
relations are isomorphic up to measure zero. The equivalence relations arising in this way
are called countable pmp (probability measure preserving) equivalence relations. They have
geometric and cohomogical interpretations as well as fruitful relations with von Neumann
algebras. We refer the interested reader to the survey of Gaboriau [Gab10].

Another way of formulating orbit equivalence is due to Dye. Suppose that I' acts on the
standard probability space (X, p). The full group induced by the I'-action, is the group of all
T € Aut(X, i) such that for almost every x € X, we have T(x) € I - x. This group still encodes
orbit equivalence in the following sense: two actions are orbit equivalent if and only if their
full groups are conjugate in Aut(X, i) and a theorem of Dye (see Theorem 2.2.31) implies that
two actions are orbit equivalent if and only if their full groups are abstractly isomorphic.

As a consequence, one should be able to understand all the invariants of orbit equivalence
in terms of full groups. This works well for ergodicity: an action is ergodic if and only if the
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associated full group is a simple group. Another example is given by aperiodicity: an action
is aperiodic if and only if the full group contains an element which induces a free action of Z.

In order to understand finer orbit equivalence invariants in terms of properties of full
groups, one is led to introduce a Polish group topology on them. This topology is called the
uniform topology, and it is induced by the uniform metric d, defined on Aut(X, i) by

dy(T,S) =u({x e X: Tx # Sx}).

For example, Giordano and Pestov proved in [GP07] that if T acts freely on (X, p), then I is
amenable if and only if the full group of the action is extremely amenable for the uniform
topology. Another example is given by the topological rank, that is the minimal number of
elements needed to generate a dense subgroup. Le Maitre showed in [LM14a] that the topo-
logical rank of a full group can be expressed in terms of a fundamental invariant of orbit
equivalence: the cost.

The aim of Chapter 2 is to generalize the notion of full groups to actions of arbitrary Polish
groups. Given a measure preserving action of the Polish group G on the standard probability
space (X, u), we define the orbit full group of the action exactly as before: it is the set of
T € Aut(X, p) such that for almost every x € X, we have T(x) € G- x. We will denote this
full group by [R¢] to remember that it is the full group of the equivalence relation induced
by the action of G. We should warn the reader that our definition needs a concrete action of
G on X, and not just a morphism G — Aut(X, u).

As we said before, in order to understand deeper orbit full groups, we have to introduce
a Polish topology on them. All the orbit full groups are closed for the uniform topology,
but they are separable if and only if they arise as full groups of countable pmp equivalence
relations. This does not rule out the existence of a Polish topology on them, for instance a
compact group acting on itself by translation generates the transitive equivalence relation, so
the associated orbit full group is Aut(X, ), which is a Polish group for the weak topology.

The aim of Chapter 2 is to define a Polish group topology on all orbit full groups, which
will not be in general the restriction to [R¢| of a topology on Aut(X, ). We will call this
topology the topology of convergence in measure. When the action of G on X is free, we can
associate to any element T € [R¢] the function f : X — G uniquely defined by T(x) =
f(x) - x. Doing so, we embed [R¢]| in the space of measurable functions from X to G, and the
Polish topology we will define coincides with the restriction of the topology of convergence
in measure.

Theorem 5. Let G be a Polish group acting in a measure preserving Borel manner on a standard
probability space (X, u). Then the associated orbit full group

[Rg] = {T € Aut(X, ) : Vx € X, T(x) € G- x}

is a Polish group for the topology of convergence in measure.
Moreover, if the action is ergodic, then [R¢| has a unique Polish group topology, and if the action
is free, then G embeds into [Rg].

Every locally compact group G admits a free ergodic measure-preserving action, [AEGY4,
Proposition 1.2]. Given a free, ergodic and measure preserving action of a locally compact,
non-discrete and non-compact group on the probability space (X, p), we remark that the
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topology of convergence in measure of [R¢] is neither the uniform topology nor the weak
topology. In fact whenever G acts freely, G seen as a subset of Aut(X, y) is discrete for the
uniform topology, hence [R| can not be separable for the uniform topology. Moreover we
show in Corollary 2.2.28 that if G is not compact, then [R¢g] # Aut(X, ), so the topology of
convergence in measure is not the weak topology either, by Corollary 2.2.14.

Dye in [Dye59] gave an abstract definition of full groups: a subgroup G < Aut(X, p) is full
if for every countable subgroup I' < G, the full group generated by I’ is still a subgroup of G.
Clearly the orbit full groups we have defined are full groups in the sense of Dye’s definition.

We remark that not all full groups can have a Polish topology. In fact we show that if
an ergodic full group admits a Polish topology, then such a topology is unique, refines the
weak topology and is weaker than the uniform topology (Theorem 2.3.8). It follows that if an
ergodic full group admits a Polish topology, then it is a Borel subset of Aut(X, 1) (Corollary
2.3.9). This allows us to give examples of full groups which cannot carry a Polish group topol-
ogy (Corollary 2.3.19). Note that such a phenomenon is actually common for topological full
groups, as was recently shown by Ibarlucias and Melleray [IM13].

One of the main interests of full groups induced by actions of countable groups is that they
are complete invariants of orbit equivalence. Similarly to the case of countable groups, we say
that two actions of two Polish groups G and H on the standard probability spaces (X, u) and
(Y, v) are orbit equivalent if there are full measure subsets A C X and B C Y and a measure
preserving bijection S : A — b such that for all x € A,

S(G-x)NA=(H-S(x))NB.

It is clear from this definition that if two actions are orbit equivalent, then their orbit full
groups are conjugate in Aut(X, ) and in particular they are isomorphic. The converse is
however more complicated. Dye’s Reconstruction Theorem (see Theorem 2.2.31) still holds, so
any isomorphism of full groups is given by the conjugation by some S € Aut(X, u). However
this does not imply that the orbit equivalence of the groups are orbit equivalent. We will show
in Theorem 2.2.30 that this is the case for locally compact groups.

Theorem 6. Let G and H be two locally compact second countable groups acting in a Borel measure
preserving ergodic manner on a standard probability space (X, u). Suppose that ¢ : [Rg] — [Ruy] is
an abstract group isomorphism. Then there is an orbit equivalence S between R and Ry such that
forall T € [Rg],

¥(T) = S~ITS.

Orbit full groups arise as intermediate examples between full groups of countable pmp
equivalence relations and Aut(X, jt), so they should share the topological properties which
are satisfied by both. One of the simplest of such properties is contractibility, and indeed it is
not hard to see that orbit full groups are contractible using the same approach of Keane for
Aut(X, u) in [Kea70] (see Corollary 2.3.3).

However Aut(X, i) and full groups of countable pmp equivalence relations have many
opposite properties. For example, any aperiodic element has a dense conjugacy class in
Aut(X, u), while in the full group of a countable pmp equivalence relation, the identity cannot
be approximated by aperiodic elements. We can characterize which group actions induce an
orbit full group for which the aperiodic elements have dense conjugacy classes.
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Theorem 7. For a Borel, measure preserving action of the Polish group G on the probability space
(X, ), the following are equivalent:

(i) the set of aperiodic elements is dense in [Rg];
(ii) the conjugacy class of any aperiodic element of [R¢] is dense in [Rg];

(iii) for every free measure preserving action of a countable discrete group I' on the probability space
(X, ), there is a dense Gy in [R¢| of elements inducing a free action of T * Z;

(iv) for all neighborhood of the identity U in G, the set of x € X such that U - x # {x} has full
measure.

Note that condition (iii) is inspired by results that Térnquist obtained for [R¢] = Aut(X, p)
[Tor06]. Using condition (iv), we get a nice dichotomy for measure-preserving ergodic actions
of locally compact groups: either they generate a countable pmp equivalence relation, or all
the above conditions are satisfied (see Corollary 2.3.6).

Characters of full groups

In the last section of Chapter 2 we classify character representations of ergodic orbit full
groups.

Every unitary representation of a group G splits as direct sum of cyclic representations.
These representations are encoded by positive type functions, that are the functions f : G —
C such that for all finite tuple (g1,...,gn) of elements of G, the matrix (f(g; gj_l))i,j:l
positive semi-definite.

A positive type function x : G — C is a character if it satisfies the following conditions:

,,,,,

e it is conjugacy-invariant: for all ¢,h € G, we have x(g7hg) = x(h) and
e it is normalized: x(1g) = 1.

A character representation is a unitary representation of G which splits as a direct sum of cyclic
representations whose corresponding positive definite functions are characters. Character
representations are the representations into the unitary groups of finite von Neumann algebras,
see [DM13, Section 2.3] for more details.

Every discrete group I' has a faithful character representation, namely the regular represen-
tation. 1t is associated to the reqular character x, defined by x,(y) = 0if v # 1r and x,(1r) = 1.
The set of characters of I is convex and compact for the pointwise topology. Moreover, it is a
Choquet simplex, meaning that every character can be written in a unique way as an integral of
extremal characters. The problem of classifying extremal characters has a long history, start-
ing with the work of Thoma who classified extremal characters of the group of permutations
of the integers with finite support [Tho64]. Since then, many examples were studied, see for
instance [PT13] and references therein.

The set of continuous characters of a locally compact group is again a Choquet simplex,
but locally compact groups do not necessarily have a faithful character representation. For
example, all the continuous character representations of connected semi-simple Lie groups
are trivial by a result of Segal and von Neumann [SvN50]. Recently Creutz and Peterson
have shown that the same is true for non discrete totally disconnected simple locally compact
groups having the Howe-Moore property [CP13, Theorem. 4.2].

For Polish groups, the situation is more complicated. The set of continuous characters may
cease to form a Choquet simplex. For example, the abelian group of measurable maps into the
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circle LO(X, U, Sl) has no continuous extremal character, although it has continuous characters
(see [BAIHVO08, Example C.5.10]). However, if the Polish group G contains a countable dense
subgroup I' which has only countably many extremal characters, then the continuous extremal
characters of G are given by the extremal characters of I' which extend continuously to G. It
is then easy to see that the continuous characters of G form a Choquet subsimplex of the
characters of I'. This remark has been crucial for the understanding of continuous characters
of several Polish groups. In particular, it was used by Dudko to give a complete description
of the characters of the full group of the hyperfinite ergodic equivalence relation [Dud11]. We
extend his result and classify all the characters of an arbitrary ergodic orbit full group which
are continuous for the uniform topology.

