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Abstract. In 1987, Ornstein and Weiss discovered that the Bernoulli 2-shift over the
rank two free group factors onto the seemingly larger Bernoulli 4-shift. With the recent
creation of an entropy theory for actions of so�c groups (in particular free groups), their
example shows the surprising fact that entropy can increase under factor maps. In order
to better understand this phenomenon, we study a natural generalization of the Ornstein�
Weiss map for countable groups. We relate the increase in entropy to the cost and to the
�rst `2-Betti number of the group. More generally, we study coboundary maps arising
from simplicial actions and, under certain assumptions, relate `2-Betti numbers to the
failure of the Juzvinski�� addition formula. This work is built upon a study of entropy
theory for algebraic actions. We prove that for actions on pro�nite groups via continuous
group automorphisms, topological so�c entropy is equal to measure so�c entropy with
respect to Haar measure whenever the homoclinic subgroup is dense. For algebraic
actions of residually �nite groups we �nd su�cient conditions for the so�c entropy to be
equal to the supremum exponential growth rate of periodic points.
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1. Introduction

Entropy is a fundamental invariant of dynamical systems. It was �rst de�ned for prob-
ability measure preserving actions of Z by Kolmogorov in 1958 [36, 37] and then extended
to actions of countable amenable groups by Kie�er in 1975 [35]. The notion was transferred
to continuous actions of Z by Adler-Konheim-McAndrew in 1965 [2]. Despite evidence
suggesting that entropy theory could not be extended beyond actions of amenable groups,
groundbreaking work by Bowen in 2008 [8], together with improvements by Kerr and Li [33],
created a de�nition of entropy for probability measure preserving actions of so�c groups.
This de�nition was also generalized to the topological setting by Kerr and Li [33]. This
new notion of entropy is an extension of its classical counterpart, as when the acting so�c
group is amenable the two notions coincide [11, 34], however it displays surprising behavior
which violates some of the fundamental properties of classical entropy theory. In this paper,
we study this strange behavior of entropy by drawing connections to `2-Betti numbers and
cost. In particular, our work uncovers instances of a close connection between entropy and
sequences of normalized Betti numbers computed over �nite �elds.

A classical result in entropy theory is the Juzvinski�� addition formula. This formula
states the following: If a countable amenable group G acts on a compact metrizable group
H by continuous group automorphisms, and N�H is a closed normal G-invariant subgroup,
so that we have a G-equivariant exact sequence

1→ N → H → H/N → 1,

then the entropies are related by the formula:

h(Gy H) = h(Gy N) + h(Gy H/N).

This can be viewed as an analogue of the rank-nullity theorem from linear algebra. In
this form, this result is due independently to Li [39] and Lind�Schmidt [41] and holds true
both for topological entropy and for measured entropies with respect to Haar probability
measures. The case G = Z was originally obtained by Juzvinski�� [31], the case G = Zd
by Lind, Schmidt, and Ward [42], and other special cases were obtained by Miles [48] and
Björklund�Miles [6]. Outside of algebraic actions and algebraic maps, a weak form of the
Juzvinski�� addition formula exists. Speci�cally, for actions of amenable groups entropy is
monotone decreasing under factor maps: the entropy of a factor action can be at most the
entropy of the original action.

For actions of non-amenable groups, problems with Juzvinski��'s addition formula and
entropy theory in general were �rst evidenced by an example of Ornstein and Weiss in 1987
[50]. They considered, for the rank 2 free group F2 with free generating set {a, b}, the
F2-equivariant continuous group homomorphism

θ : (Z/2Z)F2 → (Z/2Z× Z/2Z)F2

de�ned by

θ(x)(f) =
(
x(f)− x(fa), x(f)− x(fb)

)
mod 2.

They observed that it factors the Bernoulli shift (Z/2Z)F2 onto the �larger� Bernoulli shift
(Z/2Z × Z/2Z)F2 . Since for an amenable group G the Bernoulli shift G y {1, 2, · · · , n}G
has entropy log(n), their discovery suggested that entropy theory could not be extended
to actions of F2. Speci�cally, if (Z/2Z)F2 and (Z/2Z × Z/2Z)F2 were to have entropies
log(2) and log(4) as one would expect, then this example would both violate the Juzvinski��
addition formula and violate the monotonicity property of entropy. Today an entropy theory
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for actions of so�c groups, including F2, does exist, and indeed this example demonstrates
that both the Juzvinski�� addition formula and the monotonicity property can fail.

We mention that modi�cations of the Ornstein�Weiss factor map have played important
roles in later work on the failure of monotonicity. Speci�cally, Ball proved that for every
non-amenable group G there is n ∈ N such that ({1, · · · , n}G, uGn ) factors onto all other
measure-theoretic Bernoulli shifts over G [4], where un is the normalized counting measure
on {1, · · · , n}. Similarly, Bowen proved that if F2 ≤ G then all measure-theoretic Bernoulli
shifts over G factor onto one another [9]. Finally, the second author proved that for every
non-amenable group G there is n ∈ N such that every action (either topological or measure-
theoretic) of G is the factor of an action having entropy at most log(n) [56].

In this paper we study a generalization of the Ornstein�Weiss factor map which is distinct
from those used in [4], [9], and [56]. If S is any generating set for G, not necessarily �nite,
and K is a �nite additive abelian group, then we de�ne the generalized Ornstein�Weiss map
θowS : KG → (KS)G by

θowS (x)(g)(s) = x(g)− x(gs) ∈ K.
If we identify K with the set of constant functions in KG, then it is not di�cult to check
that up to isomorphism θowS is the quotient map KG → KG/K. Thus, up to isomorphism,
θowS does not depend on the choice of generating set S.

We mention that the image of the generalized Ornstein�Weiss map, KG/K, has also been
studied by Meesschaert�Raum�Vaes [46] and by Popa [53] (in both cases the connection to
the Ornstein�Weiss map was coincidental). Meeschaert, Raum, and Vaes proved that if G is
the free product of amenable groups then (KG/K,Haar) is isomorphic to a Bernoulli shift,
while the work of Popa gives as a consequence that for many non-amenable groups, such as
property (T) groups, (KG/K,Haar) is not isomorphic to a Bernoulli shift.

Our �rst result relates the entropy of the image of the generalized Ornstein�Weiss map
to the �rst `2-Betti number of G, denoted β1

(2)(G), and to the supremum-cost of G. The

`2-Betti numbers were de�ned for every countable group by Cheeger and Gromov [15]. The
notion of cost in ergodic theory was introduced by Levitt in [38] and studied by the �rst
author in [26]. The supremum cost of a group G, denoted Csup(G), is the supremum of the
costs of all free probability measure preserving (p.m.p.) actions of G (see Section 2).

The de�nition of topological so�c entropy for a continuous action G y X on a compact
metrizable space X will be recalled in Section 3, while the de�nition of measured so�c
entropy for a p.m.p. action G y (X,µ) on a standard probability space will be recalled in
Section 7. For now we simply mention that these entropies require G to be so�c and depend
upon the choice of a so�c approximation Σ to G. They are denoted respectively

hΣ
top(Gy X) and hΣ

meas(Gy X,µ).

Theorem 9.4 (Measured and topological entropy vs cost and `2-Betti number). Let G be
a countably in�nite so�c group, let Σ be a so�c approximation to G, and let K be a �nite
�eld. Then

hΣ
meas(Gy KG/K,Haar) = hΣ

top(Gy KG/K) ≤ Csup(G) · log |K|.

Furthermore, if G is �nitely generated then(
1 + β1

(2)(G)
)
· log |K| ≤ hΣ

meas(Gy KG/K,Haar) = hΣ
top(Gy KG/K).
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Thus, since hΣ
meas(G y KG,Haar) = hΣ

top(G y KG) = log |K|, the generalized Ornstein�
Weiss map increases entropy, and hence violates monotonicity, when G is a �nitely generated
so�c group and β1

(2)(G) > 0. Examples of groups with β1
(2)(G) > 0 are free groups, all free

products of non-trivial groups with one factor having at least 3 elements, amalgamated free
products G1∗HG2 with H in�nite amenable and β1

(2)(G1)+β1
(2)(G2) > 0 [15], surface groups

of genus at least 2, surface groups of genus at least 2 mod a single relation [18], and one
relator groups with more than 3 generators [18]. See [52] for more examples. We mention
that there exist �nitely generated residually �nite torsion groups with β1

(2)(G) > 0 (see [45]).

On the other hand, the generalized Ornstein�Weiss map preserves entropy whenever
Csup(G) = 1 or, equivalently, whenever G has �xed price 1. Examples of groups with �xed
price 1 are in�nite amenable groups [49], in�nite-conjugacy-class (icc) inner amenable groups
[61], direct products G×H where H is in�nite and G contains a �xed price 1 subgroup [26],
groups with a normal �xed price 1 subgroup [26], amalgamated free products of �xed price 1
groups over in�nite amenable subgroups, Thompson's group F [26], SL(n,Z) for n ≥ 3 [26],
non-cocompact arithmetic lattices in connected semi-simple algebraic Lie groups of Q-rank
at least 2 [26], and groups generated by chain-commuting in�nite order elements [26] (i.e.
in�nite order elements whose graph of commutation is connected).

Remark 1.1. Two famous open problems are the cost versus �rst `2-Betti number problem,
which asks if 1 + β1

(2)(G) = C(G) (see [27] where the inequality ≤ is proved), and the �xed

price problem [26], which asks if C(G) = Csup(G). If both of these problems have a positive
answer then 1 + β1

(2)(G) = Csup(G) and hence when G is �nitely generated the inequalities

in Theorem 9.4 are actually equalities. It is known that 1 + β1
(2)(G) = Csup(G) if G is a free

group, a surface group, an amalgamated free product G1 ∗HG2 with 1+β1
(2)(Gi) = Csup(Gi)

and H amenable, if G has �xed price 1 [27], or if Csup(G) is realized by a treeable action
[27] (a treeable Bernoulli shift would be su�cient when G is �nitely generated [1]).

In the measure-theoretic case, we actually prove something stronger than the �rst in-
equality. Recall that Rokhlin's generator theorem states that for a free ergodic p.m.p.
action Z y (X,µ), the classical Kolmogorov�Sinai entropy hmeas(Z y X,µ) is equal to
the in�mum of the Shannon entropies of countable generating partitions [54] (for relevant
de�nitions, see Section 7). Rokhlin's generator theorem continues to hold for free ergodic
actions of countable amenable groups [59]. Drawing upon these facts, in [57] the second
author de�ned the Rokhlin entropy hRok(Gy X,µ) of a p.m.p. ergodic action Gy (X,µ)
of a general countable group G to be the in�mum of the Shannon entropies of countable
generating partitions. When the group is so�c and the action is ergodic, Rokhlin entropy
satis�es the inequality [8]

hΣ
meas(Gy X,µ) ≤ hRok(Gy X,µ).

Now we may state our stronger version of the �rst inequality of Theorem 9.4.

Theorem 9.3 (Rokhlin entropy and cost). Let G be a countably in�nite group, not neces-
sarily so�c, and let K be a �nite abelian group. Then

hRok(Gy KG/K,Haar) ≤ Csup(G) · log |K|.

We remark that there may exist deeper connections between �rst `2-Betti numbers, cost,
and entropy. In �10 we discuss the possibility of relating the �rst `2-Betti number and the
cost of a p.m.p. countable Borel equivalence relation R to Rokhlin entropy and so�c entropy
via inequalities similar to those in Theorems 9.4 and 9.3.
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The Ornstein�Weiss map can be further generalized by observing that it corresponds
to the coboundary map on the Cayley graph of G. This observation leads us to consider
coboundary maps coming from any simplicial action of G. Below we write βp(2)(L : G) for

the pth `2-Betti number of a free simplicial action Gy L (see Section 2).

Theorem 5.7. Let G be a so�c group with so�c approximation Σ, and let G act freely on
a simplicial complex L. Consider the coboundary maps with coe�cients in a �nite �eld K:

Cp−1(L,K)
δp−→ Cp(L,K)

δp+1

−→ Cp+1(L,K).

If p ≥ 1 and the action of G on the p-skeleton of L is cocompact then

hΣ
top(Gy Cp−1(L,K)) + βp(2)(L : G) · log |K| ≤ hΣ

top(Gy ker(δp)) + hΣ
top(Gy ker(δp+1)).

The above theorem was previously obtained by Elek in the case where G is amenable [21].
In the non-amenable setting, a new novel feature of the above formula is that it directly
relates `2-Betti numbers to the failure of the Juzvinski�� addition formula.

Corollary 5.8. With the notation and assumptions of Theorem 5.7, if we furthermore have
Im(δp) = ker(δp+1) (equivalently Hp(L,K) = {0}), then

hΣ
top(Gy Cp−1(L,K)) + βp(2)(L : G) · log |K| ≤ hΣ

top(Gy ker(δp)) + hΣ
top(Gy Im(δp)).

Under stronger assumptions, we obtain a similar inequality in the measure-theoretic case.

Corollary 1.2 (Abbreviated version of Corollary 5.9). Let G, L, K, and p be as in The-
orem 5.7. Assume that either (1) p > 1 and Hp−1(L,K) = Hp(L,K) = 0, or (2) p = 1,
H1(L,K) = 0, and hΣ

top(Gy ker(δ1)) = 0. Then δp violates the Juzvinskii addition formula

for measured so�c entropy when βp(2)(L : G) > 0. In fact, for p > 1 we have

hΣ
meas(Gy Cp−1(L,K),Haar) + βp(2)(L : G) · log |K|

≤ hΣ
meas(Gy ker(δp),Haar) + hΣ

meas(Gy Im(δp),Haar).

Remark 1.3. In general, topological entropy is either −∞ or else non-negative. However,
any action with a �xed point has non-negative topological entropy. In particular, if H is a
compact metrizable group and Gy H by continuous group automorphisms then hΣ

top(Gy
H) ≥ 0 for all so�c approximations Σ since 1H is a �xed point. Thus, all entropies appearing
in Theorem 5.7 and Corollary 5.8 are non-negative.

When G is residually �nite and Σ comes from a so�c chain of �nite-index subgroups
(Gn), the proof of Corollary 5.8 reveals a close connection between the Juzvinski�� addition
formula and sequences of normalized Betti numbers computed over K:

dimKH
p(Gn\L,K)

|G : Gn|
.

The convergence of such sequences, the signi�cance of the limit value, and relation of the
limit to βp(2)(L : G) are important open questions (for example, see [23]). Through our work

these questions can be related to entropy theory questions, such as, for example, whether
entropy depends upon the choice of so�c approximation Σ (see for instance Formulas (5.2)
and (5.3)).

It remains an open question if the Juzvinski�� addition formula fails for every non-amenable
so�c group. In the measure-theoretic setting, the addition formula has been shown to fail
for free groups (and groups containing a free subgroup) by Ornstein�Weiss [50] and groups
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with de�ned and non-zero `2-torsion by Hayes [30]. In the topological setting, the addition
formula was shown to fail for groups having a non-zero Euler characteristic by Elek [20].
Hayes also showed that in the topological setting the class of groups which violate the
Juzvinski�� addition formula is closed under passing to supergroups [30]. Through our work
we uncover another class of groups for which the addition formula fails.

Theorem 6.3 (Failure of the Juzvinski�� formula, topological). Let G be a so�c group con-
taining an in�nite subgroup Γ with some non-zero `2-Betti number βp(2)(Γ) > 0. Then G

admits an algebraic action and an algebraic factor map which simultaneously violates the
Juzvinski�� addition formula for topological so�c entropy for all so�c approximations to G.

In regard to measure-theoretic entropy, we obtain the following.

Theorem 6.2. Let G be a so�c group containing an in�nite subgroup Γ such that Γ has some
non-zero `2-Betti number βp(2)(Γ) > 0 and admits a free cocompact action on p-connected

simplicial complex (for instance, if Γ has a �nite classifying space). Then G admits an
algebraic action and an algebraic factor map which simultaneously violates the Juzvinski��
addition formula for both measured (with respect to Haar probability measures) and topolog-
ical so�c entropy for all so�c approximations to G.

For p.m.p. actions of �nite rank free groups there is an alternate entropy-like quantity
called the f-invariant which was introduced by Bowen [7]. We remark for completeness that
Bowen and Gutman have shown that the f-invariant satis�es the Juzvinski�� addition formula
for a large class of algebraic actions [13].

In proving these results, we obtain a few specialized formulas for the topological entropy
of the natural shift-action of G on G-invariant compact subgroups X ⊆ KG, where K
is either a �nite or pro�nite group. In certain cases, this entropy is precisely given by
the exponential growth rate of the number of periodic points in X. This extends to so�c
situations the classical theme connecting entropy to the growth rate of periodic points. The
de�nition of a subshift/subgroup of �nite type is recalled in Section 2.

Theorem 4.6 (Topological entropy and �xed points). Let G be a residually �nite group,
let (Gn) be a so�c chain of �nite-index subgroups, and let Σ =

(
σn : G → Sym(Gn\G)

)
be

the associated so�c approximation. Let K be a �nite group. If X ⊆ KG is a G-invariant
compact subgroup of �nite type then

hΣ
top(Gy X) = lim sup

n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(X)

∣∣∣,
where FixGn(X) is the set of Gn-periodic elements of X.

Remark 1.4. In view of the above theorem, under the stronger assumption that the ac-
tion of G on the (p+ 1)-skeleton of L is cocompact, Theorem 5.7 and Corollary 5.8 can be
interpreted in terms of growth rates of periodic points. Speci�cally, a basic symbolic dy-
namics argument implies that for any compact group K, �nite group L, and any continuous
G-equivariant group homomorphism φ : KG → LG, the kernel ker(φ) is of �nite type (see
Lemma 4.7). So the action of G on each of Cp−1(L,K), ker(δp), ker(δp+1), and, in the case
of Corollary 5.8, Im(δp) = ker(δp+1) are all of �nite type and thus Theorem 4.6 may be
applied to each.

