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Abstract

Since the 70’s, computer scientists have developed very efficient tools and algorithms for
text processing. However, these techniques are mostly focused on exact problems, and
cannot be straightforwardly adapted to approximation tasks, or do not scale to the size
of modern datasets. In this thesis, we study resource-efficient approximation algorithms
for text processing.

The first part of this thesis studies variants of approximate pattern matching, tasks
where one must find all substrings of a text that are similar to the given pattern, for
various notions of similarity. We first investigate the case of circular pattern matching.
We give a data structure with a time-space trade-off in the read-only model for internal
pattern matching, and use it to solve circular pattern matching and the longest common
substring problem with little additional space in the read-only model. Next, we consider
the case of similarity measured by the Hamming distance, in strings with wildcards, that
is, characters that match any other character. Focusing on the low-distance regime and on
the case of strings with few contiguous groups of wildcards, we give an efficient algorithm
and a combinatorial characterization of the structure of occurrences in this setting. We
give a lower bound that shows that our characterization is close to optimal. Finally, we
study data structures for computing longest common extensions in string with wildcards
(LCEW). We give a data structure that provide a time-space trade-off in the read-only
model, and use it to derive efficient algorithms for pattern matching and analysis of string
with wildcards. We also show a connection to sparse Boolean matrix multiplication, from
which we derive lower bounds for combinatorial data structures for LCEW.

The second part of this thesis studies the task of deciding approximate membership in
a formal language, in three different frameworks. We start with the Property Testing, the
framework of information-efficient algorithms, in our case for regular languages, following
the seminal work of Alon, Krivelevich, Newman and Szegedy [SIAM J. Comp. 99]. We
give a complete characterization of the complexity of testing regular languages under the
Hamming distance, showing that any regular language belongs to one of three complexity
classes, and that these classes can be characterized using combinatorial objects, called
minimal blocking sequences. We further show that this characterization is effective: given
a finite automaton, deciding to which class it belongs to is complete for PSPACE. Next,
we turn to the question of computing the Hamming or edit distance between an input
word and a given language. We give small-space algorithms in the read-only or streaming
model for the low-distance version of these problems, for languages of palindromes and
of squares. Finally, we design a small-space algorithm for computing the palindromic
length of a string in the read-only model. Our algorithm is based on novel results on the
structure of the k-palindromic prefixes of a string, i.e., its prefixes of palindromic length
k.

Keywords: formal languages, pattern matching, streaming algorithms, property testing
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Résumé

Depuis les années 1970, la recherche en informatique a produit de nombreux outils et algo-
rithmes très efficaces pour le traitement de données textuelles. Toutefois, ces techniques
ont principalement été conçues pour les problèmes exacts, et ne sont pas directement
applicables aux tâches d’approximation ou ne sont pas adaptées à la taille des jeux de
données modernes. Dans cette thèse, nous étudions des algorithmes d’approximation effi-
caces (en termes de ressources), qui sont plus adaptés aux tâches modernes de traitement
de texte.

Dans la première partie de cette thèse, on s’intéresse à plusieurs variantes du problème
de recherche de motif, un ensemble de tâche dans lesquelles on doit trouver toutes les
sous-chaînes d’un texte qui sont similaires à un motif donné, pour plusieurs notions de
similarité. On étudie tout d’abord le cas de la recherche circulaire de motif. Nous donnons
une structure de données avec un compromis temps-espace mémoire pour le problème
de recherche interne de motif, dans le modèle read-only, puis nous montrons comment
l’utiliser pour obtenir des algorithmes pour le problème de recherche circulaire de motif et
celui de calculer la plus longue sous-chaîne commune en utilisant un espace mémoire faible.
Ensuite, on s’intéresse au cas où la similarité est définie par la distance de Hamming,
et où les chaînes de caractères peuvent contenir des jokers, c’est-à-dire des caractères
considérés égaux à n’importe quel autre caractère. Dans le cas particulier des distances
faibles et où les chaînes contiennent un petit nombre de groupes contigus de jokers, nous
donnons un algorithme efficace et une caractérisation combinatoire de la structure des
occurrences dans ce contexte. Nous donnons également une borne inférieure qui montre
que notre caractérisation est presque optimale. Enfin, on étudie les structure de données
pour calculer les plus longues extensions communes dans les chaînes avec jokers (abrégé
LCEW en anglais). Nous donnons une structure de données avec un compromis espace-
temps dans le modèle read-only, puis nous montrons comment l’utiliser pour concevoir des
algorithmes efficace pour la recherche de motif avec quelques erreurs et pour l’analyse des
propriétés des chaînes contenant des jokers. Nous exhibons également une relation avec
le problème de multiplication de matrices booléennes parcimonieuses, que nous utilisons
pour donner des bornes inférieures sur la complexité de structures de données pour LCEW.

La seconde partie de cette thèse s’intéresse à la question d’approximer l’appartenance
d’un mot à un langage formel, dans trois contextes différents. On commence par le mo-
dèle du property testing, modèle des algorithmes frugaux en information, dans notre cas
pour les langages formels. Notre étude s’inscrit dans la lignée du travail fondateur d’Alon,
Krivelevich, Newman et Szegedy [SIAM J. Comp. 99] sur le property testing des langages
réguliers. Nous donnons une caractérisation complète de la complexité du property tes-
ting des langages réguliers pour la distance de Hamming, en montrant que tout langage
régulier appartient à une de trois classes de complexité. Nous montrons également que le
problème de classification associé est complet pour PSPACE. Ensuite, on étudie la question
de calculer la distance de Hamming ou d’édition entre un mot et un langage formel donné.
Nous donnons des algorithmes utilisant peu d’espace mémoire dans les modèles read-only
et streaming, pour les version “faible distance” de ces questions, pour les langages des pa-
lindromes et des carrés. Enfin, nous donnons un algorithme efficace en espace permettant
de calculer la longueur palindromique d’une chaîne dans le modèle read-only. Notre algo-
rithme est basé sur des résultats nouveaux sur la structure des préfixes k-palindromiques
d’un mot, c’est-à-dire ses préfixes de longueur palindromique k.

Mots-clés : langages formels, recherche de motif, algorithmes de streaming, property testing
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Résumé détaillé en français

Les problèmes étudiés dans cette thèses ont pour origine les tâches de traitement et
d’analyse de texte, comme la validation de données, la compilation de code source, la
classification de documents, l’extraction d’opinion ou encore la comparaison de corpus.

La recherche sur les techniques et algorithmes dans ce domaine a commencé dès les
années 1950, et à donné lieu à la création de paradigmes très puissants (comme celui
des expressions régulières [199]) et d’algorithmes à la fois élégants et efficaces (comme
l’algorithme de recherche de motif de Knuth, Morris et Pratt [201]). Toutefois, ces outils
et techniques ont été pensés pour résoudre les versions les plus communes mais aussi
les plus basiques des problèmes d’analyse de texte, avec un objectif simple, et ne sont
donc pas toujours adaptées aux tâches modernes, qui ont des objectifs plus complexe
et qui comportent souvent une dimension approximative. Dans les tâche d’analyse de
texte, la partie approximative peut venir de deux situations différentes : l’incertitude ou
la relaxation des contraintes. Le premier cas correspond aux tâches dont certains aspect
ne sont pas totalement spécifiés. Par exemple, on peut vouloir chercher dans un texte les
occurrences d’un mot, en acceptant qu’il y ait une faute de frappe dans l’occurrence :
la nature et la position de cette faute de frappe ne sont pas spécifiées. Dans d’autres
cas, l’incertitude se situe dans les données, par exemple si une partie en a été perdue ou
corrompue. Certaines situations combinent même les erreurs de mesure et l’incertitude sur
les données : en bio-informatique [128], plus particulièrement en génomique, le domaine
de l’analyse de séquences d’ADN, qui peuvent être représentées sous forme de texte (suite
de lettre A,C,G et T). Dans ce domaine, il peut y avoir des erreurs lors du processus de
séquence (extraction des données d’ADN), mais d’autre part, l’ADN de la plupart des
êtres vivant subit des mutations spontanées lors de sa réplication. À cause de ces sources
d’erreur, une recherche exacte est insuffisante pour déterminer par exemple si un gène
donné apparaît dans le génome d’un patient. Pour pallier ce problème, les scientifiques ont
développés des méthodes plus robustes, comme par exemple des algorithmes permettant
d’identifier tous les fragment d’un texte qui sont (syntaxiquement) similaires à un motif
donné [61, 107]. L’autre motivation pour les méthodes approximatives d’analyse de texte
est le cas où l’on souhaitera avoir un résultat exact, mais que calculer un tel résultat
demanderait trop de ressources de calcul, par exemple dans le cas de très grands volumes
de données. Dans ce cas, une solution possible est d’utiliser des algorithmes plus frugaux
en ressource, mais qui renvoient un résultat approximatif. Cela inclus les algorithmes
qui ont une petite probabilité de donner une réponse incorrect, ou les algorithmes qui
sont seulement capable d’identifier les instances positives et celles qui sont “clairement
négatives”. Ce dernier type d’algorithmes peut par exemple être utilisé comme procédure
de filtrage, laissant seulement un petit nombre d’instances que l’on a pas pu déterminer
à vérifier avec une procédure exact mais plus coûteuse.

Dans cette thèse, on étudie les algorithmes d’approximation pour deux aspects impor-
tants de l’analyse de texte : la recherche de motif (dans la Partie I) et l’appartenance à un
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langage formel (dans la Partie II). Nous nous intéresseront à plusieurs problèmes algorith-
mique, et, pour chacun d’eux, notre but est de donner des algorithmes qui les résolvent le
plus efficacement possible. Lorsque cela est important, nous implémentons l’algorithme,
et rendons son code source disponible sous licence libre. Pour quantifier l’optimalité des
résultats, on s’attache à donner des bornes inférieures qui s’approchent au plus de la com-
plexité des algorithmes. Dans la plupart des cas, nos algorithmes et bornes inférieures sont
basés sur et accompagnés de résultats nouveaux qui approfondissent notre compréhension
d’objets combinatoires ou de phénomènes algorithmiques.

Recherche approximative de motif

“Le motif P apparaît-il dans le texte T ?”

Cette question, simple en apparence et appelée le problème de recherche de motif
(pattern matching en anglais), est centrale à de nombreuses tâches de traitement de don-
nées, de la validation à l’analyse. Ce problème est omniprésent : aujourd’hui, la majorité
des communications internet passent par HTTP et HTTPS, des protocoles textuels de com-
munication. De milliards de requêtes HTTP sont émises chaque jour, et la recherche de
motifs est utilisée pour déchiffrer l’information contenue dans les headers de chaque re-
quête. De même, les données émises par les applications web sont très souvent encodées en
JSON, un format textuel permettant d’encoder des structures arbitrairement imbriquées.
La recherche de motif permet d’extraire efficacement l’information de données sous forme
JSON [162, 188].

Il existe de nombreuses variantes du problème de recherche de motif, que l’on obtient à
partir des différentes définition possible de ce qu’est un motif, et de ce que apparaître dans
le texte T veut dire. Par exemple, quand P est constitué de deux chaînes de caractères
écarté d’un nombre fixé de positions, le problème est connu sous le nom de recherche avec
écart [63] (en anglais, gapped matching). D’autre définitions fréquentes de “motif” inclus
le cas d’une unique chaîne de caractère, ou d’un ensemble de caractères (c’est le problème
de dictionary matching [16]). De plus, certaines variantes du problème demandent de
seulement dire s’il existe une occurrence du motif, là où d’autres demandent de renvoyer
l’information de la location de toutes les occurrences, ou seulement d’une d’entre elles.

Dans la première partie de la thèse, on se concentrera sur le cas basique (mais com-
plexe) où P est une unique chaîne de caractères, et où l’on doit renvoyer l’information
de toutes les occurrences approximatives de P dans le texte, pour différentes notions
d’approximation. Ces tâches sont communément désignées sous le nom de recherche ap-
proximative de motif (en anglais, approximate pattern matching). La première notion
d’approximation étudiée dans cette thèse est celle d’approximation circulaire : au lieu de
chercher les occurrences P , on cherche les occurrences de rotations de P , c’est-à-dire les
chaînes de caractères que l’on peut obtenir en écrivant P sur le périmètre d’un cercle et en
coupant à n’importe quel point entre deux caractères. Ensuite, on s’intéresse à la recherche
de motifs avec jokers (wildcards en anglais). Les jokers sont des caractères spéciaux qui
sont considérés comme égaux de n’importe quel autre caractère, à la manière du “.” dans
les moteurs d’expressions régulières ou de “?” dans les commandes bash. Un joker dans P
correspond à une partie d’une requête qui n’est pas spécifiée. Enfin, on étudie également la
recherche de motifs avec erreurs, où l’on doit trouver toutes les sous-chaîne de T qui sont
presque égales à P , à quelques erreurs près. Ces différences peuvent correspondre à des
erreurs de saisie, de mesure, ou à des mutations spontanées dans des brins d’ADN. Cette
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notion de “presque égalité” est formellement définie à l’aide de distance entre chaînes de
caractères.

Charalampopoulos, Kociumaka et Wellnitz [89] ont observé que de nombreux algo-
rithmes récents pour la recherche (approximative) de motif peuvent s’énoncer en utilisant
un ensemble restreint d’opérations sur les chaînes de caractères, indifféremment de l’im-
plémentation de ces opérations. Dans cet ensemble d’opérations, qu’ils appellent le modèle
PILLAR, les deux opérations les plus importantes sont la recherche interne de motif (en
anglais, internal pattern matching, IPM) et le calcul de plus longue extension commune
(longest common extension, LCE). Leur observation a deux conséquences. Premièrement,
quel que soit le modèle de calcul (modèle RAM, ordinateur quantique, etc.), il suffit de
donner une implémentation efficace de ces opérations, et on obtient immédiatement des
algorithmes efficace pour la recherche approximative de motifs. Deuxièmement, si l’on
énonce un algorithme dans le modèle PILLAR, alors on en obtient immédiatement une
implémentation efficace dans tous les modèles où les opérations du modèles PILLAR ont
une implémentation efficace. Par conséquent, la majorité des travaux compris dans la
première partie de cette thèse sont basés sur le modèle PILLAR : on donne des implémen-
tation efficaces des opérations PILLAR dans le modèles où elles manquent, et l’on énonce
les algorithmes avec les opérations PILLAR.

Compromis temps-espace pour la recherche interne de motif.

Dans le Chapitre 4, nous donnons une structure de donnée efficace pour (une généralisa-
tion de) l’opération IPM, dans le modèle read-only. Cette structure de données offre un
compromis entre temps-espace mémoire : on peut choisir quelle quantité d’espace mémoire
la structure peut utiliser, et le temps de calcul pour répondre à une requête IPM dépendra
de cette quantité de manière inversement proportionnelle ; plus l’espace mémoire alloué
est grand, plus le temps de calcul sera faible. Avec le compromis espace-temps pour LCE
donné par Kosolobov et Sivukhin [215], notre résultat permet d’obtenir une implémenta-
tion efficace de toutes les opérations PILLAR utilisant peu d’espace. Par conséquence, tous
les algorithmes de recherche de motifs exprimés dans le modèle PILLAR peuvent être im-
plémentés en utilisant le même compromis espace-temps. Nous utilisons également notre
structure de données pour IPM pour donner des algorithmes utilisant un faible espace mé-
moire pour les problèmes de plus longue sous-chaîne commune et de recherche circulaire
de motif, dans les modèle de streaming asymétrique et read-only.

Les résultats présentés dans ce chapitre ont fait l’objet d’une publication acceptée à
CPM 2024 [51], co-écrite avec P. Charalampopoulos et T. Starikovskaya. Cet article a
reçu le prix du meilleur article de la conférence !

Recherche de motifs avec différences et jokers.

Dans le Chapitre 5, on étudie le problème de recherche approximative de motif sous la
distance de Hamming, dans les chaînes de caractères contenant des jokers. Ce chapitre
contient deux résultats importants. Tout d’abord, nous donnons un algorithme efficace
pour ce problème de recherche de motifs dans le modèle PILLAR. En utilisant les diffé-
rentes implémentations du modèle PILLAR, nous montrons que cet algorithme donne des
algorithmes efficaces pour le même problème dans plusieurs modèles de calcul. Ensuite,
nous utilisons le premier résultat pour caractériser la structure des occurrences dans ce
contexte, et termes de représentation avec un faible nombre de progressions arithmé-
tiques, généralisant un résultat de Charalampopoulos et al. [89]. Ce premier résultat est
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accompagné d’une borne inférieure comparable, obtenue en construisant un ensemble in-
fini d’exemple, basés sur un résultat sur les ensembles sans progressions arithmétiques de
Elkin [127].

Les résultats présentés dans ce chapitre ont fait l’objet d’une publication acceptée à
ESA 2024 [52], co-écrite avec P. Charalampopoulos et T. Starikovskaya.

Plus longue extension commune avec jokers.

Dans le Chapitre 6, nous donnons une structure de données permettant de calculer les
plus longues extensions communes dans les chaînes de caractères avec jokers (abrégé
LCEW en anglais). Comme dans le Chapitre 4, notre structure de données présente un
compromis esapace-temps : on peut choisir de réduire l’espace mémoire utilisé par la
structure de données, mais cela augmente le temps de calcul utilisé pour répondre à une
requête. Nous montrons ensuite comment cette structure de données peut être utilisée
pour la recherche approximative de motifs et l’analyse de chaînes avec jokers. Enfin,
nous exhibons une relation surprenante entre les LCE dans les chaînes avec jokers et la
multiplication de matrice booléennes (parcimonieuses). Nous utilisation pour donner des
bornes inférieures pour les structures de données combinatoires pour LCEW mais aussi
un algorithme combinatoire et déterministe pour la multiplication de matrices booléennes
parcimonieuses.

Les résultats présentés dans ce chapitre ont fait l’objet d’une publication acceptée à
ESA 2024 [50], co-écrite avec P. Charalampopoulos et T. Starikovskaya.

Approximation de l’appartenance à un langage

Bien que la recherche de motif et ses variantes aient une grande variété d’application
dans de nombreux domaines, elles ne peuvent qu’exprimer un nombre limité de propriétés
des textes et chaînes de caractères. Le concept de langage formel permet de décrire des
propriétés plus complexes : un langage formel est simplement un ensemble de chaînes
de caractères. Étant donné une propriété sur les chaînes de caractères, on peut y asso-
cier un langage L en prenant l’ensemble des chaînes qui satisfont la propriété. Décider
si une chaîne a une propriété est alors équivalent à décider si cette chaîne est dans le
langage L associé. Ce point de vue est à la base de la théorie de la calculabilité, et, au fil
des années, de nombreuses classes de langages formels ont été identifiées. Généralement,
chaque classe a une définition syntaxique, et une expressivité limitée. Par exemple, les
langage régulier sont définis par les expressions régulières et permettent de capturer les
informations séquentielles dans un texte. Ils sont par exemple utilisée dans la validation
de données de formulaires ou dans la conversion de code source en suite de lexèmes (une
opération appelée “lexing” [19]). Les langages algébriques, plus expressifs, sont définis à
l’aide de grammaires algébriques, et permettent de décrire des propriétés hiérarchiques.
Par exemple, ils peuvent reconnaître structures imbriquées correctement, comme les ex-
pressions arithmétiques bien parenthésées, et ils sont utilisés lors du parsing de code source
au cours de la compilation de programmes, c’est-à-dire l’étape de conversion d’une suite
de lexèmes en un arbre de syntaxe abstrait [19].

À cause de son lien avec celle de décider une propriété, la question de décider l’apparte-
nance à un langage formel a été très étudiée, et sa complexité algorithmique est pleinement
comprise pour de nombreuses classes de langages. Par exemple, Schepper [269] donne une
caractérisation “fine-grained” de la complexité de décider l’appartenance au langage d’une
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expression régulière, en fonction de la structure de celle-ci. Pour l’appartenance à un
langage algébrique, Cocke, Younger and Kasami [108, 192, 287] ont indépendamment dé-
couvert un algorithme avec une complexité cubique ; cet algorithme est connu sous le nom
d’algorithme CYK. Quelques années plus tard, Valiant [281] a donné une réduction du
problème d’appartenance à un langage régulier à celui de la multiplication de matrices
booléennes. Plus récemment, Abboud et al. [11] ont montré que, sous l’hypothèse que les
meilleurs algorithmes connus pour Clique, l’algorithme de Valiant est optimal.

Dans ces deux exemples, on a des bornes inférieures (conditionnelles) qui montrent
que l’algorithme pour décider l’appartenance à un langage de cette classe est optimal.
Par conséquent, les projets de recherche plus récents se sont focalisés sur des variantes
approximatives de l’appartenance à un langage formel.

Dans la deuxième partie de cette thèse, nous nous engageons dans la même démarche
de recherche, et étudions la question d’approximer l’appartenance à un langage formel dans
trois contextes différents, avec une attention particulière pour les algorithmes frugaux en
espace mémoire.

La complexité de tester les langages réguliers

Tout d’abord, dans le Chapitre 8, on s’intéresse au property testing, le champ d’étude
des procédures de décision frugales en information. Dans ce contexte, l’objectif est de
décider si un mot d’entrée est dans un langage donnée, ou s’il en est loin, tout en utilisant
aussi peu d’information que possible à propos de l’entrée. Suivant la direction du travail
fondateur d’Alon, Krivelevich, Newman et Szegedy [24], on s’intéresse au cas des langages
réguliers. Notre première contribution est de déterminer la complexité exacte du property
testing des langages réguliers sous la distance de Hamming, en améliorant à la fois la borne
supérieure et la borne inférieure de Alon et al. [24]. Ensuite, à partir de ce premier résultat,
nous donnons une caractérisation complète de la complexité du problème : nous montrons
qu’il existe trois classes de complexité pour ce problème, et donnons une caractérisation
effective de ces classes.

Le travail présenté dans ce chapitre a fait l’objet de deux publications, l’une avec
T. Starikovskaya, publiée à ICALP 2021 [48], l’autre avec C. Mascle et N. Fijalkow,
accepté pour publication à ICALP 2025.

Calcul de la distance aux palindromes et aux carrés

Dans le Chapitre 9, on s’intéresse au problème de calculer la distance entre une chaîne
de caractères et un langage, comme mesure de la proximité entre la chaîne et la propriété
encodée dans le langage. On se place dans le régime des distance faibles, c’est-à-dire, le
cas où l’on a un seuil de distance d, et l’on veut savoir si la distance est supérieure à d,
ou si elle est inférieure ou égale, et, dans ce cas, quelle est la distance. Nous donnons
des algorithmes en ligne et utilisant peu d’espace pour calculer la distance de Hamming
et la distance d’édition entre une chaîne et les langages des palindromes ou des carrés.
Ces résultats sont basés sur des procédures de filtrages qui utilisent des algorithmes de
recherche approximative de motif. Dans deux cas, nous donnons des nouveaux algorithmes
read-only de recherche approximative de motif adaptés à nos besoins.

Les résultats présentés dans ce chapitre ont fait l’objet d’une publication acceptée à
ISAAC 2023 [49], co-écrite avec T. Kociumaka et T. Starikovskaya.
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Algorithmes pour la longueur palindromique utilisant peut d’es-
pace

Enfin, dans le Chapitre 10, on s’intéresse à une autre manière de quantifier la proximité
d’une chaîne à un langage, qui permet de mieux capturer la sémantique du langage. Au
lieu de mesurer la distance au langage, on compte le nombre minimum de morceaux en
lequel il faut diviser la chaîne de telle sorte que chaque morceaux appartienne au langage.
Dans le cas du langage des palindromes, ce nombre est appelé la longueur palindromique
de la chaîne. Borozdin et al. [76] ont donné un algorithme qui calcule la longueur pa-
lindromique en temps et espace linéaire. Dans ce chapitre, nous donnons un algorithme
utilisant peu d’espace qui calcule la longueur palindromique en temps presque-linéaire
dans le régime des distances faibles. Pour obtenir cet algorithme, nous développons une
nouvelle analyse de la structure des préfixes d’une chaîne qui ont longueur palindromique k
(appelés préfixes k-palindromiques), et nous montrons que ces préfixes peuvent s’encoder
de manière compacte en utilisant des objets combinatoire appelé les ensemble affines de
préfixes. Nous montrons ensuite que cette structure peut être calculer efficacement en
utilisant peu d’espace.

Les résultats présentés dans ce chapitre ont fait l’objet d’un article co-écrit avec J. El-
lert et T. Starikovskaya, disponible en pré-publication sur ArXiv [53].



Chapter 1

General Introduction

The motivation for the work conducted during this thesis comes from problems that
arise in text analysis and processing workloads, such as data validation, source code
compilation, document classification, sentiment analysis, feature extraction, or corpora
comparison.

Algorithms and techniques for text analysis have been studied since the 1950s, and
research in this area has resulted in very powerful frameworks (such as regular expres-
sions [199]) and elegant and efficient algorithms (such as the celebrated pattern matching
algorithm of Knuth, Morris, and Pratt [201]). However, these tools and methods are
designed to solve natural, common, but basic problems, and thus are not always well
suited to modern text analysis tasks, which often have more complex objectives and often
have an approximate component. The need for approximate techniques in text analysis
arises from two different situations: uncertainty or relaxation of the objective. In the
first case, some aspects of the task are not fully specified. For example, given a word,
one can search for its occurrences that contain a typing error in a text. In other cases,
the uncertainty may be in the data, for example, if some of the data has been lost or
corrupted. Some situations combine both measurement error and data uncertainty: in
computational genomics [128], the science of analyzing DNA data, errors may occur in
the DNA extraction process, known as sequencing, and the DNA of most living organisms
can spontaneously mutate. Because of such sources of error, exact search is insufficient
to find out e.g. whether a gene is present in a patient’s genome. To solve this problem,
researchers have developed more robust methods, such as pattern matching algorithms
that find all fragments of the text that are similar to a given pattern [61, 107]. The other
motivation for approximate text analysis is when we want to get an exact result, but com-
puting it is too computationally expensive, for example when dealing with a huge amount
of data. In this case, the usual solution is to use algorithms that require less resources but
may return an approximate answer. These include probabilistic algorithms that have a
small probability of returning an incorrect answer, or algorithms that can only distinguish
positive text instances from “obviously false” instances. The latter type of algorithms can
be used as a filtering procedure, leaving only a small number of candidates to be verified
with the more expensive exact procedures.

In this thesis, we study approximation algorithms for two important aspects of text
analysis: pattern matching (in Part I) and language membership (in part Part II).
Throughout this thesis, we consider several algorithmic problems. For each of them,
our goal is to give algorithms that solve them as efficiently as possible. When relevant,
we provide an open-source implementation of the algorithms. To quantify the degree of
optimality of our results, we try to give lower bounds that are as close as possible to the

1



2 1.1. Approximate Pattern Matching

upper bound induced by the algorithm. In most cases, these algorithms and lower bounds
are based on novel results that deepen our understanding of a combinatorial object or
algorithmic phenomenon.

1.1 Approximate Pattern Matching
“Does the pattern P occur in the text T?”

This seemingly simple question, known as pattern matching, is at the heart of many
data processing tasks, from validation to parsing. It is ubiquitous: most Internet traffic
today relies on HTTP (or HTTPS), a text-based protocol. Trillions of HTTP requests are
sent every day; pattern matching is needed to decipher the information contained in the
headers of each such request. Similarly, data used in web applications is often encoded in
JSON, a textual format that allows encoding arbitrary nested structures; pattern matching
can be used to extract data from serialized JSON data [162, 188].

There are many variants of pattern matching, as one may vary the definition of what
a pattern is and what occurring in T means. For instance, if P consists of two strings
that are a fixed number of positions apart, then the problem is known as gapped match-
ing [63]. Other common choices for P include a single string or sets of strings (dictionary
matching [16]). In addition, some versions of the problem require reporting the existence
of a match, while other versions require reporting information about the location of all
matches, or only the leftmost or rightmost match in the text.

In this part of the thesis, we focus on the basic case where P is a single string, known
as pattern matching, and one must report all approximate occurrences of P in the text,
for various notions of “approximate occurrences”. These tasks are commonly known as
approximate pattern matching. The first notion of approximation studied in this thesis is
circular approximation: instead of searching for occurrences of P , we search for rotations
of P , i.e. strings that can be obtained by writing P along the circumference of a circle,
and cutting at any position between two characters. Next, we study approximate pattern
matching with wildcards. Wildcards are special characters that match any other character,
similar to “.” in regular expression engines or “?” in shell commands. Placing a wildcard
in P corresponds to a part of the query that is unspecified; for this reason, wildcards
are sometimes called “don’t cares” or “holes”. Finally, we consider pattern matching with
errors or mismatches, were the task is to find all substrings of T that are equal to P
up to a few errors, that could arise typing errors on a keyboard, or from spontaneous
mutations in DNA strands. This notion of approximate equality is formally defined later
using distances over strings.