Theorem 8. For a Borel, measure preserving action of the Polish group G on the probability space
(X, 1), we have the following dichotomy:

1. Either [R¢] is the full group of a countable pmp equivalence relation, and then all its continuous
characters are (possibly infinite) convex combinations of the characters X given by

xc(@) =u({xreX:g-x=x})"

for k € IN and the constant character xo = 1.

2. or [R¢] does not have any nontrivial continuous character representation.

Orbit full groups of locally compact groups

The third chapter of this dissertation is devoted to the study of orbit full groups of free
actions of locally compact second countable unimodular groups. As for the second chapter,
Chapter 3 is based on a joint work with Frangois Le Maitre.

Measure preserving actions of Polish groups can have some strange properties. For ex-
ample Kolmogorov found an essentially transitive action which is not ergodic, see Example
2.2.15. These strange properties reflect to strange properties of the associated full groups.
Indeed, suppose that the Polish group G acts on the probability space (X, ) preserving the
measure. One could hope that for every dense subgroup H C G, the orbit full group [Ry] is
dense in [Rg]. Similarly one could hope that the set of elements in [Rs] that can be written
using only countably many elements of G is dense in [R¢]. But both properties are false for
the full group associated to the action of Example 2.2.15.

However, if we suppose that the acting group is locally compact, the above properties are
always true.

Theorem 9. For every ergodic, measure preserving action of a locally compact Polish group G on a
probability space (X, u) and for every dense subgroup H C G, the orbit full group [Ry| is dense in
[Re]-

We will show Theorem 9 under a more general assumption. Becker in [Bec13], defined the
notion of suitable action of a Polish group. These are the actions that, in some sense, behave
nicely and we will prove that Theorem 9 holds for every suitable action of a Polish group G.
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Measure preserving actions of locally compact Polish groups can be, in some sense, re-
duced to actions of countable groups. For this, we need the notion of cross-section defined by
Forrest in [For74] and shortly later generalized in [FHM78]. The following theorem is essen-
tially a version of Proposition 2.13 of [For74] in our context, which we will prove for sake of
completeness.

Theorem 10. Let G be a unimodular locally compact non-compact and non-discrete Polish group. For
a measure preserving, essentially free and ergodic action of G on the probability space (X, u), there exist
a countable group T and a probability measure preserving action of I on (Y, v) such that the action of
G is orbit equivalent to the product action S* x T on S' x Y, where S' acts on itself by translation.

Moreover, G is amenable if and only if the orbit equivalence relation induced by T on (Y,v) is
amenable.

Using Theorem 9 and Theorem 10, we can now compute the topological rank of orbit full
groups associated to actions of locally compact non-compact and non-discrete Polish groups.
In fact, by Theorem 10, we can suppose that G = S! x ' and that the action of S! is free (but
not the action of I'). Now take a dense subgroup Z C S! and consider the dense subgroup
Z xT C S! x I. By Theorem 9, we know that [Z x I'] is dense in [R¢] and by [LM14a], the
topological rank of [Z x I'] is 2.

Theorem 11. Let G be a locally compact unimodular non-compact and non-discrete Polish group. For
every measure preserving, essentially free and ergodic action of G, there is a dense G of couples (T, U)
in [Rg|? which generate a dense free subgroup of [Rg| acting freely. In particular, the topological rank
of [R¢] is 2.

We remark that the result is already known for compact groups. In fact if G is compact
and the action is ergodic, then the action is transitive and [Rg| = Aut(X, ), hence we can
apply Prasad’s result [Pra81]. We do not know whether the result holds for Polish groups,
even in the case of suitable actions.

Maximal amenable subalgebras of von Neumann algebras associated
with hyperbolic groups

The forth chapter of this dissertation is based on a joint work with Rémi Boutonnet.

A (separable) finite von Neumann algebra A C B(H) is said to be amenable if there is
a state ¢ on B(H), which is A-central, meaning that ¢(xT) = ¢(Tx) for all x € A and all
T € B(H). Moreover, this definition does not depend on the choice of the Hilbert space H on
which A is represented.

Amenability has always played a central role in the study of von Neumann algebras. First
it is a source of isomorphism, via the fundamental result of Connes [Con76] that amenable
implies hyperfinite, and the uniqueness of the hyperfinite II;-factor. This characterization
implies in particular that all von Neumann subalgebras of an amenable tracial von Neumann
algebra are completely described: they are hyperfinite. Amenability is also at the core of the
concepts of solidity and strong solidity defined in [Oza04, OP10a]. It is hence very natural to
try to understand the maximal amenable subalgebras of a given finite von Neumann algebra.
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In this direction, Kadison asked in the 1960’s the following question: is any maximal
amenable subalgebra of a II;-factor necessarily a factor? Popa solved this problem in [Pop83],
producing an example of a maximal amenable subalgebra of the free group factor LF, which
is abelian. The subalgebra in question is generated by one of the free generators of the free
group F,. This striking result led to more questions, refining Kadison’s question: what if
the ambient II;-factor is McDuff? has property (T)? More generally can one provide concrete
examples of maximal amenable subalgebras in a given II;-factor? Some progress on this topic
have been made recently.

By considering infinite tensor products of free group factors, Shen constructed in [She06]
an abelian, maximal amenable subalgebra in a McDulff II;-factor. In [CFRW10], it is proved
that the subalgebra of the free group factor generated by the symmetric laplacian operator
(the radial subalgebra) is maximal amenable. In [Houl4a], Houdayer provided uncountably
many non-isomorphic examples of abelian maximal amenable subalgebras in II;-factors. In
2010, Jolissaint [Jol10] extended Popa’s result, providing examples of maximal amenable sub-
algebras in factors associated to amalgamated free-product groups, over finite subgroups.

In Chapter 4, we intend to provide examples of maximal amenable subalgebras of factors
associated with hyperbolic groups. At the group level, amenable subgroups of hyperbolic
groups are completely understood: they are virtually cyclic, and they act in a nice way on
the Gromov boundary of the group. At the level of von Neumann algebras, we can show the
following, generalizing the main result of [Pop83].

Theorem 12. Consider a hyperbolic group G and an infinite, maximal amenable subgroup H < G.
Then the group von Neumann algebra LH is maximal amenable inside LG.

This answers a question of Cyril Houdayer [Houl3, Probleme 3.13].

Every maximal amenable subgroup H of a hyperbolic group is virtually cyclic, so the
associated von Neumann algebra LH is far from being a factor. By Remark 4.2.6, we obtain
many counterexamples to Kadison’s question, even in property (T) factors. For instance factors
of the form LT, with I' a cocompact lattice in Sp(n, 1), are counterexamples with property (T).

The proof of Theorem 12 is in the spirit of Popa’s asymptotic orthogonality property
[Pop83]. It relies on an analysis of LH-central sequences and property Gamma. By defini-
tion, a diffuse finite von Neumann algebra M has property Gamma if it admits a sequence of
unitaries (u,), C M which tends weakly to 0 such that for every x € M,

lim ||xu, — uyx|2 = 0.
n

By [Con76], diffuse finite amenable von Neumann algebras have property Gamma. What
we really show is that LH C LG is maximal Gamma, that is, it is maximal among von Neu-
mann subalgebras of LG with property Gamma. However amenability and property Gamma
coincide for subalgebras of solid von Neumann algebras ([Oza04, Proposition 7]) and the main
result of [Oza04] shows that LG is solid, whenever G is hyperbolic.

Using similar techniques, we can prove the following result for relatively hyperbolic groups.

Theorem 13. Let G be a group which is hyperbolic relative to a family & of subgroups of G and consider
an infinite subgroup H € ¢ such that LH has property Gamma. Then the group von Neumann algebra
LH is maximal Gamma inside LG.

Using results of Osin [Osi06b, Osi06a], we obtain the following corollary, which generalizes
Theorem 12 and the main result of [Jol10].
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Corollary 14. Let G be a group which is hyperbolic relative to a family ¢4 of amenable subgroups
and H be an infinite maximal amenable subgroup of G. Then the group von Neumann algebra LH is
maximal amenable inside LG.

By the comments after Proposition 12 in [Oza06], LG is solid for G as in Corollary 14, so
maximal amenable is equivalent to maximal Gamma.

Limit groups are examples of groups G covered by this corollary.

It is also possible to prove similar results in the context of hyperbolically embedded sub-
groups, in the sense of [DGO11]: generalizing our techniques one can show that if H < G is an
infinite amenable subgroup which is hyperbolically embedded then LH is maximal amenable
inside LG.

Finally, we extend our results to products of groups as above. We also allow the groups
to act on an amenable von Neumann algebra, and we get a similar result about the crossed
product von Neumann algebra. Such a product situation were already investigated in [She06]
and [CFRW10]. We thank Stuart White for suggesting us to study this case.

Theorem 15. Let n > 1, and consider for all i = 1,...,n an inclusion of groups H; < G;j as in
Theorem 13. Put G = Gy X -+- X Gy and H = Hy x --- x H,.

Then for any trace-preserving action of G on a finite amenable von Neumann algebra (Q, T), the
crossed-product Q x H is maximal amenable inside Q x G.

In particular, when G and H are as above, for any free measure preserving action on a
probability space G ~ (X, u), the equivalence relation on (X, ) given by the H-orbits is
maximal hyperfinite inside the equivalence relation given by the G-orbits.

In Theorem 15, note that Q x H C Q x G is not maximal Gamma in general. We will
in fact use Houdayer’s relative version of the asymptotic orthogonality property to conclude
([Houl4b]). The argument relies on the same analysis of LH-central sequences.

Maximal amenable von Neumann subalgebras arising from maximal
amenable subgroups

The last chapter of this dissertation is also based on a join work with Rémi Boutonnet.

In Chapter 4, we showed that any infinite maximal amenable subgroup in a hyperbolic
group I gives rise to a maximal amenable von Neumann subalgebra of LT

Question. Assume that A < I' is a maximal amenable subgroup. Under which conditions is
LA maximal amenable inside LI'?

In Chapter 5, we will provide a general sufficient condition ensuring this rigidity phe-
nomenon.