Remark 1.5. For actions of amenable groups, particularly Z, there are numerous estab-
lished connections between entropy and periodic points in various contexts. However we
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mention that for actions of non-amenable so�c groups, the only previously known connec-
tions between so�c entropy and periodic points were in the setting of principal algebraic
actions, i.e. for �xed f ∈ Z[G] the natural shift action of G on the Pontryagin dual Xf

of Z[G]/Z[G]f . Under various assumptions on f , work of Bowen [10], Bowen�Li [14], and
Kerr�Li [33] has shown that the so�c entropy of the corresponding principal algebraic action
is equal to the exponential growth rate of the number of periodic points (or the number of
connected components of FixGn(Xf ) where appropriate).

Theorems 5.7 and 4.6 and Corollary 5.8 are stated in terms of topological entropy, how-
ever the theorem below implies that under stronger assumptions those results also hold for
measured entropies computed with respect to Haar probability measures. Recall that if G
acts on a compact metrizable group H by continuous group automorphisms, then a point
h ∈ H is called homoclinic if gn · h → 1H for every injective sequence (gn) of elements of
G. The set of homoclinic points forms a subgroup of H called the homoclinic group of H.
For more on homoclinic points and their role in algebraic dynamics, see the nice discussion
in [40, Section 6].

Theorem 8.2 (Haar measure and topological so�c entropy). Let G be a so�c group, let
H be a pro�nite group, and let G act on H by continuous group automorphisms. If the
homoclinic group of H is dense, then

hΣ
meas(Gy H,Haar) = hΣ

top(Gy H)

for every so�c approximation Σ of G.

Remark 1.6. Both pro�niteness and the property of having dense homoclinic group are
preserved under taking continuous G-equivariant quotients. In particular, if K is �nite or
pro�nite, then every continuous G-equivariant quotient of KG satis�es the assumptions of
Theorem 8.2.

Remark 1.7. In classical ergodic theory there is a close connection between homoclinic
groups and the entropy of algebraic actions. To mention one of the more recent results,
Chung and Li have shown that if G is polycyclic-by-�nite and the algebraic action G y H
is expansive, then the action has positive entropy if and only if the homoclinic group is
non-trivial, and it has completely positive entropy (i.e. all measure-theoretic factors have
positive entropy) if and only if the homoclinic group is dense [16]. Currently it is still
unknown what role the homoclinic group may play in the development of the so�c entropy
theory of algebraic actions.

For algebraic actions of countable amenable groups, a result of Deninger states that the
topological entropy is always equal to the measured entropy computed with Haar probabil-
ity measure [17]. In the setting of so�c entropy, previous work of Bowen�Li [14], Hayes [30],
and Kerr�Li [33] has uncovered instances of algebraic actions, speci�cally principal alge-
braic actions, where the topological entropy agrees with measured entropy computed using
Haar probability measure. However, all prior instances of this were essentially discovered
indirectly as the equalities were observed by computing both entropies explicitly. In [33,
Problem 7.7], Kerr and Li asked if there is any direct way to see equality between topological
and measured entropy for algebraic actions, and they asked under what conditions the two
entropies coincide. Theorem 8.2 is a partial answer to their question. We remark that the
equality in Theorem 8.2 is obtained directly, as we do not know the value of either of the
two entropies.

We also obtain a second result asserting equality of measure-theoretic and topological
entropy. This corollary follows from Theorem 4.6 after applying a result of Bowen [10].
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Corollary 8.5 (Measured entropy and �xed points). Let G be a residually �nite group, let
(Gn) be a so�c chain of �nite-index normal subgroups, and let Σ =

(
σn : G→ Sym(Gn\G)

)
be the associated so�c approximation. Let K be a �nite group and let X ⊆ KG be a G-
invariant compact subgroup. If X is of �nite type, FixGn

(X) converges to X in the Hausdor�
metric, and the Haar probability measure on X is ergodic then

hΣ
meas(Gy X,Haar) = hΣ

top(Gy X) = lim sup
n→∞

1

|G : Gn|
· log

∣∣∣FixGn(X)
∣∣∣.

We mention that this corollary may be contrasted with either Theorem 8.2 or Theorem
4.6. In contrast to Theorem 8.2, the assumption that FixGn(X) converges to X in the
Hausdor� metric does not seem to imply that the homoclinic group of X is dense. Thus the
assumption of a dense homoclinic group is weakened (while several other new assumptions
are imposed). In contrast to Theorem 4.6, the above corollary relates measured entropy
to periodic points while Theorem 4.6 relates topological entropy to periodic points. The
assumptions of the above corollary are strictly stronger: we require the subgroups Gn to be
normal, require FixGn(X) to converge to X, and we require ergodicity of the Haar measure.
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2. Preliminaries

Generating partitions and functions. Let G be a countably in�nite group, and let
G y X be a Borel action on a standard Borel space X. A countable Borel partition P of
X is generating if for all x 6= y ∈ X there is g ∈ G such that P separates g · x and g · y.
Generally, it will be more convenient for us to work instead with generating functions. A
Borel function α : X → N is generating if the partition P = {α−1(k) : k ∈ N} is generating.
Equivalently, α is generating if for all x 6= y ∈ X there is g ∈ G with α(g · x) 6= α(g · y).

Suppose now that µ is a G-invariant Borel probability measure on X. A countable
Borel partition P (or a Borel function α : X → N) is generating (mod µ) if there is a
G-invariant conull set X ′ ⊆ X such that P � X ′ (respectively α � X ′) is generating for
G y X ′. Although this is not the standard de�nition of generating, it is equivalent (see
for example [55, Lemma 2.1]). When there is no danger of confusion, we will simply say
generating instead of generating mod µ.

Bernoulli shifts and subshifts. For a metrizable space K and a countable or �nite set V ,
we write KV =

∏
v∈V K for the set of all functions x : V → K equipped with the product

topology or, equivalently, the topology of point-wise convergence. When V = G, we call
KG the K-Bernoulli shift over G and equip it with the G-shift-action

for x ∈ KG and g ∈ G, (g · x)(h) = x(g−1h), for all h ∈ G.
The Bernoulli shift KG comes with the tautological generating function α de�ned by
evaluation at the identity element 1G:

α :

(
KG → K
x 7→ x(1G)

)
Note that α(g ·x) = (g ·x)(1G) = x(g−1). For our entropy computations it will be convenient
to explore the values of a function x ∈ KG by considering the values α(g · x) for g ∈ G.
Observe that the collection of values α(g · x), for all g ∈ G, uniquely determines x (i.e. α is
a generating function).

A subset X ⊆ KG is a subshift if it is closed and G-invariant. It is a subshift of �nite
type if there is a �nite set W ⊆ G and a closed set of patterns P ⊆ KW such that

X = {x ∈ KG : ∀g ∈ G ∃p ∈ P ∀w ∈W α(wg · x) = p(w)}.
In other words, X is the largest subshift with the property that, for every x ∈ X, the map
w 7→ α(w · x) lies in P . We will call such a set W a test window for X. If K is a group,
then X ⊆ KG is an algebraic subshift if X is a subshift and is also a subgroup of KG.

Cost. Let (X,µ) be a standard probability space and let G y (X,µ) be a measure-
preserving action. Denote by RXG the equivalence relation given by the orbits:

RXG = {(x, y) ∈ X ×X : ∃g ∈ G g · x = y}.
A graphing on X is a countable collection Φ = {φi : Ai → Bi : i ∈ I} of partial iso-
morphisms, i.e. of Borel bijections between Borel subsets Ai, Bi ⊆ X. Let RΦ denote
the smallest equivalence relation containing all the pairs (x, φi(x)) for i ∈ I and x ∈ Ai.
We call Φ a graphing of RXG if RXG = RΦ on a co-null set of X (this forces the φi to
preserve the measure), and the cost of Φ is de�ned to be

∑
i∈I µ(Ai). The cost of RXG

is de�ned to be the in�mum of the costs of all graphings Φ of RXG . The cost of a count-
able group G, denoted C(G), is de�ned to be the in�mum of the costs of all RYG for free
probability-measure-preserving actions G y (Y, ν). Similarly, the supremum-cost of G,
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denoted Csup(G), is de�ned in the same manner, except one takes the supremum over all free
probability-measure-preserving actions of G. When G is �nitely generated, the supremum
cost is realized by any non trivial Bernoulli shift action (Abért-Weiss [1]).

So�c groups

De�nition 2.1 (So�c approximation). A countable group G is so�c if there is a sequence
of �nite sets Dn and maps σn : G→ Sym(Dn) (not necessarily homomorphisms) such that
σn(1G) = 1Sym(Dn) and:

(i) (asymptotically free) for every g ∈ G with g 6= 1G we have

lim
n→∞

|{i ∈ Dn : σn(g)(i) 6= i}|
|Dn|

= 1.

(ii) (asymptotically an action) for every g, h ∈ G we have

lim
n→∞

|{i ∈ Dn : σn(g) ◦ σn(h)(i) = σn(gh)(i)}|
|Dn|

= 1.

A sequence Σ = {σn : n ∈ N} with |Dn| → ∞ and satisfying the above conditions will
be called a so�c approximation to G. Of course, if G is in�nite and the above conditions
are satis�ed, then |Dn| must tend to in�nity. For a nice survey of so�c groups and other
equivalent de�nitions of so�city, see [51].

Remark 2.2. The class of so�c groups contains the (countable) amenable groups and, as
discussed below, the residually �nite groups (such as free groups and linear groups). It is a
well known open problem whether all countable groups are so�c.

Residually �nite and pro�nite groups. An important class of so�c groups are the
residually �nite groups. A countable group G is residually �nite if the intersection of all
its normal subgroups of �nite index is trivial. Equivalently, a group G is residually �nite if
and only if it admits a so�c chain, as de�ned below:

De�nition 2.3 (So�c chain). A decreasing sequence (Gn) of �nite-index (not necessarily
normal) subgroups of a countable group G is called a chain. We call it a so�c chain if it
satis�es moreover the following asymptotic condition:

(2.1) ∀g ∈ G \ {1G} lim
n→∞

|{Gnu : u ∈ G, s. t. g ∈ u−1Gnu}|
[G : Gn]

= 0.

In particular, a normal chain (i.e. a chain of normal subgroups) with trivial intersection is
a so�c chain.

Consider a countable group G and a chain (Gn). Right multiplication by the inverse
de�nes a natural left action of G on the set Dn := Gn\G = {Gnu : u ∈ G} of right-cosets
of Gn de�ned by g ∗ Gnu = Gnug

−1. This action G y Dn produces a homomorphism
σn : G→ Sym(Dn), from G to the symmetric group on the set Dn.

Lemma 2.4. The sequence Σ = {σn : G → Sym(Gn\G) : n ∈ N} is a so�c approximation
to G if and only if the chain (Gn) is a so�c chain.

Proof. Since each σn is a homomorphism, condition (ii) of De�nition 2.1 is automatically
satis�ed. As for condition (i), it coincides with condition (2.1) since g �xes Gnu if and only
if g ∈ u−1Gnu. �
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Remark 2.5. In this framework, Dn = Gn\G is considered just as a homogeneous G-space,
i.e. a transitive G-space without any particular choice of an origin nor a root. It follows
that σn only retains the conjugacy class of Gn instead of Gn itself. Indeed each choice of a
root δ ∈ Dn delivers its stabilizer StabGyDn

(δ). Changing the root modi�es the stabilizer
by a conjugation.

Observe that condition (2.1) is equivalent to the so-called Farber condition:

∀g ∈ G \ {1G} lim
n→∞

|{u−1Gnu : u ∈ G, g ∈ u−1Gnu}|
|{u−1Gnu : u ∈ G}|

= 0,

introduced in [24] and analyzed in [5] (see in particular [5, prop. 2.6]).

A topological groupK is pro�nite if it is isomorphic (as a topological group) to an inverse
limit of discrete �nite groups. More speci�cally, K is pro�nite if there is a sequence Km of
discrete �nite groups and homomorphisms βm,` : K` → Km (for ` ≥ m) and βm : K → Km

such that

(i) βm,` ◦ β` = βm for all ` ≥ m;
(ii) for all k 6= k′ ∈ K there is an m with βm(k) 6= βm(k′);
(iii) K has the weakest topology making every homomorphism βm continuous.

In this situation we write K = lim←−Km (the maps βm will be clear from the context). It
is immediate from the de�nition that pro�nite groups must be compact, Hausdor�, metriz-
able, and totally disconnected. In particular, every pro�nite group admits a (unique) Haar
probability measure.

`2-Betti numbers. Let L be a simplicial complex and let G y L be a free cocompact
action. For p ≥ 0 let Cp(L,C) be the space of p-cochains over C and let δp+1 : Cp(L,C)→
Cp+1(L,C) be the coboundary map. The coboundary map δp+1 restricts to a continuous

operator δp+1
(2) : Cp(2)(L) → Cp+1

(2) (L) de�ned on the Hilbert space of square-summable p-

cochains Cp(2)(L). The reduced `2-cohomology group H
p

(2)(L) := ker(δp+1
(2) )/Im(δp(2)) is

de�ned as the quotient of the kernel of δp+1
(2) by the closure of the image of δp(2). The pth

`2-Betti number of the action G y L is de�ned as the von Neumann G-dimension of
the Hilbert G-module H

p

(2)(L)

βp(2)(L : G) := dimGH
p

(2)(L).

If L is n-connected, then for all p ≤ n the `2-Betti number βp(2)(L : G) depends only on G

and not on L, and is called the pth `2-Betti number of G, denoted βp(2)(G).

In general, we must consider the case of a free action G y L on a simplicial complex
L where the action is possibly not cocompact. We write L as an increasing union of G-
invariant cocompact subcomplexes L = ∪i ↗ Li. The inclusions Li ⊂ Lj , i ≤ j, induce
G-equivariant morphisms Cp(2)(Lj) → Cp(2)(Li) (restriction) for cochains and for reduced

cohomologies H̄p
(2)(Lj) → H̄p

(2)(Li). The p-th `2-Betti number of the action of G on L is

de�ned as the (increasing) limit in i of the (decreasing) limit in j of the von Neumann
G-dimension of the closure of the image of these morphisms:

βp(2)(L : G) := lim
i→∞

↗ lim
i≤j,j→∞

↘ dimG Im
(
H̄p

(2)(Lj)→ H̄p
(2)(Li)

)
.

It does not depend on the choice of the exhaustion of L. Moreover, if L is n-connected then
we get a number which is independent of L for all p ≤ n, and this number is called the pth
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`2-Betti number of G:
βp(2)(G) := βp(2)(L : G).

We will make use of the following fundamental theorem. This result is due to Lück [43]
for normal chains and due to Farber [24] in the generality stated here.

Theorem 2.6 (Lück approximation theorem). Let L be a connected simplicial complex and
let Gy L be a free cocompact action. If G is residually �nite and (Gn) is a so�c chain then

βp(2)(L : G) = lim
n→∞

dimCH
p(Gn\L,C)

|G : Gn|
.

We will also use a result of Thom [60, Th. 4.2] (improving a similar result by Elek and
Szabó [22]) which extends the Lück approximation theorem to the so�c framework (see
formula (4.6)).
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3. Definition of topological sofic entropy

Let G be a so�c group, let Σ = (σn : G→ Sym(Dn)) be a so�c approximation to G, and
let Gy X be a continuous action on a compact metrizable space X. Let ρ : X×X → [0,∞)
be a continuous pseudo-metric on X which is generating; i.e. ρ is symmetric, satis�es
the triangle inequality, and for all x 6= y ∈ X there is g ∈ G with ρ(g · x, g · y) > 0. For
maps φ, φ′ : Dn → X we de�ne

ρ2(φ, φ′) :=

(
1

|Dn|
∑
i∈Dn

ρ(φ(i), φ′(i))2

)1/2

, ρ∞(φ, φ′) := max
i∈Dn

ρ(φ(i), φ′(i)).

For �nite F ⊆ G and δ > 0, let

Map(ρ, F, δ, σn) :=
{
φ : Dn → X : ∀f ∈ F, ρ2

(
φ ◦ σn(f), f · φ

)
< δ
}
.

Roughly speaking, it is the collection of maps φ ∈ XDn which are almost-equivariant (up to
δ, under the �pseudo-action� σn restricted to the �nite set F ⊂ G). Finally, we let

(3.1) Nκ(Map(ρ, F, δ, σn), ρ∞)

denote the maximum cardinality of a (ρ∞, κ)-separated set; i.e. a set such that for every
pair of elements φ and φ′ we have ρ∞(φ, φ′) ≥ κ. The Σ-entropy of Gy X is then de�ned
to be

hΣ
top(Gy X) = sup

κ>0
inf
δ>0

inf
F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· logNκ

(
Map(ρ, F, δ, σn), ρ∞

)
.

This de�nition comes from [34, Def. 2.3]. Kerr and Li [34] proved that the value hΣ
top(Gy

X) does not depend on the choice of continuous generating pseudo-metric ρ (though it may
depend on Σ). Observe that either hΣ

top(Gy X) ≥ 0 or else hΣ
top(Gy X) = −∞.

We mention for completeness that when the acting so�c group is amenable, the topological
so�c entropy is identical to classical topological entropy for all choices of Σ [34].

We will soon present an alternative formula for topological entropy, but �rst we need the
following technical lemma. Below we write btc for the greatest integer less than or equal
to t.

Lemma 3.1. If 0 < κ < 1 then

lim
n→∞

1

n
· log

(
n

bκnc

)
= −κ · log(κ)− (1− κ) · log(1− κ).

Proof. Fix δ > 0. Recall that Stirling's formula states that n! is asymptotic to
√

2πn·nn·e−n.
Therefore 1

n log(n!) − log(n) + 1 converges to 0. For n ∈ N set pn = bκ · nc/n, and set
qn = 1− pn. Note that pn converges to κ and qn converges to 1− κ. So

lim
n→∞

1

n
· log

(
n

pn · n

)
= lim
n→∞

1

n
· log

n!

(pn · n)!(qn · n)!

= lim
n→∞

1

n
· log(n!)− 1

n
· log(pn · n)!− 1

n
· log(qn · n)!

= lim
n→∞

log(n)− 1− pn · log(pn · n) + pn − qn · log(qn · n) + qn

= lim
n→∞

−pn · log(pn)− qn · log(qn)

= −κ · log(κ)− (1− κ) · log(1− κ). �
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In the remainder of this section, we present an alternate formula for entropy and establish
a few lemmas which will be useful for the types of actions studied in this paper.