Charalampopoulos, Kociumaka, and Wellnitz [89] remarked that many recent algo-
rithms for (approximate) pattern matching can be expressed in terms of a small set of
string operations, independently of how these operations are implemented. In this set-
ting, which they call the PILLAR model, the most crucial operations are internal pattern
matching (IPM) and longest common extension (LCE) queries (these operations are for-
mally defined in Chapter 3). Their observation has two consequences. First, in any
framework, it suffices to implement these operations efficiently to unlock efficient pat-
tern matching algorithms. Example of framework with efficient PILLAR implementations
include the usual RAM model, algorithms on compressed strings, and the quantum com-
puting model. Second, if an algorithm is stated in terms of the PILLAR operations, it
can be efficiently implemented in all frameworks where the PILLAR operations are im-
plemented. As a result, most of the work in this part of the thesis builds around the
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PILLAR model: we provide efficient implementations of the crucial PILLAR operations in
frameworks where they are missing, and express algorithms in terms of PILLAR operations.

1.1.1 Time-space trade-off for internal pattern matching.

In Chapter 4, we give an efficient data structure for (a generalization of) the IPM opera-
tion, in the read-only setting. This data structure offers a time-space trade-off: one can
choose how much memory the data structure should use, and the time needed to answer
IPM queries will depend on that quantity; the higher the memory allocated to the data
structure, the lower the query time. This contribution is significant because, together
with the time-space trade-off for LCE queries of Kosolobov and Sivukhin [215], it give a
complete implementation of the PILLAR operations in small space. Therefore, any pattern
matching algorithm implemented in the PILLAR model can be implemented with this time-
space trade-off. We also use our IPM data structure to design space-efficient algorithms
for the Longest Common Substring (LCS) and Circular Pattern Matching problems in
small-space settings (streaming, asymmetric streaming, and read-only models).

The results presented in this chapter appeared in an article published at CPM’24 [51],
co-authored with P. Charalampopoulos and T. Starikovskaya. This paper received the
Best Paper Award of the conference.

1.1.2 Pattern Matching with mismatches and wildcards.

In Chapter 5, we study the problem of approximate pattern matching under the Hamming
distance (also known as pattern matching with mismatches) in strings that may contain
wildcards. Our contribution is twofold. First, we characterize the structure of occur-
rences in this setting, extending a result of Charalampopoulos et al. [89]. This result is
completed by a comparable lower bound that we obtain by constructing an infinite family
of examples, building on a combinatorial result on progression-free sets by Elkin [127].
Second, we use the first result to give an efficient algorithm for pattern matching with
mismatches and wildcards. By leveraging the different implementations of the PILLAR
model, this result implies efficient algorithms in several computation models.

The results presented in this chapter appeared in an article published at ESA’24 [52],
co-authored with P. Charalampopoulos and T. Starikovskaya.

1.1.3 Longest Common Extension with Wildcards.

In Chapter 6, we give a data structure for answering LCE queries on strings with wildcards,
called LCEW queries. As in Chapter 4, this result offers a time-space trade-off: the data
structure can be made more compact, at the cost of an increased query time. As a
result, we show that the above data structure yields efficient algorithms for approximate
pattern matching and analysis of string with wildcards. Finally, we unveil a surprising
connection between LCE queries in strings with wildcards and (sparse) Boolean matrix
multiplication. As a result, we give a lower bound on the preprocessing-query time product
of any data structure for LCEW, and a deterministic combinatorial algorithm for sparse
Boolean matrix multiplication.

The results presented in this chapter appeared in an article published at ESA’24 [50],
co-authored with P. Charalampopoulos and T. Starikovskaya.
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1.2 Approximate Language Membership

While pattern matching and its variants have a wide variety of applications in many fields,
they can only express a limited number of properties of strings. The paradigm of formal
languages can be used to describe more complex properties: a formal language is simply
a set of strings. Given a property P over strings, we can define a formal language LP

describing P by taking the set of all strings that have property P : deciding whether a
string X has property P is then equivalent to deciding whether X is in LP . This approach
is at the root of the theory of computation, and, over the years, many classes of formal
languages have been identified. Each class usually has a syntactic definition and a limited
expressive power. For example, regular languages are defined by regular expressions and
capture sequential information in the text: they are used, for example, in form data
validation, or in converting source code into a sequence of tokens (an operation called
“lexing” [19]). The more expressive context-free languages are defined by context-free
grammars (CFGs) and capture hierarchical information: for example they can recognize
well-nested structures, such as well-parenthesized arithmetic expressions, and are used
when parsing source code into an abstract syntax tree during compilation [19].

Because of its connection to deciding properties, the question of deciding membership
in a formal language has received a lot of attention, and its complexity is well understood
for many classes of languages. For example, Schepper [269] gives a fine-grained character-
ization of the complexity of membership testing in the language of a regular expression,
based on its structure. For membership in context-free languages, Cocke, Younger and
Kasami [108, 192, 287] independently devised an algorithm that runs in cubic time – this
algorithm is now colloquially known as the CYK algorithm. Later, Valiant [281] showed
a reduction from context-free language membership to Boolean matrix multiplication,
resulting in an algorithm that runs in time O(BM(n)) by exploiting fast matrix multipli-
cation, where BM(n) is the time complexity of multiplying two n× n Boolean matrices.
More recently, Abboud et al. [11] showed that, under the assumption that the current
best algorithms for Clique are optimal, Valiant’s algorithm for parsing CFGs is optimal.

In both of the above examples, we now have (conditional) lower bounds that match
the best upper bound for deciding membership in formal languages, so there is little
hope of finding faster algorithms for this exact question. Therefore, subsequent research
has focused on approximate versions of membership in formal languages. In the second
part of this thesis, we follow this line of work, and study the question of approximating
membership in a formal languages from three different points of view, with a particular
emphasis on space-efficient algorithms.

1.2.1 The complexity of testing regular languages

First, in Chapter 8, we study property testing, a framework for information-efficient ap-
proximate decision procedures, where the task is to distinguish whether the input is in the
language or if it is far from any word of the language, while requiring as little information
about the input as possible. Following the seminal work of Alon, Krivelevich, Newman,
and Szegedy [24], we focus on the case of regular languages. Our first contribution is to
determine the exact complexity of this problem in the case of the Hamming distance,
improving both the upper and lower bounds of Alon et al. [24]. Building on this first
result, we then give a complete characterization of the complexity property testing of
regular languages under the Hamming distance: we identify all complexity classes for this
problem, and give an effective combinatorial characterization in each class.
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The work presented in this chapter previously appeared in two articles: one with
T. Starikovskaya [48], which was published at ICALP’21, and one with C. Mascle and
N. Fijalkow, accepted for publication at ICALP’25.

1.2.2 Computing the distance to palindromes and squares, online
and in small-space

In Chapter 9, we study the problem of computing the distance of a string to a language,
as a measure of how close the string is from having the property defined by the language.
This chapter is focused on the low-distance regime, that is, the case where we have a
distance threshold d, and want to either know that the input is at distance more than d
from the language, or that it is at distance less than d, and in this case we require the
exact distance. We give small-space online algorithms for computing the Hamming or
edit distance of a string to the languages of palindromes and the language of squares,
in the low-distance regime. These results are based on filtering procedures that leverage
approximate pattern matching algorithms (similar to the ones described in Section 1.1).
In two cases, we give a new read-only algorithm for this task, tailored to our needs.

The results presented in this chapter appeared in an article published at ISAAC’23 [49],
co-authored with T. Kociumaka and T. Starikovskaya.

1.2.3 Small-space algorithms for palindromic length

Finally, in Chapter 10, we study another approach to quantifying the proximity of a
string to a language, which better captures the semantics of the language. Instead of
measuring the distance to the language, we count the minimum number of pieces that
the string must be split into so that each piece is in the language. For the case of
the language of palindromes, this value is called the palindromic length of the string.
Borozdin, Kosolobov, Rubinchik, and Shur [76] gave an algorithm that computes the
palindromic length in linear time and linear space. In this chapter, we give a small-space
algorithm for computing the palindromic length in near-linear time in the low-distance
regime. To obtain this algorithm, we develop a novel analysis of the structure of the
prefixes of a string that can be decomposed into a given number k of palindromes (called
k-palindromic prefixes), and show that theses prefixes can be compactly encoded using a
small number of combinatorial objects called affine prefix sets. We then show that the
structure underlying this analysis can be computed efficiently in a space-efficient manner.

The results presented in this chapter resulted in an article co-authored with J. Ellert
and T. Starikovskaya, available as a preprint on the ArXiv [53].
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Chapter 2

Preliminaries

This section introduces basic concepts that we assume familiarity with in this thesis.

2.1 Strings

Strings are finite, ordered sequences of elements drawn from a finite set, called the alpha-
bet, usually denoted Σ. The elements of Σ are called letters or characters. For an integer
n ≥ 0, we denote the set of all strings of length n by Σn, and we set Σ≤n =

⋃n
m=0Σ

m as
well as Σ∗ =

⋃∞
n=0 Σ

n. The (unique) empty string is denoted by ε. For integers i, j ∈ Z,
denote [i. .j] = {k ∈ Z : i ≤ k ≤ j}, and [i. .j) = {k ∈ Z : i ≤ k < j}. For a string
T ∈ Σn and an index i ∈ [1. .n], the i-th letter of T is denoted by T [i]. We use |T | = n
to denote the length of T . For two strings S, T , we use either ST or S · T to denote their
concatenation S[1] · · ·S[|S|]T [1] · · ·T [|T |]. For an integer m ≥ 0, the string obtained by
concatenating S with itself m times is denoted by Sm, with the convention that S0 = ε.
A string S is a square if there exists a string T such that S = T 2. In a slight abuse of
notation, we denote by S∞ the string obtained by concatenating infinitely many copies
of S.

Substrings, prefixes and suffixes. Let T be a string of length n. For integers i, j,
T [i. .j] denotes the substring or fragment T [i]T [i+ 1] · · ·T [j] of T if 1 ≤ i ≤ j ≤ n and
the empty string ε otherwise. We extend this notation with T [i. .j) = T [i. .j − 1] and
T (i. .j] = T [i + 1. .j]. When i = 1 or j = n, we may omit these indices, i.e., we write
T [. .j] for T [1. .j] and T [i. .] for T [i. .n]. We say that a string P is a prefix of T if there
exists j ∈ [1. .n] such that P = T [. .j], and a suffix of T if there exists i ∈ [1. .n] such
that P = T [i. .]. A substring (hence also a suffix or prefix) of T is proper if it is shorter
than T .

Rotations, periodicity, and primitivity. We define the cyclic left rotation (or rota-
tion, for short) of T rot(T ) = T [2] · · ·T [n]T [1]. In general, a rotation rots(T ) with shift
s ∈ Z is obtained by iterating |s| times the operation rot if s > 0, or its inverse rot−1

(the cyclic right rotation) if s < 0. We say that a string S is a rotation of T if there
exists an integer s such that S = rots(T ). A non-empty string T of length n is primitive
if it is distinct from its non-trivial rotations, i.e., if T = rots(T ) holds only if n divides s.
Equivalently, T is primitive if Sm = T implies that m = 1 and S = T .

A positive integer ρ is a period of a string T of length n if T [i] = T [i + ρ] for all
i ∈ [1. .n− ρ]. A fundamental tool for analyzing periodicities is the celebrated Periodicity

7
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Lemma by Fine and Wilf [134], which is stated below.

Fact 2.1.1 (Periodicity Lemma [134]). If p and q are distinct periods of a string of length
at least p+ q − gcd(p, q), then gcd(p, q) is a period of the string.

The smallest period of T is called the period of T and is denoted by per(T ). If
per(T ) ≤ n/2, then T is called periodic.

Fact 2.1.2 ([115]). For any string T , the prefix T [. .per(T )] is primitive.

Reversal and palindromes. We use TR or rev(T ) to denote the reverse of T , that is,
the string TR = T [n]T [n− 1] · · ·T [1]. A string T is a palindrome if TR = T .

Occurrences and pattern matching. A fragment T [i. .j] of a string T is called an
occurrence of a string P if T [i. .j] = P ; in this case, we say that P occurs at position i of T .
In some chapters of this thesis, we use “occurrences” to refer to the starting position i
or the ending position j of the occurrence T [i. .j]; this will be explicitly stated in the
corresponding chapters. In the pattern matching task, we are given a text T and a
pattern P , and must report all occurrences of P in the text T .

Longest common prefix and longest common extension. Given two strings S
and T , the longest common prefix of S and T , denoted by LCP(S, T ), is the length of the
longest prefix of S that is also a prefix of T . Given two indices i ∈ [1. .|S|] and j ∈ [1. .|T |],
the longest common extension (LCE) of S and T at indices i, j, denoted by LCES,T (i, j),
is equal to the longest common prefix of S[i. .] and T [j. .]. When S and T are clear from
the context, we may omit them and just write LCE(i, j).

Metrics on string: Hamming and edit distances. Let S and T be two strings.
The Hamming distance between S and T , denoted hd(S, T ), is the number of indices at
which S and T differ, if they have the same length, and +∞ otherwise. Formally:

hd(S, T ) =

{∑|S|
i=1 1S[i]̸=T [i] if |S| = |T |,

+∞ otherwise.

The edit distance is defined using three elementary operations on strings:
• the insertion of a character a ∈ Σ at position i ∈ {0, . . . , |S|}:

ins(S, i, a) = S[1. .i]aS[i+ 1. .]

• the substitution with a character a ∈ Σ at position i ∈ {1, . . . , |S|}:

sub(S, i, a) = S[1. .i− 1]aS[i+ 1. .]

• the deletion of a character at position i ∈ {1, . . . , |S|}:

del(S, i) = S[1. .i− 1]S[i+ 1. .]

The edit distance between S and T is the minimum number of elementary operations that
are needed to obtain T starting from the string S.

Using this framework, the Hamming distance between S and T can be reformulated
as the minimum number of substitutions that are needed to obtain T from S.
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2.2 Formal Languages
A formal language is a (potentially infinite) set L of strings, that is, a subset of Σ∗.
In this thesis, we simply use language for formal languages, for conciseness. Let L,L′

be languages. Extending the notations used for strings, we define the concatenation of
languages, denoted L · L′ or LL′, as L · L′ = {w · w′ : w ∈ L and w′ ∈ L′}. Similarly, we
define language exponentiation as follows: for m ≥ 0, the language Lm is defined as {ε}
if m = 0, and L · Lm−1 otherwise. By unrolling the recursion, we obtain an alternative
definition:

Lm =

{
{ε} if m = 0

{w1w2 . . . wm : ∀i, wi ∈ L} otherwise.

Intuitively, exponentiation corresponds to iterating concatenation a fixed number of times.
The Kleene star of L, denoted L∗, corresponds to repeating concatenation for an arbitrary
number of iterations. Formally,

L∗ =
⋃
m≥0

Lm = {ε} ∪ {w : ∃m ≥ 1 and w1, . . . , wm ∈ L s.t. w = w1 . . . wm}.

2.3 Complexity and Models of Computation

2.3.1 Big-O notation.

In this thesis, we use the “big-O” notation of Landau [222] to describe the asymptotic
behavior of functions, such as the computational complexity of algorithms. We recall here
the formal definition of this family of notations (see [200] for a reference and a historical
exposition). We start with the O(·) notation, that denotes the relation of asymptotic
domination. Let f, g : N 7→ R>0 be positive functions. They satisfy f(n) = O(g(n))
if there exists a constant C > 0 such that for all sufficiently large n, we have f(n) ≤
C · g(n). For example, f(n) = O(1) means that f is upper bounded by a constant that is
independent of n. The Ω(·) (“big-omega”) notation denotes the reciprocal relation, that
is:

f(n) = Ω(g(n))⇐⇒ g(n) = O(f(n)).

The Θ(·) (“theta”) notation denotes the “symmetric” version of O(·), i.e.

f(n) = Θ(g(n))⇐⇒ f(n) = O(g(n)) and g(n) = O(f(n)).

The o(·) (“little-O”) notation denotes the “strict” version of O(·): we have f(n) = o(g(n))
if and only if for any constant ε > 0, we have f(n) ≤ εg(n) for all sufficiently large n.
The ω(·) (“little-omega”) notation denotes the inverse relation of o(·). Additionally, we
use the Õ(·) notation to hide factors polynomial in the logarithm of function:

f(n) = Õ(g(n))⇐⇒ ∃c > 0 : f(n) = O(g(n) logc g(n)).

2.3.2 Computational complexity

Throughout this thesis, we assume the standard word Random Access Memory (word-
RAM, or simply RAM) model of computation [241], using machine words of width w =
Θ(log n) when processing an input string of length n. In this model, the algorithm may
perform basic operations (such as comparisons, arithmetic, or copy) on integers encoded
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on Θ(log n) bits in a single step. Therefore, if the input strings are encoded over an integer
alphabet of size polynomial in n, characters can be stored in a single machine word, and
operations on characters take unit time. Furthermore, accessing (reading or writing) the
value stored in the memory at location given by an address stored on a machine word is
also an elementary operation that takes a single step (hence the name random access).

In this model, the most widely used measures of computational complexity are the
(worst-case) time complexity and the space complexity. The time complexity of an algo-
rithm A is a function that maps n to the maximum, over all inputs x of length n, of the
number of basic RAM operations that A on x. The space complexity instead counts the
number of memory locations that the algorithm writes to, under the assumption that the
algorithm never reads a memory before writing to it. We may also report the space com-
plexity as a number of bits of space that the algorithm uses. In this case, the two quantities
are within a logarithmic factor of one another. Let s(n) denote the space complexity in
number of words, and sb(n) the space complexity in number of bits used. As each bit that
the algorithm uses belongs to some memory word, we have s(n) ≤ sb(n). Furthermore,
as each machine word uses w = Θ(log n) bits, we have sb(n) ≤ w · s(n) = O(s(n) log n),
which implies that sb(n) = Õ(s(n)).

Amortized time complexity. There are data structures that can perform an operation
very efficiently in most cases, and must perform a time-consuming computation in the
remaining few cases. Therefore, the worst-case time complexity of the operation is that
of the expensive computation, but if that case is sufficiently rare, an algorithm that runs
the operation many times will be only marginally slowed down. This idea is formalized
as amortized complexity. An operation has amortized complexity O(f(n)) if, for any
integer k, applying that operation k times to any given input takes time O(k · f(n)).

2.3.3 Input access models.

In some cases, we place restrictions on how some parts of memory (usually the input) can
be accessed.

Read-only model. In the read-only model, the algorithm has read-only random access
to the input, i.e. the algorithm can read from the memory where the input is stored, but
not cannot write to it. Therefore, the space occupied by the input is never included in
the space complexity.

Online algorithms. In this thesis, online algorithms refers to string algorithms that
acquire information about the input sequentially at runtime. After performing its com-
putation on the current input, the algorithm receives the next character of the input and
must update its result accordingly. The main measure of complexity of online algorithms
is the time per character, which measures the time it takes to update the result after
receiving a new character.

Streaming model. In the streaming model, the algorithm has sequential access to the
input string T . In this model, the input is stored in a special read-only memory location m
such that the i-th time the algorithm reads from m, it receives the i-th character T [i] of
the input (or T [n] if i > n). Another read-only memory location stores the length n of T .
In this model, after receiving T [i], the algorithm cannot access information about T [j]
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for j < i unless it is explicitly stored in the writable part of the memory – in which case
it would be included in the space complexity. Algorithms in the streaming model are a
restricted form of online algorithms: they access the input in a sequential manner, but
have no memory of previously seen parts of the input.

2.4 Tries and the Suffix Tree

The suffix tree is a classical but important data structure for string processing (see
e.g. [284]). In this section, we recall its definition and important properties, and give
an overview of existing variants of the suffix tree.

2.4.1 Tries and compressed tries.

First, we recall the notion of tries, a kind of search tree adapted to string processing.
Given a set S = {S1, . . . , Sn} of strings over an alphabet Σ, a trie for S is a rooted
tree whose edges are labeled with letters from Σ, and whose internal nodes correspond to
prefixes of the Si’s. A trie additionally satisfies the following properties:

1. For each character a ∈ Σ, each internal node has at most one child edge labeled a.
2. For every Si ∈ S and for every 0 ≤ j < |Si|, the node corresponding to Si[. .j] is

the parent of Si[. .j + 1], and the edge between them is labeled with the character
Si[j + 1].

An internal node of the tree corresponds to the string obtained by concatenating the labels
of the edges on the path from the root to that node. The first property above ensures
that paths corresponding to common prefixes of strings in S are merged in the trie, see
Fig. 2.1 for an illustration.

a

a

b

c

b

c

d

b

b

a

c

a

a

bc

bcd

bba
c

Figure 2.1: The trie for the set of strings S = {aac, aabc, abba, bcd} (left) and the corre-
sponding compressed trie (right).

Compressed tries. In the absence of branching, long paths from S[. .i] to S[. .j] can
be compressed and replaced by a single edge labeled by S[i + 1. .j] (see Fig. 2.1). This
simplification ensures that a compressed trie for a set S of n strings contains O(n) internal
nodes, regardless of the length of the strings [168]. In what follows, we will simply use
“trie” to refer to compressed tries.
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2.4.2 The Suffix Tree

Originally introduced by Weiner [284], the suffix tree TS of a string S is a (compressed)
trie of all suffixes of S. Naive construction algorithms for TS take O(n2) time, while
Weiner’s algorithm runs in linear time for constant-size alphabet. Weiner’s work was
later extended by Ukkonen [280], who gave an algorithm for constructing the suffix tree
of a string on-line, and by Farach [130], who gave a linear time algorithm for constructing
the suffix tree of strings over alphabets that can be sorted in linear time.

Applications of the Suffix Tree

The suffix tree can be used as an indexing data structure to efficiently solve string pro-
cessing problems. Namely, after linear-time preprocessing of the suffix tree of S, we can
perform the following operations [168]:

• Given a pattern P , find an arbitrary occurrence or count the number of occurrences
of P in S, in time O(|P |).

• Given two indices i, j, compute the longest common extension LCES,S(i, j) of S at
positions i and j in constant time.

Numerous combinatorial string problems, such as Longest Palindromic Substring,
Longest Common Substring, computing the LZ-Decomposition and counting the
number of unique substrings have a linear-time algorithm based on the suffix tree [168].

Sparse Suffix Trees.

In some applications (see for example Chapter 4), we need a trie that contains only a
given subset E of b suffixes of S. Such a trie is called a sparse suffix tree. To build such a
sparse suffix tree, one can build a complete suffix tree and remove the nodes corresponding
to suffixes not in E. This algorithm uses Θ(n) space in the worst case, since it builds the
whole suffix tree. However, a compressed trie containing b strings has O(b) nodes and
thus uses O(b) space, so the above algorithm is not space-optimal. On the other hand,
the algorithm that inserts all b suffixes into a trie one by one takes O(nb) time and O(b)
space: its space usage is optimal but the algorithm is much slower. There are algorithms
that achieve both near-optimal time and space complexity [69, 157, 215]: the current state
of the art is by Kosolobov and Sivukhin [215], who gave a deterministic algorithm that
computes sparse suffix trees in O(n logb n) time and O(b) space (for b ≥ log2 n).
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Approximate Pattern Matching
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Chapter 3

Introduction and Overview

In Section 3.1, we present the different notions of approximate string matching studied
in this thesis. In Section 3.2, we recall results related to periodicity in pattern matching,
which will be a recurring theme in the next chapters. In Section 3.3, we present the PILLAR
model, a powerful abstract framework for creating model-independent string algorithms
introduced by Charalampopoulos, Kociumaka, and Wellnitz [89], on top of which multiple
results of this thesis are built. Finally, in Section 3.4, we give an overview of the contents
of the chapters of the first part of this thesis.

3.1 Approximate String Matching

3.1.1 Exact string matching

Before enumerating the variants of approximate string matching that we study in this
thesis, we give a high-level overview of the algorithms and data structures for exact string
matching.

In exact string matching, the goal is to find all exact occurrences of a pattern P
of length m in a text T of length n, that is, all substrings of T that are equal to P .
Because of its importance, this problem has received a lot of attention between the 60’s
and the 80’s. The most influential exact string matching algorithms from this period
are the deterministic, linear-time algorithm of Knuth, Morris, and Pratt [201] and the
randomized algorithm of Karp and Rabin [190], which uses constant space in the read-only
model. More recently, a line of work initiated by Porat and Porat [250] and later improved
by Breslauer and Galil [77] resulted in a O(logm)-space streaming algorithm that uses
constant time per character and reports all exact occurrences of P in T . Classical data
structures such as the suffix tree (see Section 2.4) or suffix array allow to efficiently solve
multiple instances of pattern matching against the same text. After an indexing phase
that takes O(n) time, these data structures allow answering pattern matching queries in
time close to O(m) (with additional time linear in the number of occurrences if reporting
is required). We will use some of these data structures and algorithms as subroutines in
the algorithms presented in the next chapters.

3.1.2 Approximate pattern matching

A natural extension of exact string matching is approximate string matching, where the
goal is to find all substrings of T that are similar to P . This variant allows modeling

15
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uncertainty and arises, for example, in problems related to genomics, where mutations
(substitution, insertion or removal of a character) can occur spontaneously.

Similarity between strings is best captured by a notion of distance: the most widely
used are the Hamming distance and the edit distance (also known as Levenshtein dis-
tance). The corresponding problems are known as pattern matching with mismatches and
pattern matching with edits (or errors). For the Hamming distance, Abrahamson [14] and
Kosaraju [213] independently developed an O(n

√
m logm)-time algorithm that computes

the Hamming distance between the pattern and each m-length substring of the text using
convolutions via the Fast Fourier Transform (FFT). This result was recently improved by
Chan et al. [86], who gave a randomized algorithm that runs in time O(n

√
m), and by

Jin and Xu [187] who gave a deterministic algorithm running in time O(n
√
m log logm).

In this thesis, we study a variant of approximate pattern matching parameterized by
an integer k: the goal is to identify all substrings of T whose (Hamming or edit) distance
to P is at most k.

Example 3.1.1. Let P = abcad, and consider the case of the Hamming distance with
k = 1. In the string T = cbdadcadbbabcad, there are two 1-mismatch occurrences of P ,
starting at positions 4 and 11 (underlined) (the latter is also an exact occurrence).

For the Hamming distance, the state-of-the-art solutions are the O(n
√
k log k)-time

algorithm of Amir et al. [32], the O(n + (n/m) · k2)-time algorithm of Chan et al. [85],
and the O(n + kn/

√
m)-time algorithm of Chan et al. [86], which provides a smooth

trade-off between the two previous solutions and improves the bound for some range of
parameters. The last two algorithms are randomized, and deterministic alternatives (at
the expense of additional polylogarithmic factors) have been presented in [89, 105, 158].
For the edit distance, Cole and Hariharan [112] gave an algorithm that runs in time
O(n + (n/m) · k4). Their result was recently improved by Charalampopoulos et al. [94],
who gave an algorithm that runs in time O(n+ (n/m) · k3.5).

As for exact pattern matching, the approximate versions have also been studied in the
streaming model [164, 207, 250, 255]. Clifford et al. [107] gave a remarkable construc-
tion that draws on error-correcting code theory to extend the sketch-based approach of
Karp and Rabin [190] into an efficient streaming algorithm for pattern matching with
mismatches that uses Õ(

√
k) time per character and Õ(k) space. Building on their work,

Bhattacharya and Koucký [61] gave a streaming algorithm for the edit distance case.
In this thesis, we will use some of the above algorithms as subroutines for more complex

tasks, such as computing distance to languages in Chapter 9.

3.1.3 Pattern matching with partial data: wildcards

Using mismatches or errors as presented above models general uncertainty in the input
strings. In some cases, the uncertainty is localized : for example, a corrupted part of the
data may be missing, or part of the pattern may be irrelevant for the query. In this case,
we can use a more adaptive approach and place a wildcard1 ♦♢ ̸∈ Σ, a special symbol that
matches any character in Σ ∪ {♦♢}, in each of these positions, and then performing exact
pattern matching.

Example 3.1.2. Let P = ab♦♢a. In the string T = c♦♢da♦♢cad♦♢ac, there is an occurrence
of P starting at position 4 (underlined), as the wildcard ♦♢ in P matches c, and the one
in T matches b.

1Wildcards are also known in the literature as “don’t cares” or “holes”.
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Already in 1974, Fischer and Paterson [140] presented an O(n logm log σ)-time algo-
rithm for pattern matching with wildcards (where σ is the size of the alphabet Σ). Sub-
sequent works by Indyk [184], Kalai [189], and Cole and Hariharan [111] culminated in
an O(n logm)-time deterministic algorithm. A few years later, Clifford and Clifford [100]
presented a very elegant algorithm with the same complexities. All the above solutions
are based on fast convolutions via the FFT. Golan et al. [163] gave a streaming algorithm
for the problem that uses O(D + logm) time per character and O(D logm) space for
patterns with D wildcards.

Unsurprisingly, the approximate pattern matching problem in strings with wildcards
has also received significant attention. Conceptually, it covers the case when some of
the corrupt positions are known, but not all of them. Notable results for these problems
include the Õ(nk)-time algorithm of Clifford et al. [102] for pattern matching with k
mismatches and wildcards, and the Õ(n

√
km)-time algorithm of Akutsu [20] for pattern

matching with k errors and wildcards. Chapter 5 contains for a more complete overview
of results in this line of research.