Definition. Consider an amenable subgroup A of a discrete countable group I'. Suppose that
I' acts continuously on the compact space X. We say that A is singular in I' (with respect to X)
if for any A-invariant probability measure y on X and for every ¢ € I' \ A, we have that the
measure g - i is singular with respect to the measure p.
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Theorem 16. Let I' be a countable group and A < T be an amenable singular subgroup as in the pre-
vious definition. Then for any trace preserving action I ~ (Q, T) on a finite amenable von Neumann
algebra, Q x A is maximal amenable inside Q x T.

The conclusion of the above theorem implies in particular that
e LA is maximal amenable inside LT (case where Q = C);

e for any free measure preserving action on a probability space I' ~ (Y,v), the orbit
equivalence relation R(A ~ (Y,v)) is maximal hyperfinite inside R(I' ~ (Y, v)) (case
where Q = L®(Y,v)).

Corollary 17. In the following examples, A is singular inside I', so that the conclusion of Theorem 16
holds.

(i) T is a hyperbolic group and A is an infinite maximal amenable subgroup;

(ii) A is any amenable group with an infinite index subgroup Ao, and T = A xp, ', for some other
group N’ containing Ao;

(iii) T = SL,(Z) and A is the subgroup of upper triangular matrices.

Point (ii) above was proved independently by B. Leary [Leaon] for more general von Neu-
mann algebras (not only group algebras).

Regarding the question of providing abelian, maximal amenable subalgebras in a given
von Neumann algebra, we can prove the following. The result is not as explicit as the above
examples, but it is quite general. We are grateful to Jesse Peterson for stimulating our interest
in this question in the setting of lattices in Lie groups.

Theorem 18. Consider a lattice I' in a connected semi-simple real Lie group G with finite center. Then
I' admits a singular subgroup which is virtually abelian.

As we explain in Remark 5.2.6, if moreover G has no compact factors and I' is torsion free
and co-compact in G, then I admits an abelian singular subgroup.

At this point, let us mention that all the former results on maximal amenability followed
Popa’s strategy of proving the maximal amenability of Q C M by studying Q-central se-
quences in M. Namely the inclusion Q C M was usually shown to satisfy the so-called
“asymptotic orthogonality property”. In contrast, our result relies on a new strategy, more
specific to group von Neumann algebras, and completely different from Popa’s approach.

The general idea in our approach is the following. Assume that I' acts on some compact
space X. Then the maximal amenable subgroups of I' are stabilizers of probability measures
on X. In non-commutative terms, one can more generally say that amenable subalgebras of
LT centralize states on the reduced C*-algebraic crossed-product C(X) x, I'. The advantage of
focusing our study on this crossed-product C*-algebra is that it allows concrete computations.
We will see at the end of this paper that this point of view also has a theoretical interest,
providing new insight on solidity and strong solidity.

Finally, let us mention nice characterizations of singularity communicated to us by Naru-
taka Ozawa.

Theorem 19 (Ozawa). Consider an amenable subgroup A of a discrete countable group I'. The
following are equivalent.
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1. A is a singular subgroup of I';
2. Every A-invariant state on C;(I') vanishes on T\ A;
3. Forevery ¢ € T\ A, we have that 0 € conw 'l ({A(tgt™1), t € A}) C B(£2T);

4. For any net (&,) of almost A-invariant unit vectors in (2T and all ¢ € T \ A, the inner product
{(AgCn, Cn) goes to 0.

Note that the last characterization is in the spirit of Popa’s Asymptotic Orthogonality
Property.

Chapter 5 was originally born as an attempt to give a geometric proof of the maximality
of the radial subalgebra in the free group factor [CFRW10]. We wanted to apply the theory of
entropy of random walks developed in [KV83] and [Kai00]. In fact using this entropy, one can
well understand the action of /!T on the space of measure on the boundary of the group by
convolution. This action has some hyberbolic behavior, so one could hope to use it to prove
the maximality of the radial subalgebra.

Question. Is it possible to give a geometric proof of [CFRW10] in the spirit of Chapter 4 and
5?
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Chapter 1

Ultraproducts, weak equivalence and
sofic entropy

Abért and Elek defined a metrizable and compact topology on the space of weakly
equivalence classes of probability measure preserving actions of a countable group.
We propose here an equivalent metric and we will give a simple proof of the compact-
ness of the space. We will prove that any probability measure preserving action of a
countable group on any diffuse space is weakly equivalent to an action on a standard
diffuse space. We will analyse ultraproduct of finite actions. For a residually finite
group, we will show that the profinite action associated to a sequence of finite index
subgroups is weakly equivalent to the ultraproduct action of the sequence of actions
on the quotients. Finally, we will obtain a corollary about sofic entropy, we will show
that for free groups and some property (T) groups, sofic entropy of profinite actions
depends crucially on the sofic approximation used for computing the sofic entropy.
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Chapter 1. Ultraproducts, weak equivalence and sofic entropy

1.1 Ultrapoducts of probability spaces

In this section, we describe the ultraproduct of probability measure spaces. These prob-
ability spaces were introduced by Loeb in [Loe75] in the language of non-standard analysis
and they are often called Loeb spaces. All the material presented here is well-known and a
recent exposition can be found in [CKTD13] and [ES12].

Let us fix a non-principal ultrafilter u on IN.

1.1.1 Set-theoretic ultraproducts

Definition 1.1.1. Let {X, },en be a family of sets and let X be their product X := [],en X
We define the ultraproduct of the family {X, }, to be the following quotient of X

Xu = X/ ~y Where <xn)n ~u <]/n)n lf {Tl . xn = ]/n} E u.

We will denote by x,, and A, elements and subsets of X,,. For a sequence (x,), € X, we
will denote by [x,], its class in X, and similarly for a sequence of subsets {A, C X, },, we
will denote by [A,]y the class of (A),.

It is easy to observe that

[An]u N [Bn]u = [An N Bn]u/ [An]u U [Bn]u = [An U Bn]u-

Remark 1.1.2. We remark that if {X, }, is a sequence of finite sets such that lim, |X,,| = oo or
if it is a sequence of countable non-finite sets, the ultraproduct X, has the cardinality of the
continuum.
In fact, it is easy to construct a surjective map from X, to interval [0,1]. For example, if
X, ={1,...,n} then the map can be defined as
¢: Xy — [0,1], @([ap]y) =: lim 22,

neu n

where the limit on the right is the limit with respect to the Euclidean topology. Since the
rationals are dense in the interval, the map ¢ has to be surjective and a similar argument
works for the general case.

1.1.2 Metric ultraproducts

Definition 1.1.3. Let {(M,,d,)},en be a family of uniformly bounded metric spaces. We
define the pseudo-metric d, on M := [],cn My by

du((xn)n, (Yn)n) = %g} dn(Xn, Yn)-

We define the metric ultraproduct of the family {(M,, d,)}, with respect to the ultrafilter
u to be the metric space associated to the pseudo-metric d,,, that is M, := M/{d, = 0}.

Remark 1.1.4. Let {G, }, be a sequence of groups and let d, be a bounded bi-invariant metric
on G,. It is easy to check that the subgroup

Ky = {(gn)n € HGn D du((gn)n, (16)n) = 0}

is normal, so the metric ultraproduct G, is a topological group and the metric d,, is bi-invariant.
For more on ultraproduct of groups, see [Pes08].
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1.1. Ultrapoducts of probability spaces

1.1.3 Measure Spaces

We will now define the ultraproduct of a sequence of probability spaces using Carathéodory’s
method. Let {(X,,, Zu, tin) tnen be a family of probability spaces and let X, be their ultraprod-
uct. We define

0: P(Xy) — [0,00],

0(Ay) := 1nf{211m;4n t Ay C | J[Bi]w BL € B, Vn, zGIN}
i€N ieN

Proposition 1.1.5. The function 0 defined above is an outer measure.

Proof. For this, we have to check that (@) = 0, that if A, C C, then 6(A,) < 6(C,) and that

for every sequence {A C Xy }; we have G(U]A] ) < Y6 (A] ). This can be done exactly as for
the Lebesgue measure, see [Fre04a, 114D].

e Since @ C [@],, we must have that (@) = 0.

e Suppose A, C C,. For every family {Bi, € %,};, such that C, C U;[Bi],, we have that
A, C U;[BL], so that 8(A,) < 0(Cy).

o Let {A{l}jeN be a sequence of subsets of X, and fix ¢ > 0. For every j € N, fix a family
{B);' € By}, such that

Al c Ul [B)/], and thyn (B') < 0(AL) +27e.
ieN

Then LJ]'A{l C Uj,i[Biii]u/ SO

G(U] ) < th in(By) < ZG(A{J +e. O

neu -
J

Whenever we have an outer measure, Carathéodory’s Theorem gives us a way of con-
structing a measure.

Definition 1.1.6. The measure ultraproduct of a family of probability spaces { (X, Zu, tin) tneN
is the probability space (Xy, %y, pu), where

By :={A, C X, :0(By) > 60(ByNA,) +6(By\ Ay) for every B, C Xy}
py(Ay) :=0(A,) for every A, € %,.

Carathéodory’s Theorem, see for example [Fre04a, 113C], tells us that (X, %y, pu) is a
measure space. In the following proposition we describe which subsets of the ultraproduct
are measurable and we show how to compute their measure.

Proposition 1.1.7. Let {(X,, Bu, tin) tneN be a family of probability spaces and let (X, By, pu) be
the measure space associated to 0 via the Carathéodory’s method, that is the measure ultraproduct of the
family of probability spaces.

1. For every sequence {A, € By}n we have [Ay|y € By and py([Anly) = limyey pn(An).

2. For every Ay € B, there is a sequence {B,, € By }n such that p,(AuA[By]y) = 0.
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Chapter 1. Ultraproducts, weak equivalence and sofic entropy

Proof. (1) Let us prove that for every family {A, € %, },, we have that [A,], € %,. Consider
a subset B, C X, a real number ¢ > 0 and a family C,iq € 4, such that

B, C U[Ci], and Ze([c;;]u) < 0(By) +e.

So we have

9<Bu N [An]u) + 9<Bu \ [An]u) SG(Ui<[C;]u N [An]u)) + G(Ui([qu]u \ [An]))
=60(U;[C;, N Aulu) +6(U[Cp \ An))

As ¢ is arbitrary, [A,], is py-measurable.