Let G y X be a continuous action on a compact metrizable space. Let K be a �nite
discrete set and α : X → K be a continuous function (equivalently a clopen partition). The
G-action delivers, for g ∈ G, the shifted functions x 7→ α(g · x). Given a �nite subset F of
the group G and a point x ∈ X, the F -itinerary of x (i.e. the following the pattern)(

F → K
f 7→ α(f · x)

)
∈ KF

is the sequence of pieces traveled by the F -iterates of x.
The topological entropy of the action, roughly speaking, is the exponential growth rate

of the number of ways in which the pseudo-action σn : G → Sym(Dn) on Dn can mimic
the G-action on X. In the alternative formula for entropy below, we will be interested in
partitions a : Dn → K which are plausible in the sense that the pseudo-F -itinerary

p :
( F → K
f 7→ a(σn(f)(i))

)
∈ KF

of the points i ∈ Dn are witnessed in X, i.e. coincide with a genuine F -itinerary in X.
Indeed, we will require this to happen for most of the points i ∈ Dn, and we will then count
the number of such good partitions a ∈ KDn . We say that a property P is satis�ed for
ε-almost every i ∈ Dn if

1

|Dn|

∣∣∣{i ∈ Dn : i satis�es P}
∣∣∣ ≥ 1− ε.

We de�ne:

MX(α, F, ε, σn) :=
{
a ∈ KDn : for ε-almost every i ∈ Dn the pattern

p :
( F → K
f 7→ a(σn(f)(i))

)
is witnessed in X

}
.

Proposition 3.2 (Clopen partition). Let G y X be a continuous action on a compact
metrizable space. If K is �nite and α : X → K is a continuous generating function, then

hΣ
top(Gy X) = inf

ε>0
inf
F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log

∣∣∣MX(α, F, ε, σn)
∣∣∣.

In this paper we will be mostly interested in the case where K is �nite, however we will
occasionally need to work in the more general setting where K = lim←−Km. For example, we
will need to work in the pro�nite setting in order to prove Theorem 9.4. Below in Lemma
3.4 we present a formula for topological entropy when K = lim←−Km is an inverse limit of
�nite spaces, and Proposition 3.2 will easily be seen as an immediate special case of that
lemma.

Convention 3.3. For the remainder of this section, we let K = lim←−Km be an inverse limit
of �nite spaces Km with maps βm : K → Km and βm,` : K` → Km, ` ≥ m, satisfying
βm,` ◦ β` = βm. We place on K the weakest topology making each map βm continuous. We
also let G be a so�c group with so�c approximation Σ = (σn : G→ Sym(Dn)).

Let G y X be a continuous action on a compact metrizable space, and suppose that
α : X → K is a continuous generating function. For ` ∈ N, set α` = β` ◦α. For ` ∈ N, �nite
F ⊆ G, and Y ⊆ X, call a pattern p ∈ KF

` witnessed in Y if there is some y ∈ Y with
α`(f · y) = p(f) for all f ∈ F .
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We de�ne:

MY (α`, F, ε, σn) :=
{
a ∈ KDn

` : for ε-almost every i ∈ Dn the pattern

p :
( F → K`

f 7→ a(σn(f)(i))

)
is witnessed in Y

}
.

(3.2)

Given ` ≥ m, every partition a ∈ KDn

` reduces through βm,` to a partition

βm,` ◦ a :
(
Dn

a−→ K`
βm,`−→ Km

)
∈ KDn

m .

The lemma below contains the formula for entropy which we will use.

Lemma 3.4. With the notation above, we have

(3.3) hΣ
top(Gy X) = sup

m∈N
inf
`≥m

inf
ε>0

inf
F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log

∣∣∣βm,` ◦MX(α`, F, ε, σn)
∣∣∣.

Proof. Since α is a continuous generating function, the function ρ : X ×X → R de�ned by

ρ(x, y) =

{
2−m if m is least with αm(x) 6= αm(y)

0 otherwise

is a continuous generating pseudo-metric.

Claim: If κ ≥ 2−m and 22` · |F | · δ2 < ε, then

Nκ(Map(ρ, F, δ, σn), ρ∞) ≤ |βm,` ◦MX(α`, F, ε, σn)|.

Proof of Claim: De�ne

r` :

(
XDn → KDn

`

φ 7→ r`(φ) = α` ◦ φ

)
If φ, φ′ ∈ Map(ρ, F, δ, σn) and ρ∞(φ, φ′) ≥ 2−m, then by de�nition there is i ∈ Dn with
αm ◦ φ(i) 6= αm ◦ φ′(i) and hence βm,` ◦ r`(φ) 6= βm,` ◦ r`(φ′). Thus φ 7→ βm,` ◦ r`(φ) is
injective whenever restricted to a (ρ∞, κ)-separated set. Thus the claim will follow once we
show that r`(φ) ∈MX(α`, F, ε, σn).

Fix φ ∈ Map(ρ, F, δ, σn). For �xed f ∈ F we have∣∣∣{i ∈ Dn : α` ◦ φ (σn(f)(i)) 6= α`(f · φ(i))}
∣∣∣ ≤ 22`|Dn| · ρ2(φ ◦ σn(f), f · φ)2 < 22`|Dn| · δ2.

Therefore the set

B = {i ∈ Dn : ∃f ∈ F α` ◦ φ (σn(f)(i)) 6= α`(f · φ(i))}

has cardinality less than ε · |Dn|. If i 6∈ B then for every f ∈ F

r`(φ)(σn(f)(i)) = α` ◦ φ(σn(f)(i)) = α`(f · φ(i)).

Thus for i 6∈ B the pattern f ∈ F 7→ r`(φ)(σn(f)(i)) is witnessed since φ(i) ∈ X. �

Claim: If 1G ∈ F , κ ≤ 2−m, and 2−`−1 < δ then

inf
ε>0

lim sup
n→∞

1

|Dn|
· log |βDn

m,` ◦MX(α`, F, ε, σn)| ≤ lim sup
n→∞

1

|Dn|
· logNκ(Map(ρ, F, δ, σn), ρ∞).
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Proof of Claim: For each witnessed pattern p ∈ KF
` �x xp ∈ X with α`(f · xp) = p(f) for

all f ∈ F . For unwitnessed patterns p ∈ KF
` , �x an arbitrary point xp ∈ X. De�ne

φ :

(
KDn

` → XDn

a 7→ φa : (i 7→ xp(a,i))

)
by associating to a and each i ∈ Dn �rst the F -pattern

p(a, i) : f 7→ a(σn(f)(i))

and then the point xp(a,i) chosen for this pattern. Let Wa be the set of i for which p(a, i) is
witnessed.

Assume now a ∈ MX(α`, F, ε, σn). Then |Wa| ≥ (1− ε) · |Dn|. It is immediate from the
de�nitions that for all i ∈Wa and all f ∈ F

α`(f · φa(i)) = α`(f · xp(a,i)) = p(a, i)(f) = a(σn(f)(i)).

In particular,

(3.4) α` ◦ φa(i) = a(i) for i ∈Wa

since 1G ∈ F and σn(1G) = 1Sym(Dn). So if both i, σn(f)(i) ∈ Wa then ρ(φa ◦ σn(f)(i), f ·
φa(i)) ≤ 2−`−1 since

α`(φa ◦ σn(f)(i))
if σn(f)(i)∈Wa

= a(σn(f)(i))
if i∈Wa= α`(f · φa(i)).

For each f ∈ F , both i, σn(f)(i) ∈Wa for (2ε)-almost every i ∈ Dn. This implies

ρ2(φa ◦ σn(f), f · φa) ≤

√
2−2`−2 +

1

|Dn|
· 2ε · |Dn|.

So when ε is su�ciently small ρ2(φa ◦ σn(f), f · φa) < δ and hence φa ∈ Map(ρ, F, δ, σn).
If a, a′ ∈MX(α`, F, ε, σn) and ρ∞(φa, φa′) < κ ≤ 2−m (*) (thus αm(φa(i)) = αm(φa′(i))

for every i), then for all i ∈Wa ∩Wa′

βm,` ◦ a(i)
(3.4)
= βm,` ◦ α`︸ ︷︷ ︸

αm

(φa(i))
(∗)
= βm,` ◦ α`︸ ︷︷ ︸

αm

(φa′(i))
(3.4)
= βm,` ◦ a′(i).

Note that |Wa ∩Wa′ | ≥ (1− 2ε) · |Dn|, so that

1

|Dn|
· |{i ∈ Dn : βm,` ◦ a(i) 6= βm,` ◦ a′(i)}| ≤ 2ε.

For b ∈ KDn
m let B(b, 2ε) be the set of those b′ ∈ KDn

m with 1
|Dn| · {i ∈ Dn : b(i) 6=

b′(i)}| ≤ 2ε. Note that |B(b, 2ε)| ≤
( |Dn|
b2ε|Dn|c

)
· |Km|2ε|Dn|. Pick a maximal (ρ∞, κ)-separated

set φa1 , φa2 , · · · , φaR with aj ∈MX(α`, F, ε, σn). Then R ≤ Nκ(Map(ρ, F, δ, σn), ρ∞). Each
aj gives rise to a bj := βm,` ◦ aj . Every extra a ∈MX(α`, F, ε, σn) satis�es ρ∞(φa, φaj ) < κ
for some j, so that the associated b = βm,` ◦ a belongs to the set B(bj , 2ε). Thus, the
B(bj , 2ε) form a covering of βm,` ◦MX(α`, F, ε, σn). It follows that

Nκ(Map(ρ, F, δ, σn), ρ∞) ≥
(
|Dn|
b2ε|Dn|c

)−1

· |Km|−2ε|Dn| · |βDn

m,` ◦MX(α`, F, ε, σn)|.

Now apply Lemma 3.1 and let ε tend to 0. �

To complete the proof, set h = hΣ
top(Gy X) and let h′ be equal to the right-hand side of

(3.3). It is important to note that monotonicity considerations imply that in the de�nitions
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of h and h′ one can require 1G ∈ F and replace the supremums and in�mums with limits
where κ, δ, ε → 0 and `,m → ∞. Also observe that one can exchange consecutive in�ma
like infε>0 and inf F⊆G

F �nite

. Using the inequality from the �rst claim, �rst take the in�mum

over δ and F , then take the in�mum over ε and ` and the supremum over m. Finally, take
the supremum over κ to obtain h ≤ h′. Now using the inequality from the second claim, we
�rst take the in�mum over F and `, then take the in�mum over δ and supremum over κ.
Finally, taking the supremum over m gives h′ ≤ h. �

If G y X is a continuous action on a compact metrizable space X and α : X → K is a
continuous generating function, then α naturally produces a G-equivariant homeomorphism
betweenX and a compact invariant setX ′ ⊆ KG. It is natural in this setting to approximate
X ′ by slightly larger compact subsets of KG. Such approximations provide a means to
compute the entropy of Gy X.

Lemma 3.5. Let X ⊆ KG be a G-invariant compact set. If (Yr)r∈N is a decreasing sequence
of compact subsets of KG with

X =
⋂
r∈N

⋂
g∈G

g · Yr,

then

(3.5) hΣ
top(Gy X) = sup

m∈N
inf
`≥m

inf
r∈N

inf
F⊆G
F �nite

inf
ε>0

lim sup
n→∞

1

|Dn|
· log

∣∣∣βDn

m,` ◦MYr (α`, F, ε, σn)
∣∣∣.

Proof. Since X ⊆ Yr we have

MX(α`, F, ε, σn) ⊆MYr (α`, F, ε, σn).

Therefore hΣ
top(Gy X) is bounded above by the right-hand side of (3.5).

For r, c ∈ N and �nite T ⊆ G de�ne the set

V c,Tr = {z ∈ KG : ∃y ∈ Yr ∀t ∈ T αc(t · z) = αc(t · y)}.

Note that each set V c,Tr is clopen and contains Yr. Since K
G \ Yr is open, we have

Yr =
⋂
c∈N

⋂
T⊆G

V c,Tr .

Indeed, a base of neighborhoods for z0 ∈ KG are given by the sets W c,T := {z ∈ KG : ∀t ∈
T, αc(t · z) = αc(t · z0)}.

Fix a �nite F ⊆ G, m ≤ ` ∈ N, and ε > 0. De�ne

U = {z ∈ KG : ∃x ∈ X ∀f ∈ F α`(f · z) = α`(f · x)}.

We have ⋂
r∈N

⋂
g∈G

⋂
c∈N

⋂
T⊆G

g · V c,Tr =
⋂
r∈N

⋂
g∈G

g · Yr = X ⊆ U.

By taking complements, we see that the complement of U , which is compact, is covered

by the union of the complements of the sets g · V c,Tr , which are open. Since V c
′,T ′

r′ ⊆ V c,Tr

whenever r′ ≥ r, c′ ≥ c, and T ′ ⊇ T , by compactness we get r, c ∈ N and �nite sets T, S ⊆ G
such that c ≥ ` and

X ⊆
⋂
g∈S

g · V c,Tr ⊆ U.
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Since Σ is a so�c approximation to G, if n is su�ciently large then there are at most
(ε/2) · |Dn| many i ∈ Dn with σn(ts−1)(i) 6= σn(t) ◦ σn(s−1)(i) for some s ∈ S, t ∈ T . Fix
such a value of n. Also �x 0 < δ < ε/(2|S|). We claim that

β`,c ◦MYr
(αc, T, δ, σn) ⊆MX(α`, F, ε, σn).

Fix a ∈ MYr
(αc, T, δ, σn). For i ∈ Dn de�ne the pattern pi ∈ KT

c by pi(t) = a(σn(t)(i)).
De�ne B to be the set of i ∈ Dn such that either: (1) there are s ∈ S, t ∈ T with
σn(ts−1)(i) 6= σn(t)◦σn(s−1)(i); or (2) there is s ∈ S such that the pattern t 7→ pσn(s−1)(i)(t)
is not witnessed in Yr. By our choice of n and δ, we have |B| < ε · |Dn|.

Consider i ∈ Dn with i 6∈ B. Since |B| < ε · |Dn| and i 6∈ B, it su�ces to show that
the pattern q ∈ KF

` de�ned by q(f) = β`,c ◦ a(σn(f)(i)) is witnessed in X. Fix z ∈ KG

satisfying αc(g · z) = a(σn(g)(i)) for all g ∈ G. By de�nition, z lies in U if and only if q is
witnessed in X. Towards a contradiction, suppose that q is not witnessed. Then we have
z 6∈ U . In particular, there is s ∈ S with s−1 · z 6∈ V c,Tr . Set j = σn(s−1)(i). Since i 6∈ B,
by condition (1) we have that for all t ∈ T

αc(ts
−1 · z) = a(σn(ts−1)(i)) = a(σn(t)(j)).

Since s−1 · z 6∈ V c,Tr , the pattern pj is not witnessed in Yr. This contradicts condition (2).
This proves the claim.

Since βm,` ◦ β`,c = βm,c, for ` ≥ m, it follows from the above claim that

βDn
m,c ◦MYr (αc, T, δ, σn) ⊆ βDn

m,` ◦MX(α`, F, ε, σn).

Therefore

inf
c≥`

inf
r∈N

inf
T⊆G

inf
δ>0

lim sup
n→∞

1

|Dn|
· log

∣∣∣βDn
m,c ◦MYr

(αc, T, δ, σn)
∣∣∣

≤ lim sup
n→∞

1

|Dn|
· log

∣∣∣βDn

m,` ◦MX(α`, F, ε, σn)
∣∣∣.

Now by taking the in�mum over F , ε, and ` and then the supremum over m (and noting
that supm inf`≥m infc≥` is the same as supm infc≥m), we see that h

Σ
top(G y X) is bounded

below by the right-hand side of (3.5). �

Corollary 3.6 (Decreasing continuity). Suppose that K is a �nite set. If (Xn)n∈N is a
decreasing sequence of compact G-invariant subsets of KG, then the action of G on X =⋂
n∈NXn has entropy

hΣ
top(Gy X) = inf

n∈N
hΣ

top(Gy Xn).

Proof. We will apply Lemma 3.5 with Yn = Xn. Since K is �nite, we can assume that
every Km = K. Then α` = α and βm,` = id for all m ≤ ` ∈ N. It follows that in
(3.5) the supm and inf` terms can be removed, and the right-hand side of (3.5) becomes
infr∈N h

Σ
top(Gy Xr) by Proposition 3.2. �
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4. Topological entropy of algebraic subshifts

In this section we develop various formulas for the topological entropy of algebraic sub-
shifts X ⊆ KG, where K is either a �nite or a pro�nite group.

Convention 4.1. Throughout this section, G will denote a so�c group with so�c approx-
imation Σ = (σn : G → Sym(Dn)), and K = lim←−Km will be a pro�nite group with

homomorphisms βm : K → Km and βm,` : K` → Km, ` ≥ m. Also, G y KG will be
the Bernoulli shift action, α : KG → K will be the tautological generating function, and
αm = βm ◦ α.

Proposition 4.2. If Y ⊆ KG is a subgroup (not necessarily compact or G-invariant), then
for all m ≤ ` ∈ N and �nite F ⊆ G,
(4.1)

inf
ε>0

lim sup
n→∞

1

|Dn|
· log

∣∣∣βDn

m,` ◦MY (α`, F, ε, σn)
∣∣∣ = lim sup

n→∞

1

|Dn|
· log

∣∣∣βDn

m,` ◦MY (α`, F, 0, σn)
∣∣∣,

The point in the above proposition is that �the in�mum over ε can be replaced by ε = 0�.

Proof. Clearly the left-hand side of (4.1) is greater than or equal to the right-hand side.
Fix a �nite set F ⊆ G, m,n ∈ N, ` ≥ m, and ε > 0. Let P be the set of patterns

p ∈ KF
` which are witnessed in Y , i.e. there is some y ∈ Y with α`(f · y) = p(f) for all

f ∈ F . Since Y is a subgroup of KG and α` is a homomorphism, we see P is a subgroup of
KF
` . Recall that a ∈ MY (α`, F, 0, σn) if and only if for every i ∈ Dn the pattern pai ∈ KF

` ,
de�ned by pai (f) = a(σn(f)(i)), is witnessed in Y . So a ∈ MY (α`, F, 0, σn) if and only if

pai ∈ P for every i ∈ Dn. It follows thatMY (α`, F, 0, σn) is a subgroup of KDn

` , and hence
βm,` ◦MY (α`, F, 0, σn) is a subgroup of KDn

m .