In Chapter 5, we study the problem of pattern matching with mismatches and wild-
cards and give an efficient algorithm for strings that contain few contiguous groups of
wildcards. In Chapter 6, we give a data structure for LCE queries in strings with wild-
cards. As an application, we obtain a more efficient algorithm for pattern matching with
edits and wildcards.

3.1.4 Circular pattern matching

Another notion of approximate pattern matching is that of circular pattern matching,
where the goal is to find occurrences of rotations of the pattern in the text.

Example 3.1.3. Let P = abca. In the string T = abdacaabdbac, there is a circular
occurrence of P starting at position 5 (underlined), as rot2(P ) = caab.

The interest in occurrences of rotations of a given pattern is motivated by applica-
tions in Bioinformatics and Image Processing: in Bioinformatics, the starting position
of a biological sequence can vary significantly due to the arbitrary nature of sequenc-
ing in circular molecular structures or inconsistencies arising from different standards of
linearization applied to sequence databases; and in Image Processing, the contour of a
shape can be represented using a directional chain code, which can be viewed as a circular
sequence, particularly when the orientation of the image is irrelevant [39].

For strings over an alphabet of size σ, the classical read-only solution for this problem,
based on the suffix automaton of P · P , runs in O(n log σ) time and uses O(m) extra
space [230]. Recently, Charalampopoulos et al. [93] showed a simple O(n) time and
O(m) extra space solution. The problem has been also studied from the practical point of
view [97, 143, 275] and for indexing data structures that allow to perform circular matching
of multiple patterns against a single text. For example, Hon et al. [177] gave a space-
efficient algorithm for computing the circular suffix tree of a string, a data structure that
generalizes the suffix tree to circular pattern matching. Other results include succinct
indexes [176] and data structures for dictionary matching [182]. Finally, recent work
has considered the problem of approximate circular pattern matching, under both the
Hamming [92, 93] and the edit distance [96].

In Chapter 4, we study small-space data structures for internal pattern matching and,
as an application, give a small-space algorithm for exact circular pattern matching.
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3.2 Periodicity and the Structure of Occurrences

The notion of periodicity is intimately connected to pattern matching, and more precisely
to the structure of occurrences of a pattern in a text.

3.2.1 A standard trick in pattern matching

Before giving the details of this connection, we discuss a technique2 introduced by Clifford
and Clifford [100] that allows reducing the problem of pattern matching to the case where
the text is not much longer than the pattern. More precisely, pattern matching between
a text T of length n and a pattern P of length m can be reduced to O(n/m) instances of
pattern matching between P and texts T1, T2, . . . of length 3m/2 (except the last, which
may have length less than 3m/2). The text T1 consists of the first 3m/2 characters of T ,
and each subsequent Ti is obtained by taking the substring of length 3m/2 of T to the
right of Ti−1 that overlaps it by m − 1 positions. Then, every occurrence of P in T is
contained in exactly one of the Ti’s. Since we cover at least m/2 new characters of T
with each new Ti, there are O(n/m) Ti’s. Thus, an algorithm with runtime t(m) for the
case |T | ≤ 3|P |/2 readily implies an algorithm for the general case that runs in time
O(t(m) · n/m), since one can run O(n/m) separate instances and aggregate the results.

3.2.2 The structure of occurrences

Let us now discuss why the assumption that n ≤ 3m/2 is convenient: in this case, the
occurrences of P in T can be represented succintly using a single arithmetic progression
(see Fact 3.2.1, and Fig. 3.1 for an illustration). A set S of integers forms an arithmetic
progression if it contains evenly spaced integers, or, more formally, if there exist inte-
gers a, b and t such that S = {a+ i · b, i = 0, . . . , t}. The integer b is called the difference
of the arithmetic progression.

Fact 3.2.1 ([134, Corollary of Theorem 1]). Let P be a pattern of length m and let T be
a text of length n ≤ 3m/2. At least one of the following holds:

• (“aperiodic case”) there is at most one occurrence of P in T , or
• (“periodic case”) P is periodic, and the occurrences of P in T form an arithmetic

progression with difference per(P ).

P Q Q Q Q

T

P Q Q Q Q

Q Q Q

Figure 3.1: Illustration of the periodicity induced by multiple occurrences of P in a short
text. Because |T | ≤ 3|P |/2, two occurrences of P in T will have a large overlap, of at
least |P |/2 characters. The prefix Q of P that spans this overlap is therefore repeated
in P . Red dashed arrows represent equality between the same substring of P , and solid
blue arrows represents equality between matching parts of the text and of the pattern.

2In the literature, this technique is literally known as “the standard trick” of pattern matching.
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As an application of the standard trick, we can derive the following result for texts of
arbitrary lengths.

Corollary 3.2.2. Let P, T be strings. The occurrences of P in T can be partitioned into
O(|T |/|P |) arithmetic progressions with difference per(P ).

Fact 3.2.1 is a powerful and widely used tool for designing pattern matching algo-
rithms. The case where P is aperiodic is easy, since there is at most one occurrence to
find. In the periodic case, one can exploit the periodicity to make the algorithm more
efficient. The streaming pattern matching algorithm of Porat and Porat [250] is an illus-
tration of this periodic/aperiodic case distinction.

Another notable consequence of Fact 3.2.1 is that, when n ≤ 3m/2, the occurrences
of P in T have a compressed representation: using the three numbers (a, b, t) that de-
scribe the arithmetic progression, we can represent these occurrences using O(1) space.
This allows for very efficient data structures that can perform internal pattern matching
(defined in Section 3.3) in constant time, even when m is large.

3.2.3 The structure of approximate occurrences

An important part of the work in this thesis focuses on approximate pattern match-
ing, which cannot directly take advantage of the properties of exact pattern matching.
However, Charalampopoulos, Kociumaka, and Wellnitz [89] gave an extension of these
structural results for approximate pattern matching under the Hamming and edit dis-
tances. Because they consider approximate occurrences, the results consider a weaker
notion of periodicity. In the case of the Hamming distance, their result is the following
(the case of the edit distance is similar).

Fact 3.2.3 ([89, Theorem 3.1]). Let P be a pattern of length m and T be a text of length
n ≤ 3m/2. At least one of the following holds:

• T contains O(k) k-mismatch occurrences of P , or
• P is approximately periodic: there exists a string Q of length O(m/k) such that
hd(P,Q∞) < 2k, and the k-mismatch occurrences of P in T can be partitioned into
O(k) arithmetic progressions with difference |Q|.

Here, “k-mismatch occurrences of P in T ” are the starting positions of substrings of T
that are within Hamming distance k of P , and hd(P,Q∞) denotes the Hamming distance
between P and the prefix of Q∞ of length |P |.

The approximate pattern matching algorithms of Charalampopoulos et al. [89] also
distinguish between the easy aperiodic case and the approximately periodic case. In Chap-
ter 9, we use a similar approach to design a small-space algorithm for pattern matching
with k mismatches in the read-only setting.

In Chapter 5, we study exact and approximate pattern matching in strings with few
wildcards. We give a result on the structure of occurrences in this setting, and use it to
obtain efficient algorithms based on a similar aperiodic/periodic approach.

3.3 A Unified Approach to Pattern Matching

An important part of the work presented in this thesis (Chapters 4, 5, 6 and 9) builds on
the PILLAR framework, introduced by Charalampopoulos, Kociumaka, and Wellnitz [89]
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as a unified approach to pattern matching. In this section, we present this framework and
highlight its interest.

Charalampopoulos, Kociumaka, and Wellnitz [89] observe that many efficient pattern
matching algorithms can be expressed using a small set of high-level string primitives,
plus some operations unrelated to strings, such as sorting numbers. They subsequently
introduce the PILLAR model, a high-level string-manipulation language. In this model,
we are given a family X of strings, the basic objects are handles (abstract pointers) to
substrings X[i. .j] of strings X ∈ X , and we can perform the following operations:

• Internal Pattern Matching IPM(P, T ): under the condition that |T | ≤ 3|P |/2, com-
pute the occurrences of P in T , represented as an arithmetic progression with dif-
ference per(P ),

• Longest Common Prefix LCP(S, T ) (also called Longest Common Extension, LCE):
compute the length of the longest common prefix of S and T ,

• Longest Common Suffix LCPR(S, T ): compute the length of the longest common
suffix of S and T ,

• Substring(S, i, j): return a handle to the string S[i. .j],
• Access(S, i): return S[i],
• Length(S): return |S|.
Using this set of basic operations, we can implement other common string operations

with little overhead. For example, given handles to strings S, T and Q, the following
operations can be implemented using O(1) PILLAR operations ([89, Lemmas 2.5 to 2.8]):

• Test if S = T ,
• Compute per(S), the period of S, or declare that S is not periodic,
• Compute LCP(S,Qm), for any integer m ≥ 0.

Using the “standard trick” of pattern matching, we can also implement pattern matching
of P in T without the condition that |T | ≤ 3|P |/2, using O(|T |/|P |) PILLAR operations.

Landau and Vishkin [226] gave an algorithm running in time O(n+k2) for computing
the edit distance between two strings of length n when the distance is at most k. By
inspecting their algorithm, we can restate their result in the PILLAR model as follows:

Fact 3.3.1. Let S, T be strings and k be a positive integer. There is an algorithm using
O(k2) PILLAR operations and O(k2) space that computes the edit distance between S and T
if it is less than k or reports that it is greater than k.

When expressed in the PILLAR framework, algorithms are generic over the underlying
implementation of the operations: one can choose the implementation that best fits their
use case.

For example, the PILLAR operations can be implemented very efficiently in the RAM
model: the suffix tree (Section 2.4) uses O(n) space, and after O(n) preprocessing, it
can be used to answer any PILLAR operation in constant time. (Here, n is the sum of
the lengths of the strings in X .) As a consequence, an algorithm A using space s, p
pillar operations plus t additional time can be implemented using O(n+ t+ p) time and
O(n+ s) space in the RAM model. For example, the algorithm of Fact 3.3.1 runs in time
O(n+ k2) in this model: this is the original implementation of Landau and Vishkin [226].
However, this is not the only possible implementation of PILLAR operations in the RAM
model: these operations can also be implemented in constant extra space and linear time
(without any preprocessing) in the read-only setting. The algorithm A would then run in
O(np+ t) time and O(s) extra space.

Furthermore, the PILLAR operations can also be implemented in other frameworks. An
interesting example is that of compressed strings: we assume that the strings in X are in a
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grammar-compressed form: the sum of the lengths of the strings is n but the total size of
the grammars is g ≪ n (for highly compressible strings, g can be as small as O(log n)). In
this setting, there is a probabilistic construction such that, after a preprocessing phase that
takes O(g log n) time, we can perform the PILLAR operations in time O(log n) [89, 125]: the
above algorithmA would therefore run in time O((g+p) log n+t) given compressed strings
as input, with an error probability of at most 1/nc for some constant c. Similarly, the
algorithm of Fact 3.3.1 would take O((g + k2) log n) time. This result is not immediately
visible from the result of Landau and Vishkin [226], which uses a specific RAM data
structure to implement the PILLAR operations; whereas stating algorithms in the PILLAR
model unlocks the use of other implementations.

Other frameworks of interest for the PILLAR model include the dynamic setting [160],
which additionally allows concatenation or reversal of strings, and the quantum setting.

As a result, stating an algorithm in the PILLAR framework yields an efficient algorithm
not only in the RAM model, but also in all other settings. Furthermore, this point of
view opens up another line of research, that of finding efficient implementations of PILLAR
operations in other models of interest. Two of the three chapters in this part follow this
line of research. In Chapter 4, we give an implementation of the IPM operation for small-
space algorithms, the missing piece for a full implementation of the PILLAR model in
this setting. In Chapter 6, we design a data structure for LCP and LCPR in strings with
wildcards, thereby enabling fast pattern matching algorithms in such strings.

3.4 Organization of this Part

3.4.1 Time-space trade-off for internal pattern matching

In Chapter 4, we give an efficient data structure with tunable memory footprint for a
generalization of the IPM operation in the read-only setting. More specifically, given
random access to a string S of length n, we show that for any τ = O(n/ log2 n), there
exists a data structure using Õ(n/τ) space that can answer IPM queries in S in time O(τ)
after Õ(n)-time preprocessing. Our construction is based on a 3D range-emptiness data
structure built on top of a sparse suffix tree of the input string. The number of suffixes
in this tree depends on the parameter τ ; we give an efficient algorithm to select these
suffixes using the τ -partitioning sets of Kosolobov and Sivukhin [215].

This contribution is significant because it is the missing piece for a complete imple-
mentation of the PILLAR operations in small space. The Substring, Access and Length
operations can be trivially implemented in constant time and space, and Kosolobov and
Sivukhin [215] gave a data structure with an ⟨O(τ), O(n/τ)⟩ time-space trade-off and
quasilinear preprocessing for LCP (and LCPR) queries. Our result gives a similar trade-off
for IPM queries, showing that for any τ , there is an implementation of the PILLAR model
with O(τ) time per operation using Õ(n/τ) space.

We also use our IPM data structure to design space-efficient algorithms for the Longest
Common Substring (LCS) and Circular Pattern Matching problems in small-space settings
(streaming, asymmetric streaming, and read-only models).

The results presented in this chapter appeared in an article published at CPM’24 [51],
co-authored with P. Charalampopoulos and T. Starikovskaya. This paper won the Best
Paper Award of the conference.
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3.4.2 Pattern Matching with mismatches and wildcards

In Chapter 5, we study the problem of approximate pattern matching under the Hamming
distance (also known as pattern matching with mismatches) in strings that may contain
wildcards.

We consider the case where the pattern P contains D wildcards distributed in G
contiguous groups, and work under the assumption that n ≤ 3m/2. Our contribution
is twofold. First, we characterize the structure of occurrences in this setting by showing
that they can be partitioned into O((D + k) · (G + k)) arithmetic progressions. We give
a comparable lower bound by constructing an infinite family of examples that require
Ω((D + k)k) arithmetic progressions to cover all approximate occurrences, building on a
combinatorial result on progression-free sets by Elkin [127]. Second, we give an efficient
algorithm for pattern matching with mismatches and wildcards. Our algorithm uses
O((D+ k)(G+ k) ·n/m) PILLAR operations. By exploiting the different implementations
of the PILLAR model, this result implies efficient algorithms in several settings, including
an O(n+(D+ k)(G+ k) ·n/m)-time algorithm in the RAM model. Our characterization
and algorithm are based on a sliding-window approach that exploits the structure of
groups of wildcards.

The results presented in this chapter appeared in an article published at ESA’24 [52],
co-authored with P. Charalampopoulos and T. Starikovskaya.

3.4.3 Longest Common Extension with Wildcards

In Chapter 6, we give a data structure for LCE queries on strings with wildcards, called
LCEW. As in Chapter 4, our result provides a time-space trade-off: for strings with G
groups of wildcards and for any t ≤ G, we show that there exists a data structure using
O(nG/t) space that answers LCEW queries in O(t) time. Our result is based on an
efficient dynamic programming scheme using the algorithm of Clifford and Clifford [100]
for pattern matching with wildcards, which allows us to create a data structure that
“interpolates” between the data structure of Crochemore et al. [117] and the “kangaroo
jumping” technique of Landau and Vishkin [224].

We then show that this data structure enables efficient algorithms for approximate
pattern matching and analysis of strings with wildcards. First, we obtain an algorithm
for approximate pattern matching under the edit distance in strings with wildcards that
runs in Õ(n

√
Gk) time, improving over a previous result by Akutsu [20]. Second, we show

algorithms that run in Õ(n
√
G)-time for computing variants of the prefix and border

arrays in strings with wildcards, improving over the previous Õ(n
√
n)-time algorithm

of Iliopoulos and Radoszewski [180]. Furthermore, we unveil a surprising connection
between LCE queries in strings with wildcards and (sparse) Boolean matrix multiplication.
As a result, we obtain a lower bound on the preprocessing-query time product of any
data structure for LCEW, and a deterministic combinatorial algorithm for sparse Boolean
matrix multiplication.

The results presented in this chapter appeared in an article published at ESA’24 [50],
co-authored with P. Charalampopoulos and T. Starikovskaya.



Chapter 4

Time-space trade-off for Internal
Pattern Matching

4.1 Introduction
In the text indexing problem, the task is to preprocess a text T into a data structure
(index) that can answer the following queries efficiently: Given a pattern P , find the
occurrences of P in T . The Internal Pattern Matching problem (IPM) is a variant
of the text indexing problem, where both the pattern P and the text T are fragments of
a longer string S, given in advance.

Introduced in 2009 [193], IPM queries are a cornerstone of the family of internal queries
on strings. The list of internal queries, primarily executed through IPM queries, comprises
of period queries, prefix-suffix queries, periodic extension queries, and cyclic equivalence
queries; see [202, 203, 205]. Other problems that have been studied in the internal setting
include shortest unique substring [13], longest common substring [36], suffix rank and
selection [40, 202], BWT substring compression [40], shortest absent string [44], dictionary
matching [87, 90, 119], string covers [118], masked prefix sums [121], circular pattern
matching [183], and longest palindrome [240].

The primary distinction between the classical and internal string queries lies in how
the pattern is handled during queries. In classical queries, the input is explicitly provided
at query time, whereas in internal queries, the input is specified in constant space using
their endpoints as fragments of S. This distinction enables notably faster query times in
the latter setting, as there is no need to read the input when processing the query. This
characteristic of IPM and similar internal string queries renders them particularly valu-
able for bulk processing of textual data. This is especially advantageous when S serves
as input for another algorithm, as illustrated by multiple direct and indirect (via other
internal queries) applications of IPM: pattern matching with variables [132, 217], detec-
tion of gapped repeats and subrepetitions [159, 212], approximate period recovery [34, 37],
computing the longest unbordered substring [206], dynamic repetition detection [35], com-
puting string covers [118], identifying two-dimensional maximal repetitions, enumeration
of distinct substrings [88], dynamic longest common substring [36], approximate pattern
matching [89, 94], approximate circular pattern matching [92, 93], (approximate) pattern
matching with wildcards [52], RNA folding [120], and the language edit distance problem
for palindromes and squares [49].

Below we assume |T | < 3|P |/2, which guarantees that the set of occurrences of P in T
forms an arithmetic progression and can be thus represented in O(1) space.

With no preprocessing (O(1) extra space), IPM queries on a string S of length n can

23
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be answered in O(n) time by a constant-space pattern matching algorithm (see [78] and
references therein). On the other side of the spectrum, Kociumaka et al. [203] showed that
for every string S ∈ [0. .σ]n, there exists a data structure of size O(n/ logσ n) which answers
IPM queries in optimal O(1) time and can be constructed in O(n/ logσ n) time given the
packed representation of S (meaning that S divided into blocks of logσ n consecutive
letters, and every block is stored in one machine word). The problem has been equally
studied in the compressed and dynamic settings [89, 195, 196].

4.1.1 Our Main Contribution: Small-space IPM

As our main contribution, we provide a trade-off between the constant-space and O(n)
query time and the O(n/ logσ n)-space and constant query time data structures. We
consider the IPM problem in the read-only setting, where one assumes random read-only
access to the input string(s) and only accounts for the extra space, that is, the space used
by the algorithm/data structure on top of the space needed to store the input.

Corollary 4.1.1. Suppose that we have read-only random access to a string S of length n
over an integer alphabet. For any integer τ = O(n/ log2 n), there is a data structure that
can be built in O(n logn/τ n+(n/τ) · log4 n log log n) time using O((n/τ) · log n(log log n)3)
extra space, and can answer the following internal pattern matching queries in time O(τ+
log n log3 log n): given p, p′, t, t′ ∈ [1. .n] such that t′− t ≤ 2(p′− p), return all occurrences
of P = S[p. .p′] in T = S[t. .t′].

Our data structure is nearly optimal: First, when n/τ is polynomial, the construction
time is linear; and secondly, the product of the query time and space of our data structure
is optimal up to polylogarithmic factors (Lemma 4.3.11).

Technical overview for IPM queries. Our solution relies heavily on utilizing the
concept of τ -partitioning sets, as introduced by Kosolobov and Sivukhin [215]. For a
string of length n, a τ -partitioning is a subset of O(n/τ) positions that satisfies some
density and consistency criteria. We use the positions of such a set as anchor points
for identifying pattern occurrences, provided that the pattern avoids a specific periodic
structure. To detect these anchored occurrences, we employ sparse suffix trees alongside
a three-dimensional range searching structure. In cases where the pattern does not avoid
said periodic structure, we employ a different strategy, leveraging the periodic structure
to construct the necessary anchor points.

We next provide a brief comparison of the outlined approach with previous work.
String anchoring techniques have been proven very useful in and been developed for
text indexing problems, such as the longest common extension (LCE) problem, in small
space [69, 215]. One of the most technically similar works to ours is that of Ben-Nun
et al. [59] who considered the problem of computing a long common substring of two
input strings in small space. They use an earlier variant of τ -partitioning sets, due to
Birenzwige et al. [69], that has slightly worse guarantees than that of Kosolobov and
Sivukhin [215]. The construction of anchors for substrings with periodic structure is quite
similar to that of Ben-Nun et al. [59]. After computing a set of anchors, they aim to
identify a synchronised pair of anchors that yields a long common substring; they achieve
this via mergeable AVL trees. As IPM queries need to be answered in an online manner,
we instead construct an appropriate orthogonal range searching data structure over a
set of points that correspond to anchors. Using orthogonal range searching is a by-now
classical approach for text indexing, see [229] for a survey.
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4.1.2 Applications

Several internal queries reduce to IPM queries, and hence we obtain efficient implemen-
tations of them in the small-space setting. Additionally, we port several efficient approx-
imate pattern matching algorithms to the small-space setting since IPM was the only
primitive operation that they rely on that did not have an efficient small-space implemen-
tation to this day. See Section 4.4 for details on these applications.

Longest Common Substring (LCS). The LCS problem is formally defined as
follows.

Problem 4.1.2 (Longest Common Substring (LCS)).
▷ Input: Strings S and T of length at most n.
▷ Output: The length of a longest string that appears as a (contiguous) fragment in
both S and T .

The length of the longest common substring is one of the most popular string-similarity
measures. The by-now classical approach to the LCS problem is to construct the suffix
tree of S and T in O(n) time and space. The longest common substring of the two strings
appears as a common prefix of a pair of suffixes of S and T and hence its length is the
maximal string-depth of a node of the suffix tree with leaf-descendants corresponding to
suffixes of both strings; this node can be found in O(n) time in a bottom-up manner.

Starikovskaya and Vildhøj [273] were the first to consider the problem in the read-
only setting. They showed that for any n2/3 < τ ≤ n, the problem can be solved in
O(τ) extra space and O(n2/τ) time. Kociumaka et al. [204] extended their bound to all
1 ≤ τ ≤ n, which in particular resulted in a constant-space read-only algorithm running
in time Õ(n2).

In an attempt to develop even more space-efficient algorithms for the LCS problem,
it might be tempting to consider the streaming setting, which is particularly restrictive:
in this setting, one assumes that the input arrives letter-by-letter, as a stream, and must
account for all the space used. Unfortunately, this setting does not allow for better space
complexity: any streaming algorithm for LCS, even randomised, requires Ω(n) bits of space
(Theorem 4.5.3). In the asymmetric streaming setting, which is slightly less restrictive
and was introduced by Andoni et al. [38] and Saks and Seshadhri [266], the algorithm
has random access to one string and sequential access to the other. Mai et al. [233]
showed that in this setting, LCS can be solved in Õ(n2) time and O(1) space. By utilising
(a slightly more general variant of) IPM queries, we extend their result and show that
for every τ ∈ [

√
n log n(log log n)3. .n], there is an asymmetric streaming algorithm that

solves the LCS problem in O(τ) space and Õ(n2/τ) time (Theorem 4.6.1). Note that these
bounds almost match the bounds of Kociumaka et al. [204], while the setting is stronger.

Circular Pattern Matching (CPM). The CPM problem is formally defined as
follows.

Problem 4.1.3 (Circular Pattern Matching (CPM)).
▷ Input: A pattern P of length m, a text T of length n.
▷ Output: All occurrences of rotations of P in T .

The interest in occurrences of rotations of a given pattern is motivated by applica-
tions in Bioinformatics and Image Processing: in Bioinformatics, the starting position
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of a biological sequence can vary significantly due to the arbitrary nature of sequenc-
ing in circular molecular structures or inconsistencies arising from different standards of
linearization applied to sequence databases; and in Image Processing, the contour of a
shape can be represented using a directional chain code, which can be viewed as a circular
sequence, particularly when the orientation of the image is irrelevant [39].

For strings over an alphabet of size σ, the classical read-only solution for CPM via
the suffix automaton of P · P runs in O(n log σ) time and uses O(m) extra space [230].
Recently, Charalampopoulos et al. showed a simple O(n) time and O(m) extra space
solution. The problem has been also studied from the practical point of view [97, 143, 275]
and in the text indexing setting [176, 177, 182].

It is not hard to see that the CPM and the LCS problems are closely related: occur-
rences of rotations of P in T are exactly the common substrings of P ·P and T of length m.
Implicitly using this observation, we show that in the streaming setting, the CPM prob-
lem requires Ω(m) bits of space (Theorem 4.5.4) and that in the asymmetric streaming
setting, for every τ ∈ [

√
m logm(log logm)3. .m], there exists an algorithm that solves the

CPM problem in time Õ(mn/τ) using O(τ) extra space (Corollary 4.6.5). Finally, in the
read-only setting, we give an online O(n)-time, O(1)-space algorithm (Theorem 4.7.1).

4.2 Preliminaries

We use the definitions and notations related to strings that are defined in Section 2.1 and
the basic data structures for string processing presentend in Section 2.4. Recall that a
suffix tree for a string S is essentially a compact trie representing the set of all suffixes of
S, whereas a sparse suffix tree contains only a subset of these suffixes (see e.g. [230]). We
restate here a few other results on efficient string algorithms that we will later use.

Fact 4.2.1 ([215, Theorem 3]). Suppose that we have read-only random access to a string
S of length n over an integer alphabet. For any integer b = Ω(log2 n), one can construct
in O(n logb n) time and O(b) space the sparse suffix tree for b arbitrarily chosen suffixes
of S.

Fact 4.2.2 ([78]). There is a read-only online algorithm that finds all occurrences of a
pattern P of length m in a text T of length n ≥ m in O(n) time and O(1) space.

Fact 4.2.3 ([139, Lemma 6]). Given read-only random access to a string S of length n,
one can decide in O(n) time and O(1) space if S is periodic and, if so, compute per(S).

Fact 4.2.4 ([124]). Given read-only random access to a string S of length n, the lex-
icographically smallest rotation of a string S can be computed in O(n) time and O(1)
space.

Static predecessor.

For a static set, a combination of x-fast tries [285] and deterministic dictionaries [259]
yields the following efficient deterministic data structure; cf. [137].

Fact 4.2.5 ([137, Proposition 2]). A sorted static set Y ⊆ [1. .U ] can be preprocessed in
O(|Y |) time and space so that predecessor queries can be performed in O(log log |U |) time.
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Weighted ancestor queries.

Let T be a rooted tree with integer weights on nodes. A weighted ancestor query for a
node u and weight d must return the highest ancestor of u with weight at least d.

Fact 4.2.6 ([33]). Let T be a rooted tree of size n with integer weights on nodes. Assume
that each weight is at most n, with the weight of the root being zero, and the weight of every
non-root node being strictly larger than its parent’s weight. T can be preprocessed in O(n)
time and space so that weighted ancestor queries on it can be performed in O(log log n)
time.

If T is the suffix tree of a string and the weights are the string-depths of the nodes,
this result can be improved further:

Fact 4.2.7 ([58]). The suffix tree T of a string of length n can be preprocessed in O(n)
time and O(n) space so that weighted ancestor queries on it can be performed in O(1)
time.

3D range emptiness.

For a positive integer U , let [U ] be a shorthand for [1. .U ], and consider a set S ⊆ [U ]3.
A three-dimensional orthogonal range emptiness query asks whether a range [a1. .a2] ×
[b1. .b2]× [c1. .c2] intersects S.

Fact 4.2.8 ([191, Theorem 2]). Let S be an n-points subset of [U ]×[U ]×[U ]. There exists a
data structure that answers three-dimensional orthogonal range emptiness queries on S in
O(log logU+(log log n)3) time, uses O(n log n(log log n)3) space, and can be constructed in
O(n log4 n log log n) time. If the query range intersects S, the data structure also outputs
a witness point contained in the intersection.

Remark 4.2.9. Better space vs. query-time trade-offs than the above are known for the 3D
range emptiness problem; cf [84] and references therein. We opted for the data structure
encapsulated by Fact 4.2.8 due to its efficient construction algorithm. Note that a data
structure capable of reporting all points in an orthogonal range over a [U ]× [U ]× [U ] grid
with n points in time O(Q1(U, n)+Q2(U, n)·|output|) can answer range emptiness queries,
also returning a witness in the case the range is not empty, in time O(Q1(U, n)+Q2(U, n)).

4.3 Internal Pattern Matching
We consider a slightly more powerful variant of IPM queries, as required by our appli-
cations. A reader that is only interested in IPM queries can focus on the case when
a = ε.