As we have observed before, given two subsets [Al], and [A2], of X,, we have that [A]], U
[A2], = [AL U A2%],. We remark that the same property does not hold for countable unions
but the following lemma shows that a similar property holds in the measurable setting.

Lemma 1.1.8. For every countable family {Bi, € %,}inen there is a family {C, € By }nen such
that '

Ui[BpJu C [Culu and lnlg} un(Cu) = }g?olnlg Vn(U;':lB%)-
Proof. The pr'oof is a standard diagonal argument for ultraproducts. For every n and i, we set
D,"q = U}ZlBﬁ. Fori > 1, put

.. . ; ; 1
Li:= {m e{ii+1,...}: ‘ng}yn(D;) - ym(Din)‘ < E}
Observe that L; € u. We define the function

max{i:n € L;} forn € U;L;

fiN—=N - asfn) = { f(n){:: 1 ) otherwizsel

By construction f(n) < n, f(n) tends to infinity as n — u and, for every m in a subset
Iy € u, we have | limy,e, yn(Di:(m)) - ym(D{(n(m)M < 2~ f(m),

We set C,, := Dg("). For every i € IN and for every n € L;, we have that f(n) > i, hence
C, D Dj,. Since this is true for every i, we obtain that [C,], D U;[D} ]y = U;[BL]u which implies
that

lim p, (C,) > lim lim yn(szlBL).

neu i—o0 NEU
Finally
_ Flm)y s F(m) Lo i pi 1
#m(Cm) = pm(Dp ) < ng}}”ﬂDn ) + Sf(m) = }LTOEQV"<U]:1377) + 2f )" O
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1.1. Ultrapoducts of probability spaces

Let us now compute the measure of [A,],. By the definition of 8, we must have 6([A,],) <
lim, ¢, (A,). For the reverse inequality, fix ¢ > 0 and consider a countable family {B/, € %,}; ,
such that

0([An)u) — ) lim 1, (B))| < e.

; neu
ieIN

By Lemma 1.1.8, there is a family {C, € %,}, such that [C,], D U;[Bi]y D [A,]u which
satisfies

neu neu i—o0 NEU

im i, (An) < lim g (Ca) < lim lim (U], B)) < ) lim pa(Bh) < 6([Au).) +
]:0 ncu

Since ¢ is arbitrary, we obtain that 0([A,]y) = limy p, (Ay).
(2) Let Ay € %, be a measurable subset. By definition of 6§, for every j € N, there is a
countable family {B,/ € %,},; such that
Ay C Ui[BY]y and Y lim e (BY) — pa(Ay) <277,
ieN !
By Lemma 1.1.8, for every j € N, there is a family {C{i € Py }n such that
Ay C Ui[BY]u € [Chlu and m([Chl) — pa(Au) <277,

Observe that

X\ NG = U X\ [Clu= U [Xa\ il

jEN jEN jEN

so again by Lemma 1.1.8, there is a family {D, € %,}, such that
pa ([DaleB (U (X \ Ci)) = 0.
Hence if we define B, := X,; \ D, we have p, ([By]uA(N; [Cil]u)) =0 and
u(Aub[Bulu) < lim (M [Chla \ Au) = 0. O

Remark 1.1.9. Proposition 1.1.7 implies that the measure algebra of the ultraproduct of a
family of probability spaces is the metric ultraproduct of their measure algebras. See [Fre04b,
Section 328].

1.1.4 Maharam-type

We now prove that the ultraproduct of a family of finite or standard probability spaces
is a nice, homogeneous probability space. The following theorem is a special case of [JKOO0]
(which is written in the language of non-standard analysis).

Theorem 1.1.10. Let {(X,, B, pin)} be a sequence of diffuse standard probability spaces or a se-
quence of finite spaces equipped with their uniform counting measure such that lim,e, |X,| = oo.
Then the measure ultraproduct (X, By, ph,) is measurably isomorphic to ({0, 1}R,vR) where v is the
normalized counting measure on {0,1} and vR is the product measure. That is, the measure algebras
MAIlg(X,, pty) and MAlg({0, 1}R,vR) are isomorphic.
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Observe that X, and {0, 1}R are not isomorphic as sets: they do not have the same cardi-
nality. To prove the theorem, we recall the notion of Maharam type, see [Fre04b, 331F].

Definition 1.1.11. Let (X, #) be a probability space and let us denote by 20 = MAlg(X, y) its
measure algebra.

o A subset A C 2 o-generates, if 2 is the smallest o-subalgebra of 2 containing .A.

e The Maharam type of the measure algebra 2 is the smallest cardinal of any subset of A
which o-generates 2.

e A measure algebra 2 is homogeneous if the Maharam type of 2 is equal to the Maharam
type of MAlg(A, u/u(A)) for every A € .

All the probability measure algebras which have the same Maharam type are isomorphic,
see [Fre04b, 331L].

Theorem 1.1.12. Every homogeneous probability measure algebra A is isomorphic to the measure
algebra of ({0,1}%,v?) for a set Z which has the cardinality of the Maharam type of 2.

We can now prove the theorem.

Proof of Theorem 1.1.10. First observe that MAlg(X,,, j,,) has at most the cardinality of the con-
tinuum, because by Remark 1.1.9, MAlg(X,, jty,) is the metric ultraproduct of a family of
separable metric spaces. So we have to show that the Maharam type of MAIlg( Ay, v/ pu(A))
is at least the continuum for every A, C X, measurable and non negligible.

We start showing the result when (X, %y, jin) is a diffuse standard probability space for
every n. By Proposition 1.1.7, there is a sequence {A, € %,}, such that A, = [A,]y up to
measure 0. Since for every n, the measure space (An,%n| A tn/1n(Ay)) is also a standard
probability space, it is enough to show that the Maharam type of MAlg(X,, i) is at least the
continuum. For this we will use the following standard result, which is proved in [Fre04b,
331]].

Lemma 1.1.13. Let 2 be a measure algebra and let Z be a set. Suppose that there is a family {A;}.cz
of measurable mutually independent sets of measure u(A;) = 1/2. Then the Maharam type of 2 is
greater or equal to the cardinality of Z.

We now exhibit a continuum family of independent sets of (Xy, %, uy). For every n, take
a countable family B, = {B’}; of measurable mutually independent set of X,, of measure 1/2.
For every function f : N — NN, put Blfl = [Bi(n)]u. If we denote with IN,, the ultraproduct
of {IN,IN,...}, then for every f € IN,, the measurable subset Blfl is well-defined, since it does
not depend on the values of f on subsets outside u. Observe also that if fq,..., f; differ u-
almost always, then Bl!,..., Bl are independent. Therefore the family (B} feN, is a family
of measurable mutually independent sets of measure 1/2. The cardinality of this family is the
cardinality of IN,, which is the continuum by Remark 1.1.2. Hence Lemma 1.1.13 concludes
the proof of the theorem in the diffuse case.

The same strategy works for finite uniform spaces. Suppose that for every n, the measure
space (Xy, ity ) is a finite uniform space and suppose that lim,¢, | X, | = co. For every A, € %,,
by Proposition 1.1.7, there is a sequence { A, }, such that A, = [A,], up to measure 0. Let us
denote by ¢ : N — IN the function such that 28(n) < A, < 28(m)+1  For every n, consider
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1.1. Ultrapoducts of probability spaces

C, C A, a subset of 28(")-elements. Observe that lim,c, g(1n) = oo and 11, ([Cy]u) > pu(Ay) /2.

For every n, there is a family B, = {B},..., Bﬁ(n)} of mutually independent sets such that
|Bi,| = |Cy|/2 for every n and i < g(n). As before, for every function f : N — IN such that

f(n) < g(n), we can define Blfl = [Bi(n)]u. If we denote with Z, the ultraproduct of Z, =

{1,...,g(n)}, then, as before, for every f € Z, the subset is well defined B{ and if f1,..., fk

differ u-almost always, then Blff, .. .,Bl{" are independent. Hence the family {B{ } fez, is a

family of measurable mutually independent sets. Again by Remark 1.1.2, the cardinality of Z,
is the continuum, so Lemma 1.1.13 implies that the Maharam type of [Cy], is the continuum.
Observe that the Maharam type is monotone under taking ideals [Fre04b, 331H(c)], hence
also the Maharam type of MAIlg(A,, ptu/pu(A)) is the continuum. So the proof theorem is
concluded. O
1.1.5 Automorphisms

Let (X, ) be a probability space and let Aut(X, i) be its group of measure preserving
automorphisms.

e The uniform topology on Aut(X, u) is the topology defined by the metric
O(S,T) :=u({x € X: Tx # Sx}).
e The weak topology on Aut(X, jt) is the topology for which T, tends to T if

u(T,(A)AT(A)) — 0, VA C X measurable.

Example 1.1.14. Let X = {1,...,n} and let y, be the normalized counting measure on X.
The group Aut(X, y,) is the symmetric group over n elements S,. The uniform topology is
induced by the metric

1, . .
8(0,7) = > i (i) £ (i)}
The metric ¢ is also called the Hamming distance.

Proposition 1.1.15. Let { (X, 4n) }nen be a family of probability spaces. Then the metric-ultraproduct
of the family {(Aut(X,, un), on) }n embeds isometrically in (Aut(Xy, pu), ou).

Proof. Set G :=[],, Aut(X,, p,) and define
T : G — Aut(Xu) as T(gn)n[Xn]u = [gnxn]u.
Given (gn)n and (hy,), in G, we have

5u<T<gn)n/T(hn)n) = lnig}yn({x € Xu: gnx # hpx}) = lnig}én(gn,hn),

hence T factorizes to an isometry from the metric ultraproduct of {(Aut(X,, #n),dn)}n to
Aut(Xy, py)- O
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Chapter 1. Ultraproducts, weak equivalence and sofic entropy

1.2 Limit of actions

In this section we will study measure preserving actions on general probability spaces
under the point of view of weak containment. We will prove that any measure preserving ac-
tion on a diffuse probability space is weakly equivalent to an action on a standard probability
space. This will be the key tool for understanding ultraproducts of sequences of probability
measure preserving actions of a countable group G. We will introduce a compact, metric
topology on the space of weak equivalence classes of actions which is equivalent to the topol-
ogy defined in [AE11], a sequence of (classes of) actions converges if all its ultraproducts are
weakly equivalent and in this case, the ultraproduct is the limit.