Consider the map φ : KDn

` → (KF
` /P )Dn de�ned by

φ(a)(i) = pai · P ∈ KF
` /P.

For a, a′ ∈ KDn

` we have φ(a) = φ(a′) if and only if a−1a′ ∈ MY (α`, F, 0, σn). If a ∈
MY (α`, F, ε, σn) then by de�nition pai ∈ P for at least (1− ε) · |Dn| many values of i ∈ Dn.
Hence

(4.2)
∣∣∣φ(MY (α`, F, ε, σn))

∣∣∣ ≤ ( |Dn|
bε · |Dn|c

)
· |KF

` /P |ε·|Dn|.

For each b ∈ βm,` ◦MY (α`, F, ε, σn), pick a(b) ∈ MY (α`, F, ε, σn) with βm,`(a(b)) = b.
If φ(a(b)) = φ(a(b′)) then a(b)−1a(b′) ∈ MY (α`, F, 0, σn). Since βm,` is a group homomor-
phism, this implies that

b−1b′ ∈ βm,` ◦MY (α`, F, 0, σn).

Therefore∣∣∣βm,` ◦MY (α`, F, ε, σn)
∣∣∣ ≤ ∣∣∣βm,` ◦MY (α`, F, 0, σn)

∣∣∣ · ∣∣∣φ(MY (α`, F, ε, σn))
∣∣∣.

So by (4.2) and Lemma 3.1

lim sup
n→∞

1

|Dn|
· log

∣∣∣βm,` ◦MY (α`, F, ε, σn)
∣∣∣

≤ lim sup
n→∞

1

|Dn|
· log

∣∣∣βm,` ◦MY (α`, F, 0, σn)
∣∣∣

− ε · log(ε)− (1− ε) · log(1− ε) + ε · log |KF
` /P |.

Now take the in�mum over ε. �
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From the above proposition, it follows that for algebraic subshifts X ⊆ KG we may
remove one quanti�er from the de�nition of hΣ

top(Gy X).

Corollary 4.3 (Algebraic subshift, pro�nite). If X ⊆ KG is an algebraic subshift then

hΣ
top(Gy X) = sup

m∈N
inf
`≥m

inf
F⊆G
F�nite

lim sup
n→∞

1

|Dn|
· log

∣∣∣βDn

m,` ◦MX(α`, F, 0, σn)
∣∣∣.

When K is �nite the formula for the topological entropy now becomes quite nice.

Corollary 4.4 (Algebraic subshift, �nite). If K is a �nite group and X ⊆ KG is an
algebraic subshift, then

hΣ
top(Gy X) = inf

F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log

∣∣∣MX(α, F, 0, σn)
∣∣∣.

The entropy formula further simpli�es for algebraic subshifts of �nite type.

Corollary 4.5 (Algebraic subshift of �nite type). If K is a �nite group and X ⊆ KG is an
algebraic subshift of �nite type with test window W ⊆ G, then

hΣ
top(Gy X) = lim sup

n→∞

1

|Dn|
· log

∣∣∣MX(α,W, 0, σn)
∣∣∣.

Proof. De�ne
C = {z ∈ KG : ∃x ∈ X ∀w ∈W α(w · z) = α(w · x)}.

Then C is compact. Since X is a subshift of �nite type with test window W , we have
X =

⋂
g∈G g · C. By Lemma 3.5 and Proposition 4.2 we have

hΣ
top(Gy X) = inf

F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log

∣∣∣MC(α, F, 0, σn)
∣∣∣.

Note that by monotonicity properties we can require that F ⊇ W above. Finally, from the
de�nition of C we have that

MC(α, F, 0, σn) =MC(α,W, 0, σn) =MX(α,W, 0, σn)

whenever F contains W . �

The relation between topological entropy and periodic points now follows quickly.

Theorem 4.6 (Topological entropy and �xed points). Suppose that G is residually �nite,
(Gn) is a so�c chain of �nite-index subgroups, and Σ = (σn : G → Sym(Gn\G)) is the
associated so�c approximation. If K is a �nite group and X ⊆ KG is an algebraic subshift
of �nite type, then

hΣ
top(Gy X) = lim sup

n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(X)

∣∣∣,
where FixGn

(X) is the set of Gn-periodic elements of X.

Proof. Let W be a test window for X and let P be the W -patterns de�ning X:

P = {p ∈ KW : ∃x ∈ X ∀w ∈W p(w) = α(w · x)}
The natural map a 7→ ā from KGn\G to KG obtained by setting ā(g) = a(Gng) (induced
by G→ Gn\G) is a bijection between KGn\G and the Gn-periodic elements of KG.

Moreover, by de�nition, for g ∈ G and w ∈W we have the equality

α(wg · ā) = ā(g−1w−1) = a(Gng
−1w−1) = a

(
σn(w)(Gng

−1)
)
.
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Now (1) ā lies in X if and only if (w 7→ α(wg · ā)) ∈ P for all g ∈ G, and
(2) a ∈MX(α,W, 0, σn) if and only if (w 7→ a(σn(w)(Gng))) ∈ P for all Gng ∈ Gn\G.

It follows that ā ∈ X if and only if a ∈MX(α,W, 0, σn). Thus a 7→ ā is a bijection between
MX(α,W, 0, σn) and FixGn

(X). Now the claim follows from Corollary 4.5. �

We mention for completeness the following fact.

Lemma 4.7. If K is a compact group, L is a �nite group, and φ : KG → LG is a continuous
G-equivariant group homomorphism, then ker(φ) ⊆ KG is an algebraic subshift of �nite type.

Proof. Clearly ker(φ) is a closed G-invariant subgroup of KG. Let γ be the tautological
generating function for LG. Since γ◦φ is continuous and �nite valued, the set (γ◦φ)−1(1L) ⊆
KG is compact and open and hence the union of a �nite number of cylinder sets. So there
is a �nite W ⊆ G and P ⊆ KW such that for all z ∈ KG, γ ◦ φ(z) = 1L if and only if the
pattern w 7→ α(w · z) lies in P . Therefore

z ∈ ker(φ)⇔ ∀g ∈ G γ ◦ φ(g · z) = 1L ⇔ ∀g ∈ G (w 7→ α(wg · z)) ∈ P.

Thus ker(φ) is of �nite type (with test window W ) as claimed. �

Recall that for a group G, the group ring Z[G] is the set of all formal sums
∑
g∈G f

g · g
where fg ∈ Z and fg = 0 for all but �nitely many g ∈ G. If K is a �nite �eld and f ∈ Z[G],
then the right-convolution of f on KG is de�ned as

fK :

(
KG → KG
x 7→ x ∗ f

)
where (x ∗ f)(g) =

∑
h∈G

x(gh−1) · fh, for all g ∈ G.

More generally, ifM =
(
mi,j

)
i,j

=
(∑

mg
i,j ·g

)
i,j
∈ Matr×s(Z[G]), then right-convolution

by M produces a map

MK :

(
(Kr)G → (Ks)G
x 7→ MK(x)

)
,

where for g ∈ G and 1 ≤ j ≤ s

(4.3) MK(x)(g)(j) = (x ∗M)(g)(j) =

r∑
i=1

(
[x(·)(i)] ∗mi,j

)
(g) =

r∑
i=1

∑
h∈G

x(gh−1)(i) ·mh
i,j .

The mapMK is easily seen to be a continuous K-linear homomorphism. It is furthermore
G-equivariant since

MK(u · x)(g)(j) =

r∑
i=1

∑
h∈G

(u · x)(gh−1)(i) ·mh
i,j

=

r∑
i=1

∑
h∈G

x(u−1gh−1)(i) ·mh
i,j = MK(x)(u−1g)(j) = [u ·MK(x)](g)(j).

The convolution operation of M also induces maps

MZ : (Zr)G → (Zs)G
M (2) : `2(G)r → `2(G)s

by the same formula. Note that M (2) is a continuous G-equivariant operator.
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Given a so�c approximation Σ = (σn : G → Sym(Dn)) to G, we extend each map σn
linearly to a map σn : Matr×s(Z[G]) → Matr×s(Z[Sym(Dn)]). Just as in the previous

paragraph, if M̃ ∈ Matr×s(Z[Sym(Dn)]) then right-convolution by M̃ produces a map

M̃K :

(
(Kr)Dn → (Ks)Dn

a 7→ M̃K(a)

)
where for all δ ∈ Dn and 1 ≤ j ≤ s

M̃K(a)(δ)(j) =

r∑
i=1

∑
σ∈Sym(Dn)

a(σ(δ))(i) · m̃σ
i,j .

In particular, from these de�nitions we have that for M ∈ Matr×s(Z[G])

σn(M)K(a)(δ)(j) =

r∑
i=1

∑
h∈G

a
(
σn(h)(δ)

)
(i) ·mh

i,j .

Since elements a : Dn → Kr are intended to be approximations of α : (Kr)G → Kr,
this formula should feel more natural if one rewrites (4.3) by using x(gh−1)(i) · mh

i,j =

α(hg−1 · x)(i) ·mh
i,j .

Lemma 4.8. Let K be a �nite �eld, let r, s ∈ N, and let M ∈ Matr×s(Z[G]). Then

hΣ
top(Gy ker(MK)) = lim sup

n→∞

1

|Dn|
· log

∣∣∣ ker(σn(M)K)
∣∣∣.

Proof. Set Y = {x ∈ (Kr)G : MK(x)(1G) = 0Ks}. It is immediate that

ker(MK) =
⋂
g∈G

g · Y.

Let W ⊆ G be �nite but su�ciently large so that W = W−1 contains the support of every
component of M . By Lemma 3.5 and Proposition 4.2 we have

hΣ
top(Gy ker(MK)) = inf

F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log

∣∣∣MY (α, F, 0, σn)
∣∣∣.

Note that by monotonicity properties we can require that F ⊇W above. From the de�nition
of Y we have that

MY (α, F, 0, σn) =MY (α,W, 0, σn)

whenever F contains W . Thus

hΣ
top(Gy ker(MK)) = lim sup

n→∞

1

|Dn|
· log

∣∣∣MY (α,W, 0, σn)
∣∣∣.

This equation is quite similar to the conclusion of Corollary 4.5, the only di�erence being
the use ofMY in place ofMker(MK).

To complete the proof, we claim that

MY (α,W, 0, σn) = ker(σn(M)K).

It su�ces to �x δ ∈ Dn and argue that σn(M)K(a)(δ) = 0Ks if and only if the pattern
w ∈ W 7→ a(σn(w)(δ)) is witnessed in Y . Fix a ∈ (Kr)Dn and δ ∈ Dn. Fix any z ∈ (Kr)G
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satisfying α(w · z) = a(σn(w)(δ)) for all w ∈W . Then for every 1 ≤ j ≤ s we have

σn(M)K(a)(δ)(j) =

r∑
i=1

∑
h∈W

a
(
σn(h)(δ)

)
(i) ·mh

i,j

=

r∑
i=1

∑
h∈W

α(h · z)(i) ·mh
i,j

=

r∑
i=1

∑
h∈W

z(h−1)(i) ·mh
i,j

= MK(z)(1G)(j).

Thus σn(M)K(a) = 0Ks if and only if z ∈ Y . This completes the proof. �

Lemma 4.9. Let G be a so�c group with so�c approximation Σ, let K be a �nite �eld, and
let M ∈ Matr×s(Z[G]). Then

hΣ
top(Gy ker(MK)) ≥ (dimG ker(M (2))) · log |K|.

We remark that we do not know of any example where the inequality is strict.

Proof. Say Σ = (σn : G → Sym(Dn)). Let σn(M)C : (Cr)Dn → (Cs)Dn be the map given
by the convolution operation of σn(M). By Lemma 4.8 we have

(4.4) hΣ
top(Gy ker(MK)) = lim sup

n→∞

1

|Dn|
· log | ker(σn(M)K)|.

Also,

(4.5) log
∣∣∣ ker(σn(M)K)

∣∣∣ =
(

dimK ker(σn(M)K)
)
· log |K| ≥

(
dimC ker(σn(M)C)

)
· log |K|.

Finally, by a theorem of Thom [60, Th. 4.2] which extends the Lück approximation theorem
to the so�c framework (see also the work of Elek and Szabó [22]), we have

(4.6) lim
n→∞

dimC ker(σn(M)C)

|Dn|
= dimG ker(M (2)).

Thus, by (4.4), (4.5), and (4.6) we have hΣ
top(Gy ker(MK)) ≥ dimG(ker(M (2)))·log |K|. �
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5. Juzvinskii's addition formula and `2-Betti numbers

In this section we study the Juzvinski�� addition formula and in particular its connection
to `2-Betti numbers. We �rst consider the case of residually �nite groups where the rela-
tionships and results are particularly natural. From Theorem 4.6 we obtain the following
inequality.

Corollary 5.1. Let G be a residually �nite group, let (Gn) be a so�c chain of �nite-index
subgroups, and let Σ = (σn : G→ Sym(Gn\G)) be the associated so�c approximation. If K
and L are �nite groups, f : KG → LG is a continuous G-equivariant group homomorphism,
and X ⊆ LG is an algebraic subshift of �nite type with Im(f) ⊆ X, then

hΣ
top(Gy KG)+ lim sup

n→∞

1

|G : Gn|
· log

|FixGn
(X)|

|f(FixGn(KG))|
≤ hΣ

top(Gy ker(f))+hΣ
top(Gy X).

Proof. Since f is a group homomorphism and ker(f � FixGn
(KG)) = FixGn

(ker(f)), for
every n we have

log |K| = 1

|G : Gn|
· log

∣∣∣FixGn
(KG)

∣∣∣
=

1

|G : Gn|
· log

∣∣∣FixGn(ker(f))
∣∣∣+

1

|G : Gn|
· log

∣∣∣f(FixGn(KG))
∣∣∣.

As hΣ
top(G y KG) = log |K| is equal to the above expression for every n, it follows that

hΣ
top(Gy KG) is equal to

lim sup
n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(ker(f))

∣∣∣+ lim inf
n→∞

1

|G : Gn|
· log

∣∣∣f(FixGn
(KG))

∣∣∣.
By our assumption on X and Lemma 4.7, both X and ker(f) are subshifts of �nite type.
So by Theorem 4.6

hΣ
top(Gy ker(f)) + hΣ

top(Gy X)− hΣ
top(Gy KG)

= lim sup
n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(X)

∣∣∣− lim inf
n→∞

1

|G : Gn|
· log

∣∣∣f(FixGn
(KG))

∣∣∣(5.1)

≥ lim sup
n→∞

1

|G : Gn|
· log

|FixGn
(X)|

|f(FixGn
(KG))|

. �

The above corollary is most interesting when X = Im(f) as then it relates to the Juzvin-
ski�� addition formula. In fact, by inspecting the above proof we arrive at the following.

Corollary 5.2. Let G, Σ, and f be as in Corollary 5.1, and suppose that Im(f) is of �nite
type. Then f satis�es the Juzvinski�� addition formula for Σ if and only if

lim sup
n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(Im(f))

∣∣∣ = lim inf
n→∞

1

|G : Gn|
· log

∣∣∣f(FixGn
(KG))

∣∣∣.
Proof. This is immediate from equation (5.1) with X = Im(f). �

Currently it is not known if the limsup's which appear in the de�nition of so�c topological
entropy may be replaced with limits (i.e. its not known if the sequences converge). What is
peculiar is that this seemingly mundane detail manifests itself in the study of the Juzvinski��
addition formula.
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Corollary 5.3. Let G, Σ, and f be as in Corollary 5.1, and suppose that Im(f) is of �nite
type. If

lim sup
n→∞

1

|G : Gn|
· log

∣∣∣FixGn(Im(f))
∣∣∣ 6= lim inf

n→∞

1

|G : Gn|
· log

∣∣∣FixGn(Im(f))
∣∣∣

then f fails to satisfy the Juzvinski�� addition formula for Σ.

Proof. The quantity

lim inf
n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(Im(f))

∣∣∣
lies between the quantities being compared in Corollary 5.2. �

In the case where G is residually �nite, the connection between `2-Betti numbers and
the Juzvinski�� addition formula now follows quickly. Speci�cally, let G be a residually
�nite group, let (Gn) be a so�c chain of �nite index subgroups, and let G act freely and
cocompactly on a simplicial complex L. Fix a �nite �eld K and consider the coboundary
maps

Cp−1(L,K)
δp−→ Cp(L,K)

δp+1

−→ Cp+1(L,K).

Note that Cp−1(L,K) ∼= (Kr)G and Cp(L,K) ∼= (Ks)G, where r and s are the number
of G-orbits of (p − 1)-simplices and p-simplices, respectively. By Lemma 4.7, ker(δp) and
ker(δp+1) are of �nite type so we may apply Corollary 5.1. Since the restriction of δi to
FixGn

(Ci−1(L,K)) coincides with the quotient coboundary map δin : Ci−1(Gn\L,K) →
Ci(Gn\L,K), we have

log
|FixGn(ker(δp+1))|

|δp(FixGn
(Cp−1(L,K)))|

= log
| ker(δp+1

n )|
|Im(δpn)|

= dimKH
p(Gn\L,K) · log |K|.

We automatically have dimKH
p(Gn\L,K) ≥ dimCH

p(Gn\L,C), and by the Farber�Lück
Approximation Theorem 2.6

lim
n→∞

dimCH
p(Gn\L,C)

|G : Gn|
= βp(2)(L : G).

Therefore by Corollary 5.1

hΣ
top(Gy Cp−1(L,K)) + βp(2)(L : G) · log |K| ≤ hΣ

top(Gy ker(δp)) + hΣ
top(Gy ker(δp+1)).

In particular, when Im(δp) = ker(δp+1), or equivalently Hp(L,K) = 0, the `2-Betti number
βp(2)(L : G) provides a lower bound to the failure of the Juzvinski�� addition formula.

Notice that the argument in the previous paragraph gives:

(5.2) hΣ
top(Gy Cp−1(L,K)) + lim sup

n→∞

dimKH
p(Gn\L,K)

|G : Gn|
· log |K|

≤ hΣ
top(Gy ker(δp)) + hΣ

top(Gy ker(δp+1)).