Problem 4.3.1 (Extended IPM).
▷ Input: A string S of length n over an integer alphabet to which we have read-only
random access.
▷ Query: Given p, p′, t, t′ ∈ [1. .n] and a ∈ Σ∪{ε}, return whether P := S[p. .p′]a occurs
in T := S[t. .t′] and, if so, return a witness occurrence.

Our solution for Extended IPM heavily relies on a solution for the following auxiliary
problem.
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Problem 4.3.2 (Anchored IPM).
▷ Input: A string S of length n (over an integer alphabet Σ) to which we have read-only
random access and a set A ⊆ [1. .n].
▷ Query: Given p, x, p′, t, t′ ∈ [1. .n] with p ≤ x ≤ p′, x ∈ A, and a ∈ Σ ∪ {ε},
for P := S[p. .p′]a, decide whether there exists an occurrence of P at some position
j ∈ [t. .t′ − |P |+ 1] such that j + (x− p) ∈ A and, if so, return a witness.

The anchored index x ∈ A appears at position x − p + 1 in S[p. .p′]. The constraint
j + (x − p) ∈ A means that the occurrence S[j. .j + |P | − 1] of P that we are searching
for must also contain an anchored index in its x − p + 1-th position, which is position
j + (x− p) in S.

Lemma 4.3.3. There exists a data structure for the Anchored IPM problem that can be
built using O(n log|A| n) + O(|A| log4 |A| log log |A|) time and O(|A| log |A|(log log |A|)3)
extra space, and answers queries in O(log3 log n) time.

Proof. For an integer y ∈ [1. .n], denote Py := rev(S[. .y)) and Sy := S[y. .]. Consider
the family X := {(Py$, Sy$) : y ∈ A} of pairs of strings, where $ ̸∈ Σ is a letter lexico-
graphically smaller than all others. Using Fact 4.2.1, we build a sparse suffix tree RSST
for the first components of the elements of X and a sparse suffix tree SST for the second
components of the elements of X .

Consider a three-dimensional grid [1. .n]× [1. .n]× [1. .n]. In this grid, create a set Π of
points, which contains, for each element (Py$, Sy$) of X , a point (rankrev(y), rank(y), y),
where rankrev(y) is the lexicographic rank of Py$ among the first components of the ele-
ments of X and rank(y) is the lexicographic rank of Sy$ among the second components of
the elements of X .

Given a query (p, x, p′, t, t′, a), we first retrieve the leaves corresponding to Px$ and
Sx$ in RSST and SST, respectively. This can be done in O(log log n) time with the aid
of Fact 4.2.5 built over the elements ofA, with x ∈ A storing pointers to the corresponding
leaves as satellite information. Next, we retrieve the (possibly implicit) nodes u and v
corresponding to rev(S[p. .x)) in RSST and S[x. .p′]a in SST, respectively. This can be
done in O(log log n) time after an O(|A|)-time preprocessing of (a) the two trees according
to Fact 4.2.6 and (b) the edge-labels of the outgoing edges of each node using Fact 4.2.5.
Now, it suffices to check if there is some integer j such that the leaf corresponding to
Pj$ is a descendant of u, the leaf corresponding to Sj$ is a descendant of v, and j ∈
[t+ (x− p). .t′− (p′ + |a| − x)]. After a linear-time bottom-up preprocessing of RSST and
SST, we can retrieve in O(1) time the following ranges:

• R1 = {rankrev(y) : the node of RSST corresponding to Py$ is a descendant of u};
• R2 = {rank(y) : the node of SST corresponding to Sy$ is a descendant of v}.

The query then reduces to deciding whether the orthogonal range R1×R2×[t+(x−p). .t′−
(p′ + |a| − x)] contains any point in Π, and returning a witness if it does. We can do this
efficiently by building the data structure encapsulated in Fact 4.2.8 for Π: the query time
is O(log3 log n), while the construction time is O(n log|A| n) + O(|A| log4 |A| log log |A|)
and the space usage is O(|A| log |A|(log log |A|)3).

For an integer parameter τ , we next present a data structure for Extended IPM
that uses Õ(n/τ) space on top of the space required to store S and answers queries in
nearly-constant time provided that P is of length greater than 5τ . We achieve this result
using the so-called τ -partitioning sets of Kosolobov and Sivukhin [215] as anchors for
the occurrences if P avoids a certain periodic structure, and by exploiting said periodic
structure to construct anchors in the remaining case.
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Definition 4.3.4 (τ -partitioning set). Given an integer τ ∈ [4. .n/2], a set of positions
P ⊆ [1. .n] is called a τ -partitioning set if it satisfies the following properties:

a) if S[i−τ. .i+τ ] = S[j−τ. .j+τ ] for i, j ∈ [τ + 1. .n−τ ], then i ∈ P if and only if
j ∈ P;

b) if S[i. .i+ℓ] = S[j. .j+ℓ], for i, j ∈ P and some ℓ ≥ 0, then, for each d ∈ [0. .ℓ−τ),
i+ d ∈ P if and only if j + d ∈ P;

c) if i, j ∈ [1. .n] with j− i > τ and (i. .j)∩P = ∅, then S[i. .j] has period at most τ/4.

Fact 4.3.5 ([215]). Suppose that we have read-only random access to a string S of length n
over an integer alphabet. For any integer τ ∈ [4. .O(n/ log2 n)] and b = n/τ , one can
construct in O(n logb n) time and O(b) extra space a τ -partitioning set P of size O(b). The
set P additionally satisfies the property that if a fragment S[i. .j] has period at most τ/4,
then P ∩ [i+ τ. .j − τ ] = ∅.

Definition 4.3.6 (τ -runs). A fragment F of a string S is a τ -run if and only if |F | > 3τ ,
per(F ) ≤ τ/4, and F cannot be extended in either direction without its period changing.
The Lyndon root of a τ -run R is the lexicographically smallest rotation of R[1. .per(R)].

The following fact follows from the proof of Lemma 10 in the full version of [91], where
the definition of τ -runs is slightly different, but captures all of our τ -runs.

Fact 4.3.7 (cf. [91, proof of Lemma 10]). Two τ -runs can overlap by at most τ/2 positions.
The number of τ -runs in a string of length n is O(n/τ).

Lemma 4.3.8. Suppose that we have read-only random access to a string S of length n
over an integer alphabet. For any integer τ ∈ [4. .O(n/ log2 n)], all τ -runs in S can be
computed and grouped by Lyndon root in O(n logb n) time using O(b) extra space, where
b = n/τ . Within the same complexities, we can compute, for each τ -run, the first occur-
rence of its Lyndon root in it.

Proof. We first compute a τ -partitioning set P for S using Fact 4.3.5. Due to Property c),
its converse that is stated in Fact 4.3.5, and Fact 4.3.7 there is a natural injection from
the τ -runs to the maximal fragments of length at least τ that do not contain any position
in P — the τ -run corresponding to such a maximal fragment may extend for τ more
positions in each direction. We can find the period of each maximal fragment in time
proportional to its length using O(1) extra space due to Fact 4.2.3. We then try to
extend the maximal fragment to a τ -run using O(τ) letter comparisons. Additionally, we
compute the Lyndon root of each computed τ -run R in O(τ) = O(|R|) time by applying
Fact 4.2.4 to R[1. .per(R)]. The first occurrence of the Lyndon root in the τ -run can
be computed in constant time since we know which rotation of R[1. .per(R)] equals the
Lyndon root. Over all τ -runs, the total time is O(n) due to Fact 4.3.7.

We next prove the main result of this section.

Theorem 4.3.9. For any ℓ ∈ [20. .O(n/ log2 n)], there is a data structure for Extended
IPM that can be built using O(n logn/ℓ n) + O((n/ℓ) · log4 n log log n) time and O((n/ℓ) ·
log n(log log n)3) extra space given random access to S and answers queries in O(log3 log n)
time, provided that |P | > ℓ.

Proof. Let τ = ⌊ℓ/5⌋. We use Fact 4.3.5 and Lemma 4.3.8 with parameter τ to compute
a partitioning set P of size O(n/τ) and all τ -runs in S, grouped by Lyndon root, each
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one together with the first occurrence of its Lyndon root. We create a static predecessor
structure R using Fact 4.2.5, where we insert the starting position of each run R with the
following satellite information: R’s ending position, the first occurrence of R’s Lyndon
root in R, and an identifier of its group. We additionally create a data structure Q,
where, for each group of τ -runs with a common root L, indexed by their identifiers,
we construct, using Fact 4.2.5, a predecessor data structure for a set QL := {(y, s, e) :
S[s. .e] is the longest τ -run with a suffix L ·L[1. .y]}, with the first components being the
keys and the remaining components being stored as satellite information. The sets QL

can be straightforwardly constructed in O(n log n/τ) time.
Now, let L be a set that contains the ending position of each τ -run as well as the

starting (resp. ending) positions of the first (resp. last) two occurrences of the Lyndon root
in this τ -run; L can be straightforwardly constructed in O(n/τ) time given the information
returned by the application of Lemma 4.3.8. We then construct a set A := P ∪ L and
preprocess the string S and the set A according to Lemma 4.3.3.

Our query comprises of two steps.

Step 1: First, we deal with the case when both P and T have period at most τ/4.
Since P and T are of length at least 5τ , due to Fact 4.3.7, each of them can be only
contained in the τ -run whose starting position is closest to it in the left. We can thus
check whether they both have period at most τ/4 in O(log log n) time by performing two
predecessor queries on R. If this turns out to be the case, we then check whether the two
corresponding τ -runs belong to the same group. If they do not, then P does not occur in
T due to Fact 4.3.7. Otherwise, let the common Lyndon root of the two runs be L. We
can compute in constant time non-negative integers xP , xT , yP , yT < |L| and eP , eT such
that P = L(|L| − xP . .] · LeP · L[. .yP ] and T = L(|L| − xT . .] · LeT · L[. .yT ]. Note that P
occurs in T if and only if at least one of the following conditions is met: (1) eP = eT ,
xP ≤ xT , and yP ≤ yT ; or (2) eP = eT − 1 and xP ≤ xT ; or (3) eP = eT − 1 and yP ≤ yT ;
or (4) eP ≤ eT − 2. In each of the four cases, we can compute an occurrence of P in T in
constant time.

Step 2: In the second step of the query, we consider the case when per(T ) > τ/4 and
distinguish between two cases depending on whether per(S[p. .p + 3τ ]) ≤ τ/4. In each
case, it suffices to perform at most two anchored internal pattern matching queries.

Case I: per(S[p. .p + 3τ ]) > τ/4. Due to Property c), [p. .p + 3τ ] ∩ P ≠ ∅. Let x =
min([p. .p + 3τ ] ∩ P). Additionally, due to Property b), for any occurrence of P in S at
position j, we have [p. .p+3τ ]∩P = (p−j)+([j. .j + 3τ ] ∩ P), and hence j+(x−p) ∈ P .
Thus, an anchored IPM query returns the desired answer in O(log3 log n) time.

Case II: per(S[p. .p + 3τ ]) ≤ τ/4. We distinguish between two subcases depending
on whether per(P ) > τ/4; we can check this in O(log log n) time with the aid of data
structure R by comparing p′ with the ending position of the τ -run that contains S[p. .p+
3τ ] and checking if a = P [|P | − per(S[p. .p+ 3τ ])] if a ̸= ε.

Subcase (a): per(P ) > τ/4. In this case, for any occurrence of P in T , the ending
position of the τ -run that is a prefix of P must be aligned with the ending position of a
τ -run in T , which belongs to L ⊆ A.

Recall that P = S[p. .p′]a. If the period of S[p. .p′] is greater than τ/4, we retrieve the
ending position of the τ -run containing S[p. .p+ 3τ ], which is in L ⊆ A as well and issue
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an anchored internal pattern matching query. Assume now that the period of S[p. .p′+1]
is at most τ/4 and ε ̸= a ̸= P [|P | − per(S[p. .p′])], in which case p′ might not be in A.
In this case, we retrieve a fragment S[q. .q′] equal to S[p. .p′], such that q′ is an ending
position of a τ -run in O(log log n) time using the data structure Q, if such a fragment
exists, and use q ∈ L ⊆ A as the anchor to our internal anchor query, effectively searching
for S[q. .q′]a = P . Observe that if such a fragment S[q. .q′] does not exist, P cannot have
any occurrence in T .

Subcase (b): per(P ) ≤ τ/4. We consider an occurrence of P in the τ -run that
contains P that starts in its first per(P ) positions and one that ends in its last per(P )
positions. Let these two occurrences be at positions p1 and p2, respectively. Each of these
occurrences contains at least one element of L; let those elements be denoted q1 for the
occurrence at p1 and q2 for the occurrence at p2.

Note that these elements can be straightforwardly computed given the endpoints of
the τ -run, the endpoints of P , and the first occurrence of the Lyndon root in the τ -run,
which we already have in hand. We then issue anchored internal pattern matching queries
for (p1, q1, p1+ |P |−1, t, t′) and (p2, q2, p2+ |P |−1, t, t′) as both q1 and q2 are in L. These
queries are answered in O(log3 log n) time. As we show next, if P has an occurrence in
T , this occurrence will be returned by those queries.

Consider an occurrence of P in S[t. .t′] and denote the τ -run that contains this occur-
rence by R. Since per(T ) > τ/4, R does not contain S[t. .t′]. Without loss of generality,
let us assume that R does not extend to the left of S[t. .t′], the remaining case is sym-
metric. Let the first occurrence of the Lyndon root L of the τ -run in P be at position
i = q1 − p1 + 1 of P , noting that i ≤ per(P ). Then, in the leftmost occurrence of P in R,
position i must be aligned with either the first or the second position where L occurs in
R. By the construction of the set L, it follows that both of these positions are in L, and
hence the anchored internal pattern matching query will return an occurrence.

Corollary 4.1.1. Suppose that we have read-only random access to a string S of length n
over an integer alphabet. For any integer τ = O(n/ log2 n), there is a data structure that
can be built in O(n logn/τ n+(n/τ) · log4 n log log n) time using O((n/τ) · log n(log log n)3)
extra space, and can answer the following internal pattern matching queries in time O(τ+
log n log3 log n): given p, p′, t, t′ ∈ [1. .n] such that t′− t ≤ 2(p′− p), return all occurrences
of P = S[p. .p′] in T = S[t. .t′].

Proof. If the length of P is at most max{τ, 20}, we compute its occurrences in T , whose
length is O(τ), in O(τ) time using Fact 4.2.2. In what follows, we assume that |P | >
max{τ, 20}.

We build the Extended IPM data structure of Theorem 4.3.9 for S with ℓ =
max{τ, 20}. This allows us to efficiently answer the decision version of the desired IPM
queries, also returning a witness, in O(log3 log n) time. If the query does not return an oc-
currence of P in T , we are done. Otherwise, we have to compute all occurrences of P in T
represented as an arithmetic progression (cf Corollary 3.2.2). Let the witness returned by
the data structure be S[x. .x′]. Consider the rightmost occurrence of P in S[t. .x′), or, if
it does not exist, the leftmost occurrence in S(x. .t′]. Such an occurrence can be found
by binary search. If no such occurrence exists, we are again done, as P has a single oc-
currence in T . Otherwise, the occurrences of P in T form an arithmetic progression with
difference equal to the difference d of x and the starting position of the found occurrence
due to Corollary 3.2.2. We compute the extreme values of this arithmetic progression
using binary search as well: we compute the minimum and the maximum j ∈ Z such that
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S[x+ j · d. .x′ + j · d] = P and t ≤ x+ j · d ≤ x′ + j · d ≤ t′ using O(log n) IPM queries in
total; the complexity follows.

4.3.1 Lower Bound for an IPM data structure

We now show that the product of the query time and the space achieved in Corollary 4.1.1
is optimal up to polylogarithmic factors, via a reduction from the following problem.

Problem 4.3.10 (Longest Common Extension (LCE)).
▷ Input: A string S of length n.
▷ Query: Given i, j ∈ [1. .n], return the largest ℓ such that S[i. .i+ ℓ] = S[j. .j + ℓ].

Bille et al. [64, Lemma 4] showed that any data structure for LCE for n-length strings
that uses s bits of extra space on top of the input has query time Ω(n/s).

Lemma 4.3.11. In the non-uniform cell-probe model, any IPM data structure that uses
s bits of space on top of the input for a string of length n, has query time Ω(n/(s log n)).

Proof. We prove Lemma 4.3.11 by reducing LCE queries in a string S of length n to IPM
queries in S. Consider an IPM data structure with space s and query time q and observe
that IPM queries can be used to check substring equality since S[i. .i′] = S[j. .j′] if and only
if S[i. .i′] occurs inside the interval [j. .j′] and j′ − j = i′ − i. Using binary search, we can
thus answer any LCE query via O(log n) IPM queries. Hence, we have q log n = Ω(n/s),
which concludes the proof the lemma.

Lemma 4.3.11 implies a similar lower bound for the word RAM model, which is weaker
than the non-uniform cell-probe model.

4.4 Other Internal Queries and Approximate Pattern
Matching

In the PILLAR model of computation [89] (presented in Section 3.3) the runtimes of al-
gorithms are analysed with respect to the number of calls made to standard word-RAM
operations and a few primitive string operations. It has been used to design algorithms
for internal queries [202, 203, 205], approximate pattern matching under Hamming dis-
tance [89] and edit distance [94], circular approximate pattern matching under Hamming
distance [93] and edit distance [96], and (approximate) wildcard pattern matching under
Hamming distance [52]. Space-efficient implementations of the PILLAR model immediately
result in space-efficient implementations of the above algorithms.

All PILLAR operations can be implemented in small space in the read-only setting.
Operations other than LCE, LCER, and IPM admit trivial constant-time and constant-
space implementations in the read-only setting. For any τ = O(n/ log2 n), Kosolobov and
Sivukhin [215] showed that after an O(n logn/τ n)-time, O(n/τ)-space preprocessing, LCE
and LCER queries can be answered in O(τ) time. For IPM queries, Corollary 4.1.1 gives a
similar trade-off.

In [202, 203, 205] it is (implicitly) shown that the following internal queries can be
efficiently implemented in the PILLAR model.

• A cyclic equivalence query takes as input two equal-length fragments U = S[i. .i+ ℓ]
and V = S[j. .j + ℓ], and returns all rotations of U that are equal to V . Any cyclic
equivalence query reduces to O(1) LCE queries and O(1) IPM(P, T ) queries with
|T |/|P | = O(1).
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• A period query takes as input a fragment U = S[i. .j], and returns all periods of
U . Such a period query reduces to O(log |U |) LCE queries and O(log |U |) IPM(P, T )
queries with |T |/|P | = O(1).

• A 2-period query takes as input a fragment U = S[i. .j], checks if U is periodic and,
if so, it also returns U ’s period. Such a query reduces to O(1) LCE queries and O(1)
IPM(P, T ) queries with |T |/|P | = O(1).

Corollary 4.4.1. Suppose that we have read-only random access to a string S of length
n over an integer alphabet. For any integer τ = O(n/ log2 n), there is a data struc-
ture that can be built using O(n logn/τ n + (n/τ) · log4 n log log n) time and O((n/τ) ·
log n(log log n)3) extra space and can answer cyclic equivalence and 2-period queries on
S in O(τ + log n log3 log n) time, and period queries on S in O(τ log n+ log2 n log3 log n)
time.

By plugging this implementation of the PILLAR model into [52, 89, 93, 94, 96], we
obtain the following:

Corollary 4.4.2. Suppose that we have read-only random access to a text T of length n,
a pattern P of length m over an integer alphabet. Given an integer threshold k, for any
integer τ = O(m/ log2m), we can compute:

• the approximate occurrences of P in T under the Hamming distance in Õ(n+ k2τ ·
n/m) time using Õ(m/τ + k2) extra space (from [89]);

• the approximate occurrences of P in T under the edit distance in Õ(n+k3.5τ ·n/m)
time using Õ(m/τ + k3.5) extra space (from [94]);

• the approximate occurrences of all rotations of P in T under the Hamming distance
in Õ(n+ k3τ · n/m) time using Õ(m/τ + k3) extra space (from [93]);

• the approximate occurrences of all rotations of P in T under the edit distance in
Õ(n+ k5τ · n/m) time using Õ(m/τ + k5) extra space (from [96]);

• in the case where P has D wildcard letters arranged in G maximal intervals, the
approximate occurrences of P in T under the Hamming distance in Õ(n + (D +
k)(G+ k)τ · n/m) time using Õ(m/τ + (D + k)(G+ k)) extra space (from [52]).

To the best of our knowledge, the only work that has considered approximate pattern
matching in the read-only model is due to Bathie et al. [49]1. They presented online algo-
rithms both for the Hamming distance and the edit distance; for the Hamming distance
their algorithm uses O(k logm) extra space and O(k logm) time per letter of the text,
and for the edit distance Õ(k4) bits of space and Õ(k4) amortised time per letter.

4.5 Lower Bounds for LCS and CPM in the Streaming
Setting

In the streaming setting, we receive a stream composed of the concatenation of the input
strings, e.g., the pattern and the text in the case of CPM. We account for all the space
used, including the space needed to store any information about the input strings.

We exploit the well-known connection between streaming algorithms and communica-
tion complexity to prove linear-space lower bounds for streaming algorithms for LCS and
CPM. Our streaming lower bounds are based on reductions from the following problem:

1This is the work presented in Chapter 9 of this thesis.
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Problem 4.5.1 (Augmented Index).
▷ Alice holds a binary string S of length n.
▷ Bob holds an index i ∈ [1. .n] and the string S[. .i− 1].
▷ Output: Bob is to return the value of S[i].

In the one-way communication complexity model, Alice performs an arbitrary com-
putation on her input to create a message M and sends it to Bob who must compute
the output using this message and his input. The communication complexity of a pro-
tocol is the size of M in bits. The protocol is randomized when either Alice or Bob use
randomized computation.

Fact 4.5.2 ([83, Theorem 2.3]). The randomized one-way communication complexity of
Augmented Index is Ω(n) bits.

Theorem 4.5.3. In the streaming setting, any algorithm for LCS for strings of length at
most n uses Ω(n) bits of space.

Proof. We show the bound by a reduction from the Augmented Index problem. Con-
sider an input S, (i, S[. .i − 1]) to the Augmented Index problem, where |S| = n.
We observe that for A = 0n$S and B = 0n$S[. .i − 1]1, where $ /∈ {0, 1}, we have
LCS(A,B) = n+ i+ 1 if and only if S[i] = 1. Now, if we have a streaming algorithm for
LCS that uses b bits of space, we can develop a one-way protocol for the Augmented
Index problem with message size b bits as follows. Alice runs the algorithm on A. When
she reaches the end of A, she sends the memory state of the algorithm and n (in binary)
to Bob. Bob continues running the algorithm on B, which he can construct knowing n
and S[. .i− 1], and returns 1 if and only if LCS(A,B) = n+ i+1. Fact 4.5.2 implies that
b+ log n = Ω(n), and hence b = Ω(n).

Theorem 4.5.4. In the streaming setting, any algorithm for CPM uses Ω(m) bits of
space, where m is the size of the pattern.

Proof. We show the bound by a reduction from the Augmented Index problem. Con-
sider an input S, (i, S[. .i− 1]) to the Augmented Index problem, where |S| = m. Let
A = S$ and B = S$S[. .i−1]1, where $ /∈ {0, 1}. B ends with an occurrence of a rotation
of A if and only if S[i] = 1. Now, if we have a streaming algorithm for CPM that uses
b bits of space, we can develop a one-way protocol for the Augmented Index problem
with message size b bits as follows. Alice runs the algorithm on the pattern A = S$ and
the first |S|+1 letters of the string B. She then sends the memory state of the algorithm
to Bob. Bob continues running the algorithm on the remainder of B, i.e., on S[1. .i− 1]1,
and returns 1 if and only if the algorithm reports an occurrence of a rotation of A ending
at position n+ i+ 1. By Fact 4.5.2, we have b = Ω(m).

4.6 LCS and CPM in the Asymmetric Streaming Set-
ting

In this section, we use Theorem 4.3.9 to show that for any τ ∈ [Ω̃(
√
m). .O(m/ log2m)],

there are asymmetric streaming algorithms for LCS and CPM that use O(τ) space and
Õ(m/τ) time per letter. We start by giving an algorithm for a generalization of the LCS
problem that can be used to solve both LCS and CPM. For two strings S, T , a fragment
T [t. .t′] is a T -maximal common substring of S and T if it occurs in S and neither T [t−1. .t′]
(assuming t > 1) nor T [t. .t′ + 1] (assuming t′ < n) occur in S.



Chapter 4. Time-space trade-off for Internal Pattern Matching 35

Theorem 4.6.1. Assume to be given read-only random access to a string S of length m
and streaming access to a string T of length n over an integer alphabet, where n ≥ m.

For all τ ∈ [
√
m logm(log logm)3. .O(m/ log2m)], there is an algorithm that reports

all T -maximal common substrings of S and T using O(τ) space and O(nm/τ · log log σ)
time.

Proof. We cover T with windows of length 2τ (except maybe for the last) that overlap
by τ letters: there are O(n/τ) such windows. After reading such a window W , we apply
the procedure encapsulated in the following claim with A = W and B = S:

▷ Claim 4.6.2. Let A,B be strings of respective lengths a and b, where a < b < aO(1),
over an integer alphabet of size σ. Given read-only random access to A and B, we can
compute all B-maximal common substrings of A and B, and the length LCSuf(A,B) of
the longest suffix of A that occurs in B in O(b log log σ) time using O(a) extra space.

Claim proof. We start by building the suffix tree for A and preprocessing it for constant-
time weighted ancestor queries: this takes O(a) time (see Fact 4.2.1 and Fact 4.2.7).
Additionally, we preprocess the labels of edges outgoing from each node according to
Fact 4.2.5. Then, the algorithm traverses the tree maintaining the following invariant: at
every moment, it is at a node (maybe implicit) corresponding to a substring B[i. .j] of B.
It starts at the root of the tree with i = 1 and j = 0. In each iteration, the algorithm tries
to go down the tree from the current node using B[j + 1]; this takes O(log log σ) time. If
it succeeds, it increments j and continues. Otherwise, it considers two cases. If it is at
the root, it increments both i and j. Otherwise, it jumps to the node corresponding to
B[i+1. .j] via a weighted ancestor query in O(1) time and increments i. The nodes reached
by an edge traversal and abandoned with the use of a weighted ancestor query in the next
iteration are in one-to-one correspondence with the B-maximal common substrings of A
and B. The LCSuf of A and B is the depth of the deepest visited node that corresponds
to a suffix of A. As at least one of the indices i, j gets incremented at every step of the
traversal, the total runtime is O(b log log σ). ◁

The above sliding-window procedure takes O(m log log σ) time per window and uses
O(τ) space, which adds up to O(nm/τ · log log σ) time in total, and finds all T -maximal
common substrings of S and T that have length at most τ .

We run another procedure in parallel in order to compute T -maximal common sub-
strings of length at least τ . During preprocessing, we build the Extended IPM data
structure (Theorem 4.3.9) for the string S with ℓ = τ − 2 in O(m logm/τ m) = O(nm/τ)
time using O((m/τ) · logm(log logm)3) = O(τ) space.

Assume that while reading a window W = T [ℓ. .r], the sliding-window procedure found
an LCSuf T [i. .r] of length at least τ . We start a search for a common substring starting
in W . Let j ≥ r be the current letter of T , and T [i. .j], ℓ ≤ i ≤ r, be the longest suffix
of T [ℓ. .j] that occurs in S. We assume that we know a position where T [i. .j] occurs
in S, which is the case for j = r. When T [j + 1] arrives, we update i using the following
observation:

Observation 4.6.3. If T [i. .j] is the longest suffix of T [1. .j] that occurs in S, and T [i′. .j+
1] is the longest suffix of T [1. .j + 1] that occurs in S, then i ≤ i′.

By using binary search and IPM queries, we can find the smallest i′ ≥ i such that
T [i′. .j+1] occurs in S and a witness occurrence, if the corresponding string has length at
least τ : namely, if S[x. .x′] is a witness occurrence of T [i. .j] in S, we search for occurrences
of P = S[x+(i′−i). .x′]T [j+1] in S. If j−i′ < τ , we stop the search, and otherwise we set



36 4.7. CPM in the Read-only Setting

i′ = i and continue. It is evident that all T -maximal common substrings of S and T that
are of length greater than τ can be extracted during the execution of the above procedure:
a maintained suffix of length greater than τ is such a fragment if the last update to it
was an increment of its right endpoint, while the next update is an increment of its left
endpoint. For every letter, we run at most one binary search which uses O(logm) IPM
queries and hence takes O(logm(log logm)3) time. As τ = O(m/ log2m), the m/τ term
dominates the per-letter running time. The correctness of the described procedure follows
from the fact that any substring of T of length greater than τ is either fully contained in
the first window or crosses the boundary of some window.

Corollary 4.6.4. Assume to be given random access to an m-length string S and stream-
ing access to a n-length string T , where n ≥ m.

For all τ ∈ [
√
m logm(log logm)3. .O(m/ log2m)], there is an algorithm that computes

LCS(S, T ) using O(nm/τ · log log σ) time and O(τ) space.