We will denote by a,b and c the probability measure preserving actions (pmp) of G on
a probability space, denoted by (X,, #a), (Xp, #p) and (X, ptc) (which will not be standard in
general). We will denote by Act;(G) the set of the pmp actions of G on a (fixed) standard
diffuse probability space and with Act;(G) the set of actions of G on the finite sets {1,...,n}
for n € IN, which we equip with their counting measure. We set Act(G) := Acty(G) U Acts(G).

Definition 1.2.1. Let a be a pmp action of G on the probability space (X, yz). An action b of
G is a factor of 4, denoted b C g, if there is a G-invariant isometric embedding of c-algebras
MAIlg( Xy, ptp) — MAlg(X,, 1a)-

More concretely factors of a are exactly the restriction of a to G-invariant o-subalgebras of
MAIg(X,, ta)-

Remark 1.2.2. By Theorem 343B of [Fre04b], if b is a pmp action of G on the standard Borel
probability space (X;, #p) and b is a factor of a, then there is a G-invariant measure preserving
map 7 : X, — Xp. However, we will never use this theorem.

Let (X, u) be a probability space. We denote by Part;(X) the set of partitions of X with
k atoms and by Parts(X) the set of finite partitions of X (in what follows, f will never be a
natural number). For a € Part;(X), we will denote by || the number of atoms of a.

Given a pmp action a of G, a finite subset F C G and a partition a« € Part f(Xa), we set

c(a,Fa) = <.u<Ai N gAj>)i,j§\vc\,geF'

Given two pmp actions of G (on the probability spaces (X, tta), (Xp, ttp)), a finite subset
F C G and two finite partitions & = {Ay,..., A¢} € Partg(X,) and B = {By,...,Bx} €
Part|,(X3), we put

le(a, Fa) —c(b,EB)ll1:= ), Y, |ma(AiN fA}) — pu(Bi N fB))].

i,j<|a| fEF
The following definition is due to Kechris, [Kec10].

Definition 1.2.3. Let 4,b two pmp actions of G. We say that a is weakly contained in b, and
we will write a < b, if for every ¢ > 0, for every finite subset F C G and for every finite
partition a € Parts(X,) there is B € Part|,(X}) such that

Two actions a and b are weakly equivalent, denoted by a ~ b, if a < b and b < a.

c(a,F,a) —c(b,E B)|1 <e
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1.2. Limit of actions

Definition 1.2.4. The weak topology on Act;(G) is the weakest topology for which the fol-
lowing sets form a base of open neighborhoods of a € Act;(G):

{b e Acty(G) : ||c(a,Fa) — (b, F )|y < e}
fora € Partf(Xu), F C G finite and ¢ > 0.

For a standard probability space (X, ), we have an injective map Act;(G) — Aut(X, u)C.
The weak topology of Act;(G) corresponds to the product topology of the weak topology of
Aut(X, p).

1.2.1 WC topology

We now define a topology equivalent to the topology defined in [AE11]. This topology
will play a central role in the understanding of ultraproducts of actions.

Definition 1.2.5. Given two pmp actions a,b of G, a finite subset F C G and k € IN, we define

dpa(a,b) := inf  ||c(a,F a) —c(b,F,B)|l1 forevery a € Party(X,),
BEPart(X,)

dpg(a,b) := sup dp.(a,b).
a€Party(X,)

Clearly a < b if and only if for every finite subset F C G and k € IN, we have dgy(a,b) = 0.

Remark 1.2.6. Given two partitions « and B of the probability space (X, u), we say that a
refines B if each atom of B is (up to measure 0) a union of atoms of «. For every pmp actions
a,b of G, for every finite subset F C G and finite partitions «, § € Part f(Xu)

if « refines B then dg,(a,b) > drg(a, b).

Remark 1.2.7. Let a and b be two pmp actions of G. Let a, € Parts(X,) be an increasing
sequence of partitions such that the algebra generated by U,a, is dense in MAlg(X,, ).
Then a < b if and only if for every F C G and n € IN, we have dg,, (a,b) = 0.

In fact, we have to show that for every finite partition a € Parts(X,) and finite subset
F C G we have dg,(a,b) = 0. Once « and F are fixed, for every € > 0 there are n > 0 and a
partition B € Part|,|(X,) refined by a, such that |[c(a, F, &) —c(a, F, B)|[1 < e. So

dr.(a,b) =  inf Fa) —c(b,E,
Fal(a,b) weP;rItlw(X,,)Hc(a w) —c(b,Fy)|lh

< inf E.B) —c(b,F,
_WGP;QM(XHHC(H B) —c(b,F, )| +¢

Sdp,‘g(a, b) + €
<dpy,(a,b) +e=¢.

Proposition 1.2.8. Given three pmp actions a,b and c of G for every a € Partg(X,), we have
dra(a,c) < dpa(a,b) +dgy (b, c).
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Proof. Put k = |a|. The proof is a straightforward computation:

dﬂé 7 - f /P/ - /F/
pal0,) = _inf e(a,F.0) = c(cE )]l

< i f i f ,F, _ b,P/ b/F/ - IPI
_ﬁepiﬂk(xh)yepiﬂk(xf)<Hc(a w) — (b, F, B)|l1 + [[e(b, F, B) — e(c, F,7)l1)

< inf ,Fa) — (b, F, inf b, F,B) —c(cF
< int (I F o) = EQ+ _int (0, E) = cle E )l )

<dpy(a,b) + sup inf  ||c(b,E B) —c(c,F,v)|h
BeParty(x,) TEPart(Xe)

Sdp,“(a,b) —|—d1:"[x‘(b,c). |

Definition 1.2.9. The WC-topology on Act(G) is the topology generated by the family of
pseudo-metrics dpy(a,b) := dgy(a,b) + dpx(b, a), where F C G is any finite subset and k € IN.

The topology is not T; and two actions have the same closure if and only if they are weakly
equivalent. We denote by Act(G) the space of weakly-equivalent classes of actions. The WC-
topology descends to a metric topology on Act(G). The definition of the WC-topology is
similar to the definition given by Burton in [Burl5b]. In the same paper he proved that the
topology is equivalent to the topology of [AE11] and we will give a simpler and different
proof in Theorem 1.2.22.

The following proposition will be crucial to understand limits for the WC-topology:.

Proposition 1.2.10. Let {a, a1, az, ...} be a family of actions of G. Then for every finite subset F C G,
the following conditions are equivalent

1. for every finite partition a € Parts(X,), we have lim,, d,(a,a,) = 0,
2. for every k € N, we have lim,, dgy(a,a,) = 0.

Proof. Condition (2) is by definition stronger than condition (1), so let us suppose that (1)
holds. Fix ¢ > 0. For k € N set

C:={c(B,Fa): B € Party(X,)} C [0,1]IFF.
By compactness, there are partitions «y, ..., aj € Part;(X,) such that
Vx € C thereis i < j such that |[¢c(a;, Fa) — x||; <e.

Consider the finite partition a generated by a1, ..., «;. By hypothesis there is N € IN such
that for every n > N, we have that dr,(a,a,) < e. Since a refines ; for every i, we also have
that dr,,(a,a,) < e for every i < jand n > N. So for n > N and for every B € Partf(Xu),
there is i < j such that |[¢(B, F,a) — ¢(«;, F,a)||1 < ¢, therefore

drg(a,an) < (B, F,a) — c(a;, Fa)|i + dpa,(a,a,) < 2e. O
The following proposition is inspired by Theorem 5.3 of [CKTD13].

Proposition 1.2.11. For a sequence of actions a, € Acty(G), the following are equivalent:

1. for every finite subset F C G and a € Party(X,), we have dr,(a, a,) — 0,
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2. there is a family of automorphisms T, € Aut(X,, ) such that T,a,T, ' converges to the action a
in the weak topology.

Proof. The fact that (2) implies (1) follows directly from the definitions, so we can sup-
pose that (1) holds. By a diagonal argument, we can find an increasing sequence of finite
partitions (a,), = ({A;‘,...,Azn})n and an increasing sequence of finite subsets F, of G
such that df, ., (a,a,) tends to 0, U,F, = G and the algebra generated by U,a, is dense in
MAIlg(X, u). By (1), there is a sequence of partitions (B,)» = ({Bf,..., B} })» such that
lle(a, Ey, an) — ¢(an, Fu, Bn)||1 tends to 0, which we can choose to satisfy u(A!) = u(B}'). For
every 1, there is T,, € Aut(X, u) such that &, = T,B,. Now observe that ¢(T,a,T, !, F,, Tufn) =
¢(an, Fy, Bn), so (2) holds. O

The following corollary is well-known (in the standard setting).

Corollary 1.2.12. For every pmp action b on any probability space, the set of {a € Acty(G): a < b}
is weakly closed.

Proof. We use Proposition 1.2.8. Let (a,), be a sequence which converges weakly to a such
that a, < b for every n. By the (easy part of the) previous proposition, for every a € Part f(Xa)
and F C G finite, we have that dr,(a,a,) — 0. Hence

dF,ﬂc(a/ b) S dF,Dé (ﬂ, an) + d[_‘,k(ﬂn, b) = dF,ac (ﬂ, an) — 0. O
Definition 1.2.13. For every pmp action 4 of G and for every g € G, we set

Fixg(a) :={x € X;: gx = x},
| Fixg(a)| :=pa(Fixg(a)).

Proposition 1.2.14. For every g € G, the map |Fixg(+)| : Act(G) — [0,1] is well-defined and
continuous.

Proof. Let a,b € Act(G). By Rokhlin Lemma, for every ¢ > 0, there are A, B C X, and
N > 1, such that & := {Fixy(a), A¢, A, . .. ,gN A, B} is a partition of X, and u(B,) < . Put
F:={1g,g,...,8V} and observe that if dr,(a,b) < 7, then

| Fixg (b)| < |Fixg(a)| +n +e. O

1.2.2 Every action is weakly equivalent to a standard one

Theorem 1.2.15. Every pmp action a of the countable group G on a diffuse space has a standard factor
which is weakly equivalent to a. In particular every pmp action of G is weakly equivalent to an action
on a standard Borel probability space.

We remark that the theorem was also essentially proved for ultraproduct actions in the
proof of the main theorem of [AE11]. We start showing that any pmp actions has at least a
diffuse standard factor.