This inequality comes from Corollary 5.1. By inspecting the proof of that corollary, we see
that by replacing Σ = (σn)n∈N with a subsequence Σ′ = (σn(k))k∈N so that all relevant
sequences converge, we obtain an equality:

(5.3) hΣ′

top(Gy Cp−1(L,K)) + lim
k→∞

dimKH
p(Gn(k)\L,K)

|G : Gn(k)|
· log |K|

= hΣ′

top(Gy ker(δp)) + hΣ′

top(Gy ker(δp+1)).

This equation was previously discovered for amenable groups G by Elek [21].
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We now turn our attention to so�c groups G which are not necessarily residually �nite.
We draw an important corollary from our work in the previous section.

Corollary 5.4. Let G be a so�c group with so�c approximation Σ. Let K be a �nite �eld, let

f ∈ Matr×s(Z[G]), let g ∈ Mats×t(Z[G]). Consider (Kr)G fK

→ (Ks)G gK→ (Kt)G and suppose
that fg = 0 (i.e. gK ◦ fK = 0). Then

hΣ
top(Gy (Kr)G) + dimG

(
ker(g(2))/Im(f (2))

)
· log |K|

≤ hΣ
top(Gy ker(fK)) + hΣ

top(Gy ker(gK)).

Proof. Using Lemma 4.9, we have

hΣ
top(Gy ker(fK)) + hΣ

top(Gy ker(gK))− hΣ
top(Gy (Kr)G)

= hΣ
top(Gy ker(fK)) + hΣ

top(Gy ker(gK))− log |K| · dimG(`2(G)r)

≥
(

dimG(ker(f (2))) + dimG(ker(g(2)))− dimG(`2(G)r)
)
· log |K|

=
(

dimG(ker(g(2)))− dimG(Im(f (2)))
)
· log |K|

= dimG

(
ker(g(2))/Im(f (2))

)
· log |K|.

The last two equalities hold since the von Neumann dimension satis�es the rank-nullity
theorem. �

Before we can apply this corollary we need two simple lemmas.

Lemma 5.5. If ψ : (Zr)G → (Zs)G is a continuous G-equivariant group homomorphism,
then there is a matrix M ∈ Matr×s(Z[G]) such that ψ = MZ.

Proof. De�ne φ : (Zr)G → Zs by φ(x) = ψ(x)(1G). As φ is a continuous group homomor-
phism, there is a neighborhood around 0(Zr)G which φ maps to 0Zs . So there is a �nite set
T ⊆ G such that φ(x) = 0 whenever ∀t ∈ T x(t) = 0Zr . As φ is a homomorphism, it follows

that there is a map φ̃ : (Zr)T → Zs such that φ(x) = φ̃(x � T ) for all x ∈ (Zr)G. Now

φ̃ is a homomorphism from the �nite rank free abelian group (Zr)T to Zs. Thus there are

{mt−1

i,j ∈ Z : 1 ≤ i ≤ r, 1 ≤ j ≤ s, t ∈ T} such that for all p ∈ (Zr)T

φ̃(p)(j) =

r∑
i=1

∑
t∈T

p(t)(i) ·mt−1

i,j .

Therefore φ(x)(j) =
∑r
i=1

∑
t∈T x(t)(i) ·mt−1

i,j for all x ∈ (Zr)G. LettingM ∈ Matr×s(Z[G])

be the matrix with entries mi,j =
∑
t∈T m

t−1

i,j · t−1, we have

ψ(x)(g)(j) = φ(g−1 · x)(j)

=

r∑
i=1

∑
t∈T

(g−1 · x)(t)(i) ·mt−1

i,j

=

r∑
i=1

∑
t∈T

x(gt)(i) ·mt−1

i,j

= MZ(x)(g)(j). �
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Lemma 5.6. Let G act on a simplicial complex L and let p ≥ 1. Suppose that the action
of G on the p-skeleton of L is cocompact. Let Li be an increasing sequence of G-invariant
cocompact subcomplexes each containing the p-skeleton of L and satisfying L = ∪iLi. Then

βp(2)(L : G) = inf
i
βp(2)(Li : G).

Proof. For j ≥ i let πji : Cp(2)(Lj) → Cp(2)(Li) be the map (restriction) induced by the

inclusion Li ⊆ Lj . Then πji descends to a map H̄p
(2)(Lj)→ H̄p

(2)(Li). By de�nition we have

βp(2)(L : G) = sup
i∈N

inf
j≥i

dimG Im
(
H̄p

(2)(Lj)→ H̄p
(2)(Li)

)
.

Since each Li contains the p-skeleton of L, all of the Li's share the same p-skeleton. Thus
every πji : Cp(2)(Lj) → Cp(2)(Li) is the identity map and every induced map H̄p

(2)(Lj) →
H̄p

(2)(Li) is an inclusion. Therefore

βp(2)(L : G) = inf
j

dimG H̄
p
(2)(Lj) = inf

j
βp(2)(Lj : G). �

Now we can relate `2-Betti numbers to entropy in the general case of so�c groups.

Theorem 5.7. Let G be a so�c group with so�c approximation Σ, and let G act freely on
a simplicial complex L. Let K be a �nite �eld and let δi : Ci−1(L,K) → Ci(L,K) be the
coboundary map. If p ≥ 1 and the action of G on the p-skeleton of L is cocompact then

hΣ
top(Gy Cp−1(L,K)) + βp(2)(L : G) · log |K| ≤ hΣ

top(Gy ker(δp)) + hΣ
top(Gy ker(δp+1)).

Proof. First assume that L itself is cocompact. Let r, s, and t be the number of G-orbits
of (p − 1), p, and (p + 1) simplices in L, respectively. By �xing representatives from every
G-orbit, we obtain G-equivariant isomorphism between Cp−1(L,Z), Cp(L,Z), Cp+1(L,Z)
and (Zr)G, (Zs)G, and (Zt)G, respectively. By Lemma 5.5 there are matrices

Mp ∈ Matr×s(Z[G]), Mp+1 ∈ Mats×t(Z[G])

whose convolution maps coincide with δp and δp+1. It is clear that in the `2 setting we have

δp = M
(2)
p and δp+1 = M

(2)
p+1. Also MpMp+1 = 0 (recall that we de�ned the convolution

operation on the right-hand side).
Now consider coe�cients in K. Up to isomorphism we have Ci(L,K) = Ci(L,Z)⊗K and

δiK = δiZ⊗ idK, where we included subscripts to clarify the coe�cients being used. Using the
same representatives from the G-orbits of (p−1), p, and (p+1) simplices as before, we have
G-equivariant isomorphisms between Cp−1(L,K), Cp(L,K), Cp+1(L,K) and (Kr)G, (Ks)G,
and (Kt)G. With this identi�cation we have δpK = MK

p and δp+1
K = MK

p+1. By applying
Corollary 5.4 we obtain

hΣ
top(Gy Cp−1(L,K)) + dimG

(
ker(M

(2)
p+1)/Im(M (2)

p )
)
· log |K|

≤ hΣ
top(Gy ker δp) + hΣ

top(Gy ker δp+1).

So we are done, since by de�nition

βp(2)(L : G) = dimG(ker δp+1
(2) /Im(δp(2))) = dimG(ker(M

(2)
p+1)/Im(M (2)

p )).

Now in the general case write L as an increasing union L = ∪iLi of cocompact subcom-
plexes Li each of which contains the p-skeleton of L. By the above argument we have
(5.4)

hΣ
top(Gy Cp−1(Li,K)) +βp(2)(Li : G) · log |K| ≤ hΣ

top(Gy ker(δpLi
)) +hΣ

top(Gy ker(δp+1
Li

)).
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Of course, Cp−1(Li,K) = Cp−1(L,K) and δpLi
= δp. Each ker(δp+1

Li
) is a subset of Cp(Li,K) =

Cp(L,K) and since the p+ 1-cells of L are just the union of those of the Li, it is easily seen
that

ker(δp+1) =
⋂
i

ker(δp+1
Li

).

So taking the in�mum over i of both sides of (5.4) and applying Corollary 3.6 and Lemma
5.6 completes the proof. �

Corollary 5.8. Let G, L, K, and p be as in Theorem 5.7. If Im(δp) = ker(δp+1), or
equivalently Hp(L,K) = 0, then

hΣ
top(Gy Cp−1(L,K)) + βp(2)(L : G) · log |K| ≤ hΣ

top(Gy ker(δp)) + hΣ
top(Gy Im(δp)).

By applying one of our later results, Theorem 8.2 from �8, we obtain one additional
corollary.

Corollary 5.9. Let G, L, K, and p be as in Theorem 5.7.

(1) If p > 1, Im(δp−1) = ker(δp) and Im(δp) = ker(δp+1) (equivalently Hp−1(L,K) = 0
and Hp(L,K) = 0), then

hΣ
meas(Gy Cp−1(L,K),Haar) + βp(2)(L : G) · log |K|

≤ hΣ
meas(Gy ker(δp),Haar) + hΣ

meas(Gy Im(δp),Haar).

(2) If p = 1, Im(δ1) = ker(δ2) (equivalently H1(L,K) = 0), and hΣ
top(Gy ker(δ1)) = 0,

then

hΣ
meas(Gy C0(L,K),Haar) + β1

(2)(L : G) · log |K| ≤ hΣ
meas(Gy Im(δ1),Haar)

and hΣ
meas(Gy ker(δ1),Haar) ∈ {−∞, 0}.

In either case, if βp(2)(L : G) > 0 then δp violates the Juzvinski�� addition formula for

measured so�c entropy.

Proof. From Corollary 5.8 we obtain

(5.5) hΣ
top(Gy Cp−1(L,K))+βp(2)(L : G)·log |K| ≤ hΣ

top(Gy ker(δp))+hΣ
top(Gy Im(δp)).

We will apply Theorem 8.2 which states that when G acts by continuous group automor-
phisms on a pro�nite group having dense homoclinic subgroup, the measured so�c entropy
and topological so�c entropy agree. Each of Cp−1(L,K), ker(δp), and Im(δp) are pro�nite
groups, and Cp−1(L,K) and Im(δp) are easily seen to have dense homoclinic groups. Thus

hΣ
top(Gy Cp−1(L,K)) = hΣ

meas(Gy Cp−1(L,K),Haar) and(5.6)

hΣ
top(Gy Im(δp)) = hΣ

meas(Gy Im(δp),Haar)(5.7)

by Theorem 8.2.
When p > 1, Im(δp−1) also has a dense homoclinic group. So the assumptionHp−1(L,K) =

0 in (1) implies that ker(δp) = Im(δp−1) has dense homoclinic group. So with assumption
(1) Theorem 8.2 gives

hΣ
top(Gy ker(δp)) = hΣ

meas(Gy ker(δp),Haar)

and the corollary follows from the above equation and (5.5, 5.6, 5.7).
Now consider p = 1. With assumption (2) we have that hΣ

top(Gy ker(δ1)) = 0. Plugging
this into (5.5) we obtain

hΣ
top(Gy Cp−1(L,K)) + βp(2)(L : G) · log |K| ≤ hΣ

top(Gy Im(δp)).
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By applying (5.6, 5.7) we get the same inequality with measured so�c entropies. Finally,
from the variational principle [33] (recalled in Theorem 7.1 below) it follows that hΣ

meas(Gy
ker(δ1),Haar) ∈ {−∞, 0}. �

Remark 5.10. In regard to item (2) of Corollary 5.9, for a simplicial complex L it is
easily seen that ker(δ1) consists of those functions which are constant on each 0-skeleton
of every connected component of L. This means that the action G y ker(δ1) will have
large stabilizers provided L has large connected components, and work of Meyerovitch [47]
shows that if all stabilizers are in�nite then the topological so�c entropy is 0 for every so�c
approximation (see also [3] for an alternate proof). Thus one will have hΣ

top(Gy ker(δ1)) =
0 in many natural situations.

Remark 5.11. In the case of 2-dimensional spaces, one can work with the notion of a
polygonal complex (i.e. every 2-cell is a polygon) rather than a simplicial complex. The
proof of Theorem 5.7 still works in this context. Thus Theorem 5.7 and Corollaries 5.8 and
5.9 are true for 2-dimensional polygonal complexes.
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6. Groups which fail the Juzvinskii addition formula

We now use the results of the previous section to investigate which groups admit actions
violating the Juzvinski�� addition formula. For this, we will need the notions of an induced
action and a coinduced action.

If Γ ≤ G and Γ y L is any action, then we construct the induced action Gy L×(G/Γ)
as follows. Let r : G/Γ→ G choose a representative from every Γ coset, so that r(aΓ)Γ = aΓ.
We will also write r(a) for r(aΓ). Let σ : (G/Γ)×G→ Γ be the cocycle de�ned by

σ(aΓ, g) = r(ga)−1gr(a).

Then G acts on L× (G/Γ) by

g · (x, aΓ) = (σ(aΓ, g) · x, gaΓ).

When L is furthermore a simplicial complex and Γ acts on L simplicially, then we turn
L× (G/Γ) into a simplicial complex as well by viewing it as a disjoint union of copies of L
indexed by G/Γ. It is easily checked that the induced action is simplicial. We leave it to
the reader to verify that, up to a G-equivariant bijection, this action does not depend on
the choice of r : G/Γ→ G.

Now we de�ne coinduced actions. Again let Γ ≤ G and let Γ y X be an action. Let
r : G/Γ→ G and σ : (G/Γ)×G→ Γ be as before. The coinduced action is the action of
G on XG/Γ, where for f ∈ XG/Γ and g ∈ G we de�ne g · f by

(g · f)(aΓ) = σ(aΓ, g−1)−1 · f(g−1aΓ).

When X is a topological space and Γ acts continuously, we give XG/Γ the product topology.
Again, we leave it to the reader to verify that, up to a G-equivariant homeomorphism, this
action does not depend on the choice of r.

Lemma 6.1. Let G be a countable group, Γ a subgroup, and Γ y L a simplicial action. Let
Gy L× (G/Γ) be the induced action.

(i) If L is cocompact for Γ, then L× (G/Γ) is cocompact for G.
(ii) If Γ acts freely on L then G acts freely on L× (G/Γ).
(iii) If K is any �eld and Hp(L,K) = 0 then Hp(L× (G/Γ),K) = 0 as well.
(iv) For every p we have βp(2)(L : Γ) = βp(2)(L× (G/Γ) : G).

(v) For every p, Gy ker(δpL×(G/Γ)) is the coinduced action from Γ y ker(δpL).

Proof. (i). It su�ces to show that if X ⊆ L is a Γ-orbit then X × (G/Γ) ⊆ L× (G/Γ) is a
G-orbit. It is clear that X × (G/Γ) is G-invariant. Fix x, y ∈ X and aΓ ∈ G/Γ. Let γ ∈ Γ
satisfy γ · x = y. Set g = r(a)γr(Γ)−1 and note that r(g) = r(a). We have

σ(Γ, g) = r(g)−1gr(Γ) = r(a)−1gr(Γ) = γ.

Therefore

g · (x,Γ) = (γ · x, gΓ) = (y, aΓ).

As x, y ∈ X and a ∈ G were arbitrary, we conclude that X × (G/Γ) is a G-orbit.
(ii). Assume Γ acts freely on L. From the proof of (i) we see that every G-orbit of

L× (G/Γ) meets L×{Γ}. So �x any x ∈ L and g ∈ G. It su�ces to show that if g · (x,Γ) =
(x,Γ) then g = 1G. We immediately have gΓ = Γ so g ∈ Γ. So σ(Γ, g) = r(Γ)−1gr(Γ). As
g · (x,Γ) = (x,Γ) we must have r(Γ)−1gr(Γ) · x = x whence g = 1G since g ∈ Γ and Γ acts
freely.
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(iii). Note that this statement is unrelated to the actions of G and Γ. As a simplicial
complex, L × (G/Γ) is a countable disjoint union of copies of L. So Hp(L × (G/Γ),K) =∏
G/ΓH

p(L,K).

(iv). Write L as an increasing union L = ∪Li of Γ-invariant cocompact subcomplexes.
Then L× (G/Γ) = ∪iLi × (G/Γ) and by (i) each Li × (G/Γ) is cocompact. The inclusions

Li ⊆ Lj induce surjections of the cochains π
Lj

Li
: C∗(2)(Lj) → C∗(2)(Li) for j ≥ i. Each π

Lj

Li

descends to a map H̄∗(2)(Lj)→ H̄∗(2)(Li). By de�nition

βp(2)(L : Γ) = lim sup
i→∞

lim inf
j→∞

dimΓ Im
(
H̄p

(2)(Lj)→ H̄p
(2)(Li)

)
.

It is straightforward to see that at the induced level we have π
Lj×(G/Γ)

Li×(G/Γ) =
∏
G/Γ π

Lj

Li
. Simi-

larly, as a Hilbert G-module,

Im
(
H̄p

(2)(Lj × (G/Γ))→ H̄p
(2)(Li × (G/Γ))

)
is isomorphic to the Hilbert G-module induced from Γ y Im(H̄p

(2)(Lj)→ H̄p
(2)(Li)) (see [44,

Section 1.1.5] for de�nitions). So by the reciprocity formula for von Neumann dimension
(see [44, Lemma 1.24] or [15, p. 194 property (1.3)]) we have

dimG Im
(
H̄p

(2)(Lj × (G/Γ))→ H̄p
(2)(Li × (G/Γ))

)
= dimΓ Im

(
H̄p

(2)(Lj)→ H̄p
(2)(Li)

)
.

Therefore βp(2)(L× (G/Γ) : G) = βp(2)(L : Γ) as claimed.

(v). There is a natural homeomorphism φ : Cp−1(L×(G/Γ),K)→ Cp−1(L,K)G/Γ de�ned
by

φ(x)(aΓ)(c) = x(c, aΓ)

for a ∈ G and c a (p − 1)-cell of L. It is easily seen that this bijection takes ker(δpL×(G/Γ))

to ker(δpL)G/Γ, so we only need to check that this bijection respects the appropriate group
actions. Indeed, using the natural shift action of G on ker(δpL×(G/Γ)) we have

φ(g · x)(aΓ)(c) = (g · x)(c, aΓ) = x(g−1 · (c, aΓ)) = x(σ(aΓ, g−1) · c, g−1aΓ),

while using the coinduced action on ker(δpL)G/Γ gives

[g · φ(x)](aΓ)(c) =
(
σ(aΓ, g−1)−1 · [φ(x)(g−1aΓ)]

)
(c)

= φ(x)(g−1aΓ)(σ(aΓ, g−1) · c)
= x(σ(aΓ, g−1) · c, g−1aΓ).