Proof. Note that the longest common substring of S and T is a T -maximal substring of
S and T . We use the algorithm of Theorem 4.6.1 with the same value of τ to iterate over
all T -maximal common substrings T [t. .t′] of S and T , and store the pair of indices t, t′

that maximizes t′ − t.

Corollary 4.6.5. Assume to be given random access to an m-length pattern P and stream-
ing access to an n-length text T , where n ≥ m.

For all τ ∈ [
√
m logm(log logm)3. .O(m/ log2m)], there is an algorithm that solves the

CPM problem for P, T using O(m/τ · log log σ) time per letter of T and O(τ) space.

Proof. We use the algorithm of Theorem 4.6.1 with threshold τ on the string P · P , to
which we have random access, and a streaming string T . The occurrence of any rotation
of P in T implies a common substring of P · P and T of length m ≥ 2τ . The algorithm
of Theorem 4.6.1 allows us to find such occurrences in O(m/τ · log log σ) amortized time
per letter of T using O(τ) space. By noticing that none of the m-length substrings are
fully contained in T (|T | − τ. .|T |], we can deamortise the algorithm using the standard
time-slicing technique, cf [104].

4.7 CPM in the Read-only Setting
In this section, we present a deterministic read-only online algorithm for the CPM problem.

Theorem 4.7.1. There is a deterministic read-only online algorithm that solves the CPM
problem on a pattern P of length m and a text T of length n using O(1) space and O(1)
time per letter of the text.

Proof. In this proof, we assume that n ≤ 2m− 1. If this is not the case, we can cover T
with 2m-length windows overlapping by m − 1 letters, and process the text window by
window; the last window might be shorter. Every occurrence of a rotation of P belongs
to exactly one of the windows and hence will be reported exactly once.

We partition P into four fragments P1, P2, P3 and P4, each of length either ⌊m/4⌋
or ⌈m/4⌉.2 By applying Fact 4.2.3, we compute the periods of each of P and Pi for

2The sole reason for partitioning P into four fragments instead of two is to guarantee that there is
an occurrence of some Pi close to the starting position of each rotation of P . This allows us to obtain a
worst-case rather than an amortised time bound for processing each letter of the text.
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i ∈ [1. .4], if it is are periodic. We also compute, for each i ∈ [1. .4], the occurrences of Pi

in P 2 using Fact 4.2.2, and store them in O(1) space due to Corollary 3.2.2. Overall, the
preprocessing step takes O(m) time and uses constant space.

We compute all occurrences of all Pi in T in an online manner using Fact 4.2.2. Due
to Corollary 3.2.2, we can represent all computed occurrences of each Pi using a constant
number of arithmetic progressions with difference per(Pi) in O(1) space.

Observation 4.7.2. Assume that T (j − m. .j] = P [∆ + 1. .m] · P [. .∆]. There is an
occurrence of Pi at a position ℓ of T such that j−m < ℓ ≤ j−|Pi|+1 if and only if there
is an occurrence of Pi at position p = ∆+ ℓ− j +m of P 2.

Now, note that for every rotation P ′ of P , some Pi occurs at one of the first ϕ :=
2⌈m/4⌉ positions of P ′. We will use such occurrences as anchors to compute the occur-
rences of rotations of P in T . Fix i such that there is an occurrence of Pi in the first ϕ
positions of T (j−m. .j]. We consider two cases depending on whether the period of Pi is
large or small.

Case I: per(Pi) > |Pi|/4. By Corollary 3.2.2, there are O(1) occurrences of Pi in each of
T and P 2. Suppose that Pi occurs at position ℓ of T . If T (j−m. .j] = P [∆+1. .m] ·P [. .∆]
for some ∆, then, by Observation 4.7.2, Pi occurs at position p = ∆ + ℓ − j +m of P 2

and we must have that the length of the longest common suffix of T [1. .ℓ) and P 2[1. .p)
is at least ℓ − (j −m) and the length of the longest common prefix of T [ℓ + |Pi|. .] and
P 2[p+ |Pi|. .] is at least j − ℓ− |Pi|. As we only need to consider occurrences of Pi in the
first ϕ positions of rotations of P , we can work under the assumption that ℓ−(j−m) ≤ ϕ.
Hence, it suffices to compute, for every occurrence of Pi at a position p in P 2 and every
occurrence of Pi at a position ℓ in T , values

• x := max{ϕ, LCER(T [1. .ℓ), P 2[1. .p))}, the maximum of ϕ and the length of the
longest common suffix of T [1. .ℓ) and P 2[1. .p);

• y := LCER(T [1. .ℓ), P 2[1. .p)), the length of the longest common prefix of T [ℓ+ |Pi|. .]
and P 2[p+ |Pi|. .].

The length y is computed naively as new letters arrive, while, in order to compute x,
we perform a constant number of letter comparisons for each letter that arrives. Since
ℓ − (j − m) = O(j − ℓ − |Pi|), we will have completed the extension to the left when
the j-th letter of the text arrives. As there is a constant number of pairs (p, ℓ) to be
considered, we perform a total number of O(1) letter comparisons per letter of the text.

Case II: per(Pi) ≤ |Pi|/4. For brevity, denote ρ = per(Pi). Below, when we talk about
arithmetic progressions of occurrences of Pi, we mean maximal arithmetic progressions
of starting positions of occurrences of Pi with difference ρ. Consider the first element ℓ
and the last element r of the rightmost computed arithmetic progression of occurrences
of Pi in T (j − m. .j]. We next distinguish between two cases depending on whether
per(T (j −m. .j]) = ρ. This information can be easily maintained in O(1) time per letter
using O(1) space as follows. In particular, for each arithmetic progression of occurrences
of Pi in T , we perform at most ρ − 1 letter comparisons to extend the periodicity to
the left; we can do this lazily upon computing the first element of each progression, by
performing at most one letter comparison for each of the next ρ−1 letter arrivals. Further,
as at most one arithmetic progression corresponds to occurrences of Pi in T that contain
a position in (j − ρ. .j], the extensions to the right take O(1) time per letter as well.

Subcase (a): per(T (j−m. .j]) ̸= ρ. Suppose that T (j−m. .j] = P [∆+1. .m] ·P [. .∆]
for some ∆. Then, due to Observation 4.7.2, one of the two following holds:

1. ℓ and pℓ = ∆ + ℓ − j + m are the first elements in arithmetic progressions of
occurrences of Pi in T (j −m. .j] and P 2, respectively;
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2. r and pr = ∆ + r − j + m are the last elements in arithmetic progressions of
occurrences of Pi in T (j −m. .j] and P 2, respectively.

We handle this case by considering a subset of pairs of occurrences of Pi and treating
them similarly to Case I. Namely, we consider (a) pairs that are first in their respective
arithmetic progressions in P 2 and T and (b) pairs that are last in their respective arith-
metic progressions in P 2 and T (j −m. .j]. By Corollary 3.2.2, there are only a constant
number of such elements in P 2 and a constant number of such elements in the text at any
time (a previously last element in the text may stop being last when a new occurrence of
Pi is detected). For pairs of first elements there are no changes required to the algorithm
for Case I. We next argue that, for each pair (r, pr) of last elements, it suffices to perform
only O(ρ) letter comparisons to check how far the periodicity extends to the left, and that
this is all we need to check. Due to this, we do not restrict our attention to the case when
r ∈ (j −m. .j −m + ϕ], but rather consider all last elements of arithmetic progressions.
Let ℓ′ be the first element of the arithmetic progression in T (j −m. .m] that contains r.
If ℓ′ > ρ+ j −m, we avoid extending to the left since either ℓ′ ∈ (j −m. .j −m+ ϕ] and
the sought occurrence of a rotation of P , if it exists, will be computed by the algorithm
when it processes pair (ℓ′,∆ + ℓ′ − j + m) or the sought occurrence will be computed
when processing a different arithmetic progression of occurrences of Pi or a different Pj.
Further note that the extension to the left has been already computed; either ℓ′ is not
the first element in the arithmetic progression of occurrences of Pi in T (we have assumed
that it is in T (j−m. .j]), in which case we are trivially done, or ℓ′ is the first element of an
arithmetic progression in T and hence we extended the periodicity via a lazy computation
when the occurrence of Pi at position ℓ′ was detected. As the occurrences of Pi in T are
spaced at least ρ positions away, the above procedure takes O(1) time per letter of the
text.

Subcase (b): per(T (j −m. .j]) = ρ. Using O(m) time and O(1) extra space, we can
precompute all 1 ≤ j ≤ ρ such that Q∞

i [j. .j +m) occurs in P 2, where Qi = Pi[1. .ρ]; it
suffices to extend the periodicity for each of the O(1) arithmetic progressions of occur-
rences of Pi in P 2 and to perform standard arithmetic. In particular, the output consists
of a constant number of intervals. Then, if per(T (j −m. .j]) = ρ, T (j −m. .j] equals a
rotation of P if and only if ℓ− (j −m) (mod ρ) is in one of the computed intervals and
this can be checked in constant time.



Chapter 5

Pattern Matching with Mismatches and
Wildcards

5.1 Introduction
Pattern matching is one of the most fundamental algorithmic problems on strings. Given
a text T of length n and a pattern P of length m, both over an alphabet Σ, the goal is to
compute all occurrences of P in T . This problem admits an efficient linear-time solution
such as the seminal algorithm of Knuth, Morris, and Pratt [201]. However, looking for
exact matches of P in T can be too restrictive for some applications, for example when
working with potentially corrupted data, when accounting for mutations in genomic data,
or when searching for an incomplete pattern. There are several ways to model and to
work with corrupt or partial textual data for the purposes of pattern matching.

A natural and well-studied problem is that of computing the similarity between frag-
ments of the text and a given pattern, with respect to some distance metric. One of
the most commonly used such metrics is the Hamming distance. Abrahamson [14] and
Kosaraju [213] independently developed an O(n

√
m logm)-time algorithm that computes

the Hamming distance between the pattern and every m-length substring of the text using
convolutions via the Fast Fourier Transform (FFT). This complexity has only been re-
cently improved with the state of the art being the randomised O(n

√
m)-time algorithm

of Chan et al. [86] and the deterministic O(n
√
m log logm)-time algorithm of Jin and

Xu [187].
In many applications, one is interested in computing substrings of the text that are

close to the pattern instead of computing the distance to every substring. In this case,
an integer threshold k is given as part of the input and the goal is to compute fragments
of T that have at most k mismatches with P . Such a fragment is called a k-mismatch
occurrence of P in T . The state-of-the-art for this problem are the O(n

√
k log k)-time

algorithm of Amir et al. [32], the O(n + (n/m) · k2)-time algorithm of Chan et al. [85],
and the O(n+ kn/

√
m)-time algorithm of Chan et al. [86] that provides a smooth trade-

off between the two aforementioned solutions, improving the bound for some range of
parameters. Deterministic counterparts of the last two algorithms (which are randomised)
at the expense of extra polylogarithmic factors were presented in [89, 105, 158].

The structure of the set of k-mismatch occurrences of P in T admits an insight-
ful characterisation, shown by Charalampopoulos et al. [89] who tightened the result of
Bringmann et al. [80]: either P has O(k · n/m) k-mismatch occurrences in T or P is at
Hamming distance less than 2k from a string with period q = O(m/k); further, in the
periodic case, the starting positions of the k-mismatch occurrences of P in T can be parti-

39
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tioned into O(k2 ·n/m) arithmetic progressions with common difference q. This character-
ization can be exploited towards obtaining efficient algorithms in settings other than the
standard one, e.g., in the setting where both P and T are given in compressed form [89],
and, in combination with other ideas and techniques, in the quantum setting [186], in the
online read-only setting [49], and in the differentially private setting [274].

In the case when the positions of the corrupt characters in the two strings are known
in advance, one can use a more adaptive approach, by placing a wildcard ♦♢ ̸∈ Σ, a special
character that matches any character in Σ∪{♦♢}, in each of these positions, and then per-
forming exact pattern matching. Already in 1974, Fischer and Paterson [140] presented an
O(n logm log σ)-time algorithm for the pattern matching problem with wildcards. Sub-
sequent works by Indyk [184], Kalai [189], and Cole and Hariharan [111] culminated in
an O(n logm)-time deterministic algorithm [111]. A few years later, Clifford and Clif-
ford [100] presented a very elegant algorithm with the same complexities. All the above
solutions are based on fast convolutions via the FFT.

Pattern matching with mismatches and wildcards. Unsurprisingly, the pattern
matching problem in the case when we both have wildcards and allow for mismatches
has also received significant attention. Conceptually, it covers the case when some of the
corrupt positions are known, but not all of them. We denote by D the total number of
wildcards in P and T , and by G the number of maximal fragments in P and T all of
whose characters are wildcards. A summary of known results for the considered problem
is provided in Table 5.1. Note that, as discussed below, any algorithm for the pattern
matching problem with at most k mismatches (without wildcards) can be applied to the
setting where we have wildcards only in the pattern at the expense of allowing for k +D
mismatches instead of k (and hence replacing any factor of k in the complexity by a factor
k +D). We chose to not include the implied results in the table to avoid clutter.

Note that, in practice, G may be much smaller than D. For example, DNA sequences
have biologically important loci, which are characterised using the notion of structured
motifs [238]: sequences of alternating conserved and non-conserved blocks. Conserved
blocks are ones which are identical across intra- or inter-species occurrences of the struc-
tured motif, while non-conserved ones are not known to have biological significance and
can vary significantly across such occurrences. Non-conserved blocks can be hence mod-
elled with blocks of wildcards as in [235]. In this case, evidently, we have G being much
smaller than D. This feature has been used in the literature before, e.g., for the prob-
lem of answering longest common compatible prefix queries over a string with wildcards.
Crochemore et al. [116] showed an O(nG)-time construction algorithm for a data structure
that is capable of answering such queries in O(1) time, while the previously best known
construction time was O(nD) [70].

In several applications, it is sufficient to only account for wildcards in one of P and T :
in the application we just discussed, the text is a fixed DNA sequence, whereas the sought
pattern, the structured motif, is modelled as a string with wildcards. In such cases, one
can obtain more efficient solutions than those for the general case when both P and T
have wildcards, such as the ones presented in [101, 245] and the one we present here.

In this chapter, we describe our algorithms in the PILLAR model, introduced by Char-
alampopoulos et al. [89]: see Section 3.3 for a description of this framework. We will
make use of the “standard trick” of pattern matching (see Section 3.2.1), which allows us
to assume that the length n of the text T is at most 3m/2. An algorithm with runtime
C(m) for this case implies an algorithm with runtime O(C(m) ·n/m) for the general case.
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Table 5.1: Results on pattern matching with wildcards under the Hamming distance.

Time complexity ♦♢ in Reference

O(nk2 log2m)

P and T

[103]

O(n(k + logm log k) log n) [103]

O(nk polylogm) [102, 103, 244]

O(n
√
m logm) [14, 213], via. [103]

O(n
√
m−D logm) [32]

O(n 3
√

mk log2m) one of P or T [101]

O(n(
√
k logm+min{ 3

√
Gk log2m,

√
G logm}))

P

[245]

Õ(n
√
k) [243]

O(n+ (n/m)(D + k)(G+ k)) this work

Reduction to pattern matching with mismatches.

The problem of k-mismatch pattern matching with D wildcards can be straightforwardly
reduced to (D+ k)-mismatch pattern matching in solid strings, i.e., strings without wild-
cards. In what follows we only consider solid texts, i.e. we assume that T does not contain
any wildcards. Given the pattern P , construct the string P# obtained by replacing every
wildcard in P with a new character # /∈ Σ. Observe that a pattern P with D wildcards
has a k-mismatch occurrence at a position i of a solid text T if and only if P# has a
(D + k)-mismatch occurrence at that position.

In [89], the authors present an efficient algorithm for the d-mismatch pattern matching
problem for solid strings in the PILLAR model.

Theorem 5.1.1 ([89, Main Theorem 8]). Let S and T be solid strings of respective lengths
m and n ≤ 3m/2. We can compute a representation of the d-mismatch occurrences of S
in T using O(d2 log log d) time plus O(d2) PILLAR operations.

Applying Theorem 5.1.1 with S = P# and d = D + k, we obtain an algorithm for
k-mismatch pattern matching with D wildcards that runs in Õ((D + k)2) time in the
PILLAR model.

Our results.

We provide a more fine-grained result, replacing one D factor with a G factor. We also
make an analogous improvement over the structural result for the set of k-mismatch
occurrences obtained via the reduction to (D+k)-mismatch pattern matching. Our main
result can be formally stated as follows.

Theorem 5.1.2. Let P be a pattern of length m with D wildcards arranged in G groups,
T be a solid text of length n ≤ 3m/2, and k be a positive integer. We can compute
a representation of the k-mismatch occurrences of P in T as O((D + k)G) arithmetic
progressions with common difference and O((D+k)k) additional occurrences using O((D+
k) · (G+ k) log log(D + k)) time plus O((D + k) · (G+ k)) PILLAR operations.
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In the usual word RAM model, by using known implementations of the PILLAR oper-
ations with O(n) preprocessing time and O(1) operation time, the “standard trick”, and
observing that the loglogarithmic factor can be avoided at the cost of O(n) extra time,
we obtain an algorithm with runtime O(n + (n/m)(D + k)(G + k)) for texts of arbi-
trary length n. Section 5.5 details the implementation of our algorithm in other settings,
such as the dynamic and compressed settings. For example, given a solid text T and
a pattern P with D wildcards represented as straight-line programs of sizes N and M
respectively, we can compute the number of k-mismatch occurrences of P in T in time
Õ(M +N · (D + k)(G+ k)), without having to uncompress P and T .

We complement our structural result with a lower bound on the number of arithmetic
progressions of occurrences of a pattern with mismatches and wildcards (Theorem 5.6.1),
based on a neat construction that employs large sets that do not contain any arithmetic
progression of size 3 [56, 127, 129]. Informally, we show that there exist a pattern P and
a text T of length at most 3|P |/2 such that the set of k-mismatch occurrences of P in T
cannot be covered with less than Ω((D+k) ·(k+1)) arithmetic progressions. This implies,
in particular, a lower bound of Ω(D) on the number of arithmetic progressions of exact
occurrences for a pattern with D wildcards and a lower bound of Ω(k2) on the number
of arithmetic progressions of k-mismatch occurrences of a solid pattern, thus showing the
tightness of the known upper bound [89].

When k = 0, Theorem 5.1.2 readily implies an O(n + DG · n/m)-time algorithm for
exact pattern matching. However, the techniques employed by this algorithm are rather
heavy-handed, and this can be avoided. In Section 5.3, we present a much simpler al-
gorithm that achieves the same time complexity and showcases the primary technical
innovation of our approach: the utilization of carefully selected positions, termed spar-
sifiers, which exclusively belong to fragments F of P such that the ratio of the number
of wildcards within them to their length is bounded by O(D/m). In the standard word
RAM model, the implied O(n +DG · n/m) time complexity for exact pattern matching
outperforms the state-of-the-art O(n logm) [100, 111] when DG = o(m logm).

5.1.1 Technical Overview

To illustrate how sparsifiers help, consider our algorithm for exact pattern matching,
which draws ideas from the work of Bringmann et al. [80]. We first compute a solid
Ω(m/G)-length fragment S of P that contains a sparsifier. We then compute its exact
matches in T . If S only has a few occurrences, we straightforwardly verify which of those
extend to occurrences of P . However, if S has many occurrences we cannot afford to do
that, and we instead have to exploit the implied periodic structure of S. We distinguish
between two cases. In the case when P matches a periodic string with the same period
as S, denoted per(S), we take a sliding window approach as in [80], using the fact that the
wildcards are organised in only G groups. The remaining case poses the main technical
challenge. In that case, our goal is to align the maximal fragment S ′ := P [i. .j] of P that
contains S and matches a solid string with period per(S) with a periodic fragment of T
such that position i−1 is aligned with a position breaking the periodicity in T ; a so-called
misperiod. To this end, we compute O(G) maximal fragments of T , called S-runs, that
have period per(S). The issue is, however, that up to D misperiods in T might be aligned
with wildcards of S ′. A straightforward approach would be to extend each S-run to the
left, allowing for D+1 misperiods and to try aligning each such misperiod with i−1. This
would yield an algorithm with runtime O(G2D) in the PILLAR model, as we would have
O(DG) candidate misperiods to align position i − 1 with, and the verification time for
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each such alignment is O(G). The crucial observation is that since S ′ contains a sparsifier,
we do not need to extend each S-run allowing for D+1 misperiods. Instead, we extend it
while the ratio of the encountered misperiods to its length does not exceed 20 ·D/m. By
skipping S-runs that are covered due to the extension of other S-runs, we ensure that the
total number of misperiods with which we align i− 1 is only O(D), obtaining the desired
complexity.

As for handling mismatches, we follow the framework of Charalampopoulos et al. [89]
for k-mismatch pattern matching on solid strings. They showed that an efficient structural
analysis of a solid pattern can return a number of so-called breaks or a number of so-
called repetitive regions, or conclude that the pattern is almost periodic. They treated
each of the three cases separately, exploiting the computed structure. We make several
alterations to account for wildcards, such as ensuring that breaks are solid strings and
adapting the sliding window approach. The primary technical challenge in achieving an
efficient solution lies in limiting the number of occurrences of repetitive regions in T . The
greater the number of repetitive region occurrences, the higher the number of potential
starting positions for k-mismatch occurrences of P . We achieve that by ensuring that
each repetitive region contains a sparsifier. This way, we force an upper bound on the
number of wildcards in each repetitive region, which, in turn, allows us to bound the
number of its approximate occurrences in T .

Our lower bound is based on a neat construction that employs large sets that do not
contain any arithmetic progression of size 3 [56, 127, 129]. We use these sets to construct
the pattern P and the text T . They consist mostly of 0s, except that P contains wildcards
and 1s positioned at indices that form a progression-free set, and T contains 0s also
positioned at indices that form a progression-free set, but that are far apart from each
other. Our construction ensures that there is a k-mismatch occurrence of P at position i
in T if and only if a 1 or a wildcard of P is aligned with a 1 of T . We show that the set
of such positions i has size Ω((D + k) · (k + 1)) and is progression-free.

Other Related Work

The pattern matching problem with wildcards under the edit distance has also been stud-
ied. A straightforward extension of the O(nk)-time algorithm of Landau and Vishkin [227]
for pattern matching under edit distance for solid P and T yields an algorithm with run-
ning time O(n(k + G)). Later, Akutsu [20] presented an algorithm running in time
O(n
√
mk polylogm). Recently, an algorithm with runtime O(n(k+

√
Gk log n)) was pre-

sented [50], improving over both previously known algorithms when k ≪ G ≪ m. The
aforementioned algorithms can handle the case when both P and T contain wildcards.

Organisation of the Chapter

Section 5.2 introduces concepts relevant to this work, as well as an abstract problem that
we use in our analysis. Section 5.3 presents an algorithm for exact pattern matching with
wildcards in the PILLAR model. It illustrates some of the main ideas underlying this work,
without having to handle mismatches, which bring further challenges. In Section 5.4, we
describe the algorithm that underlies Theorem 5.1.2; the implications of this theorem in
different settings are provided in Section 5.5. We conclude with Section 5.6 where we
present our structural lower bound.
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5.2 Preliminaries
In this work, Σ denotes an alphabet that consists of integers polynomially bounded in the
length of the input strings. The elements of Σ are called (solid) characters. Additionally,
we consider a special character denoted by ♦♢ that is not in Σ and is called a wildcard. Let
Σ♦♢ = Σ ∪ {♦♢}. We say that two characters match if they are identical or at least one of
them is a wildcard. Two equal-length strings match if and only if their i-th characters
match for all i.

In this section, we extend to strings over Σ♦♢ the notations introduced in Section 2.1,
e.g. if T ∈ Σn

♦♢, then for i ≤ j, T [i. .j] denotes the substring T [i]T [i + 1] . . . T [j] of T .
A string in (Σ♦♢)

∗ is called solid if it only contains solid characters, i.e., it is in Σ∗.
Additionally, we define the ball BT (i, r) with a radius r and a center i in T , as the
fragment T [max{1, i − r}. .min{i + r, n}], where we often omit the subscript T if it is
clear from the context.

An integer ρ is a deterministic period of a string S ∈ Σ∗
♦♢ (that may contain wildcards),

if there exists a solid string T that matches S and has period ρ.
The Hamming distance δH(S1, S2) between two equal-length strings S1, S2 in Σ∗

♦♢ is the
number of positions i such that S1[i] does not match S2[i]. For two strings U,Q ∈ Σ∗

♦♢,
we slightly abuse notation and denote δH(U,Q

∞[. .|U |]) by δH(U,Q
∞). A position i of a

string T is called a k-mismatch occurrence of a string P if δH(T [i, i + |P |), P ) ≤ k, and
the set of all k-mismatch occurrences of P in T is denoted by Occk(P, T ).

5.2.1 The PILLAR Model

In this chapter, we describe our algorithms in the PILLAR model, introduced by Char-
alampopoulos et al. [89]: see Section 3.3 for a description of this framework. We will use
the following operation, which can be efficiently implemented in the PILLAR model.

Fact 5.2.1 ([92, proof of Lemma 12]). For a fragment X and a suffix Z of a solid string Y ,
the value LCP(X∞, Z) can be computed using O(1) PILLAR operations.

To work in the PILLAR model despite considering strings with wildcards, we replace
each wildcard with a solid character # ̸∈ Σ and using PILLAR operations over the obtained
collection of (solid) strings. In our algorithms, we will use PILLAR operations in the solid
part of the input strings, and use properties of wildcards to handle the other parts.
Namely, for each string in the collection, we pre-compute a linked list that stores the
endpoints of groups of wildcards. One example of algorithm that alternates between
PILLAR operations and wildcard groups is the Kangaroo jumping technique of Landau
and Vishkin [224].

Fact 5.2.2. Let P be a pattern with D wildcards arranged in G groups and T be a solid
text. For a position p and a given threshold k ≥ 0, one can test whether δH(P, T [p. .p +
m)) ≤ k using O(G+ k) PILLAR operations.

Proof. We start at position 1 of the pattern with mismatch budget k. With one LCP query,
we reach the first position j in the pattern such that either P [j] = ♦♢ or P [j] ̸= T [p+j−1].
If P [j] = ♦♢, we jump to the next non-wildcard character using another LCP query (using
Fact 5.2.1); otherwise, we decrement the budget of mismatches by one and continue from
the next position. If the budget of mismatches becomes zero before we reach the end of P ,
then δH(P, T [p. .p + m)) > k; otherwise it is ≤ k. In each iteration we either decrease
the mismatch budget or jump over a group of wildcards. Hence, the total number of
performed LCP queries (which are the bottleneck) is O(G+ k).



Chapter 5. Pattern Matching with Mismatches and Wildcards 45

5.2.2 Sparsifiers

In Section 5.1, we elucidated the pivotal role of the fragments of the pattern where wild-
cards exhibit a “typical” distribution. In this section, we formalize this concept.

Definition 5.2.3 (Sparsifiers). Consider a string X ∈ Σm
♦♢ containing D wildcards. We

call a position i in X a sparsifier if X[i] is a solid character and, for any r, the number
of wildcards within the ball of radius r centered at i is at most 8r ·D/m.

In the following, we demonstrate that P contains a long fragment whose every position
is a sparsifier. We start with an abstract lemma, where one can think of a binary vector V
as the indicator vector for wildcards, and ∥V ∥ denotes the number of 1s in V . A run of 1s
(resp. 0s) is a maximal fragment that consists only of 1s (resp. 0s).

Lemma 5.2.4. Let V be a binary vector of size N , M := ∥V ∥ and R be the number of
runs of 1s in V . Assume V to be represented as a linked list of the endpoints of runs of
1s in V , arranged in the sorted order. There is an O(R)-time algorithm that computes a
set U ⊆ [1. .N ], represented as the union of at most R + 1 disjoint intervals, such that:

1. |U | ≥ N/2−M ,
2. for each i ∈ U and radius r ∈ [1. .N ], ∥BV (i, r)∥ ≤ 8r ·M/N .

Proof. First, we scan V from left to right. Each time we see a 1, we mark the N/(4M)
leftmost 0s that are to the right of the considered 1 and have not been already marked.
If we mark the last 0 in V , we terminate the scan. Overall, we mark at most N/4 0s.
Next, we perform the symmetric procedure in a right-to-left scan of V . Let U be the set
of positions of unmarked 0s after these two marking steps. Observe that, by construction,
every run of 0s contains at most one interval of unmarked positions and hence U can be
represented as union of at most R + 1 disjoint intervals.

Let us show that U satisfies the condition of the lemma. First, we have |U | ≥ N −
M −N/2 ≥ N/2−M . Now, fix i ∈ U and r ∈ [1. .N ]. Let B1 = V [max{i− r, 1}. .i− 1]
and B2 = V [i + 1. .min{i + r,N}]. Since V [i] was not marked in the left-to-right scan,
there are at least ∥B1∥ · N/(4M) 0s in B1. Symmetrically, since V [i] was not marked in
the right-to-left scan of B, there are at least ∥B2∥ ·N/(4M) 0s in B2. On the other hand,
the number of 0s in B1 (resp. B2) is bounded by r, and therefore

∥BV [i, r]∥ = ∥B1∥+ ∥B2∥ ≤ 4r ·M/N + 4r ·M/N ≤ 8r · 4M/N.