Lemma 1.2.16. Every pmp action a of G on a diffuse space has a standard diffuse factor.
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Proof. 1f (X,, pa) does not have any atom, we can find an increasing sequence of finite parti-
tions (&), C Part f(Xa) such that the measure of each atom in &, is less than 1/ for every n.
Then observe that the G-invariant c-algebra generated by U,,Ga,, is a separable measure alge-
bra without atoms, so the factor associated is a factor of a on a diffuse, standard probability
space. O

The theorem follows from two facts: the weak topology on Act;(G) is separable and the
following easy lemma.

Lemma 1.2.17. For two pmp actions a and b, the following are equivalent.
1. The action a is weakly contained in b, a < b.
2. We have {c € Act(G) : ¢ <a} C {c € Act(G) : ¢ < b}.
Moreover if (X,, 4a) does not have any atom, then we can take c in (2) to be in Acty(G).

Proof. The fact that (1) implies (2) follows from the transitivity of the weak containment. For
the converse take a finite partition & € Part;(X,) and a finite subset F C G. The o-closure of
the G-invariant algebra generated by « is a factor of a which we denote by ¢ € Act(G). By
construction dr4(a,c) = 0 and by (2), we have ¢ < b. So dr,(a,b) < drq(a,c) +dg(c,b) = 0.
For the moreover part, we can consider the factor ¢’ associated to the o-closure of the G-
invariant algebra generated by a and the standard factor constructed in Lemma 1.2.16. O

Proof of Theorem 1.2.15. By Corollary 1.2.12, the set A := {c¢ € Act;(G) : ¢ < a} is weakly
closed. Let {b, },cn be a countable weakly-dense subset of A. For every n, let {8k }cn be an
increasing sequence of finite partitions of X, which generate the o-algebra. Let {F,}, be an
increasing sequence of finite subsets of G. For every n,m,k € N, let ay™ be a partition of X,

such that :
le(bu, En, ) — (@, B, ™)1 < .

Consider the G-invariant c-algebra A generated by the partitions {(xﬁ’m}n,k,m. Then A is
separable, since it is generated by finite partitions and G is countable, so the associated factor
bis a factor of a on a standard diffuse probability space which by construction weakly contains
by, for every n. Corollary 1.2.12 implies that

{c € Acty(G) :c < a} = {by}n C {c € Acty(G) : c < b}
therefore (2) of Lemma 1.2.17 holds, hence a < b. O

From now on, we will identify Act(G) with the set of weak equivalence classes of actions
of G on any diffuse of finite uniform probability space.

1.2.3 Ultraproduct and weak equivalence

Given a pmp action a of G, a partition a € Parts(X,) and a finite subset F C G we denote
by ar the partition generated by the F-translates of «.

Definition 1.2.18. Consider two pmp actions a and b of G and let us fix a partition a €
Part¢(X,), a finite subset F C G and 6 > 0. A («,d, F)-homomorphism ¢ from a to b, is a
homomorphism from the measure algebra of af, to the measure algebra MAlg (X}, up,), which
satisfies
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o up(fo(A)Byp(f(A))) < forevery Acaand f €F,
* Yacus [Ho(9(A)) = pa(A)] < 0.

We denote by Hom(a, «, F, 8, b) the set of (&, ¢, F)-homomorphisms from a to b

Proposition 1.2.19. An action a is weakly contained in b if and only if for every a € Parts(X,), for
every finite subset F C G and for every 6 > 0, the set Hom(a, a, F, 5, b) is not empty.

Proof. Suppose that a < b. Given a € Party(X,), a finite subset F C G which contains the
identity and € > 0, we consider ar = {Aj,..., Ax}. By hypothesis there is a partition p =
{By,..., B} € Party(X;) such that ||c(a, F,ar) —¢(b,F,B)||1 < e. Set ¢(A;) = B;. Given A € «
and f € F thereare I,] C {1,...,k} such that A = L;c;A; and fA = UjejAj. Then

m(fe(A)Ae(fA)) =m((A)) + mp(e(fA)) — 2up((f (WierBi)) N (Ujes B)))
<pp(Uie1Bi) + po(Ujes Bj) — 22;%(/[31' N B;))
iel je
<pa(Uie1Ai) + pa(Ujej Aj) — 2Z;Z;ﬂa(fAi NA;j) +4e
icl je
L2ua(A) = 2ua(fAN FA) + 4e = 4e.

For the converse fix &« = {A,..., Ay} € Party(X,), a finite subset F C G which contains
the identity and 6 > 0. Take ¢ € Hom(a,a, F,6,b). Define B; = ¢(A;) and p = ¢(a). For
i,je{1,...,k} and f € F, we have

a(Ai NV fA}) — pp(BiN fB))| =[pa(Ai N fA)) — up(@(Ai) N fo(A)))]
<lua(AiN fA)) — pp(@(Ai N fA)))] 46
S“’l/la(Al‘ ﬂfA]) — Va(Ai ﬂfA])‘ + 26 = 26. O

Definition 1.2.20. Let (a,,), be a sequence of pmp actions of G. The ultraproduct of the se-
quence (a, ), is the action of G on the ultraproduct measure space of the sequence {(Xa,, Ha, ) }n
given by g[x,]u := [g¥u]u, see Proposition 1.1.15.

Proposition 1.2.21 (Theorem 5.3 of [CKTD13]). Let a € Act(G), let (by)n be a sequence of actions
of G and let by be its ultraproduct. Then a < by if and only if a T b,,.

Proof. Let us suppose that a < b,. Let (x,), be an increasing sequence of partitions of X,,
such that the algebra generated by them .4 is a dense G-invariant subalgebra of MAlg(X,, u,).
Let F, C G be an increasing sequence of finite subsets which contain the identity and such
that U,F, = G. By Proposition 1.2.19, for every n we can take ¢, € Hom(a,«a,, F,,1/n,b).
We denote by ¢, : A — MAlg(Xy, py) the map defined by ¢,(A) := [@u(A)],. It is clear that
@y is a G-invariant homomorphism which respect the measure, hence it is an isometry with
respect to the natural metric on MAlg. Therefore we can extend ¢, to a G-invariant isometric
embedding of o-algebras MAIlg(X,, j,) to MAlg(X,, py). O

1.24 WC-compactness

We now show that the ultraproduct of a sequence of actions defined in Definition 1.2.20 is
the limit with respect to the ultrafilter u for the WC-topology. Observe that the ultraproduct
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of a sequence of actions always exists, so Theorem 1.2.22 implies that the topology is sequen-
tially compact. Since the topology is metrizable, the topology is also compact, so we obtain
Theorem 1 of [AE11]. On the other hand the theorem characterizes the topology in terms
of ultraproducts of actions, and the same characterization holds for the topology in [AE11].
Therefore the two topology are equivalent.

Theorem 1.2.22. For every sequence of actions (ay ), C Act(G) the u-WC-limit of the sequence exists
and is weakly equivalent to a,. In particular a sequence (a,), WC-converges to a if and only if a is
weakly equivalent to the ultraproduct action a, with respect to every ultrafilter u.

Proof. Let (a,)n be a sequence in Act(G). By Theorem 1.2.15, and a little abuse of notations,
we have that the ultraproduct of the sequence a, is an element of Act(G). We want to show
that the u-WC-limit of the sequence (a,), is 4y, so by Proposition 1.2.10, we have to show that
for every a € Parts(X,,), for every finite subset F C G and k € IN, we have

ng} dF,k(“n/ 1) = ng} dF,a(“u/ a,) = 0.

For every finite partition &, = {[Al],,...,[Ak].} € Part;(X,,), consider the family of
partitions a,, := {A},..., Ak} € Part¢(X,,). Then for every finite subset F C G, we have

lim [[c(a, F @) = e, F )| =0,

and hence limy ey dpy, (ay,a,) = 0. On the other hand, suppose that there are a finite subset
F C G, an integer k € IN and ¢ > 0 such that lim, ¢, dr(a,,ay) > €. Then for every n in a set
I € u, there is a partition a, = {Al,..., Ak} € Party(X,,) such that dr,, (a,,a,) > e. So if we
take the partition a, := {[AL]., ..., [AX],} we observe that

ggl} lc(an, F, an) — c(ay, F o)1 > &,

which is a contradiction. O

The following interesting corollary was remarked in both [AE11, Corollary 3.1] and [CKTD13,
Proposition 5.7].

Corollary 1.2.23. Let a be a pmp action of G and let b € Act(G) be an action which is weakly
contained in a. Then there is an action a’ weakly equivalent to a such that b is a factor of a'.

Increasing sequences of actions always admit limits and such limits are easily described.

Proposition 1.2.24. Let (a,), be an upward directed sequence of actions in Act(G).
(1) The sequence converges to an action a € Act(G).
(2) For every n € IN, we have a,, < a.
(3) If b € Act(G) satisfies that a, < b for every n € IN, then a < b.
Proof. By compactness, there is a WC-converging subsequence (a,, )i and let a be its limit. We

claim that (2) and (3) holds for a. For this fix n > 0, a finite subset F C G and a € Part¢(X,, ).
Since (a,, ) WC-converges to 4,

k
dp,,x(an,a) < dp,,x(an,ank) —|—dp,|a|(ank,a) = dpl‘a‘(ank,a) —0
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hence a,, < a for every n. Let b € Act(G) an action such that a,, < b for every n € IN. Then for
every partition a € Parts(X;,) and finite subset F C G,

k
dra(a,b) < dpu(a,an,) + dg ) (an, b) = dra(a,an) =0,

hence dr,(a,b) = 0 for every a and F, which implies a < b.

Let a’ and a” two different cluster points of (a,),. Then by (2) we have that a, < a’ and
a, < a” for every n and by (3) we get that a’ < 4"’ and a” < 4/, that is 4’ is weakly equivalent
to a”” and hence they represent the same element of Act(G). O

Corollary 1.2.25. Let (ay), be an increasing sequence of finite actions and let a be the associated
profinite action. Then (a, ), WC-converges to a. In particular the profinite action a is weakly equivalent
to the ultraproduct action a.