Thus φ is a G-equivariant bijection between ker(δpL×(G/Γ)) and ker(δpL)G/Γ. �

Theorem 6.2 (Failure of the Juzvinski�� formula). Let G be a so�c group containing an
in�nite subgroup Γ such that Γ has some non-zero `2-Betti number βp(2)(Γ) > 0 and admits

a free cocompact action on p-connected simplicial complex (for instance, if Γ has a �nite
classifying space). Then G admits an algebraic action and an algebraic factor map which
simultaneously violates the Juzvinski�� addition formula for both measured (with respect to
Haar probability measures) and topological so�c entropy for all so�c approximations to G.

We remark that a weaker assumption su�ces. We only need a �nite �eld K, a p ≥ 1,
and a free simplicial action Γ y L satisfying Hp−1(L,K) = 0 (if p > 1), Hp(L,K) = 0,
βp(2)(L : Γ) > 0, and with the Γ-action on the p-skeleton of L cocompact.
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Proof. The assumption that Γ is in�nite implies p ≥ 1. Fix a �nite �eld K. Consider a
p-connected simplicial free cocompact Γ-complex L′.

First consider the case p > 1. Since L′ is p-connected we have Hp−1(L′,K) = 0,
Hp(L′,K) = 0, and βp(2)(L

′ : Γ) = βp(2)(Γ) > 0. Letting G y L be the induced simpli-

cial action of G, we have that G acts freely, L is cocompact, Hp−1(L,K) = 0, Hp(L,K) = 0,
and βp(2)(L : G) = βp(2)(L

′ : Γ) > 0 by Lemma 6.1. Now for any choice of so�c approximation

Σ to G, Corollaries 5.8 and 5.9 immediately imply that δp violates the Juzvinski�� addition
formula for Σ for both topological and measure-theoretic entropies.

Now consider the case p = 1. Since L′ is 1-connected we have H1(L′,K) = 0, and
β1

(2)(L
′ : Γ) = β1

(2)(Γ) > 0. Letting G y L be the induced simplicial action of G, we have

that G acts freely, L is cocompact, H1(L,K) = 0, and β1
(2)(L : G) = β1

(2)(L
′ : Γ) > 0 by

Lemma 6.1. Since L′ is 1-connected it is connected, so ker(δ1
L′) consists of the constant

functions and Γ acts trivially (i.e. it �xes every point in ker(δ1
L′)). A result of Alpeev and

Seward [3] states that actions which are coinduced from trivial actions of in�nite subgroups
always have so�c topological entropy 0 for every so�c approximation. Thus from Lemma
6.1.(v) it follows that hΣ

top(G y ker(δ1
L)) = 0 for every so�c approximation Σ to G. So for

every choice of so�c approximation Σ, Corollaries 5.8 and 5.9 imply that δ1 violates the
Juzvinski�� addition formula for Σ for both topological and measure-theoretic entropies. �

With more work, we are able to strengthen the above theorem in the topological case.

Theorem 6.3 (Failure of the Juzvinski�� formula, topological). Let G be a so�c group con-
taining an in�nite subgroup Γ with some non-zero `2-Betti number βp(2)(Γ) > 0. Then G

admits an algebraic action and an algebraic factor map which simultaneously violates the
Juzvinski�� addition formula for topological so�c entropy for all so�c approximation to G.

We remark that a weaker assumption su�ces. We only need a �nite �eld K, a p ≥ 1, and
a free simplicial action Γ y L satisfying Hp(L,K) = 0 and βp(2)(L : Γ) > 0.

Proof. The assumption that Γ is in�nite implies p ≥ 1. Fix any �nite �eld K and any
so�c approximation Σ to G. Consider a contractible simplicial free Γ-complex L′. We have
Hp(L′,K) = 0 and βp(2)(L

′ : Γ) = βp(2)(Γ) > 0. Letting G y L be the induced simplicial

action, we have that G acts freely, Hp(L,K) = 0, and βp(2)(L : G) = βp(2)(L
′ : Γ) > 0 by

Lemma 6.1.
For a subcomplex R ⊆ L we write δiR for the ith-coboundary map on R. We write

Ci(R,Z) and Ci(R,K) for the set of i-cochains of R with Z coe�cients and K coe�cients
respectively. We write Ci(2)(R) for the space of `2-summable i-cochains of R. When we

wish to refer to Ci(R,Z), Ci(R,K), and Ci(2)(R) simultaneously, we simply write Ci(R). If

R ⊆ S are two sub-complexes of L, then the inclusion R ⊆ S induces morphisms πSR for the
cochains:

(6.1)
Ci−1(S)

δiS−→ Ci(S)
δi+1
S−→ Ci+1(S)

πSR ↓ ↑ ζSR 	 πSR ↓ ↑ ζSR 	 πSR ↓ ↑ ζSR
Ci−1(R)

δiR−→ Ci(R)
δi+1
R−→ Ci+1(R).

Since the diagram is commutative, it is easily checked that Im(δiR) = πSR(Im(δiS)). However
for kernels we only have πSR(ker(δiS)) ⊆ ker(δiR). For R ⊆ S there is a natural isomorphism
of Ci(R) with the collection of elements of Ci(S) which are identically 0 on the i-simplices
that are in S but not R. We let ζSR : Ci(R) → Ci(S) denote the associated injection. For
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any two subcomplexes R and S, we also let Ci(S \ R) denote the set of i-cochains on S
which are identically 0 on the i-simplices in R ∩ S.

Write L as an increasing union of G-invariant cocompact subcomplexes L = ∪iLi. Each
π
Lj

Li
produces a homomorphism H̄p

(2)(Lj)→ H̄p
(2)(Li). Recall that the p-th `

2-Betti number

of the action of G on L is

βp(2)(L : G) = lim sup
i→∞

lim inf
j→∞

dimG Im
(
H̄p

(2)(Lj)→ H̄p
(2)(Li)

)
= lim sup

i→∞
lim inf
j→∞

dimG π
Lj

Li
(ker(δp+1

Lj
))− dimG Im(δpLi

).

Thus, for every ε > 0 there is a large enough i such that for all j ≥ i,

dimG π
Lj

Li
(ker(δp+1

Lj
)) ≥ dimG Im(δpLi

) + βp(2)(L : G)− ε.

Fix 0 < ε < βp(2)(L : G) and i as above.

Although we will not need this fact, from Hp(L,K) = 0 one can deduce that (with
coe�cients in K)

Im(δpLi
) = πLLi

(Im(δpL)) = πLLi
(ker δp+1

L ) =
⋂
j≥i

π
Lj

Li
(ker δp+1

Lj
).

This suggests that we should compute the entropy of each π
Lj

Li
(ker δp+1

Lj
) and apply Corollary

3.6. Indeed, it is quite plausible that this would relate the entropy of Im(δpLi
) to βp(2)(L :

G)−ε. However, it is evident from �4 that our entropy methods are best adapted to the case
of kernels of maps, rather than projections of kernels. We are unable to obtain a lower

bound to the entropy of π
Lj

Li
(ker δp+1

Lj
) and thus we will take a di�erent, though conceptually

very similar, path.
For a subgroup N of an abelian group A, write [N ] for the set of a ∈ A such that there

is k ∈ Z with 0 6= k · a ∈ N . Note that if A is torsion-free then A/[N ] is torsion-free.
Consider a �nite subcomplex R ⊆ L and i ∈ N. De�ne DZ

i,R : Cp(Li,Z) → Cp+1(R,Z)
by

DZ
i,R(x) = δp+1

R ◦ ζRR∩Li
◦ πLi

R∩Li
(x).

Note that DZ
i,R is continuous as it only depends upon the restriction of x to the �nitely

many p-simplices in R ∩ Li. Let QZ
i,R : Cp+1(R,Z) → Cp+1(R,Z)/[NZ

i,R] be the quotient
map, where

NZ
i,R = δp+1

R (Cp(R \ Li,Z)).

Note that QZ
i,R is also continuous, as it is a map between countable discrete groups. The

various spaces and maps are pictured below.

Cp(Li,Z)
π
Li
R∩Li−→ Cp(R ∩ Li,Z)

ζRR∩Li−→ Cp(R,Z)
δp+1
R−→︸ ︷︷ ︸

DZ
i,R

Cp+1(R,Z)
QZ

i,R−→

︸ ︷︷ ︸
QZ

i,R◦DZ
i,R

Cp+1(R,Z)/[NZ
i,R]

Let ψZ
i,R be the G-equivariant map induced by QZ

i,R ◦DZ
i,R, meaning that

ψZ
i,R :


Cp(Li,Z) →

(
Cp+1(R,Z)/[NZ

i,R]
)G

x 7→
(
QZ
i,R ◦DZ

i,R(g−1 · x)︸ ︷︷ ︸
ψZ

i,R(x)(g):=

)
g∈G


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Note that continuity of ψZ
i,R follows from the continuity of QZ

i,R ◦DZ
i,R.

In the `2 and K-coe�cient settings, de�ne the analogous objects D
(2)
i,R, D

K
i,R, Q

(2)
i,R, Q

K
i,R,

N
(2)
i,R, N

K
i,R, ψ

(2)
i,R, and ψ

K
i,R. Note that N

(2)
i,R = [N

(2)
i,R] and NK

i,R = [NK
i,R]. It is easily seen that

up to isomorphism

Cp(Li,K) = Cp(Li,Z)⊗K, Cp+1(R,K) = Cp+1(R,Z)⊗K, Cp(R\Li,K) = Cp(R\Li,Z)⊗K

(δp+1
R )K = (δp+1

R )Z ⊗ idK, and D
K
i,R = DZ

i,R ⊗ idK.

Letting ι : NZ
i,R → Cp+1(R,Z) denote the inclusion map, we have

[NK
i,R] = NK

i,R = δp+1(Cp(R \ Li,K)) = (δp+1 ⊗ idK)(Cp(R \ Li,Z)⊗K)

= (ι× idK)(NZ
i,R ⊗K) = (ι× idK)([NZ

i,R]⊗K),

where the last equality is due to the fact that K is a �eld. With Z coe�cients we have the
exact sequence

0 −→ [NZ
i,R]

ι−→ Cp+1(R,Z)
QZ

i,R−→ Cp+1(R,Z)

[NZ
i,R]

−→ 0.

Since the tensor product is right exact, we obtain the exact sequence

[NZ
i,R]⊗K ι⊗idK−→ Cp+1(R,Z)⊗K

QZ
i,R⊗idK−→ Cp+1(R,Z)

[NZ
i,R]

⊗K −→ 0.

Thus

ker(QZ
i,R ⊗ idK) = (ι⊗ idK)([NZ

i,R]⊗K) = [NK
i,R] = ker(QK

i,R)

So we conclude that QK
i,R = QZ

i,R ⊗ idK. It then follows that ψK
i,R = ψZ

i,R ⊗ idK as well.

Let n(i) be the number of G-orbits of p-simplices in Li and let m(i, R) be the rank
of the free abelian group Cp+1(R,Z)/[NZ

i,R]. By �xing an ordered set of n(i)-many p-

simplices of Li lying in distinct orbits and by picking a basis for Cp+1(R,Z)/[NZ
i,R], we

obtain G-equivariant isomorphisms of Cp(Li,Z) with (Zn(i))G and of (Cp+1(R,Z)/[NZ
i,R])G

with (Zm(i,R))G. Using the same bases, in the `2 and K settings we obtain isomorphisms
with (`2(G))n(i), (`2(G))m(i,R), (Kn(i))G, and (Km(i,R))G. Since ψZ

i,R is continuous, we can
apply Lemma 5.5 to obtain a matrix

Mi,R ∈ Matn(i)×m(i,R)(Z[G])

so that, under these isomorphisms, ψZ
i,R = MZ

i,R. It is clear from the de�nitions that

ψ
(2)
i,R = M

(2)
i,R. Since ψ

K
i,R = ψZ

i,R ⊗ idK, we also have ψK
i,R = MK

i,R.

Claim: With coe�cients in K we have

(6.2) Im(δpLi
) =

⋂
R⊆L
R �nite

ker(ψK
i,R).

Proof of Claim: First note that if x ∈ Im(δpLi
) then πLi

R∩Li
(x) ∈ Im(δpR∩Li

). Say πLi

R∩Li
(x) =

δpR∩Li
(y). Set

z = δpR ◦ ζ
R
R∩Li

(y)− ζRR∩Li
◦ πLi

R∩Li
(x) ∈ Cp(R \ Li,K).

Then

0 = δp+1
R ◦ δpR ◦ ζ

R
R∩Li

(y) = δp+1
R (z) + δp+1

R ◦ ζRR∩Li
◦ πLi

R∩Li
(x) = δp+1

R (z) +DK
i,R(x).
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Therefore x ∈ Im(δpLi
) implies QK

i,R ◦ DK
i,R(x) = 0. Thus, by G-invariance of Im(δpLi

), we

have Im(δpLi
) ⊆ ker(ψK

i,R).

Now for the converse direction assume that x ∈
⋂
R ker(ψK

i,R). Write L as an increasing

union L = ∪nRn of �nite subcomplexes Rn. For each n choose zn ∈ Cp(Rn \ Li,K) with

(6.3) 0 = Di,Rn
(x) + δp+1

Rn
(zn) = δp+1

Rn
◦ ζRn

Rn∩Li
◦ πLi

Rn∩Li
(x) + δp+1

Rn
(zn).

By compactness there is an accumulation point z ∈ Cp(L \ Li,K) of ζLRn
(zn). From (6.3)

we obtain

0 = δp+1
L ◦ ζLLi

(x) + δp+1
L (z) = δp+1

L (ζLLi
(x) + z).

So ζLLi
(x)+z ∈ ker(δp+1

L ). Since Hp(L,K) = 0, we must have ζLLi
(x)+z ∈ Im(δpL). Therefore

x = πLLi
(ζLLi

(x) + z) ∈ πLLi
(Im(δpL)) = Im(δpLi

).

This proves the claim. [Proof of Claim] �

Claim: If j ≥ i and R ⊆ Lj then in the `2-setting we have π
Lj

Li
(ker δp+1

Lj
) ⊆ ker(ψ

(2)
i,R).

Proof of Claim: Consider y ∈ ker δp+1
Lj

. Set x = π
Lj

Li
(y) and set

z = π
Lj

R (y)− ζRR∩Li
◦ πLi

R∩Li
(x) ∈ Cp(2)(R \ Li).

Noting that π
Lj

R (y) ∈ ker δp+1
R , we have

D
(2)
i,R(x) = δp+1

R ◦ ζRR∩Li
◦ πLi

R∩Li
(x) = δp+1

R ◦ πLj

R (y)− δp+1
R (z) = −δp+1

R (z) ∈ [N
(2)
i,R].

Thus Q
(2)
i,R ◦D

(2)
i,R(x) = 0. We conclude, by G-invariance of ker δp+1

Lj
and G-equivariance of

π
Lj

Li
, that π

Lj

Li
(ker δp+1

Lj
) ⊆ ker(ψ

(2)
i,R). [Proof of Claim] �

By (6.2) and Corollary 3.6 we have

(6.4) hΣ
top(Gy Im(δpLi

)) = inf
R
hΣ

top(Gy ker(ψK
i,R)).

Since ψK
i,R = MK

i,R and ψ
(2)
i,R = M

(2)
i,R, Lemma 4.9 gives

(6.5) hΣ
top(Gy ker(ψK

i,R)) ≥ log |K| · dimG ker(ψ
(2)
i,R).

Since R is �nite, there is a j ≥ i with R ⊆ Lj . So by the second claim above

(6.6) log |K| · dimG ker(ψ
(2)
i,R) ≥ log |K| · dimG π

Lj

Li
(ker(δp+1

Lj
)).

By our choice of i we have

(6.7) log |K| · dimG π
Lj

Li
(ker(δp+1

Lj
)) ≥ log |K| · dimG Im(δpLi

) + log |K|βp(2)(L : G)− ε log |K|.

Putting together (6.4, 6.5, 6.6, 6.7), we obtain

(6.8) hΣ
top(Gy Im(δpLi

)) ≥ log |K| · dimG Im(δpLi
) + log |K|βp(2)(L : G)− ε log |K|.
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Finally, as δpLi
is given by convolution by a matrix with coe�cients in Z[G], we have

hΣ
top(Gy ker(δpLi

)) ≥ log |K| · dimG ker(δpLi
) by Lemma 4.9. Thus

hΣ
top(Gy ker(δpLi

)) + hΣ
top(Gy Im(δpLi

))

≥ log |K| · dimG ker(δpLi
) + log |K| · dimG Im(δpLi

) + log |K|βp(2)(L : G)− ε log |K|

= log |K| · dimG C
p−1
(2) (Li) + log |K|βp(2)(L : G)− ε log |K|

= hΣ
top(Gy Cp−1(Li,K)) + log |K|βp(2)(L : G)− ε log |K|

> hΣ
top(Gy Cp−1(Li,K)). �



COST, `2-BETTI NUMBERS AND THE SOFIC ENTROPY OF SOME ALGEBRAIC ACTIONS 37

7. Definitions of measured sofic entropy and Rokhlin entropy

A function α : X → K is �ner than another function β : X → L, written α ≥ β, if there
is a map βα : K → L such that β = βα ◦ α. In this situation we will abuse notation and
also let βα denote the product map βDn

α : KDn → LDn .
Let G be a so�c group, and let Σ = (σn : G → Sym(Dn)) be a so�c approximation to

G. Let G y (X,µ) be a p.m.p. action. We now present the de�nition of measured so�c
entropy. The de�nition is similar to that of topological entropy, but involves accounting for
the frequencies of various patterns. Speci�cally, a Borel function α : X → K and a �nite
set F ⊆ G delivers for every x ∈ X a pattern p : F → K, f 7→ α(f ·x). Similarly a function
a : Dn → K delivers for every δ ∈ Dn a pattern p : F → K, f 7→ a(σn(f)(δ)). These
data thus de�ne partitions of X (resp. Dn), according to the associated pattern, into the
following pieces:

Uα,F (p) := {x ∈ X : ∀f ∈ F, α(f · x) = p(f)}
Ua,F,n(p) := {δ ∈ Dn : ∀f ∈ F, a(σn(f)(δ)) = p(f)}

We equip the �nite set Dn with the normalized counting measure µn(A) = |A|
|Dn| , and for

each p we will compare the measures of the pieces µ(Uα,F (p)) and µn(Ua,F,n(p)). Roughly
speaking, the measured so�c entropy is the exponential growth rate of the number of func-
tions a ∈ KDn for which these measures are quite similar. More precisely, for every ε > 0,
let

(7.1) Mµ(α, F, ε, σn) :=
{
a ∈ KDn : ∀p ∈ KF , |µ(Uα,F (p))− µn(Ua,F,n(p))| ≤ ε

}
.