It remains to show that the algorithm can be implemented efficiently. In addition to the
linked list L1 representing the runs of 1s in V , the algorithm maintains a linked list L2

of the intervals of marked 0s, sorted by their left endpoints. The algorithm simulates
marking the 0s for all 1s in the current run at once, taking O(R) time in total. Having
computed L2, the algorithm scans L1 and L2 in parallel in O(R) time to extract the set U ,
represented as the union of at most R + 1 disjoint intervals. This completes the proof of
the lemma.

An application of Lemma 5.2.4 to P with wildcards treated as 1s and solid characters
treated as 0s yields the following corollary.

Corollary 5.2.5. Consider a string P ∈ Σm
♦♢ containing D wildcards arranged in G groups.

Given the endpoints of those groups, in O(G) time, we can compute a set of sparsifiers of
size at least m/2−D represented as the union of at most G+ 1 disjoint intervals.
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5.3 Exact Pattern Matching in the PILLAR Model

In this section, we consider a pattern P of length m with D ≥ 1 wildcards arranged in G
groups and a solid text T of length n such that n ≤ 3m/2. We then use the “standard
trick” presented in the introduction to lift the result to texts of arbitrary length. We prove
a structural result for the exact occurrences of P in T and show how to compute them
efficiently when the product of D and G is small. In particular, we compute them in linear
time when DG = O(m), thus improving by a logarithmic factor over the state-of-the-art
O(n logm)-time algorithms in this case.

Definition 5.3.1 (Misperiods). Consider a string V over alphabet Σ♦♢. We say that a
position x is a misperiod with respect to a solid fragment V [i. .j] when V [x] does not match
V [y], where y is any position in [i. .j] such that per(V [i. .j]) divides |y−x|. Additionally, we
consider positions 0 and |V |+1 as misperiods. We denote the set of the at most κ rightmost
misperiods smaller than i with respect to V [i. .j] by LeftMisper(V, i, j, κ). Similarly, we
denote the set of the at most κ leftmost misperiods larger than j with respect to V [i. .j] by
RightMisper(V, i, j, κ).

Example 5.3.2. Consider a string V = cc♦♢bdabcabcabcab. The misperiods with respect
to the underlined and highlighted fragment V [6. .13], which has period 3, are positions 0, 1,
5, and |V |+1 = 17. We have LeftMisper(V, 6, 13, 2) = {1, 5} and RightMisper(V, 6, 13, 2) =
{17}.

The next lemma states that misperiods can be computed efficiently in an incremental
fashion. Its proof uses the kangaroo method, and closely follows [80, 92].

Lemma 5.3.3. Consider a string V over an alphabet Σ♦♢ and a solid periodic fragment
V [i. .j] of V . The elements of either of LeftMisper(V, i, j, |V |) and RightMisper(V, i, j, |V |)
can be computed in the increasing order with respect to their distance from position i so
that:

• the first misperiod x can be computed in O(1+G0) time in the PILLAR model, where
G0 denotes the number of groups of wildcards between positions x and i;

• given the t-th misperiod x ̸∈ {0, |V | + 1}, the (t + 1)-th misperiod can be computed
in O(1 +Gt) time in the PILLAR model, where Gt denotes the number of groups of
wildcards between said misperiods.

Proof. It suffices to describe how to compute elements of RightMisper(V, i, j, |V |) as the
computation of elements of LeftMisper(V, i, j, |V |) is symmetric.

We first compute the period q of V [i. .j]. Due to our assumption that V [i. .j] is
periodic, this can be done in O(1) time in the PILLAR model [208]. Let Q := V [i. .i + q)
and observe that Q2 is a prefix of V [i. .j] since the latter is periodic. Hence, in constant
time, we can retrieve a fragment of V equal to any desired rotation of Q.

Let us now discuss how to efficiently compute the first misperiod, that is, the first
mismatch between V [i. .|V |] and Q∞. Let F be the maximal solid fragment that contains
V [i. .j]. Using Fact 5.2.1, in O(1) time in the PILLAR model, we either compute the
first misperiod or reach a group of wildcards and conclude that there are no misperiods
in F . In the latter case we do the following. While we have not yet found a misperiod or
reached the end of V , we consider the subsequent maximal solid fragment Y ; we find the
starting position y of this fragment by applying Fact 5.2.1 to compute the length of the
encountered group of wildcards. The elements of RightMisper(V, i, j, |V |) spanned by Y
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are the mismatches of Y and Q∞[y − i. .y − i + |Y |). We can compute the smallest such
element, if one exists, using Fact 5.2.1, or reach the next group of wildcards.

Subsequent misperiods are computed in an analogous manner using the kangaroo
method: we try to compute them in maximal solid fragments using Fact 5.2.1 in O(1)
time in the PILLAR model, while skipping any encountered groups of wildcards in O(1)
time in the PILLAR model.

A direct application of the above lemma yields the following fact.

Corollary 5.3.4. For any k ≥ 0, the sets LeftMisper(V, i, j, k) and RightMisper(V, i, j, k)
can be computed in O(k +G) time in the PILLAR model.

Definition 5.3.5. For two strings S and Q, let MI(S,Q) denote the set of positions of
mismatches between S and Q∞.

Definition 5.3.6 (S-runs). A fragment of a solid string V spanned by a set of occurrences
of a solid string S in V whose starting positions form a maximal arithmetic progression
with difference per(S) is called an S-run.

Example 5.3.7. Let V = cababcabcabcabc and S = abcab. The underlined and high-
lighted fragment V [4. .14] is the sole S-run in V ; it is spanned by the occurrences of S at
positions 4, 7, and 10.

The following fact characterises the overlaps of S-runs.

Fact 5.3.8. Two S-runs can overlap by no more than per(S)− 1 positions.

Proof. Towards a contradiction suppose that we have two S-runs R1 and R2 that overlap
by at least per(S) positions. Since S-runs correspond to inclusion-maximal arithmetic
progressions of occurrences of S, the difference of the starting positions of R1 and R2 is not
a multiple of per(S). Without loss of generality, suppose that the starting position of R1

is to the left of the starting position of R2. Then, S[1. .per(S)] = R2[1. .per(S)] matches a
non-trivial rotation of itself, and is hence not primitive, contradicting Fact 2.1.2.

We need a final ingredient before we prove the main theorem of this section. We
state a more general variant of the statement than we need here that also accounts for k
mismatches, as this will come handy in the subsequent section. For the purposes of this
section one can think of k as 0. The following corollary follows from [89, Lemma 4.6] via
the reduction to computing (D + k)-mismatch occurrences of P# in T .

Corollary 5.3.9 (of [89, Lemma 4.6]). Let S be a string of length m with D wildcards,
let T be a solid string such that |T | ≤ 3|S|/2, let k ∈ [0. .m] and d ≥ 2(D+k) be a positive
integer, and let Q be a primitive solid string such that |Q| ≤ m/8d and δH(S,Q

∞) ≤ d.
Then, we can compute, in O(d) time in the PILLAR model, a fragment T ′ = T [ℓ. .r] of T
such that

• δH(T
′, Q∞) ≤ 3d, and

• all elements of Occk(S, T
′) = {p− ℓ : p ∈ Occk(S, T )} are equal to 0 (mod |Q|).

Theorem 5.3.10. Consider a pattern P of length m with D wildcards arranged in G
groups and a solid text T of length n ≤ 3m/2. Then at least one of the following holds:

• P has O(D) occurrences in T , or
• P has a deterministic period q = O(m/D).
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Furthermore, a representation of the occurrences of P in T can be computed using O(DG)
PILLAR operations plus O(DG log logD) time. In the former case the occurrences are re-
turned explicitly, while in the latter case they are returned as O(DG) arithmetic progres-
sions with common difference q.

Proof. First, observe that if D = Θ(m) the statement holds trivially as there can only
be O(m) occurrences and we can compute them using O(mG) PILLAR operations, e.g.,
by applying Fact 5.2.2 for each position of the text. We thus henceforth assume that
D < m/4.

We apply Corollary 5.2.5 to P , thus obtaining, in O(G) time, m/2−D > m/4 sparsi-
fiers in the form of G + 1 intervals. Among the output, there exists at least one interval
J that is of size at least L := ⌊m/(8G)⌋ ≤ m/(4(G+1)). Let x, y be such that [x. .y] ⊆ J
is of size L. We set S := P [x. .y], noting that S is a solid fragment. Then, we compute all
occurrences of S in T in O(G) time in the PILLAR model, represented as O(G) arithmetic
progressions with common difference per(S) (see Fact 3.2.1).

Case (I): S has less than 384D occurrences in T . In this case, we try to extend
each such occurrence to an occurrence of P in T using Fact 5.2.2 in O(G) time in the
PILLAR model. This takes O(DG) time in total in the PILLAR model.

Case (II): S has at least 384D occurrences in T . In this case, we have two oc-
currences of S in T starting within (3m/2)/(384D) positions of each other, and hence
per(S) ≤ m/(256D). Let Q = S[1. .per(S)]. By definition of per(S), S is a prefix
of Q∞ and by Fact 2.1.2, Q is primitive. Using Lemma 5.3.4, we compute the sets
LeftMisper(P, x, y, 1) and RightMisper(P, x, y, 1) in O(G) time in the PILLAR model. In
other words, we compute the maximal fragment V of P that contains S and matches
exactly some substring of Q∞.

Subcase (a): V = P . We conclude that q := |Q| ≤ m/(256D) is a deterministic period
of P . We replace Q by its (possibly trivial) rotation Q0 such that P is equal to a prefix
of Q∞

0 and then apply Corollary 5.3.9 to P and T with d = 32D and k = 0 to compute,
in O(D) time in the PILLAR model, a fragment T ′ of T that contains the same number of
occurrences of P as T , is at Hamming distance O(D) from a prefix of Q∞, and only has
occurrences of P at positions equivalent to 1 (mod q).

It now suffices to show how to compute the occurrences of P in T ′. As in previous
works [80, 89], we take a sliding window approach. Let W be the set of positions in P
where we have a wildcard. For i ∈ [1. .|T ′| − m + 1], define Hidden(i) to be the size of
the intersection of MI(T ′, Q) ∩ [i. .i +m) with i +W .1 Intuitively, this is the number of
mismatches between T ′[i. .i+m) and Q∞ that are aligned with a wildcard in P (and are
hence “hidden”) when we align P with T ′[i. .i+m). Hidden(·) is a step function whose value
changes O(DG) times as we increase i, since each mismatch enters or exits the window
[i. .i +m) at most once and whether it is hidden or not changes at most 2G times. We
compute Hidden(1) and store the positions where the function changes (as well as by how
much) as events in the increasing order; this sorting takes O(DG log logD) time [170].

For a position i ≤ |T ′| −m+ 1 with i ≡ 1 (mod q), we have

di : = δH(T
′[i. .i+m), P )

= MI(T ′[i. .i+m), Q)− Hidden(i).

1For a set Y and an integer z, by z + Y we denote the set {z + y : y ∈ Y }.
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We maintain this value as we, intuitively, slide P along T , q positions at a time. If
there are no events in (i. .i + q] ⊆ [1. .|T ′|], then di = di+q. This allows us to report
all occurrences of P in T efficiently as O(DG) arithmetic progressions with common
difference q by processing all events in a left-to-right manner in O(DG) time.

Subcase (b): V ̸= P . Our goal is to show that, in this case, the occurrences of P in T
are O(D) and they can be computed in time O(GD). Without loss of generality, assume
that V is not a prefix of P . This means that LeftMisper(P, x, y, 1) = {µ} ≠ {0}. The
occurrences of S in T give us a collection S of O(G) S-runs in T , any two of which can
overlap by less than per(S) = q positions due to Fact 5.3.8. For each S-run R, extend
R to the left until either of the following two conditions is satisfied, keeping track of the
encountered misperiods:

(a) the ratio of encountered misperiods to the sum of |R| and the number of prepended
positions exceeds 20D/m,

(b) the beginning of T has been reached.
Denote by ER the resulting fragment of T and by MR the set of misperiods in it. The
following two claims are of crucial importance for the algorithm’s performance.

▷ Claim 5.3.11. If p+1 is an occurrence of P in T that aligns S with an occurrence of S
in an S-run R = T [r. .r′], then p+ µ ∈MR.

Proof. We first show that p+µ ∈ LeftMisper(T, r, r′, |T |). We have that the solid character
P [µ] is different from a character P [π], where π ∈ [x. .y] and π−µ ≡ 0 (mod q). Further,
P [π] = T [p+ π], where p+ π ∈ [r. .r′], and P [µ] = T [p+ µ]. This means that T [p+ µ] =
P [µ] ̸= P [π] = T [p + π]. Now, since (p + π)− (p + µ) = π − µ is divisible by q, which is
the period of T [r. .r′], we have p+ µ ∈ LeftMisper(T, r, r′, |T |); see Fig. 5.1.

T
p+ 1 p+ µ p+ ν r p+ π r′

R

ER

per(S)

S
S

S

P
µ ν x π y

S

per(S)

no misperiods
≤ |ER| · 16D/m wildcards

Figure 5.1: The run R and an occurrence p of P in T that aligns S with an occurrence of
S in R.

Now, assume for sake of a contradiction that p + µ ̸∈ MR. Intuitively, this can only
be the case if the extension of R did not reach the beginning of T due to encountering
too many misperiods. On the other hand, the fragment P [µ. .x)S of P contains only one
misperiod and cannot contain many wildcards, since every position of S is a sparsifier. As
a result, a misperiod in T will be aligned with a position of P that is neither a misperiod
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nor a wildcard, contradicting the fact that p + 1 is an occurrence of P in T . Formally,
let p + ν > p + µ be the misperiod that forced the extension algorithm to stop, i.e.
ER = T [p + ν. .r′]. (See Fig. 5.1.) Then, the stopping condition implies that |MR| >
|ER| · 20D/m. All these misperiods belong to the prefix of ER matching P [ν. .y]. On the
other hand, due to µ < ν, we have [ν. .y]∩LeftMisper(P, x, y, |P |) = ∅. Furthermore, every
position of S is a sparsifier, and therefore the number of wildcards in P [ν. .y] is at most
|ER| · 16D/m. Thus, there exists p + s ∈ MR such that s ̸∈ LeftMisper(P, x, y, |P |) and
P [s] is not a wildcard. This implies that T [p+ s] ̸= P [s], a contradiction to the fact that
p+ 1 is an occurrence of P .

▷ Claim 5.3.12. The set ∪R∈SMR is of size O(D) and it can be computed using O(D)
PILLAR operations given the set § of S-runs and q.

Proof. We start by initialising a set R := §, marking every element of R as unprocessed
and a setM = ∅. We then iteratively perform the following procedure for the rightmost
unprocessed R = T [r. .r′] ∈ R. ComputeMR using Lemma 5.3.3, setM :=M∪MR, and
mark R as processed. This takes time proportional to the sum of |MR| and the number
of groups of wildcards contained in ER. Let us say that two elements R = T [r. .r′] and
R′ = T [t. .t′] of S are synchronised if and only if r = t (mod q). During the procedure,
whenever we compute some ER = T [x. .r′] that extends beyond an (unprocessed) S-run
R′ = T [t. .t′], that is, x ≤ t ≤ t′ < r′, and R and R′ are synchronised, we remove R′ from
R—the total time required for this step is O(G).

We now show the correctness of the algorithm. If, while extending a run R = T [r. .r′] ∈
R, we extend beyond a run R′ = T [t. .t′] ∈ R with r = t (mod q), observe that the left
endpoint of ER cannot be to the right of the left endpoint of ER′ , since we have at least
as big a budget for misperiods in the extension of R when we reach position t as in the
extension of R′ when we reach position t. This implies that MR′ ⊆ MR and hence
the algorithm correctly computes M = ∪R∈SMR. Additionally, it guarantees that any
computed ER and ER′ for synchronised S-runs R and R′ are disjoint.

Finally, we analyse the algorithm’s time complexity. Henceforth, R denotes set of runs
that were processed. Observe that the run extensions take O(

∑
R∈R |MR|) time in total

in the PILLAR model. As we have

∑
R∈R

|MR| ≤ |R|+
∑
R∈R

|ER| · 20D/m

≤ O(G) + 20D/m ·
∑
R∈R

|ER|,

proving that
∑

R∈R |ER| = O(m) directly yields thatM = O(D) and that the algorithm
takes O(D) time.

In what follows, we ignore all ER that are of length at most m/D as their total length
is O(G ·m/D) = O(m). Let us partition T into a collection Q = {T [1 + iq. .(i+1)q] : i ∈
[0. .⌊n/q⌋ − 1]} of consecutive fragments of length q, with the last one potentially being
shorter and in this case discarded. We say that an element T [i. .j] of Q is synchronised
with an element R = T [r. .r′] of R if no position in [i. .j] is a misperiod with respect to
T [r. .r′]. For a run R = T [r. .r′], let QR = {T [i. .j] ∈ Q : r ≤ i ≤ j ≤ r′} consist of all
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elements of Q that are fully contained in ER and observe that

|QR| ≥ |ER|/q − 2

≥ |ER|/(m/256D)− 2

= |ER| · 256D/m− 2

≥ |ER| · 252D/m+ 2.

Further, let Qs
R = {X ∈ QR : X is synchronised with R}. As ER contains at most

|ER| ·20D/m+1 misperiods with respect to T [r. .r′], we have |Qs
R| ≥ |QR|/2. This means

that |ER| = O(|Qs
R| · q). Now, observe that if some element of Q is synchronised with two

elements R and R′ of R, then R and R′ are themselves synchronised. Since the computed
extensions of synchronised runs are pairwise disjoint, the considered sets Qs

R are pairwise
disjoint and hence the bound follows:∑

R∈R

|ER| = O(m) +
∑

R∈R,|ER|≥m/D

|ER|

= O(m+ |Q| · q)
= O(m)

We can now conclude the proof of the theorem. By the penultimate claim, the starting
positions of occurrences of P in T are in the set {ν − µ + 1 : ν ∈ M}. This concludes
the proof of the combinatorial bound, as the size of this set is O(D). As for the time
complexity, we verify each candidate position using Fact 5.2.2 in total time O(DG) in the
PILLAR model.

5.4 Pattern Matching with k Mismatches in the PILLAR
Model

In this section, we extend the results of Section 5.3, showing that the k-mismatch occur-
rences of a pattern P ∈ Σ∗

♦♢ in a solid text T can be computed in Õ((D+G) ·(G+k)) time
in the PILLAR model. Further, we prove that the starting positions of these occurrences
can be decomposed into O((D + k)G) arithmetic progressions with the same difference,
plus O((D + k)k) additional k-mismatch occurrences.

Theorem 5.1.2. Let P be a pattern of length m with D wildcards arranged in G groups,
T be a solid text of length n ≤ 3m/2, and k be a positive integer. We can compute
a representation of the k-mismatch occurrences of P in T as O((D + k)G) arithmetic
progressions with common difference and O((D+k)k) additional occurrences using O((D+
k) · (G+ k) log log(D + k)) time plus O((D + k) · (G+ k)) PILLAR operations.

5.4.1 Computing Structure in the Pattern

We start by showing a decomposition lemma, that either extracts useful structure from
the pattern or reveals that it is close to a periodic string. Our lemma is analogous to
the decomposition lemma for the case when both strings are solid [89, Lemma 3.6]. The
crucial differences are two:
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• in Case (I), we require that breaks are solid strings,
• in Case (II), we ensure that each computed repetitive region contains a sparsifier.

Lemma 5.4.1. Let P be a string of length m that contains D ≤ m/16 wildcards arranged
in G groups. Further, let k ∈ [1. .m] be an integer threshold, and let γ := G + k and
τ := D + k. At least one of the following holds:

(I) P contains 2γ disjoint solid strings B1, . . . , B2γ, that we call breaks, each having
length m/(16γ) and the period greater than m/(512τ).

(II) P contains r disjoint repetitive regions R1, . . . , Rr of total length mR ≥ m/8, such
that, for every i:

• Ri contains a sparsifier,
• |Ri| ≥ m/16γ, and,
• for a primitive string Qi with |Qi| ≤ m/(512τ), we have δH(Ri, Q

∞
i ) = ⌈32k/m·

|Ri|⌉.
(III) There exists a primitive string Q of length at most m/(512τ) such that δH(P,Q∞) ≤

32k.
Moreover, there is an algorithm that takes O(G+k) time in the PILLAR model and distin-
guishes between the above cases, returning one of the following: either 2γ disjoint breaks,
or repetitive regions R1, . . . , Rr of total length at least m/8 along with primitive strings
Q1, . . . , Qr, or a primitive string Q along with MI(P,Q).

Proof. We process P from left to right. While we have not yet arrived to one of the
Cases (I)-(III), we repeat the following procedure. We take the leftmost fragment F of P
of length m/(16γ) that starts to the right of the current position j and consists only of
sparsfiers. If the period of F is greater than m/(512τ), then we add F to the set of breaks
and proceed to position j + |F |. Otherwise, we extend F to the right until the either
number of mismatches between F and Q∞, where Q := F [1. .per(F )], becomes equal to
⌈32k/m · |F |⌉ or we reach the end of P . In the former case, we add F to the set of repetitive
regions and proceed to position j + |F |. In the latter case, we extend F to the left until
either the number of mismatches between F and Q′∞, where Q′ = rot|F |−m+j(Q), becomes
equal to ⌈32k/m · |F |⌉, or we reach the start of P . If we accumulate enough mismatches,
we update the set of repetitive regions to be {F} and terminate the algorithm. Otherwise,
i.e., if we reach the start of P , we conclude that P is at Hamming distance at most 32k
from a solid string with period at most m/(512τ), and we are hence in Case (III).

Let us now prove the correctness of the above algorithm. We first show that if the
algorithm has not already concluded that we are in one of the three cases, then there exists
a fragment F of sparsifiers that starts in [j. .7m/8], where j is our current position. A
direct application of Corollary 5.2.5 implies that there are at least m/2−D−m/8 ≥ 5m/16
sparsifiers in [1. .7m/8] (since D ≤ m/16), and they are arranged in G + 1 intervals. By
construction, the sparsifiers in an interval are covered from left to right, and hence at
most m/16γ− 1 positions can be left uncovered in each interval. Under our assumptions,
the breaks and repetitive regions that have been already computed cover less than 2γ ·
m/(16γ)+m/8 = m/4 positions. If there is no fragment F of length m/16γ that consists
only of sparsifiers and starts in [j. .7m/8], then at least

5m/16− (m/16γ − 1) · (G+ 1) > 5m/16− (m/16γ) · (G+ 1)

≥ m/4

of the sparsifiers have been already covered, a contradiction. From the above, it also
follows that if a fragment F reaches the end of the pattern during its extension, then
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its length becomes at least m/8. Then, if such a fragment is extended to the left and
accumulates enough mismatches with respect to the periodicity before the start of P is
reached, we can define our set of repetitive regions to be {F} and terminate the algorithm.
This completes the proof of the correctness of the structural result.

Now, note that the presented proof is algorithmic. Corollary 5.2.5 computes the set of
sparsifiers, represented as O(G) disjoint intervals, in O(G) time. After this preprocessing,
the procedure can retrieve a new fragment F in constant time. In total, it considers
O(G) fragments. Computing the period of a solid string takes O(1) time in the PILLAR
model [89, 208]. Moreover, in our attempt to accumulate O(k) misperiods in total, we
encounter each group of wildcards at most twice: at most once when extending to the
right and at most once when extending to the left. All such extensions thus take O(G+k)
time in the PILLAR model due to Lemma 5.3.3.

5.4.2 The Almost Periodic Case

Case (III) is treated quite similarly to Case II(a) of the exact pattern matching algorithm
(see Section 5.3).

Lemma 5.4.2. Let S be a pattern of length m with D wildcards arranged in G groups2,
let T be a solid text of length n, let k ∈ [0. .m], and let d ≥ 2(k+D) be a positive integer.
If there exists a primitive string Q with |Q| ≤ m/8d such that δH(S,Q∞) ≤ min{d, 32k},
then we can compute a representation of Occk(S, T ) as O(d(G+k)) arithmetic progressions
with common difference |Q| in O(d(G + k) log log d · n/m) time plus O(d · n/m) PILLAR
operations. Moreover, if δH(S,Q∞) ≥ 2k, then |Occk(S, T )| = O(d · n/m).

Proof. We only consider the case when n ≤ 3m/2. The result then follows using the
“standard trick” presented in the introduction.

We use an event-driven scheme that extends the one used in the almost periodic
case of Section 5.3. First, we apply Corollary 5.3.9 to compute a fragment T ′ of T that
contains the same number of k-mismatch occurrences as T , is at Hamming distance O(d)
from a prefix of Q∞, and only has occurrences of P at positions that are equivalent to
1 (mod |Q|). This takes O(d) time in the PILLAR model. We then apply Fact 5.2.1 to
compute MI(T ′, Q) in O(d) time in the PILLAR model. For a position i ≤ |T ′| −m + 1,
the distance di between T ′[i. .i+m) and S is given by

di = |MI(S,Q)|+ |MI(T ′[i. .i+m), Q)| − 2Matching(i)− Aligned(i)− Hidden(i),

where
• Matching(i) is the number of positions that are mismatches between S and Q∞, and
Q∞ and T ′, but not between S and T , i.e.,

Matching(i) = |{j : j ∈ MI(S,Q∞)∩MI(T ′[i. .i+m), Q∞)∧S[j] = T ′[i+j]∧S[j] ̸= ♦♢}|.
• Aligned(i) is the number of positions that are mismatches between S and Q∞, Q∞

and T ′, and S and T (as opposed to Matching(i)), i.e.,

Aligned(i) = |{j : j ∈ MI(S,Q∞)∩MI(T ′[i. .i+m), Q∞)∧S[j] ̸= T ′[i+j]∧S[j] ̸= ♦♢}|.
• Hidden(i) is the number of positions that are mismatches between T ′ and Q∞, and

that are aligned with wildcards, i.e.,

Hidden(i) = |{j : j ∈ MI(T ′[i. .i+m), Q∞) ∧ S[j] = ♦♢}|.
2In the final algorithm, S is a fragment of the pattern P , potentially much shorter than the text.
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Recall that every j ∈ Occk(S, T
′) satisfies j ≡ 1 (mod |Q|) (Theorem 5.1.1), hence we

only consider the values of di as i increases by multiples of |Q|. Then, the value di only
changes when one of the following events occurs: a position in MI(T ′, Q) enters or exits
the active window T ′[i. .i +m), starts or stops being aligned with a group of wildcards,
or starts or stops being aligned with a position in MI(S,Q). As |MI(T ′, Q)| = O(d), there
are G groups of wildcards in S and |MI(S,Q)| = O(k), there are O(d(G+ k)) events.

If di ≤ k, then all positions equivalent to 1 (mod |Q|) until the subsequent event
are k-mismatch occurrences, and form an arithmetic progression with difference |Q|. As
there are O(d(G + k)) events, we obtain the stated bound on the number of arithmetic
progressions.

We sort the events by index in O(d(G+k) log log d) time [170]. Then, we process them
from left to right; processing one event takes constant time. The initial value of d0 can be
computed in time linear in the number of events. Overall, the running time is dominated
by the sorting operation. We additionally perform O(d) PILLAR operations to compute
T ′.

Finally, we consider the case when |MI(S,Q)| ≥ 2k. Let us pick an arbitrary 2k-size
set M ⊆ MI(S,Q). Then, in every k-mismatch occurrence of S in T , at least 2k − k = k
misperiods in M are aligned with misperiods in MI(T ′, Q), as otherwise there would be
more than k mismatches. This observation allows us to apply the marking trick in order
to bound the number of k-mismatch occurrences of S in T . For every pair (x, y) ∈
M ×MI(T ′, Q), we place a mark at position y − x + 1 of T ′. As |MI(T ′, Q)| = O(d), we
place O(dk) marks. Then, since any position j ∈ Occk(S, T

′) must have at least k marks,
we have |Occk(S, T )| = O(dk/k) = O(d).

5.4.3 The Remaining Cases

We now show that in each of the Cases (I) and (II) of Lemma 5.4.1, T contains O(D+ k)
k-mismatch occurrences of P , and we can efficiently compute a set S of O(D+k) positions
that contains all the starting positions of k-mismatch occurrences of P . We then verify
each of the candidate positions in S in O(G+ k) time using Fact 5.2.2.

We first handle the case when the pattern contains 2γ disjoint breaks.

Lemma 5.4.3. In Case (I) of Lemma 5.4.1, a solid text T of length at most 3m/2 contains
O(D+k) k-mismatch occurrences of P . Moreover, we can compute in O((D+k)(G+k))
time in the PILLAR model a set S ⊇ Occk(P, T ) of size O(D + k).

Proof. Let {Bi} be the breaks computed by the algorithm of Lemma 5.4.1. For every i,
let pi denote the starting position of Bi in P . For every exact occurrence j of Bi in T ,
we put a mark at position j − pi + 1 in T . As Bi has period greater than m/512τ , T
contains at most 768τ occurrences of Bi, and they can be computed in O(|T |/|Bi|+ τ) =
O(γ+ τ) = O(D+k) time in the PILLAR model. As there are 2γ breaks, we place at most
768τ · 2γ = 1536τγ marks in total.