Proof. By Proposition 1.2.24, it is enough to show that for every action b € Act(G) such that
a, < b for every n, we have that 2 < b. Fix such an action b. For every n, we denote by
an € Partp(X,) the partition on clopen sets such that a|{xn = a,. By Remark 1.2.7, it is enough
to show that for every finite subset F C G and n € IN, we have dg,, (a,b) = 0. This is
straightforward

dp/an(a,b) < dp/an(ﬂ,an) +dF,|,Xn|(an,b) =0. O

1.3 Sofic entropy

In this section we will show that for free groups and PSL,(Z) the sofic entropy of profinite
actions depends on the sofic approximation.

1.3.1 Sofic actions

Let G be a countable group, let F be a countable free group and let 7 : F — G be a
surjective homomorphism. Let us fix a section p : G — F which maps the identity to the
identity. Given any action a of G, we denote by aF the action of F defined by af(g) := a(7(g)).
For an action 4, recall that | Fix,(a)| is the measure of the fixed point of g, (Definition 1.2.13).

Definition 1.3.1. A sofic approximation ¥ = (a,), of G is a sequence of finite actions a, €
Acts(F) such that
o for every g € ker 7, we have that lim,, | Fixe(a,)| =1,

o for every g ¢ ker 7, we have that lim,, | Fix(a,)| = 0.
A group is sofic if it has a sofic approximation.

Definition 1.3.2. Given a sofic approximation ¥. = (a,), of G, the ultraproduct action a, of
the sequence (a,) is an action of F for which ker 7t acts trivially. Hence we can see the action
a, as a G-action, which we will denote by aZ and we will call it the sofic action associated to
z.

Definition 1.3.3. An action a of the group G is sofic if there exists a sequence of finite actions
(an)n C Acts(F) such that
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e forevery a € Partf(Xa) and F C G finite, we have lim,, dp(F),“<[lF,ﬂn) =0,

e for every g € ker 7, we have lim,, | Fixg(a,)| = 1.

We observe that the definition does not depend on the choice of p. Moreover we could also
ask that dr,(a¥,a,) — 0 for every finite subset F of the free group F. Observe also that if an
action a of G is sofic, then the sequence (a,), as in Definition 1.3.3 is a sofic approximation,
so any group which admits a sofic free action is sofic.

Proposition 1.3.4. An action a € Act(G) of the countable group G is sofic if and only if there is a

sofic approximation . of G such that a is a factor of the sofic action a>.

Proof. If the action a is sofic, then by construction af is weakly contained in a, and hence by

Proposition 1.2.21, we have that a is a factor of a%. On the other hand, if a is a factor of aZ,
then dp(F)’a(aF, an) = dy(F),o(au, an), which tends to zero by Theorem 1.2.22. O

Remark 1.3.5. It is not known whether every sofic action of a sofic group is of the form aX for
a sofic approximation X of G. The question is even open for Bernoulli shifts. They are sofic by
[EL10] but we do not know if for non-amenable groups they are of the form a>.

One can show that Definition 1.3.3 is equivalent to the definition of Elek and Lippner
[EL10] in terms of colored graphs and to the (unpublished) definition of Ozawa of soficity of
pseudo full groups, see Definition 10.1 in [CKTD13]. Remark that the authors in [CKTD13]
prove that Definition 1.3.3 implies the soficity of the pseudo full group in the proof of Theorem
10.7.

1.3.2 Sofic entropy

In what follows, we use the definitions and notations of Kerr [Ker13] with the only excep-
tion that we will use ultralimits instead of limsup in the definition.

Let G be a countable sofic group and let 2 € Act(G) be an action of G on a standard
probability space. Let F be a free group, let m : F — G be a surjective homomorphism
and let p : G — F be a section of 7t which maps the identity to the identity. Fix a sofic
approximation X~ = (a,), as in Definition 1.3.1. Consider two partitions ¢ < a € Partf(Xa),
a finite subset F C G and 6 > 0. We put Hom(a,«, F,8,a,) := Hom(a¥,a, o(F),5,a,) (see
Definition 1.2.18), where a*(g) = a(7t(g)). We denote by |Hom(a, «, F, 6, a,)|z the cardinality
of the set of («,d, p(F))-homomorphisms from a to a, restricted to ¢, as explained in [Ker13].

We can now define the entropy of a with respect to &

. 1
hg(zx,P,cS,a) :z%g} X, |

hg(zx, Fa):= (isr;g hg(uc, F,é,a),

log (’ Hom(a, w,F, 6, an) ’5) ’

hé (a,a) == inf hé (a, Fa),
he (a) := inf h¢
5(a) inf s (a,a),

hy(a) := s%p hg(a).
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where ¢ and « are finite partitions of X, with ¢ < a, F C G is a finite subset and 6 > 0 is a real
number. Observe that the definition does not depend on the section p : G — F, since for every
g € ker 7, we have that lim,, | Fix (a,)| = 1. If for some «, 6, F and n the set Hom(a, F, J, a,,) is

empty, we will set hg((x, Fd,a) = —oo.

Proposition 1.3.6. Let G be a countable sofic group and let a € Act(G) be an action of G. Fix a sofic
approximation ¥. and let aZ be the sofic action as in Definition 1.3.2. Then hg(a) > —oo if and only if
a<axr.

This proposition is a corollary of Proposition 1.2.19. We observe that it is also a special
case of Proposition 6 of [GP14].

Proof. Let F be a free group, let 77 : F — G be a surjective homomorphism, let p: G — Fbe a
section and let X = (a,), be a sofic approximation.

Suppose that hy(a) > —oco. Then there is a finite partition { € Parts(X,) such that for
every a € Part(X,) with a > ¢, for every finite subset F C G and for every § > 0, we have

{neN: Hom(a¥, a, 0(F),8,a,) # D} eu

Take ¢, € Hom(a¥,a,p(F),6,a,) and define ¢, (A) := [¢,(A)]s. By construction we have that
¢y € Hom(a,«, F, 6, aE) and hence the set is not empty. Therefore Proposition 1.2.19 implies
that a < a>.

Conversely, if we suppose that a < a%, Proposition 1.2.19 tells us that for every finite
partition « = {Al,..., AF} € Parts(X,), for every finite subset F C G and for every § > 0
the set Hom(a, a, F, 6, a%) is not empty. Take an element ¢, € Hom(a¥, &, o(F),a,). Choose a
family of subsets {B:};, such that ¢,(A?) = [Bi], and set ¢,(A?) := B.. Then, we observe
that for every e > 0, the set of n € N such that ¢, € Hom(a,a,F,0 +¢,a,) is in u, hence
h2<ﬂ) > —00. ]

Let G be a residually finite group and let (H,), be a chain of finite index subgroups of
G. We denote by al'") the profinite action associated to the sequence which we will always
assume to be free. If the profinite action aHn) is free, then the sequence of finite actions gives
us a sofic approximation of the group which we will denote by Xy ).

Combining Proposition 1.3.6 with Corollary 1.2.25, we get the following interesting result.

Corollary 1.3.7. Let G be a residually finite group and let (H, ), be a chain of finite index subgroups
of G such that the associated profinite action is free. Then for every action a € Act(G) we have that
hy,,,, (a) > —co if and only if a < alHn).

Since the corollary holds for every ultrafilter, it is still true for the usual definition of
entropy with limsup. In particular the sofic entropy of a non-strongly ergodic action with
respect to a sofic approximation given by expanders is always —oo.

Corollary 1.3.8. Let G be a residually finite group let (K, ), be a chain of finite index subgroups of G
which has property (7). For every non-strongly ergodic action a of G, we have hs (a) = —oco0.

Proof. Tt is enough to observe that if (K,), has property (), then a(K) is strongly ergodic, as
explained for example in Lemma 2.2 of [AE12], and an action weakly contained in a strongly
ergodic action is also strongly ergodic (cf Lemma 5.1 [AE12]). O
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1.3.3 Sofic entropy of profinite actions

Combining Corollary 1.3.7 with [AE12], we can now show that for some groups sofic
entropy of profinite actions crucially depends on the sofic approximation.

Theorem 1.3.9. Let G be a countable free group or PSLy(Z) for k > 2. Then there is a continuum of
normal chains {(H})n}rer such that hy (aF0)) > —co if and only if r = s.

Note that the sofic entropy of profinite actions is either 0 or —oco as shown in Section 4 of
[CZ14], see also Lemma 1.3.13. Theorem 1.3.9 follows from Corollary 1.3.7 and the following
theorem.

Theorem 1.3.10 (Abért-Elek, [AE12]). Let G be a countable free group or PSLy(Z) for k > 2. Then
there is a continuum of normal chains {(H!,),},er such that at™n) < a(F) if and only if r = s.

Sketch of the Proof for G = PSL(Z), k > 3. Let (H,), be the sequence of congruence subgroups
of G, so that the family {G/H,} is a family of pairwise-non isomorphic finite non Abelian
simple groups. For I = {ij,is,i3,...} C IN infinite, we denote by a’ the profinite action
associated to the normal chain (N;<,H;),. Observe that for an infinite I, the profinite action
al is free and moreover, by property (T), it is strongly ergodic. Therefore we can apply
Lemma 5.2 of [AE12] to get that a! < 4/ if and only if I C J. So if we take any continuum
of incomparable infinite subset of IN, then the associated profinite actions {a’}; are weakly
incomparable.

In order to see that Theorem 1.3.10 holds for PSL,(Z) and for free groups, we can use that
the congruence subgroups in PSL,(Z) have property (7) and that the proof above passes to
finite index subgroups, see the proof of Theorem 3 in [AE12]. O

Remark 1.3.11. Theorem 1.3.10 holds for a large variety of groups. In fact the Strong Approx-
imation Property claims that any Zariski dense subgroup of the rational point of a rational
algebraic linear group, has infinitely many pairwise non-isomorphic simple non-Abelian finite
quotients, see [LS03, Window 9]. This was used in [AE12] to find family of pairwise inequiva-
lent free actions of linear property (T) groups. One can then combine this fact with Margulis
normal subgroup theorem to show that Theorem 1.3.9 holds for many lattices of higher rank
algebraic linear groups.

We know give an example of an action which has positive entropy with respect to a sofic
approximation and —oo with respect to another. We will do this considering the examples of
Theorem 1.3.9 and taking the diagonal product with respect to a Bernoulli shift. Then Bowen'’s
computation for such actions will allow us to conclude.