The measured Σ-entropy of Gy (X,µ) is then de�ned to be

hΣ
meas(Gy X,µ) = sup

β
inf
α≥β

inf
ε>0

inf
F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log

∣∣∣βα ◦Mµ(α, F, ε, σn)
∣∣∣,

where α and β range over �nite-valued Borel functions. Alternatively, if A is an algebra
which is generating in the sense that for all x 6= y there is g ∈ G and A ∈ A with g · x ∈ A
and g · y 6∈ A, then in the de�nition above one can restrict to �nite-valued A-measurable
functions α and β and obtain the same entropy value [32, Theorem 2.6].

The above de�nition is due to Kerr [32] and is equivalent to the de�nitions of Kerr�Li
[33, 34], all of which generalize the original de�nition of measured so�c entropy due to Bowen
[8]. As with topological so�c entropy, the measured so�c entropy may depend on Σ, and
either hΣ

meas(Gy X,µ) ≥ 0 or else hΣ
meas(Gy X,µ) = −∞. Also, when the acting group is

amenable, the measured so�c entropy coincides with the classical Kolmogorov�Sinai entropy
for all choices of Σ [11, 34].

Just as in the classical case, measured so�c entropy and topological so�c entropy are
related via the variational principle.

Theorem 7.1 (Variational principle, Kerr�Li [33]). Let G be a so�c group and let Σ be
a so�c approximation to G. Let X be a compact metrizable space and let G y X be a
continuous action. Then

hΣ
top(Gy X) = sup

µ
hΣ

meas(Gy X,µ),

where the supremum is taken over all G-invariant Borel probability measures and the supre-
mum is −∞ if there are no such measures.
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We will soon introduce Rokhlin entropy, but �rst we must discuss the notion of Shannon
entropy for a countable-valued function. Let (X,µ) be a standard probability space. The
Shannon entropy of a countable-valued function α : X → K is

H(α) =
∑
k∈K

−µ(α−1(k)) · logµ(α−1(k)).

When we need to clarify the measure being used, we write Hµ(α). If Q is a countable
partition of X then the conditional Shannon entropy of α given Q is

(7.2) H(α|Q) =
∑
Q∈Q

µ(Q) ·HQ(α),

where we write HQ(α) for HµQ
(α), where µQ(A) = µ(A∩Q)

µ(Q) for Borel A ⊆ X. More generally,

if F is a sub-σ-algebra of X then the conditional Shannon entropy of α given F is

(7.3) H(α|F) = inf
Q⊆F

H(α|Q),

where the in�mum is over all countable F-measurable partitions Q of X. These de�nitions
are not the usual ones, but they are equivalent (see [19]). We mention three properties of
Shannon entropy which we will need. These properties of Shannon entropy are well known
and can be found in [19].

Lemma 7.2. Let α, β : X → N be Borel functions and let F be a sub-σ-algebra.

(i) H(α) ≤ log(k) if α takes only k-many values.
(ii) H(α× β|F) ≤ H(α|F) + H(β|F).
(iii) If β ⊆ F then H(α× β|F) = H(α|F).

For a p.m.p. action Gy (X,µ), the Rokhlin entropy is de�ned as

hRok(Gy X,µ) = inf
{

H(α|J ) : α is a countable-valued generating function
}
,

where J is the σ-algebra of G-invariant sets. In this paper we will only use Rokhlin entropy
for ergodic actions, and in this case J = {X,∅} up to null sets and H(α|J ) = H(α).

Rokhlin entropy was introduced by the second author and studied in [55, 57, 58] and
studied with Alpeev in [3].

When G is amenable and the action is free, Rokhlin entropy coincides with the classical
Kolmogorov�Sinai measured entropy [59, 3] (for G = Z this result is due to Rokhlin [54]).
For free actions of so�c groups it is an open question if Rokhlin entropy agrees with measured
so�c entropy (when the latter is not minus in�nity). However, the following inequality is
known. The lemma below is due to Bowen [8] in the ergodic case and Alpeev�Seward [3] in
the non-ergodic case.

Lemma 7.3 (Bowen [8], Alpeev�Seward [3]). Let G be a so�c group with so�c approximation
Σ. Then for every p.m.p. action Gy (X,µ)

hΣ
meas(Gy X,µ) ≤ hRok(Gy X,µ).

We will also need the following relative version of Rokhlin entropy. For a p.m.p. action
Gy (X,µ) and a G-invariant sub-σ-algebra F , the Rokhlin entropy of (X,µ) relative to
F is

hRok(Gy X,µ|F) = inf
{

H(α|F ∨ J ) : α is a countable-valued generating function},
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where J is the σ-algebra of G-invariant sets. Again, we will only consider Rokhlin entropy
for ergodic actions in which case J = {X,∅}. For some of the fundamental properties of
(relative) Rokhlin entropy, see [57, 58, 3]. We will need one such property here.

Theorem 7.4 (Seward [57]). Let G be a countable group and let Gy (X,µ) be an ergodic
action with µ non-atomic. If G y (Y, ν) is a factor of (X,µ) and F is the G-invariant
sub-σ-algebra of X associated to Y then

hRok(Gy X,µ) ≤ hRok(Gy Y, ν) + hRok(Gy X,µ|F).
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8. Measured entropy of algebraic subshifts

In this section we show that if G acts by continuous group automorphisms of a pro�nite
group H and if the homoclinic group of H is dense, then the so�c topological entropy of
Gy H is equal to the so�c measured entropy with respect to the Haar probability measure
on H. This result allows us to primarily focus on topological entropy in the other sections
of this paper.

Recall that for a probability space (X,µ) and a function f : X → R, the expectation
of f is

E(f) =

∫
X

f dµ,

and the variance of f is

Var(f) =

∫
X

(f − E(f))2 dµ.

We will need the following well-known fact.

Lemma 8.1 (Chebyshev's Inequality). Let (X,µ) be a standard probability space, let f :
X → R be a function with �nite expectation and �nite variance, and let c > 0. Then

µ
({
x ∈ X : |f(x)− E(f)| < c ·

√
Var(f)

})
≥ 1− 1

c2
.

We now present the main theorem of this section.

Theorem 8.2 (Haar measure and topological so�c entropy). Let G be a so�c group and
let Σ : (σn : G→ Sym(Dn)) be a so�c approximation to G. Let H be a pro�nite group with
Haar probability measure λH , and let G act on H by continuous group automorphisms. If
the homoclinic group of H is dense then

hΣ
meas(Gy H,λH) = hΣ

top(Gy H).

Proof. We claim that there is a pro�nite group K and a compact G-invariant subgroup
X ≤ KG so that H is G-equivariantly isomorphic to X as topological groups. Indeed, we
can simply take K = H and de�ne φ : H → KG by

φ(h)(g) = g−1 · h.
It is easily checked that φ is G-equivariant. Clearly φ is an injective continuous group
homomorphism. Since H is compact, φ must be a homeomorphism between H and X =
φ(H). This proves the claim. For the remainder of the proof, we work with X ≤ KG.

Let λX be the Haar probability measure on X. Say K = lim←−Km with each Km a
�nite group and with homomorphisms βm : K → Km and βm,` : K` → Km, ` ≥ m. Let
α : KG → K be the tautological generating function and set α` = β` ◦α. By the variational
principle (see Theorem 7.1), Lemma 3.4, and Proposition 4.2 we have

hΣ
meas(Gy X,λX) ≤ hΣ

top(Gy X)

= sup
m∈N

inf
`≥m

inf
F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log |βm,` ◦MX(α`, F, 0, σn)|.(8.1)

So it su�ces to show that hΣ
meas(G y X,λX) is greater than or equal to the right-most

expression above.
Let A be the algebra generated by the maps αm, m ∈ N. Then A is a generating algebra

and thus in computing the measured so�c entropy of G y (X,λX) we need only consider
�nite-valued A-measurable functions. Every �nite-valued A-measurable function is coarser
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than some αm, so due to monotonicity properties in the de�nition of measured so�c entropy
we have

hΣ
meas(Gy X,λX) = sup

m∈N
inf
`≥m

inf
ε>0

inf
F⊆G
F �nite

lim sup
n→∞

1

|Dn|
· log |βm,` ◦MλX

(α`, F, ε, σn)|.

Note thatMX (see (3.2)) is distinct fromMλX
(see (7.1)).

Fix a �nite F ⊆ G, ` ∈ N, and ε > 0. Consider the map π : KG → KF
` de�ned by

setting π(z)(f) = α`(f ·z). Then π is a group homomorphism so P = π(X) is a subgroup of
KF
` and π pushes λX forward to the Haar probability measure λP on P . Therefore, setting

Up = π−1(p) ⊆ KG for p ∈ KF
` , we have

λX(Up) = λP (p) =

{
1
|P | if p ∈ P
0 otherwise.

For i ∈ Dn, de�ne πi : KDn

` → KF
` by πi(a)(f) = a(σn(f)(i)). For a ∈ KDn

` , p ∈ KF
` , and

i ∈ Dn de�ne χp,i(a) ∈ {0, 1} by
χp,i(a) = 1⇐⇒ πi(a) = p.

Next, set

Cp(a) =
1

|Dn|
·
∑
i∈Dn

χp,i(a)

(equivalently, in the notation of (7.1), Cp(a) = µn(Ua,F,n(p))). By de�nition we have that
a ∈MλX

(α`, F, ε, σn) if and only if

(8.2) |Cp(a)− λX(Up)| ≤ ε
for every p ∈ KF

` . We will use Chebyshev's Inequality (Lemma 8.1) for the function Cp :
MX(α`, F, 0, σn) → [0, 1] to show that, asymptotically in n, its values concentrate around
λX(Up). It will then follow that for large n∣∣∣MX(α`, F, 0, σn) ∩MλX

(α`, F, ε, σn)
∣∣∣ ≥ 1

2
·
∣∣∣MX(α`, F, 0, σn)

∣∣∣,
which will complete the proof. An essential ingredient in our argument is thatMX(α`, F, 0, σn)
is itself a (�nite) group, and the normalized counting measure on this set coincides with its
Haar probability measure. We proceed by estimating the expectation and variance of each
function Cp.

Since the homoclinic group of X is dense, for every p ∈ P there is a homoclinic point
xp ∈ X with π(xp) = p. Let S ⊆ G be a �nite symmetric set such that S contains FF−1

and α`(g · xp) = 1K`
for every p ∈ P and every g 6∈ S. For n ∈ N let Bn ⊆ Dn be the set of

i ∈ Dn with either σn(g) ◦ σn(h)(i) 6= σn(gh)(i) for some g, h ∈ S2 or σn(g)(i) = σn(h)(i)
for some g 6= h ∈ S2. Since Σ is a so�c approximation, we have that |Bn| < ε · |Dn| for all
su�ciently large n. Fix such a value of n. De�ne ∆S

n to be the set of pairs (i, i′) with either
i ∈ Bn, i′ ∈ Bn, or σn(r)(i) = σn(r′)(i′) for some r, r′ ∈ S2.

We claim that for all (i, i′) 6∈ ∆S
n the function πi × πi′ : KDn

` → KF
` × KF

` maps
MX(α`, F, 0, σn) onto P × P . Notice that by de�nition πi(a) ∈ P for every i ∈ Dn and
a ∈ MX(α`, F, 0, σn). Thus πi × πi′ mapsMX(α`, F, 0, σn) into P × P . So �x (i, i′) 6∈ ∆S

n

and p, p′ ∈ P . De�ne a ∈ KDn

` by setting

a(σn(r)(i)) = α`(r · xp) for r ∈ S2, a(σn(r)(i′)) = α`(r · xp′) for r ∈ S2,

and a(j) = 1K`
elsewhere. This is well-de�ned since (i, i′) 6∈ ∆S

n . Clearly πi(a) = p and
πi′(a) = p′. So we only need to check that a ∈MX(α`, F, 0, σn). Fix j ∈ Dn. First suppose
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that a(σn(f)(j)) = 1K`
for all f ∈ F . Then πj(a) is the element of KF

` which is identically
1K`

. As P is a subgroup of KF
` , we must have πj(a) ∈ P . Now suppose that there is r ∈ F

with a(σn(r)(j)) 6= 1K`
. Since α`(g · xp) = α`(g · xp′) = 1K`

for g 6∈ S, there must be s ∈ S
with either σn(r)(j) = σn(s)(i) or σn(r)(j) = σn(s)(i′). Without loss of generality, suppose
σn(r)(j) = σn(s)(i). Then j = σn(r−1s)(i) since i 6∈ Bn. Furthermore, since i 6∈ Bn it
follows that σn(f)(j) = σn(fr−1s)(i) for all f ∈ F . Since FF−1S ⊆ S2 we obtain

πj(a)(f) = a(σn(f)(j)) = a(σn(fr−1s)(i)) = α`(fr
−1s · xp).

Therefore πj(a) ∈ P since xp ∈ X. We have shown that πj(a) ∈ P for every j ∈ Dn. We
conclude that a ∈MX(α`, F, 0, σn) as claimed.

Note that MX(α`, F, 0, σn) is a subgroup of KDn

` . Let λn denote the Haar probability
measure onMX(α`, F, 0, σn). Since πi is a group homomorphism, it follows from the previ-
ous paragraph that πi pushes λn forward to λP for i 6∈ Bn, and πi × πj pushes λn forward
to λP × λP for (i, j) 6∈ ∆S

n . Fix 0 < δ < ε/2 with

(2δ − δ2) · 1

|P |2
+ δ <

ε2

8|P |
.

Let n be large enough so that |Bn| < δ · |Dn| and |∆S
n | < δ · |Dn|2. For every p ∈ P and

i 6∈ Bn the function χp,i :MX(α`, F, 0, σn)→ {0, 1} has expected value

E(χp,i) =

∫
χp,i(a) dλn(a) = λP (p) =

1

|P |
.

For i ∈ Bn we have 0 ≤ E(χp,i) ≤ 1, and therefore Cp has expected value

1

|P |
− ε

2
< (1− δ) · 1

|P |
< E(Cp) < (1− δ) · 1

|P |
+ δ <

1

|P |
+
ε

2
.

Similarly, for all p, p′ ∈ P and all (i, j) 6∈ ∆S
n∫

χp,i(a) · χp′,j(a) dλn(a) = λP (p) · λP (p′) =
1

|P |2
.

Therefore Cp has variance

Var(Cp) =

∫
(Cp(a)− E(Cp))

2 dλn(a)

= −E(Cp)
2 +

∫
Cp(a)2 dλn(a)

< −(1− δ)2 · 1

|P |2
+

1

|Dn|2
·
∑
i,j

∫
χp,i(a) · χp,j(a) dλn(a)

≤ −(1− δ)2 · 1

|P |2
+

1

|Dn|2
·
∑

(i,j)6∈∆S
n

1

|P |2
+

1

|Dn|2
· |∆S

n |

< −(1− δ)2 · 1

|P |2
+

1

|P |2
+ δ

= (2δ − δ2) · 1

|P |2
+ δ

<
ε2

8|P |
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We apply Lemma 8.1 and conclude that for every p ∈ P

λn

({
a ∈MX(α`, F, 0, σn) : |Cp(a)− λP (p)| < ε

})
≥ λn

({
a ∈MX(α`, F, 0, σn) : |Cp(a)− E(Cp)| <

ε

2

})
≥ λn

({
a ∈MX(α`, F, 0, σn) : |Cp(a)− E(Cp)| <

√
2|P | ·

√
Var(Cp)

})
≥ 1− 1

2|P |
Thus,

λn

({
a ∈MX(α`, F, 0, σn) : ∀p ∈ P |Cp(a)− λP (p)| < ε

})
≥ 1/2.

As we have already remarked, it is immediate from the de�nitions that Cp(a) = 0 = λP (p)
for every p ∈ KF

` \ P and a ∈MX(α`, F, 0, σn). So we obtain as claimed∣∣∣MλX
(α`, F, ε, σn) ∩MX(α`, F, 0, σn)

∣∣∣ ≥ 1

2
·
∣∣∣MX(α`, F, 0, σn)

∣∣∣.
Therefore

lim sup
n→∞

1

|Dn|
log
∣∣∣βm,` ◦MλX

(α`, F, ε, σn)
∣∣∣ ≥ lim sup

n→∞

1

|Dn|
log
(1

2

∣∣∣βm,` ◦MX(α`, F, 0, σn)
∣∣∣)

= lim sup
n→∞

1

|Dn|
log
∣∣∣βm,` ◦MX(α, F, 0, σn)

∣∣∣
By taking the in�mum over �nite F ⊆ G, ε > 0, and ` ≥ m and then the supremum over
m ∈ N, we obtain hΣ

meas(Gy X,λX) ≥ hΣ
top(Gy X). �

As mentioned in the introduction, in the classical setting there is a close connection
between homoclinic groups and entropy. It is interesting to wonder how many of these
connections persist in the non-amenable realm.

Question 8.3. Let K be a �nite group and let X ⊆ KG be an algebraic subshift. Suppose
that there is precisely one element of X in the homoclinic group (namely the function from
G to K which is constantly 1K). Does G y X have topological entropy hΣ

top(G y X) ∈
{−∞, 0} for every so�c approximation Σ?

Another important question is if the pro�nite assumption can be removed from the above
theorem.

Question 8.4. Let H be a compact metrizable group, let G act on H by group automor-
phisms, and let λH be the Haar probability measure onH. If the homoclinic points are dense
in H, does it follow that hΣ

meas(G y H,λH) = hΣ
top(G y H) for every so�c approximation

Σ?