Now, in every occurrence of P , at most k of the Bis are not matched exactly and hence
at least 2γ − k of the Bis are matched exactly. Thus, every position j ∈ Occk(P, T ) has
at least 2γ − k ≥ γ marks. We designate S to be the set of positions with at least 2γ − k
marks. Observe that Occk(P, T ) ⊆ S and

|S| ≤ 1536τγ/(2γ − k) ≤ 1536τ = O(D + k).

Thus, S satisfies the conditions of the lemma’s statement.
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We obtain a similar result for repetitive regions via a more sophisticated marking
scheme.

Lemma 5.4.4. In Case (II) of Lemma 5.4.1, given a solid text T of length at most 3m/2,
we can compute in O((D+k)(G+k) log log(D+k)) time plus O((D+k)(G+k)) PILLAR
operations a set S ⊇ Occk(P, T ) of size O(D + k).

Proof. Let {Ri} be the repetitive regions output by the algorithm of Lemma 5.4.1. For
every i, let Di denote the number of wildcards in Ri, di = ⌈32(k + D)/m · |Ri|⌉, and
ki = ⌊16k/m · |Ri|⌋. For every i and every ki-mismatch occurrence of Ri, we put a mark
of weight |Ri| at the corresponding starting position for P .

▷ Claim 5.4.5. For every i, there are O(D + k) ki-mismatch occurrences of Ri in T .
Moreover, the total weight of marks is O((D + k) ·mR).

Proof. We apply Lemma 5.4.2 to each repetitive region. First, let us show that the
conditions of the lemma are satisfied. Recall that |Ri| ≥ m/(16(G + k)) and hence
16k/m · |Ri| ≥ 1.

• di ≥ 2(ki +Di): As Ri contains a sparsifier, we have Di ≤ 16D/m · |Ri| and hence
the bound follows.

• |Qi| ≤ |Ri|/8di: We have di ≤ 64|Ri|(k + D)/m ⇐⇒ m ≤ 64|Ri|(k + D)/di and
hence

|Qi| ≤ m/(512τ) = m/(512(k +D)) ≤ 64|Ri|/(512di) = |Ri|/(8di).
• δH(Ri, Q

∞
i ) ≤ min{di, 32ki}: This follows from the fact that δH(Ri, Q

∞
i ) = ⌈32k/m ·

|Ri|⌉.
Now, since δH(Ri, Q

∞
i ) ≥ 2ki, T contains O(dim/|Ri|) occurrences of Ri. Hence, the

total weight of marks for a given Ri is

wi = O(dim/|Ri|) · |Ri| = O((D + k) · |Ri|),
and, summing over i = 1, . . . , r ≤ 2γ, we get that the total weight of marks that we place
is O((D + k) ·mR).

We next lower bound the number of marks placed at a k-mismatch occurrence of P .

▷ Claim 5.4.6. The total weight of marks placed in any position ℓ ∈ Occk(P, T ) is at
least mR −m/16.

Proof. Consider a k-mismatch occurrence of P at position ℓ of T . For every i, let ri be the
starting position of Ri in P , and let k′

i = δH(Ri, T [ℓ+ ri. .ℓ+ ri + |Ri|)) be the Hamming
distance between Ri and the fragment of T with which it is aligned. As ℓ ∈ Occk(P, T )
and the Ris are disjoint, we have

∑
i k

′
i ≤ k. Now, let I := {i : k′

i ≤ ki}. We have∑
i/∈I

|Ri| =
∑
i/∈I

16mk

16mk
· |Ri|

=
m

16k

∑
i/∈I

16k

m
· |Ri|

<
m

16k

∑
i/∈I

k′
i

≤ m

16k

r∑
i=1

k′
i

≤ m

16
.
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The weight of the mark placed at position ℓ in T due to i ∈ I is |Ri|, which amounts to
a total weight of at least mR −

∑
i/∈I |Ri| ≥ mR −m/16.

Therefore, we can choose S to contain all positions to which we have placed marks of
total weight at least mR−m/16. Dividing the total weight of marks which is O((D+k)·mR)
by mR −m/16 which is at least mR/2 since mR ≥ m/8, we obtain |S| = O(D + k).

Finding the ki-mismatch occurrences of Ri using Lemma 5.4.2 requires O(di(Gi +
ki) log log di · m/|Ri|) = O((D + k)(Gi + ki) log log(D + k)) time plus O(di · m/|Ri|) =
O(D+k) PILLAR operations. As the Ris are disjoint, the sum of the Gis is O(G). Further,
the sum of the kis is O(k). Thus, summing over all i, computing the occurrences of all
O(G+k) Ris takes O((D+k)(G+k) log log(D+k)) time plus O((D+k)(G+k)) PILLAR
operations.

Therefore, computing the set S of possible starting positions of P in T can be done
in O((D+ k)(G+ k) log log(D+ k)) time plus O((D+ k)(G+ k)) PILLAR operations.

Lemmas 5.4.3 and 5.4.4 are the last pieces needed to prove the algorithmic part of
Theorem 5.1.2.

5.4.4 Proof of the algorithmic part of Theorem 5.1.2.

If P contains D > m/16 wildcards, then we apply kangaroo jumping (Fact 5.2.2) to check
whether each of the n ≤ 3m/2 positions in T is a k-mismatch occurrence of P . This
requires O(m(G+ k)) = O((D + k)(G+ k)) time in the PILLAR model.

Otherwise, we have D ≤ m/16, and we can run the algorithm of Lemma 5.4.1, which
takes O(G + k) time in the PILLAR model. In Cases (I) and (II), we use Lemmas 5.4.3
and 5.4.4, respectively, to compute using O((D + k)(G + k) log log(D + k)) time plus
O((D + k)(G + k)) PILLAR operations a set S of size O(D + k) that contains all k-
mismatch occurrences of P . We verify each of these positions using Fact 5.2.2, in total
time O((D + k)(G + k)) in the PILLAR model. In Case (III) of Lemma 5.4.1, P satisfies
the conditions required for S in Lemma 5.4.2, and we can apply this lemma to compute
Occk(P, T ) using O((D+k)(G+k) log log(D+k)) time plus O(D+k) PILLAR operations.

In total, the algorithm uses O((D+k)(G+k) log log(D+k)) time and O((D+k)(G+k))
PILLAR operations.

5.4.5 Proof of the Combinatorial Part of Theorem 5.1.2

Finally, we explain how we can refine the analysis of Lemma 5.4.2 to obtain a more precise
characterisation of the structure of k-mismatch occurrences.

Lemma 5.4.7. The k-mismatch occurrences of P in T can be decomposed into O((D +
k)G) arithmetic progressions with common difference q and O((D + k)k) additional oc-
currences.

Proof. We proceed similarly to the proof of Lemma 5.4.2, with S = P . Let T ′ be the
fragment of T computed by Corollary 5.3.9 using d = Θ(D + k). We have |MI(T ′, Q)| =
O(D+k). Define d′i = |MI(P,Q)|+|MI(T ′[i. .i+m), Q)|−Hidden(i), where Hidden(i) = |{j :
j ∈ MI(T ′[i. .i+m), Q)∧P [j] = ♦♢}|. Note that δH(T ′[i. .i+m), P ) = d′i− 2Matching(i)−
Aligned(i), where

Matching(i) = {j : j ∈ MI(P,Q) ∩MI(T ′[i. .i+m), Q) ∧ ♦♢ ̸= P [j] = T ′[i+ j]},
Aligned(i) = {j : j ∈ MI(P,Q) ∩MI(T ′[i. .i+m), Q) ∧ ♦♢ ̸= P [j] ̸= T ′[i+ j]}
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Therefore, δH(T ′[i. .i+m), P ) ≤ d′i. The inequality is strict if at least one of Matching(i)
or Aligned(i) is positive. In particular, every position where d′i ≤ k corresponds to a k-
mismatch occurrence of P in T . Using the event-driven scheme, we compute the values d′i
for all i ≡ 1 mod |Q|. The value d′i only changes when a position in MI(T ′, Q) enters or
exits the active window T ′[i. .i+m), or when a position in MI(T ′, Q) starts or stops being
aligned with a group of wildcards in P . Therefore, the values d′i change O(G · (D + k))
times. As we only consider positions i ≡ 1 mod |Q|, the set of positions where d′i ≤ k
forms O(G · (D + k)) arithmetic progressions with common difference |Q|.

This analysis might have missed the k-mismatch occurrences where at least one of
Matching(i),Aligned(i) is positive. However, this requires a misperiod of P to be aligned
with a misperiod of T ′. As there are O(k) of the former and O(D + k) of the latter, the
number of such occurrences is O((D + k)k).

5.5 Fast Algorithms in Various Settings

In this section, we combine the algorithm encapsulated in Theorem 5.1.2 with efficient
implementations of the PILLAR model in the standard, dynamic, fully compressed, and
quantum settings, thus obtaining efficient algorithms for (approximate) pattern match-
ing with wildcards in these settings. For ease of presentation, we use the terms “exact
occurrences” and “0-mismatch occurrences” interchangeably.

5.5.1 The Standard Setting

In the standard setting, where a collection of strings of total length N is given explicitly,
PILLAR operations can be performed in constant time after an O(N)-time preprocessing,
cf. [89]. We thus obtain the following result, by noticing that the log log(D + k) factor
in the complexity of Theorem 5.1.2 only comes from sorting subsets of [1. .n] of total
size O((D + k)(G + k)) in the calls to Lemma 5.4.2, which we can instead do naively in
O(n+ (D + k)(G+ k)) time as we can batch the computations.

Theorem 5.5.1. Let P be a pattern of length m with D wildcards arranged in G groups,
T be a solid text of length n, and k ≥ 0 be an integer. We can compute a representation
of the k-mismatch occurrences of P in T in O(n+ (D + k) · (G+ k)) time.

Remark 5.5.2. We can in fact do better if the size of the alphabet Σ is small in the
so-called packed setting. Specifically, we can replace the n factor in the complexity of
Theorem 5.5.1 by n/ log|Σ| n if the input string is given in its packed representation, with
each machine word representing O(log|Σ| n) characters, using the PILLAR model imple-
mentation from [194, 208].

5.5.2 The Compressed Setting

For our purposes, a straight-line program (SLP) is a context-free grammar Γ that consists
of the set Σ♦♢ of terminals and a set NΓ = {A1, . . . , An} of non-terminals such that each
Ai ∈ NΓ is associated with a unique production rule Ai → fΓ(Ai) ∈ (Σ♦♢ ∪ {Aj : j < i})∗.
We can assume without loss of generality that each production rule is of the form A→ BC
for some symbols B and C (that is, the given SLP is in Chomsky normal form). Every
symbol A ∈ SΓ := NΓ ∪ Σ♦♢ generates a unique string, which we denote by gen(A) ∈ Σ∗

♦♢.
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The string gen(A) can be obtained from A by repeatedly replacing each non-terminal with
its production. We say that Γ generates gen(Γ) := gen(An).

In the fully compressed setting, given a collection of straight-line programs (SLPs) of
total size n generating strings of total length N , each PILLAR operation can be performed
in O(logN) time after an O(n logN)-time preprocessing, cf. [89, 125]. Additionally, using
a dynamic programming approach, we can compute a linked-list representation of all wild-
cards in P in O(m+D) time. If we applied Theorem 5.1.2 directly in the fully compressed
setting, we would obtain Ω(N/M) time, where N and M are the uncompressed lengths
of the text and the pattern, respectively. Instead, we can adapt a dynamic programming
approach described in [89, Section 7.2] to obtain the following result.

Theorem 5.5.3 (Fully Compressed Setting). Let ΓT denote a straight-line program of
size n generating a solid string T , let ΓP denote a straight-line program of size m gen-
erating a string P with D wildcards arranged in G groups, let k ≥ 0 denote an integer
threshold, and set N := |T | and M := |P |. We can compute the number of k-mismatch
occurrences of P in T in O(m logN + n(D + k)(G+ k) logN) time. All occurrences can
be returned in extra time proportional to the output size.

5.5.3 The Dynamic Setting

Let X be a growing collection of non-empty persistent strings; it is initially empty, and
then undergoes updates by means of the following operations:

• Makestring(U): Insert a non-empty string U into X
• Concat(U, V ): Insert string UV to X , for U, V ∈ X
• Split(U, i): Insert U [0. .i) and U [i. .|U |) into X , for U ∈ X and i ∈ [0. .|U |).
By N we denote an upper bound on the total length of all strings in X throughout all

updates executed by an algorithm. A collection X of non-empty persistent strings of total
length N can be dynamically maintained with operations Makestring(U), Concat(U, V ),
Split(U, i) requiring time O(|U | + logN), O(logN), and O(logN), respectively, so that
PILLAR operations can be performed in time O(logN); see [125, 160]. All stated time
complexities hold with probability 1− 1/NΩ(1).

It remains to discuss how to compute the linked list representation of the endpoints
of groups of wildcards. The data structure of Gawrychowski et al. [160] maintains a run-
length SLP3 for each string in the collection, whose height is O(logN) with probability
1 − 1/NΩ(1). We can straightforwardly compute the sought representation of wildcards
in a string X ∈ X with D wildcards in O(D logN) time with probability 1 − 1/NΩ(1),
by maintaining at no extra cost, for each non-terminal, whether the string it generates
contains a #. We then simply traverse the O(D logN) nodes of the parse tree that have
a descendant terminal symbol that produces # in an in-order fashion, creating groups of
wildcards as necessary. The complexity of this step is dominated by the time required by
our (approximate) pattern matching algorithm.

Theorem 5.5.4 (Dynamic Setting). A collection X of persistent strings of total length
N over alphabet Σ♦♢ can be dynamically maintained with operations Makestring, Concat
and Split requiring time O(|U | + logN), O(logN), and O(logN), respectively, so that,
given two strings P, T ∈ X , such that P has D wildcards arranged in G groups and T is a
solid string with |T | ≥ |P |, and an integer threshold k ≥ 0, we can return a representation

3The only difference between run-length SLPs and SLPs is that production rules of the form A→ Bk

are also allowed.
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of all k-mismatch occurrences of P in T in time O((D+ k)(G+ k) · |T |/|P | · logN) time.
All stated time complexities hold with probability 1− 1/NΩ(1).

Kempa and Kociumaka [196, Section 8 in the arXiv version] presented a deterministic
implementation of a collection X of non-empty persistent strings, which allows to remove
randomness from the statement of Theorem 5.5.4 at the expense of some multiplicative
logO(1) logN factors.

5.5.4 The Quantum Setting

In what follows, we assume that the input strings can be accessed in the quantum query
model [30, 81]. We are interested in the time complexity of our quantum algorithms [46].

Observation 5.5.5 ([186, Observation 2.3]). For any two strings S, T of length at most
n, LCP(S, T ) or LCPR(S, T ) can be computed in Õ(

√
n) time in the quantum model with

probability at least 1− 1/nc.

Fact 5.5.6 (Corollary of [172], cf. [96, Observation 39]). For any strings S and T of length
at most n, with |T | ≤ 2|S|, IPM(S, T ) can be computed in Õ(

√
n) time in the quantum

model with probability at least 1− 1/nc.

All other PILLAR operations trivially take O(1) quantum time. As a corollary, in the
quantum setting, all PILLAR operations can be implemented in Õ(

√
m) quantum time

with no preprocessing, as we always deal with strings of length O(m). Additionally, we
can compute the linked list representation of the endpoints of groups of wildcards in
Õ(
√
mG) time in the quantum model with probability at least 1 − 1/mc as follows: we

search for a wildcard and, if we find it, we compute the group that contains it in O(1)
time in the PILLAR model using Fact 5.2.1; we then recurse on both sides of the group,
and so on. In total, this procedure requires O(G) time in the PILLAR model and hence
Õ(
√
mG) time in the quantum model. As a corollary, we obtain the following result.

Theorem 5.5.7 (Quantum Setting). Consider a string P of length m with D wildcards
arranged in G groups, a solid string T of length n ≥ m, and an integer threshold k ≥ 0.
The k-mismatch occurrences of P in T can be computed in Õ((n/

√
m)(G + k)(D + k))

time in the quantum model with probability at least 1− 1/nc.

5.6 A Lower Bound on the Number of Arithmetic Pro-
gressions

In this section we show a lower bound on the number of arithmetic progressions covering
the set of k-mismatch occurrences of a pattern in a text.

Theorem 5.6.1. There exist a pattern P of length m = Ω((D + k)1+o(1)(k + 1)) and a
text T of length n ≤ 3m/2 such that the set of k-mismatch occurrences of P in T cannot
be covered with less than Ω((D + k) · (k + 1)) arithmetic progressions.

Proof. We call a set S ⊆ [1. .n] progression-free if it contains no non-trivial arithmetic
progression, that is, distinct integers a, b, c such that a+ b− 2c = 0.

Fact 5.6.2 ([127]). For any sufficiently large integer M , there exists a progression-free
set S of cardinality M that is a subset of {1, . . . , nM}, where nM = O(M2

√
logM).
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Let M = D + k/2 and let S ⊆ [nM ] be a progression-free set of cardinality M . We
encode S as a string PS of length nM as follows: for every i /∈ S we set PS[i] = 0, and we
arbitrarily assign k/2 ones and D wildcards to the remaining D+ k/2 positions. We then
consider the pattern P = 0ℓPS0

ℓ, where ℓ is a parameter to be determined later. In what
follows, let m := 2ℓ+ nM denote the length of P .

Now, let M ′ = k/2 + 1 and S ′ ⊆ [nM ′ ] be a progression-free set of cardinality M ′. We
set

T := 0m/2B1 . . . BnM′0
m/2,

where Bi = 0t−11 if i ∈ S ′, Bi = 0t otherwise, and t = ⌊m/(2nM ′)⌋. We pick ℓ large enough
such that t ≥ 10nM and 2nM ′ divides m. By construction, T has length m+t·nM ′ = 3m/2.
The condition t ≥ 10nM gives the following condition on ℓ:

t ≥ 10nM ⇔ m/2nM ′ ≥ 10nM

⇔ (2ℓ+ nM)/2nM ′ ≥ 10nM

⇔ (2ℓ+ nM) ≥ 20nMnM ′

⇔ 2ℓ ≥ nM(20nM ′ − 1)

⇔ ℓ ≥ nM(10nM ′ − 1/2)

In particular, the condition t ≥ 10nM holds when ℓ ≥ 10nMnM ′ . In this case, we have

m = Ω((k +D)(k + 1)2
√

log(k+D)+
√

log(k+1)).

Let X = Occk(P, T ), i.e. it is the set of k-mismatch occurrences of P in T . Observe that
i ∈ X if and only if there exists j such that P [j] ∈ {1, ♦♢} and T [i + j] = 1. Moreover,
any pair of 1s in T are at least t ≥ 10nM positions apart, while the oness and wildcards
of P all lie within an interval of size nM . Therefore, for a given alignment of P and T ,
there can be at most one 1 of T that is aligned with a 1 or a wildcard of P ; it follows that
Occk(P, T ) has cardinality

(D + k/2) · (k/2 + 1) = Ω((D + k) · (k + 1)).

It remains to show that X = does not contain arithmetic progressions of length 3.
Assume for a sake of contradiction that there exist x, y, z ∈ X with x < y < z that form
an arithmetic progression, i.e.,

y − x = z − y.

Let ix denote the index of the block Bix of T that contains the leftmost 1 that is aligned
with a 1 or a wildcard of P : this 1 is at position m/2+ixt in T . Similarly, let dx be such that
the corresponding aligned character is at position ℓ+dx in P . Note that, by construction,
ix is an element of S ′ and dx is an element of S, both of which are progression-free sets.
Define iy, iz, dy, dz similarly for y, z. To obtain the sought contradiction, we show that one
of (ix, iy, iz) or (dx, dy, dz) is an arithmetic progression. We can express each w ∈ {x, y, z}
in terms of iw and dw as

w = m/2 + iwt− dw − ℓ+ 1.

Combining the above equations for x, y, and z, we get

y − x = (iy − ix)t− (dy − dx) and z − y = (iz − iy)t− (dz − dy).

By construction, |dy − dx| ≤ nM . As t ≥ 10nM , the equality y − x = z − y thus yields

iy − ix = iz − iy and dy − dx = dz − dy.
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However, as x < y < z, at least one of the above two equations involves non-zero values.
In other words, there is a three-term arithmetic progression in either S or S ′, contradicting
the fact that they are progression-free.
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Chapter 6

Longest Common Extension with
Wildcards and applications: Pattern
Matching and Matrix Multiplication

6.1 Introduction

Given a string T , the longest common extension (LCE) at indices i and j is the length
of the longest common prefix of the suffixes of T starting at indices i and j. In the LCE
problem, given a string T , the goal is to build a data structure that can efficiently answer
LCE queries.

Longest common extension queries are a powerful string operation that underlies a
myriad of string algorithms, for problems such as approximate pattern matching [20,
32, 89, 147, 224, 225], finding maximal or gapped palindromes [64, 95, 168, 211], and
computing the repetitive structure (e.g., runs) in strings [45, 209], to name just a few.

Due to its importance, the LCE problem and its variants have received a lot of atten-
tion [64, 66, 67, 68, 69, 138, 157, 160, 171, 194, 197, 198, 202, 215, 246, 252, 276, 277, 278].
The suffix tree of a string of length n occupies Θ(n) space and can be preprocessed in
O(n) time to answer LCE queries in constant time [138, 171]. However, the Θ(n) space
requirement can be prohibitive for applications such as computational biology that deal
with extremely large strings. Consequently, much of the recent research has focused on
designing data structures that use less space without being (much) slower in answering
queries. Consider the setting when we are given a read-only length-n string T over an
alphabet of size polynomial in n. Bille et al. [66] gave a data structure for the LCE prob-
lem that, for any given user-defined parameter τ ≤ n, occupies O(τ) space on top of the
input string and answers queries in O(n/τ) time. Kosolobov [214] showed that this data
structure is optimal when τ = Ω(n/ log n). A drawback of the data structure of Bille
et al. [66] is its rather slow O(n2+ε) construction time. This motivated studies towards
an LCE data structure with optimal space and query time and a fast construction algo-
rithm. Gawrychowski and Kociumaka [157] gave an optimal O(n)-time and O(τ)-space
Monte Carlo construction algorithm and Birenzwige et al. [69] gave a Las Vegas construc-
tion algorithm with the same complexity provided τ = Ω(log n). Finally, Kosolobov and
Sivukhin [215] gave a deterministic construction algorithm that works in optimal O(n)
time and O(τ) space for τ = Ω(nε), where ε > 0 is an arbitrary constant. Another line
of work [67, 68, 160, 197, 198, 246, 276, 277, 278] considers LCE data structures over
compressed strings.
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64 6.1. Introduction

One important variant of the LCE problem is that of LCE with k-mismatches (k-
LCE), where one wants to find the longest prefixes that differ in at most k positions, for
a given integer parameter k. Landau and Vishkin [224] proposed a technique, dubbed
“kangaroo jumping”, that reduces k-LCE to k + 1 standard LCE queries. This technique
is a central component of many approximate pattern matching algorithms, under the
Hamming [32, 89] and the edit [20, 89, 224] distances.

In this work, we focus on the variant of LCE in strings with wildcards, denoted LCEW.
Wildcards (also known as holes or don’t cares), denoted ♦♢, are special characters that
match every character of the alphabet. Wildcards are a versatile tool for modeling uncer-
tain data, and algorithms on strings with wildcards have garnered considerable attention
in the literature [10, 15, 20, 32, 52, 65, 71, 72, 74, 100, 102, 103, 106, 111, 113, 140, 141,
163, 180, 184, 189, 236, 244, 245, 253].

Given a string T , and indices i, j, LCEW(i, j) is the length of the longest matching
prefixes of the suffixes of T starting at indices i and j. For all τ ∈ [1. .n], Iliopoulos
and Radoszewski [180] showed an LCEW data structure with O(n2 log n/τ) preprocessing
time, O(n2/τ) space, and O(τ) query time. In the case where the number of wildcards
in T is bounded, more efficient data structures exist.

The LCEW problem is closely related to k-LCE: if we let T̂ be the string obtained by
replacing each wildcard in T with a new character, the i-th wildcard replaced with a fresh
letter #i, then an LCEW query in T can be reduced to a D-LCE query in T̂ , where D is the
number of wildcards in T . Consequently, an LCEW query can be answered using O(D)
LCE queries. In particular, if we use the suffix tree to answer LCE queries, we obtain a
data structure with O(n) space and construction time and O(D) query time. At the other
end of the spectrum, Blanchet-Sadri and Lazarow [70] showed that one can achieve O(1)
query time using O(nD) space after an O(nD)-time preprocessing.

By using the structure of the wildcards inside the string, one can improve the afore-
mentioned bounds even further. Namely, it is not hard to see that if the wildcards in
T are arranged in G maximal contiguous groups (see Example 6.1.1), then we can re-
duce the number of LCE queries needed to answer an LCEW query to G by jumping over
such groups, thus obtaining a data structure with O(n)-time preprocessing, O(n) space,
and O(G) query time. On the other hand, Crochemore et al. [117] devised an O(nG)-
space data structure that can be built in O(nG) time and can answer LCEW queries in
constant time.

Example 6.1.1. In the string T = abab♦♢♦♢♦♢aaaa♦♢♦♢♦♢♦♢ba♦♢♦♢♦♢bb, we have D = 10 and G = 3.

6.1.1 Our Results

In this work, we present an LCEW data structure that achieves a smooth space-time
trade-off between the data structure based on “kangaroo jumps” and that of Crochemore
et al. [117]. More precisely, for any 1 ≤ t ≤ G, we show that there exists a data structure
using O(nG/t) space and answering queries in time O(t) (see Theorem 6.1.2 for more
details). As our main contribution, we show that for any t ≤ G, there exists a set of
O(G/t) positions, called selected positions, that intersects any chain of t kangaroo jumps
from a fixed pair of positions. Given the LCEW information on selected positions, we can
speed up LCEW queries on arbitrary positions by jumping from the first selected position
in the common extension to the last selected position in the common extension. This
gives us an O(t) bound on the number of kangaroo jumps we need to perform to answer a
query. We leverage the fast FFT-based algorithm of Clifford and Clifford [100] for pattern
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matching with wildcards to efficiently build a dynamic programming table containing the
result of LCEW queries on pairs of indices containing a selected position; this table allows
us to jump from the first to the last selected position in the common extension in constant
time. The size of the table is O(nG/t), while the query time is O(t). For comparison, the
data structures of Crochemore et al. [117] and of Iliopoulos and Radoszewski [180] use a
similar dynamic programming scheme that precomputes the result of LCEW queries for
a subset of positions: Crochemore et al. use all transition positions (see Section 6.3 for
a definition), while Iliopoulos and Radoszewski use one in every

√
n positions. We use a

more refined approach, that allows us to obtain both a dependency on G instead of n and
a space-query-time trade-off. Our result can be stated formally as follows.

Theorem 6.1.2. Suppose that we are given a string T of length n that contains wild-
cards arranged into G maximal contiguous groups. For every t ∈ [1. .G], there exists a
deterministic data structure that:

• uses space O(nG/t),
• can be built in time O(n(G/t) log n) using O(nG/t) space,
• given two indices i, j ∈ [1. .n], returns LCEW(i, j) in time O(t).

We further show that this trade-off can be extended to t ≥ G by implementing the
kangaroo jumping method of Landau and Vishkin [224] with a data structure that provides
a time-space trade-off for (classical) LCE queries. Using the main result of Kosolobov and
Sivukhin [215], we obtain the following:

Corollary 6.1.3. Suppose that we are given a read-only string T of length n that contains
wildcards arranged into G maximal contiguous groups. For every constant ε > 0 and
t ∈ [G. .G · n1−ε], there exists a data structure that:

• uses space O(nG/t),
• can be built in time O(n) using O(nG/t) space,
• given two indices i, j ∈ [1. .n], returns LCEW(i, j) in time O(t).

Proof. We build the LCE data structure of Kosolobov and Sivukhin [215] for parameter
τ = nG/t = Ω(nε) in O(n) time and O(τ) space. As an LCEW query reduces to G LCE
queries, the constructed data structure supports LCEW queries in O(G · n/τ) = O(t)
time.

By a reduction from Boolean matrix multiplication (BMM), we derive a conditional
Ω(n2−o(1)) lower bound on the product of the preprocessing and query times of any com-
binatorial data structure for the LCEW problem (Theorem 6.4.2).1 This is the first lower
bound for this problem and matches the trade-off of our data structure up to subpolyno-
mial factors when G = Θ(n).

Surprisingly, one can also use the connection between the two problems to derive an
algorithm for sparse Boolean matrix multiplication. Existing algorithms for BMM can be
largely categorised into two types: combinatorial and those relying on (dense) fast matrix
multiplication. However, the latter are notorious for the significant hidden constants in
their asymptotic complexity, making them unlikely candidates for practical applicability.
By using the connection to the LCEW problem, we show a deterministic combinatorial
algorithm with runtime Õ(n

√
min · (n+mout)). Our algorithm ties or outperforms all

other known deterministic combinatorial algorithms [169, 220, 221, 283] for some range

1In line with previous work, we say that an algorithm or a data structure is combinatorial if it does
not use fast matrix multiplication as a subroutine during preprocessing or while answering queries.
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Table 6.1: Overview of combinatorial deterministic sparse Boolean matrix multiplication
algorithms. The values min (resp. mout) refer to the total number of non-zero entries in
the input matrices (resp., in the output matrix).