Theorem 1.3.12. Let G be a countable free group or PSLy(Z) for k > 2. For every r > 0, there is an
action a of G and two sofic approximations X1 and Xp such that hy, (a) = r and hy,(a) = —oo.

In the proof of the theorem, we will need the following easy lemma which was point out
to us by L. Bowen.

Lemma 1.3.13. Let (H,), be a chain of finite index subgroups of G and denote by a = a™) the
associated profinite action of G. For every € > 0, there is a generating partition a of X, with H(a) < e.
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Proof. Putip:= [G: Hy] and i, := [H, : Hy+1], without lost of generality we can suppose that
in > 2 foreveryn > 0. Let us fix e > 0 and take N € IN such that 2-(N=1) 4 YN n2- (=1 < ¢
For every n > N, take a clopen A, C X,, such that
e AyNA,=0Qifn#m,
e A, is a clopen set associated to a conjugate H$ of H,, that is it has measure 1/ (G : Hy|
and it is HS-invariant.

Set Ap := X\ Up>NA, and a := {Ag, AN, AN+1,-..}. The partition « is generating and
observe that y1(A,) < 27" and u(Ag) > 1 —2-N-1), We now compute the entropy of &,

H(x) = — pu(Ao) log(u — Y u(An)log(u(An))

n>N

—log(1—2"(N=Dy 4 ) 71()8(11 — in)

n>N 11...1y

<p~(N-1) 4 Z n—(n—-1) i log(ij)

n>N j=1 Lj
<p~(N-1) 4 Z 2~ (1= ¢ O
n>N

Proof of Theorem 1.3.12. Let (X, u) be a finite probability space with H(y) = r and denote
by b the Bernoulli shift of G on (X®,u®). By Theorem 1.3.10, there are two normal chains
of finite index subgroups (H,), and (K,), such that the actions afn) and a(&n) are weakly
incomparable and so the diagonal action a(f") x b is not weakly contained in a(X*). Lemma
1.3.13 and Bowen'’s Theorem [Bow10b, Theorem 8.1] tell us that hy, ,, | (@) x b) = H(u) =r

and by Corollary 1.3.7 we have that hy , | (alFn) x b) = —oo. O
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Chapter 2

More full groups

The following chapter is based on a joint work with Frangois Le Maitre.

We associate to every action of a Polish group on a standard probability space a Polish
group that we call the orbit full group. For discrete groups, we recover the well-known
tull groups of pmp equivalence relations equipped with the uniform topology. How-
ever, there are many new examples, such as orbit full groups associated to measure
preserving actions of locally compact groups. We also show that such full groups are
complete invariants of orbit equivalence.

We give various characterizations of the existence of a dense conjugacy class for orbit
tull groups, and we show that the ergodic ones actually have a unique Polish group
topology. Furthermore, we characterize ergodic full groups of countable pmp equiva-
lence relations as those admitting non-trivial continuous character representations.
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2.1 Preliminaries

2.1.1 Polish spaces

A Polish space is a separable topological space which admits a compatible complete met-
ric. A countable intersection of open subsets of a topological spaces is called a G;.

Proposition 2.1.1 ([Kec95, Theorem 3.11]). Let (X, T) be a Polish space. A subset Y C X is Polish
for the induced topology if and only if Y is a Gs.

A standard Borel space is an uncountable set X equipped with a c-algebra B such that
there exists a Polish topology on X for which B is the c-algebra of Borel subsets. A funda-
mental fact is that all the standard Borel spaces are isomorphic [Kec95, Theorem 15.6], and
that every uncountable Borel subset of a standard Borel space is a standard Borel space when
equipped with the induced c-algebra [Kec95, Corollary 13.4].

Theorem 2.1.2 (Luzin-Suslin, see [Kec95, Theorem 15.1]). Let X and Y be two standard Borel
spaces and let f : X — Y be an injective Borel map. Then for every Borel subset A of X, f(A) is Borel.

A subset A of a Polish space X is analytic if there is a standard Borel space Y, a Borel
subset B of Y and a Borel function f : Y — X such that A = f(B). In general, analytic sets are
not Borel, however they are Lebesgue-measurable (see Theorem 4.3.1 in [Sri98]). If X and Y
are two Polish spaces, a map f : X — Y will be called analytic if the preimage of any open set
is analytic. Note that analytic maps are Lebesgue-measurable by the aforementioned result.

2.1.2 Polish groups

A topological group whose topology is Polish is called a Polish group. Polish groups have
several good properties. We list three of them, for proofs see Section 1.2 of [BK96].

Properties 2.1.3.

(x) Let G be a Polish group, and let H be a subgroup of G. Then H is Polish for the induced topology
if and only if H is closed in G.

(B) Let G be a Polish group, and let H < G be a closed normal subgroup. Then G/H is a Polish group
for the quotient topology.

() Let ¢ : G — H be an analytic homomorphism between two Polish groups G and H. Then ¢
is continuous. If moreover ¢ is surjective, then ¢ induces a topological isomorphism between
G/ ker(¢) and H.

Let us end this section by citing a deep result of Becker and Kechris, which will be crucial
in the proof of our main theorem.

Theorem 2.1.4 ([BK93]). Let a Polish group G act in a Borel manner on a standard Borel space X.
Then there is a Polish topology T on X inducing its Borel structure such that the action of G on (X, T)
is continuous.
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2.1. Preliminaries

2.1.3 The Polish group Aut(X, i)

A standard probability space is a standard Borel space equipped with a non atomic prob-
ability measure. All standard probability spaces are isomorphic (see [Kec95, Theorem 17.41]).
The measure algebra of the standard probability space (X, ) is the c-algebra of measur-
able subsets of X, where two such subsets are identified if their symmetric difference has
measure zero. We will denote the measure algebra with MAlg(X, u) and recall that it is a
Polish space when equipped with the topology induced by the complete metric d, defined
by da(A,B) = u(A A B).

Definition 2.1.5. Let (X, u) be a standard probability space. The group Aut(X, i) of mea-
sure preserving Borel bijections of (X, ), identified up to measure zero, carries two natural
metrizable topologies :

e the weak topology, for which a sequence (T,), converges to T if for every measurable
subset A C X, we have p(T,(A)AT(A)) — 0.

e the uniform topology, induced by the uniform metric 4,, defined by
dy(T,S) :=u({x € X: Tx # Sx}).

Proposition 2.1.6 ([Hal60]). The group Aut(X, i) is a Polish group with respect to the weak topology,
and the uniform metric d,, is complete.

2.1.4 Spaces of measurable maps

Definition 2.1.7. Let (X, i) be a standard probability space, and let (Y, T) be a Polish space.
We denote by L°(X, 1, (Y, 7)) (and by L%(X, 1, Y) whenever it is clear which topology we fix
on Y) the space of Lebesgue-measurable maps from X to Y, identified up to measure 0. Any
compatible bounded metric d on (Y, T) induces a metric d on LO(X, 11, (Y, 7)) defined by

A(f,9) = [ d(F(x),g(x))dp()

The topology induced by d is called the topology of convergence in measure.
This topology only depends on the topology of Y by the following proposition.

Proposition 2.1.8 ((Moo76, Proposition 6]). Let (f,) be a sequence of elements of LO(X, u, (Y, 7))
and f € L%(X, u, (Y, T)). Then the following are equivalent:

(a) the sequence (f,), converges to f, that is d(f,, f) — O,
(b) foralle >0, u({x € X:d(f(x), fu(x)) >¢€}) =0,

(c) every subsequence of (fy)nen admits a subsequence ( fy, )ken such that for almost all x € X we
have

fue(x) = ().

Remark 2.1.9. In a topological space, a sequence converges to a point if and only if all its
subsequences have a subsequence converging to this point, so item (c) of the previous propo-
sition implies that the topology of convergence in measure is the coarsest metrizable topology
T for which f, — f a.s. implies that f, — f with respect to .
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The topology of convergence in measure on L°(X,y,Y) is a Polish topology. A dense
countable subset is constructed as follows. Fix a dense countable subset D C Y and a dense
countable subalgebra A of MAlg(X, u). Then, the family of .A-measurable functions from X
to D that take only finitely many values is dense in L(X, 1, Y).

When Y = G is a Polish group, we equip LO(X, 1, G) with the group structure given by
the pointwise product, that is for f,g € L%(X, i, G) we put

f-8(x) := f(x)g(x).

Proposition 2.1.10. The Polish space L°(X, u, G) is a Polish group for the topology of convergence in
measure and the pointwise product.

Let (Y, 7) be a Polish space. Then Aut(X, i) acts on the right on LO(X, 1, (X, 7)) by pre-
composition:

for T € Aut(X, u) and f € LY(X, u, (Y, 7)) we define (f - T)(x) := f(Tx).

Note that this is an action by isometries. Moreover, when Y = X, we may view Aut(X, u) as
a subset of L°(X, 1, (X, 7)) identifying a transformation T with the function fr(x) := T(x),
which corresponds to identify Aut(X, 1) with the orbit of idx € L%(X, u, (X, 7).

Proposition 2.1.11. Let (X, ) be a standard probability space equipped with a compatible Polish
topology tx, and let (Y, Ty) be a Polish space.

(1) The action of Aut(X, u) on L°(X, u, (Y, Ty)) is continuous.
(2) The inclusion Aut(X, u) — LO(X, u, (X, Tx)) is an embedding.

Proof. (1). Fix a compatible complete bounded metric dy on Y. Suppose now that T, — T and
fa — f, we want to prove that dy(f,T,, fT) — 0. Since each T, is an isometry,

JY(fnanfT) = ‘{Y(fnrfTval) < ‘{Y(fn/f) ‘f’dNY(f/fTT;;l)/

hence it is enough to show that if T, — idx in Aut(X, u), then for every f € L%(X, u, (Y, 7)) we
have fT,, — f in measure. Moreover we can suppose that f has finite range, because the set of
such functions is dense. For such a function f, we can consider the finite partition of the space
given by {f'(a)},cf(x) and by definition of weak convergence w(T.fY(a)Af~1(a)) — 0 for
every a € f(X). Sou({x € X: fT,(x) # f(x)}) — 0, in particular fT, — f in measure.

(2). Fix a Polish topology on X induced by the complete metric dx. Since Aut(X, i) can
be identified with the orbit of idx in LO(X, i, X), the first part implies that the inclusion is
continuous.

To see that it is an embedding, we firs