We also deduce the following consequence of Theorem 4.6.

Corollary 8.5 (Measured entropy and �xed points). Let G be a residually �nite group, let
(Gn) be a so�c chain of �nite-index normal subgroups, and let Σ =

(
σn : G→ Sym(Gn\G)

)
be the associated so�c approximation. Let K be a �nite group, let X ⊆ KG be an algebraic
subshift of �nite type, and let λX be the Haar probability measure on X. If FixGn

(X)
converges to X in the Hausdor� metric and λX is ergodic then

hΣ
meas(Gy X,λX) = hΣ

top(Gy X) = lim sup
n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(X)

∣∣∣.
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Proof. For each n let µn be the normalized counting measure on FixGn(X). We claim that
µn converges to λX in the weak∗-topology. The argument we present here essentially comes
from [10, Lemma 6.2].

Let µ be a limit point of the sequence µn. Since X is closed we have µ(X) = 1. So
it su�ces to show that µ is invariant under the translation action of X on itself. Fix a
compatible metric d on X. By the Birkho��Kakutani theorem, we may choose d to be
right-invariant, meaning d(xz, yz) = d(x, y). Consider a point x ∈ X and a continuous
function f : KG → R. Let ε > 0. Since f is continuous and KG is compact, f is uniformly
continuous. So there is δ > 0 such that |f(y) − f(z)| < ε whenever d(y, z) < δ. For n
su�ciently large, ∣∣∣∣∫

KG

f(z)dµn(z)−
∫
KG

f(z)dµ(z)

∣∣∣∣ < ε,∣∣∣∣∫
KG

f(x · z)dµn(z)−
∫
KG

f(x · z)dµ(z)

∣∣∣∣ < ε,

and there is xn ∈ FixGn
(X) with d(x, xn) < δ. Clearly xn · FixGn

(X) = FixGn
(X) so that∫

KG

f(z)dµn(z) =

∫
KG

f(xn · z)dµn(z).

By the uniform continuity of f , we also have∣∣∣∣∫
KG

f(x · z)dµn(z)−
∫
KG

f(xn · z)dµn(z)

∣∣∣∣ < ε.

Therefore ∣∣∣∣∫
KG

f(x · z)dµ(z)−
∫
KG

f(z)dµ(z)

∣∣∣∣ < 3ε.

As f , ε, and x ∈ X were arbitrary, we conclude from the uniqueness of Haar measure that
µ = λX .

Since λX is ergodic and the µn's converge to λX , it follows from work of Bowen [10,
Theorem 4.1] that

lim sup
n→∞

1

|G : Gn|
· log

∣∣∣FixGn
(X)

∣∣∣ ≤ hΣ
meas(Gy X,λX).

Now applying the variational principle (Theorem 7.1) and Theorem 4.6 completes the proof.
�
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9. The Ornstein�Weiss maps and cost

In this section we prove Theorems 9.3 and 9.4. Recall that the original Ornstein�Weiss
factor map θ : (Z/2Z)F2 → (Z/2Z× Z/2Z)F2 is de�ned as

θ(x)(f) =
(
x(f)− x(fa), x(f)− x(fb)

)
mod 2,

where {a, b} is a free generating set for the rank two free group F2. We generalize this map
as follows. If G is a countable group with generating set S (S need not be �nite), and K is
a �nite additive abelian group, then we de�ne θowS : KG → (KS)G by

θowS (x)(g)(s) = x(g)− x(gs) ∈ K.
The map θowS is G-equivariant since for g, h ∈ G, s ∈ S, and x ∈ KG we have

[h−1 · θowS (x)](g)(s) = θowS (x)(hg)(s) = x(hg)− x(hgs)

= (h−1 · x)(g)− (h−1 · x)(gs) = θowS (h−1 · x)(g)(s).

An alternative viewpoint on θowS comes from the Cayley graph Cay(G,S). Speci�cally,
KG can be identi�ed with the set of K-labellings of the vertices in Cay(G,S), and (KS)G

can be identi�ed with the set of K-labellings of the directed edges of Cay(G,S). Then for a
vertex labeling x ∈ KG, θowS (x) is the edge labeling which labels each directed edge by the
di�erence in x-values of its initial vertex and terminal vertex.

In the lemma below and the remainder of this section we implicitly identify K with the
subgroup of constant functions in KG.

Lemma 9.1. Let G be a countable group with generating set S and let K be a �nite abelian
group. Let π : KG → KG/K be the quotient map. Then, up to a G-equivariant isomorphism
of topological groups, θowS is identical to π.

Proof. This is immediate from the fact that both θowS and π are continuous G-equivariant
group homomorphisms having kernel K. �

Lemma 9.2. Let G be a countably in�nite group, let K be a non-trivial �nite abelian group,
and let λKG/K denote the Haar probability measure on KG/K. Then the action of G on

KG/K is essentially free with respect to λKG/K .

Proof. Fix 1G 6= g ∈ G. We have g · (x + K) = x + K if and only if there is k ∈ K with
x(g−1h) = x(h)+k for all h ∈ G. Since the Haar probability measure λKG naturally pushes
forward to λKG/K , it su�ces to show that λKG(Fg,k) = 0, where

Fg,k = {x ∈ KG : ∀h ∈ G x(g−1h) = x(h) + k}.
If x ∈ Fg,k, then, by the invariance of Haar measure under translation, Fg,k has the same
measure as Fg,k − x = Fg,0K

. The set Fg,0K
is the collection of points y ∈ KG �xed by g.

Since (KG, λKG) is a Bernoulli shift and Bernoulli shift actions are essentially free, we have
λKG(Fg,0K

) = 0. �

We are now ready for the main theorem of this section. We would like to emphasize that
in the theorem below G is not required to be so�c.

Theorem 9.3 (Rokhlin entropy and cost). Let G be a countably in�nite group, let K be a
�nite abelian group, and let λKG/K denote the Haar probability measure on KG/K. Then

hRok(Gy KG/K, λKG/K) ≤ Csup(G) · log |K|.
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We remind the reader that when G is �nitely generated, the supremum cost is realized
by any non trivial Bernoulli shift action (Abért-Weiss [1]).

Proof. If K = {0K} is trivial then both sides of the above expression are 0, and if Csup(G) =
∞ then there is nothing to show. So suppose that K is non-trivial and Csup(G) < ∞. Fix
ε > 0. Since G y KG/K is essentially free, a theorem of Seward and Tucker-Drob [59]
states that there is an equivariant factor map f : (KG/K, λKG/K) → (Y, ν) such that the

action of G on (Y, ν) is essentially free and hRok(G y Y, ν) < ε/2. Fix a countable-valued
generating function γ′ : Y → N with H(γ′) < ε/2. Let F be the G-invariant sub-σ-algebra
of KG/K associated to the factor (Y, ν). Also set γ = γ′ ◦ f .

Since Csup(G) < ∞, we can �nd a �nite graphing Φ = {φi : 1 ≤ i ≤ m} for G y (Y, ν)
with

m∑
i=1

ν(dom(φi)) < Csup(G) +
ε

2 log |K|

(that Φ can be chosen �nite follows from [26]). For y ∈ Y , let Φ[y] denote the graph on
G with a directed edge from g to h if and only if there is i ∈ I with g · y ∈ dom(φi) and
φi(g ·y) = h·y. For x+K ∈ KG/K, write Φ[x+K] for Φ[f(x+K)]. Since Φ graphs the orbit
equivalence relation of Gy (Y, ν), the graph Φ[x+K] is connected for λKG/K-almost-every

x+K ∈ KG/K.
Let α : KG → K be the tautological generating function. For each 1 ≤ i ≤ m de�ne the

function βi : KG/K → K by

βi(x+K) =

{
0K if f(x+K) 6∈ dom(φi)

α(x)− α(g · x) if φi(f(x+K)) = f(g · x+K).

We set β = β1 × · · · × βm and claim that β × γ is a generating function mod λKG/K .
Intuitively, the function β describes a variant of the Ornstein�Weiss map which uses the
graphing Φ instead of the Cayley graph Cay(G,S). It is precisely connectivity of the graph
which is needed in order for these maps to have kernel K. For this reason, one should expect
the G-translates of β to separate points in KG/K, however γ is required as well. A key point
is that (modulo a null set) if two points x+K and z+K satisfy γ(g · x+K) = γ(g · z+K)
for every g ∈ G then they must have the same graph Φ[x+K] = Φ[z +K]. We now check
the details of this argument.

Let X ⊆ KG/K be an invariant conull set such that Φ[x + K] is connected whenever
x + K ∈ X and such that for all x1 + K,x2 + K ∈ X with f(x1 + K) 6= f(x2 + K) there
is g ∈ G with γ(g · x1 + K) 6= γ(g · x2 + K). It su�ces to check that if x + K, z + K ∈ X
and β × γ(g · x+K) = β × γ(g · z +K) for all g ∈ G then x+K = z +K. So suppose that
β×γ(g ·x+K) = β×γ(g · z+K) for all g ∈ G. In particular γ(g ·x+K) = γ(g · z+K) for
all g ∈ G, so we must have f(x+K) = f(z +K) and hence Φ[x+K] = Φ[z +K]. Suppose
that there is an edge in Φ[x + K] directed from g to h. Then there is 1 ≤ i ≤ m with
f(g · x+K), f(g · z+K) ∈ dom(φi), φi(f(g · x+K)) = f(h · x+K), and φi(f(g · z+K)) =
f(h · z +K). We have

−α(h · x) + α(h · z) = −α(g · x) + [α(g · x)− α(h · x)]−
(
− α(g · z) + [α(g · z)− α(h · z)]

)
= −α(g · x) + βi(g · x) + α(g · z)− βi(g · z)
= −α(g · x) + α(g · z).
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So −α(h · x) + α(h · z) = −α(g · x) + α(h · z) whenever g and h are adjacent in Φ[x + K].
Since Φ[x + K] is connected, it follows that x + K = z + K. We conclude that β × γ is a
generating function.

Now we will bound hRok(G y KG/K, λKG/K). It may aid the reader to recall Lemma
7.2. By Theorem 7.4 we have

hRok(Gy KG/K, λKG/K) ≤ hRok(Gy Y, ν) + hRok(Gy KG/K, λKG/K |F)

<
ε

2
+ H(β × γ|F)

=
ε

2
+ H(β|F).(9.1)

For each 1 ≤ i ≤ m, if we consider the two-piece partition

Qi = {f−1(dom(φi)), (K
G/K) \ f−1(dom(φi))} ⊆ F ,

we have that the restriction of βi to (KG/K) \ f−1(dom(φi)) is trivial and thus

H(βi|F)
eq. (7.3)

≤ H(βi|Qi)
def. (7.2)

= λKG/K(f−1(dom(φi))) ·Hf−1(dom(φi))(βi)

+ λKG/K

(
(KG/K) \ f−1(dom(φi))

)
·H(KG/K)\f−1(dom(φi))(βi)

= λKG/K(f−1(dom(φi))) ·Hf−1(dom(φi))(βi)

≤ λKG/K(f−1(dom(φi))) · log |K|.

So we have

H(β|F) ≤
m∑
i=1

H(βi|F)

≤
m∑
i=1

λKG/K(f−1(dom(φi))) · log |K|

=

m∑
i=1

ν(dom(φi)) · log |K|

< Csup(G) · log |K|+ ε

2
.

From the above inequality and equation (9.1) we �nd that hRok(G y KG/K, λKG/K) <
Csup(G) · log |K|+ ε. Now let ε tend to 0. �

Theorem 9.4 (Measured and topological entropy vs cost and `2-Betti number). Let G be
a countably in�nite so�c group, let Σ be a so�c approximation to G, let K be a �nite �eld,
and let λKG/K be Haar probability measure on KG/K. Then

hΣ
meas(Gy KG/K, λKG/K) = hΣ

top(Gy KG/K) ≤ Csup(G) · log |K|.

Furthermore, if G is �nitely generated then(
1 + β1

(2)(G)
)
· log |K| ≤ hΣ

meas(Gy KG/K, λKG/K) = hΣ
top(Gy KG/K).
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Proof. If K = {0K} is trivial then all expressions above have value 0. So assume that K
is non-trivial. Let S be a generating set for G. By Lemma 9.1 KG/K is G-equivariantly
isomorphic (as topological groups) to θowS (KG) ⊆ (KS)G. Now KS is a pro�nite group,
and θowS (KG) has dense homoclinic group since KG has dense homoclinic group. Thus by
Theorem 8.2

(9.2) hΣ
top(Gy KG/K) = hΣ

meas(Gy KG/K, λKG/K).

The upper bound follows immediately from Theorem 9.3:

hΣ
meas(Gy KG/K, λKG/K) ≤ hRok(Gy KG/K, λKG/K) ≤ Csup(G) · log |K|.

Now we assume that G is �nitely generated and consider the lower bound. By rede�ning
S if necessary, we may suppose that S is �nite. Let G = 〈S|R〉 be a presentation for G.
Let L = CayR(G,S) denote the 2-dimensional polygonal complex obtained from the Cayley
graph Cay(G,S) by inserting a 2-dimensional polygon for every relation in R. Then the
coboundary map

δ1 : C0(L,K)→ C1(L,K)

coincides with the generalized Ornstein�Weiss map θowS . Since L is simply connected we
have H1(L,K) = 0. Additionally, since S is �nite the action of G on the 1-skeleton of L is
cocompact. So by Corollary 5.8 (see Remark 5.11)

(9.3)
hΣ

top(Gy C0(L,K)) + β1
(2)(L : G) · log |K|

≤ hΣ
top(Gy ker θowS ) + hΣ

top(Gy KG/K).

As L is simply connected, we have

(9.4) β1
(2)(L : G) = β1

(2)(G).

Additionally, since ker θowS = K is �nite, one can either compute directly or apply [30, Prop.
1.7] to get

(9.5) hΣ
top(Gy ker θowS ) = 0.

Finally, C0(L,K) is isomorphic to KG and so has entropy log |K|. Thus, putting together
equations (9.2), (9.3), (9.4), and (9.5) we get

(1 + β1
(2)(G)) · log |K| ≤ hΣ

top(Gy KG/K) = hΣ
meas(Gy KG/K, λKG/K). �
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10. Discussion

We mention the possibility of generalizations to Theorems 9.3 and 9.4 which may relate
�rst `2-Betti numbers and cost of equivalence relations to entropy. We �rst discuss a mild
generalization. Consider a free p.m.p. action Gy (X,µ). For a �nite abelian group K one
can consider the direct product action G y (X × (KG/K), µ × λKG/K), where λKG/K is

the Haar probability measure on KG/K. The proof of Theorem 9.3 is easily modi�ed to
prove the following. Speci�cally, in that proof (X,µ) would take the role of the small entropy
factor Gy (Y, ν) which was obtained by invoking the result of Seward�Tucker-Drob. Below
we write B(X) for the Borel σ-algebra of X.

Theorem 10.1. Let G be a countably in�nite group, let K be a �nite abelian group, and
let λKG/K be the Haar probability measure on KG/K. Then for any free p.m.p. action
Gy (X,µ) we have

hRok(Gy X × (KG/K), µ× λKG/K |B(X)) ≤ C(Gy (X,µ)) · log |K|.

When G is amenable it is always true that hRok(G y X × Y, µ × ν|B(X)) = hRok(G y
Y, ν) for free actions. However it is unknown if this property holds for any notion of entropy
for any non-amenable group. If this property were to hold in general, then by choosing
G y (X,µ) so that C(G) = C(G y (X,µ)), one could strengthen Theorems 9.3 and 9.4 to
hold for C(G) in place of Csup(G).

Now consider the more abstract situation of a probability space (X,µ) and a probability-
measure-preserving countable Borel equivalence relation R on X. For x ∈ X write [x]R for
the R-class of x. Fix a �nite additive abelian group K and consider the space

Y = {(x, f +K) | x ∈ X and f : [x]R → K}.

Here for each x ∈ X we identify K with the collection of constant functions from [x]R to K.
There is a natural projection π : Y → X, and it is easily seen that the �ber of each x ∈ X
is the compact abelian group of all functions f : [x]R → K modulo the constant functions.
Thus one can place Haar probability measure on each �ber to obtain a probability measure
ν on Y with the property that π∗(ν) = µ. We de�ne an equivalence relation R′ on Y by

(x0, f0 +K) R′ (x1, f1 +K)⇐⇒ x0 R x1 and f0 +K = f1 +K.

It is easy to check that R′ is ν-measure-preserving. Also, R′ is a class-bijective extension of
R in the sense that (y0, y1) ∈ R′ and π(y0) = π(y1) implies y0 = y1.

We suspect that it may be possible to modify the proof of Theorem 9.3 to obtain

hRok(Ry Y, ν|B(X)) ≤ C(R) · log |K|.

Here hRok(R y Y, ν|B(X)) is the relative Rokhlin entropy of the extension of R by R′.
Equivalently, if Gy (X,µ) is any (possibly non-free) action whose orbit equivalence relation
coincides with R, then one can lift the G-action through π to obtain an action G y (Y, ν)
whose orbit equivalence relation is R′, and in this case, for any such action we have [58]

hRok(Ry Y, ν|B(X)) = hRok(Gy Y, ν|B(X)).

There is also a possibility of a connection between the �rst `2-Betti number of R and so�c
entropy, though this is much more speculative. The `2-Betti numbers of p.m.p. countable
equivalence relations were de�ned by the �rst author in [27]. If R is a so�c equivalence
relation, then one can view R as a so�c p.m.p. groupoid and consider the action Ry (Y, ν)
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whose orbit equivalence relation is R′. Using Bowen's de�nition of so�c entropy for actions
of so�c groupoids [12], is it true that, for any so�c approximation Σ to R,(

β1
(2)(R) + 1

)
· log |K| ≤ hΣ

meas(Ry Y, ν)?

We mention one �nal question. Could it be that all of the inequalities mentioned here
between �rst `2-Betti numbers, cost, so�c entropy, and Rokhlin entropy are actually equal-
ities? We see no good reason why this should be true, but it is an interesting question. It
would be quite strange if the orbit-equivalence invariants of cost and �rst `2-Betti numbers
were found to be special cases of entropy.
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