Source Running Time

Gustavson [169] O(n ·min)

Kutzkov [221] O(n · (n+m2
out))

Künnemann [220] O(
√
mout · n2 +m2

out)

Abboud et al. [12] Õ(min
√
mout)

Our algorithm Õ(n
√
min · (n+mout))

of parameters min and mout, e.g., when min = Θ(n3/2) and mout = Θ(n4/3), except for the
one implicitly implied by the result of Abboud et al. [12]. Namely, by replacing fast matrix
multiplication (used in a black-box way) in [12, Theorem 4.1] with the naive matrix mul-
tiplication algorithm, one obtains a deterministic combinatorial algorithm with runtime
Õ(min

√
mout), which is always better than our time bound. See Table 6.1 for a summary.

However, our algorithm is much simpler than that of Abboud et al. [12]: while our algo-
rithm relies solely on standard tools typically covered in undergraduate computer science
courses, theirs requires an intricate construction of a family of hash functions with subse-
quent derandomisation. We provide a (non-optimized) proof-of-concept implementation
at https://github.com/GBathie/LCEW.

Applications

We further showcase the significance of our data structure by using it to improve over
the state-of-the-art algorithms for approximate pattern matching and the construction of
periodicity-related arrays for strings containing wildcards.

As previously mentioned, LCE queries play a crucial role in string algorithms, especially
in approximate pattern matching algorithms, such as for the problem of pattern matching
with k errors (k-PME, also known as pattern matching with k edits or differences). This
problem involves identifying all positions in a given text where a fragment starting at
that position is within an edit distance of k from a given pattern. The now-classical
algorithm of Landau and Vishkin [224] elegantly solves this problem, achieving a time
complexity of O(nk) through extensive use of LCE queries. A natural extension of k-PME
is the problem of pattern matching with wildcards and k-errors (k-PMWE), where the
pattern and the text may contain wildcards. The algorithm of Landau and Vishkin [224]
for pattern matching under the edit distance can be extended to an O(n(k + G))-time
algorithm for k-PMWE in strings with G groups of wildcards (see [20]). Building on
their work, Akutsu [20] gave an algorithm for k-PMWE that runs in time Õ(n

√
km). In

Theorem 6.5.2, we give an algorithm for k-PMWE with runtime O(n(k +
√
Gk log n)),

which improves on the algorithms of Akutsu [20] and Landau and Vishkin [224] in the
regime where k ≪ G≪ m.

Periodicity arrays capture repetitions in strings and are widely used in pattern match-
ing algorithms, see e.g. [114, 115]. The prefix array of a length-n string T with wildcards

https://github.com/GBathie/LCEW
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stores LCEW(1, j) for all 1 ≤ j ≤ n. It was first studied in [181], where an O(n2)-time
construction algorithm was given. More recently, Iliopoulos and Radoszewski [180] pre-
sented an O(n

√
n log n)-time and Θ(n)-space algorithm. Another fundamental periodicity

array is the border array, which stores the maximum length of a proper border of each
prefix of the string. When a string contains wildcards, borders can be defined in two
different ways [175, 181]. A quantum border of a string T is a prefix of T that matches the
same-length suffix of T , while a deterministic border is a border of a string T ′ that does
not contain wildcards and matches T , see Example 6.1.4. A closely related notion is that
of quantum and deterministic periods and their respective period arrays (see Section 6.2
for definitions).

Example 6.1.4. The maximal length of a quantum border of T = ab♦♢bc is 3; note that
ab♦♢ matches ♦♢bc. The maximal length of a deterministic border of T , however, is 0.

Early work in this area [175, 181] showed that both variants of the border array can
be constructed in O(n2) time. Iliopoulos and Radoszewski [180] demonstrated that one
can compute the border arrays from the prefix array in O(n) time and O(n) space, and
the period arrays in O(n log n) time and O(n) space, thus deriving an O(n

√
n log n)-

time, O(n)-space construction algorithm for all four arrays. In Theorem 6.5.3, we give
O(n
√
G log n)-time, O(n)-space algorithms for computing the prefix array, as well as the

quantum and deterministic border and period arrays, improving all previously known
algorithms when G = o(n/ log n).

6.2 Preliminaries
A string S of length n = |S| is a finite sequence of n characters over a finite alphabet Σ.
The i-th character of S is denoted by S[i], for 1 ≤ i ≤ n, and we use S[i. .j] to denote the
fragment S[i]S[i + 1] . . . S[j] of S (if i > j, then S[i. .j] is the empty string). Moreover,
we use S[i. .j) to denote the fragment S[i. .j − 1] of S. A fragment S[i. .j] is a prefix of S
if i = 1 and a suffix of S if j = n.

In this chapter, the alphabet Σ contains a special character ♦♢ that matches every
character in the alphabet. Formally, we define the “match” relation, denoted ∼ and
defined over Σ× Σ as follows:

∀a, b ∈ Σ : a ∼ b⇔ a = b ∨ a = ♦♢ ∨ b = ♦♢.

Its negation is denoted a ≁ b. We extend this relation homomorphically to strings of
equal length n by X ∼ Y ⇔ ∀i = 1, . . . , n : X[i] ∼ Y [i].

Longest common extensions. Let T be a string of length n, and let i, j ≤ n be
indices. The longest common extension at i and j in T , denoted LCET (i, j) is defined as
the maximum length ℓ such that substrings of T of length ℓ starting at position i and j
are equal. Formally:

LCET (i, j) = max{ℓ ≤ min(n− i, n− j) + 1 : T [i. .i+ ℓ) = T [j. .j + ℓ)}.

Similarly, the longest common extension with wildcards, denoted LCEWT (i, j), is defined
using the ∼ relation instead of equality:

LCEWT (i, j) = max{ℓ ≤ min(n− i, n− j) + 1 : T [i. .i+ ℓ) ∼ T [j. .j + ℓ)}.
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We focus on data structures for LCEW queries inside a string T , but our results can
easily be extended to answer queries between two strings P,Q, denoted LCEWP,Q(i, j).
If we consider T = P · Q, then for any i ≤ |P | and j ≤ |Q|, we have LCEWP,Q(i, j) =
min(LCEWT (i, j + |P |), |P | − i + 1, |Q| − j + 1). When the string(s) that we query are
clear from the context, we drop the T or P,Q subscripts.

Periodicity arrays. The prefix array of a string S of length n is an array π of size n
such that π[i] = LCEW(1, i).

An integer b ∈ [1. .n] is a quantum border of S if S[1. .b] ∼ S[n − b + 1. .n]. It is a
deterministic border of S if there exists a string X without wildcards such that X ∼ S
and X[1. .b] = X[n − b + 1. .n]. Similarly, an integer p ≤ n is a quantum period of S if
for every i ≤ n − p, S[i] ∼ S[i + p], and it is a deterministic period of S if there exists a
string X without wildcards such that X ∼ S and for every i ≤ n− p,X[i] = X[i+ p].

Example 6.2.1. Consider string ab♦♢b♦♢bcb. Its smallest quantum period is 2, while its
smallest deterministic period is 4.

For a string S of length n, we define the following arrays of length n:
• the period array π, where π[i] = LCEW(1, i);
• the deterministic and quantum border arrays, B and BQ, where B[i] and BQ[i] are

the largest deterministic and quantum border of S[1. .i], respectively;
• the deterministic and quantum period arrays, P and PQ, such that P [i] and PQ[i]

are the smallest deterministic and quantum periods of S[1. .i], respectively.

Fact 6.2.2 ([180, Lemmas 12 and 15]). Given the prefix array of a string S, one can
compute the quantum border array and quantum period array in O(n) time and space,
while the deterministic border and period arrays can be computed in O(n log n) time and
O(n) space.

6.3 Time-Space Trade-off for LCEW

In this section, we prove Theorem 6.1.2, which we recall below.

Theorem 6.1.2. Suppose that we are given a string T of length n that contains wild-
cards arranged into G maximal contiguous groups. For every t ∈ [1. .G], there exists a
deterministic data structure that:

• uses space O(nG/t),
• can be built in time O(n(G/t) log n) using O(nG/t) space,
• given two indices i, j ∈ [1. .n], returns LCEW(i, j) in time O(t).

Following the work of Crochemore et al. [117], we define transition positions in T ,
which are the positions at which T transitions from a block of wildcards to a block
of non-wildcards characters. We use Tr to denote the set of transition positions in T .
Formally, a position i ∈ [1. .n] is in Tr if one of the following holds:

• i = n, or
• i > 1, T [i− 1] = ♦♢ and T [i] ̸= ♦♢.

Note that as T contains G groups of wildcards, there are at most G+1 transition positions,
i.e., |Tr| = O(G). Moreover, by definition, the only transition position i for which T [i]
may be a wildcard is n.
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Our algorithm precomputes the LCEW information for a subset of evenly distributed
transition positions, called selected positions and denoted Sel, whose number depends on
the parameter t. The set Sel contains one in every t transition position in Tr, along with
the last one (which is n). Formally, let i1 < i2 < . . . < ir denote the transition positions
of T , sorted in increasing order, then Sel = {ist+1 : s = 0, . . . , ⌊(r − 1)/t⌋} ∪ {n}. Let λ
denote the cardinality of Sel, which is O(G/t).

Additionally, for every i ∈ [1. .n], we define next_tr[i] (resp., next_sel[i]) as the distance
between i and the next transition position (resp., the next selected position) in T . For-
mally, next_tr[i] = min{j−i : j ∈ Tr∧j ≥ i} and next_sel[i] = min{j−i : j ∈ Sel∧j ≥ i}.
These values are well-defined: as n is both a transition and a selected position, the min-
imum in the above equations is never taken over the empty set. Both arrays can be
computed in linear time and stored using O(n) space. The array next_tr can be used to
jump from a wildcard to the end of the group of wildcards containing it, due the following
property:

Observation 6.3.1. For any i such that T [i] = ♦♢, let r = next_tr[i]. We have T [i. .i+r) =
♦♢r, i.e., the fragment from i until the next transition position (exclusive) contains only
wildcards.

The central component of our data structure is a dynamic programming table, Jump,
which allows us to efficiently answer LCEW queries for selected positions. For each selected
position i and each (arbitrary) position j, this table stores the distance from i to the last
selected position that appears in the common extension on the side of i, i.e. the last
selected position i′ for which T [i. .i′] matches T [j. .j + i′ − i]. More formally:

∀i ∈ Sel, j ∈ [1. .n] : Jump[i, j] = max{i′ − i : i′ ∈ Sel ∧ i′ ≥ i ∧ T [i. .i′] ∼ T [j. .j + i′ − i]}.

If there is no such selected position i′ (which happens when T [i] ≁ T [j]), then we let
Jump[i, j] = −∞. This table contains λ · n = O(nG/t) entries and allows us to jump
from the first to the last selected position in the common extension, thus reducing LCEW
queries to finding longest common extensions to and from a selected position.

Finally, let T# be the string obtained by replacing all wildcards in T with a new
character “#” that does not appear in T . The string T# does not contain wildcards, and
for any i, j ∈ [1. .n], we have LCEWT (i, j) ≥ LCET#

(i, j).

The data structure. Our data structure consists of
• the Jump table,
• the arrays next_tr and next_sel, and
• a data structure for constant-time LCE queries in T#, with O(n) construction time

and O(n) space usage (e.g. a suffix array or a suffix tree [138]).
The Jump table uses space O(nG/t) and can be computed in time O(n(G/t) log n)

(see Section 6.3.1), while the next_tr and next_sel arrays can be computed in O(n) time
and stored using O(n) space. Therefore, our data structure can be built in O(n+n(G/t) ·
log n) = O(n(G/t) · log n) time and requires O(n+ nG/t) = O(nG/t) space. As shown in
Section 6.3.2, we can use this data structure to answer LCEW queries in T in time O(t),
thus proving Theorem 6.1.2.

6.3.1 Computing the Jump Table

In this section, we prove the following lemma.
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Lemma 6.3.2. Given random access to T , the Jump table can be computed in O(n(G/t) ·
log n) time and O(nG/t) space.

Proof. To compute the Jump table, we leverage the algorithm of Clifford and Clifford [100]
for exact pattern matching with wildcards. This algorithm runs in time O(n logm), and
finds all occurrences of a pattern of length m within a text of length n (both may contain
wildcards).

Let i1 < i2 < . . . < iλ = n denote the selected positions, sorted in increasing order.
For r = 1, . . . , λ− 1, let Pr be the fragment of T from the r-th to the (r + 1)-th selected
position (exclusive), i.e., Pr = T [ir. .ir+1), and let ℓr denote the length of Pr, that is
ℓr = |Pr| = ir+1 − ir. Then, for every r, we use the aforementioned algorithm of Clifford
and Clifford [100] to compute the occurrences of Pr in T : it returns an array Ar such that
Ar[i] = 1 if and only if T [i. .i+ ℓr) ∼ Pr.

Using the arrays (Ar)r, the Jump table can then be computed with a dynamic pro-
gramming approach, in the spirit of the computations in [117]. The base case is i = iλ, for
which we have, for all j ∈ [1. .n], Jump[iλ, j] = 0 if T [iλ] ∼ T [j] and −∞ otherwise. We
can then fill the table by iterating over all pairs (r, j) ∈ [1. .λ− 1]× [1. .n] in the reverse
lexicographical order and using the following recurrence relation:

Jump[ir, j] =


−∞ if T [ir] ≁ T [j]

max(0, ℓr + Jump[ir+1, j + ℓr]) if T [ir] ∼ T [j], Ar[j] = 1

0 otherwise.
(6.1)

Computing the arrays (Ar)r takes O(λ · n log n) = O(n(G/t) · log n) time in total.
Computing the Jump table from the arrays takes constant time per cell, and the table
contains λ ·n = O(nG/t) cells. Thus, the Jump table can be computed in time O(n(G/t) ·
log n).

6.3.2 Answering LCEW Queries

Our algorithm to answer an LCEW query can be decomposed into the following steps:
(a) move forward in T until we reach a selected position or a mismatch,
(b) use the Jump table to skip to the last selected position in the longest common prefix

on the side of the selected position,
(c) move forward until we either reach a mismatch or the end of the text.

Steps (a) and (b) might have to be performed twice, one for each of the “sides” of the
query. Steps (a) and (c) can be handled similarly, using LCE queries in T# to move forward
multiple positions at a time: see Algorithm 1 for the pseudo-code for these steps, and see
Algorithm 2 for the pseudo-code of the query procedure.

Analysis of the NextSelectedOrMismatch subroutine (Algorithm 1). Al-
gorithm 1 computes a value ℓ such that T [i. .i+ℓ) ∼ T [j. .j+ℓ), and either T [i+ℓ] ≁ T [j+ℓ]
or at least one of i+ ℓ, j + ℓ is a selected position. In the latter case, i+ ℓ (resp. j + ℓ) is
the first selected position after i (resp. j). Furthermore, Algorithm 1 runs in time O(t).
These properties are formally stated below.

Lemma 6.3.3. Let ℓ be the value returned by Algorithm 1. We have T [i. .i+ℓ) ∼ T [j. .j+
ℓ).
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Algorithm 1 Subroutine for LCEW queries
1: function NextSelectedOrMismatch(i, j)
2: ℓ← 0
3: m← min(next_sel[i], next_sel[j])
4: while T [i+ ℓ] ∼ T [j + ℓ] and i+ ℓ /∈ Sel and j + ℓ /∈ Sel do
5: r ← LCET#

(i+ ℓ, j + ℓ)
6: ℓ← min(ℓ+ r,m)
7: d← 0
8: if T [i+ ℓ] = ♦♢ then
9: d← max(d, next_tr[i+ ℓ])

10: if T [j + ℓ] = ♦♢ then
11: d← max(d, next_tr[j + ℓ])

12: ℓ← min(ℓ+ d,m)

13: return ℓ

Proof. We prove that T [i. .i + ℓ) ∼ T [j. .j + ℓ) by induction on the number of iterations
of the while loop. At the start of the algorithm, we have ℓ = 0, i = i+ ℓ and j = j + ℓ,
hence the base case holds.

Now, assume that at the start of some iteration of the while loop, we have T [i. .i+ℓ) ∼
T [j. .j+ ℓ). In Algorithm 1, r = LCET#

(i+ ℓ, j+ ℓ), and hence T#[i+ ℓ. .i+ ℓ+ r) is equal
to T#[j+ ℓ. .j+ ℓ+ r), and a fortiori, the same thing is true in T , i.e., T [i+ ℓ. .i+ ℓ+ r) ∼
T [j + ℓ. .j + ℓ + r). Combining the above with our invariant hypothesis, we obtain that
T [i. .i + ℓ + r) ∼ T [j. .j + ℓ + r). Therefore, after Algorithm 1 is executed, we have
T [i. .i + ℓ) ∼ T [j. .j + ℓ) for the new value of ℓ. By Observation 6.3.1, at least one of
T [i+ℓ. .i+ℓ+d) or T [j+ℓ. .j+ℓ+d) consists only of wildcards, therefore these two fragments
match, and, before executing Algorithm 1, we have T [i. .i+ℓ+d) ∼ T [j. .j+ℓ+d). Finally,
after executing Algorithm 1, the above becomes T [i. .i+ℓ) ∼ T [j. .j+ℓ), and our induction
hypothesis holds.

The fact that either T [i+ℓ] ≁ T [j+ℓ] or at least one of i+ℓ, j+ℓ is a selected position
follows from the exit condition of the while loop. If one of them is a selected position,
the minimality of its index follows from using m = min(next_sel[i], next_sel[j]) to bound
the value of ℓ throughout the algorithm. This concludes the proof of the correctness of
Algorithm 1.

We now turn to proving that Algorithm 1 runs in time O(t). We use the following
properties to bound the number of loop iterations.

Lemma 6.3.4. In Algorithm 1 of Algorithm 1, either T [i + ℓ] ≁ T [j + ℓ], or (at least)
one of T [i+ ℓ], T [j + ℓ] is a selected position or a wildcard.

Proof. In Algorithm 1, r is the LCE of T#[i+ ℓ. .n] and T#[j + ℓ. .n], and therefore T#[i+
ℓ+ r] ̸= T#[j + ℓ+ r]. Then, in Algorithm 1 the value of ℓ is set to either ℓ+ r or m.

In the former case, we either have T [i+ ℓ] ≁ T [j + ℓ] (and we are done) or T [i+ ℓ] ∼
T [j + ℓ], and one of T [i+ ℓ], T [j + ℓ] is a wildcard as T#[i+ ℓ+ r] ̸= T#[j + ℓ+ r].

In the latter case, i.e., if ℓ is set to m = min(next_sel[i], next_sel[j]) in Algorithm 1,
then, by the definition of next_sel, at least one of T [i+ℓ], T [j+ℓ] is a selected position.

Lemma 6.3.5. In Algorithm 1 of Algorithm 1, either T [i + ℓ] ≁ T [j + ℓ], or (at least)
one of T [i+ ℓ], T [j + ℓ] is a selected position or a transition position.
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Proof. By Lemma 6.3.4, we have that in Algorithm 1 of Algorithm 1, either T [i + ℓ] ≁
T [j+ℓ], or at least one of T [i+ℓ], T [j+ℓ] is a selected position or a wildcard. We consider
three sub-cases.

If T [i+ ℓ] ≁ T [j + ℓ] in Algorithm 1, then neither T [i+ ℓ] nor T [j + ℓ] is a wildcard,
and d is 0 in Algorithm 1. Hence, the value of ℓ does not change.

If one of T [i + ℓ], T [j + ℓ] is a selected position in Algorithm 1, then we have ℓ = m
by the minimality of m, and ℓ will be set to the same value in Algorithm 1 regardless of
the value of d.

Finally, assume that one of T [i + ℓ], T [j + ℓ] is a wildcard in Algorithm 1. Then for
any p ∈ {i+ ℓ, j+ ℓ} such that T [p] is a wildcard, T [p+next_tr[p]] is a transition position
(by the definition of next_tr). Before executing Algorithm 1, d is the maximum of these
next_tr[p], and hence one of T [i+ ℓ+ d] or T [j + ℓ+ d] is a transition position.

By Lemma 6.3.5, the number of transition positions between i + ℓ or j + ℓ and the
corresponding next selected position decreases by at least one (or the algorithm exits the
loop and returns). The use of m in Lines 6 and 12 ensures that we cannot go over a
selected position, and, by construction, there are at most t transition positions between
i or j and the next selected position, therefore Algorithm 1 goes through at most 2t
iterations of the loop. Each iteration consists of one LCE query in T# and a constant
number of constant-time operations, hence Algorithm 1 takes time O(t) overall given a
data structure for constant-time LCE queries on T#.

LCEW query algorithm. Let ℓ denote the result of Algorithm 2 on some input (i, j).
The properties of Algorithm 1 ensure that T [i. .i+ ℓ) ∼ T [j. .j + ℓ). As the algorithm re-
turns when it either encounters a mismatch or reaches the end of the string, the matching
fragment cannot be extended, which ensures the maximality of ℓ. To prove that Algo-
rithm 2 runs in time O(t), we show that it makes a constant number of loop iterations.

Algorithm 2 Algorithm to answer the query LCEW(i, j)

1: function Query(i, j)
2: ℓ← 0
3: while i+ ℓ ≤ n and j + ℓ ≤ n do
4: ℓ← NextSelectedOrMismatch(i+ ℓ, j + ℓ)
5: if T [i+ ℓ] ≁ T [j + ℓ] then
6: return ℓ
7: if i+ ℓ ∈ Sel then
8: ℓ← ℓ+ Jump[i+ ℓ, j + ℓ] + 1
9: else

10: ℓ← ℓ+ Jump[j + ℓ, i+ ℓ] + 1

11: return ℓ

Lemma 6.3.6. The while loop of Algorithm 2 makes at most three iterations.

Proof. After the call to Algorithm 1 in Algorithm 2, either T [i+ ℓ] ≁ T [j + ℓ] or at least
one of i + ℓ, j + ℓ is a selected position. In the former case, this is the last iteration of
the loop. In the latter case, suppose without loss of generality that i + ℓ is a selected
position. Then, in Algorithm 2 the value of ℓ is updated to Jump[i + ℓ, j + ℓ] + 1, and
there is no selected position between i + ℓ and the end of the longest common extension
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with wildcards. This can happen at most once for each of i and j, and thus the loop goes
through at most three iterations before exiting.

Intuitively, the first call to NextSelectedOrMismatch finds the last selected po-
sition in T [i. .i+ ℓ) or in T [j. .j + ℓ), the second call finds the last selected position in the
other fragment, and the last call finds either a mismatch or the end of the text. Therefore,
Algorithm 2 makes up to three calls to Algorithm 1 plus a constant number of operations,
and thus runs in time O(t).

6.4 Connection to Boolean Matrix Multiplication

In this section, we describe a fine-grained connection between LCEW and (sparse) Boolean
matrix multiplication. In Section 6.4.1, we use this connection to obtain a lower bound
on the preprocessing-query-time product of combinatorial data structures for LCEW. In
Section 6.4.2, we further connect sparse matrices and strings with few groups of wildcards,
deriving an efficient multiplication algorithm.

6.4.1 A Lower Bound for Combinatorial Data Structures

Our lower bound is based on the combinatorial matrix multiplication conjecture which
states that for any ε > 0 there is no combinatorial algorithm for multiplying two n × n
Boolean matrices working in time O(n3−ε). Gawrychowski and Uznanski [158, Conjecture
3.1] showed that the following formulation is equivalent to this conjecture:

Conjecture 6.4.1 (Combinatorial matrix multiplication conjecture). For every ε > 0
and α, β, γ > 0, there is no combinatorial algorithm that computes the product of Boolean
matrices of dimensions nα × nβ and nβ × nγ in time O(nα+β+γ−ε).

Theorem 6.4.2. Under Conjecture 6.4.1, there is no combinatorial data structure that
solves the LCEW problem with preprocessing time O(na) and query time O(nb), where a
and b are fixed real numbers (independent of n), a ≥ b ≥ 0, and a + b < 2 − ε for some
constant ε > 0.

Proof. Assume for the sake of contradiction that there exists such a data structure. We
can then use it to derive an algorithm that contradicts Conjecture 6.4.1.

Let α, β be positive constants, and let A and B be rectangular Boolean matrices of
respective dimensions p×q and q×p, where p = nα, q = nβ and β = c·α (i.e., q = pc) for a
constant c to be fixed later. We encode A into a string SA of length pq = pc+1 in row-major
order, that is, SA[qi+j+1] = ϕA(A[i+1, j+1]) for i ∈ [0. .p), j ∈ [0. .q), and B into a string
SB of length qp = pc+1 in column-major order, that is, SB[i+ qj+1] = ϕB(B[i+1, j+1])
for i ∈ [0. .q), j ∈ [0. .p), where:

ϕA(x) =

{
1 if x = 1

♦♢ if x = 0
and ϕB(y) =

{
2 if y = 1

♦♢ if y = 0

It follows from this definition that ϕA(x) does not match ϕB(y), i.e., ϕA(x) ≁ ϕB(y), if
and only if x = y = 1.

▷ Claim 6.4.3. We have (AB)[i, j] = 1⇐⇒ LCEWSA,SB
(qi+ 1, qj + 1) < q.
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Claim proof. Having LCEWSA,SB
(qi+1, qj+1) < q means that there exists an index k < q

such that SA[qi + 1 + k] does not match SA[qj + 1 + k]. By construction, SA[qi + k + 1]
does not match SB[k + qj + 1] if and only if A[i, k] = B[k, j] = 1. Now, (AB)[i, j] = 1 if
and only if there exists an index k ≤ q such that A[i, k] = B[k, j] = 1, which concludes
the proof. ◁

Therefore, we can compute each entry of C = AB using one LCEW query between
SA and SB. To perform LCEW queries between SA and SB, we instantiate our LCEW
data structure on the string SASB, which has length 2pq = O(pc+1), and therefore has
G = O(pc+1) consecutive wildcard groups. Computing C then takes O(p2 · pb(c+1)) time
for the queries, plus O(pa(c+1)) time to build the data structure.

Assume first that a > b. We set c = 2/(a−b)−1 > 0 to balance the terms of the above
two expressions, and obtain an algorithm that computes C in time O(p2a/(a−b)). This
contradicts Conjecture 6.4.1 if this running time is O(p(2+c−δ)) for some constant δ > 0.
In terms of exponents, this happens when 2a/(a− b) < 2 + c− δ. Let δ = ε/(a− b) > 0.
We have:

a+ b < 2− ε⇔ 2a < a− b+ 2− ε

⇔ 2a

a− b
< 1 +

2

a− b
− ε

a− b

⇔ 2a

a− b
< 2 +

2

a− b
− 1− δ

⇔ 2a

a− b
< 2 + c− δ

(6.2)

Eq. (6.2) results in a contradiction for all a > b that satisfy a + b < 2 − ε. Assume now
that a = b. We set c = 2/δ for δ = ε/2 and obtain:

2 + b(1 + c) < 2 + (1− δ)(1 + 2/δ) = (2 + c)(1− δ/2) ≤ 2 + c− δ/2 (6.3)

We hence obtain the desired contradiction for a = b with a + b < 2 − ε as well, thus
concluding the proof.

6.4.2 Fast Sparse Matrix Multiplication

In this section, we further connect sparse matrices and strings with few groups of wild-
cards, deriving an algorithm for sparse Boolean matrix multiplication (BMM).

Observation 6.4.4. Let A and B be sparse matrices with min ones in total. The string
SASB contains G ≤ min + 1 groups of consecutive wildcards.

Furthermore, our reduction to LCEW can also exploit the sparsity of the output matrix
C. The algorithm underlying the proof of Theorem 6.4.2 uses pr = p2 LCEW queries to
compute C, one query for each entry. When the output matrix contains at most mout

non-zero values, we show that we can reduce the number of LCEW queries to 2p+mout−1,
using the following lemma.

Lemma 6.4.5. Let t be an integer, and let i, j < p−t. We have LCEWSA,SB
(qi+1, qj+1) ≥

q · t if and only if for every x < t, (AB)[i+ x, j + x] = 0.

Proof. First, if LCEWSA,SB
(qi + 1, qj + 1) ≥ q · t, then for every x < t, LCEWSA,SB

(q(i +
x) + 1, q(j + x) + 1) ≥ q. By Claim 6.4.3, this implies that (AB)[i + x, j + x] = 0. The
converse follows from the fact that LCEW(i, j) ≥ a and LCEW(i + a, j + a) ≥ b implies
that LCEW(i, j) ≥ a+ b for any integers a, b ≥ 0.
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The above lemma readily implies that the answer to an LCEW query at the first
indices of a diagonal gives us the length of a longest prefix run of zeroes in this diagonal.
A repeated application of this argument implies that computing the entries in the d-th
diagonal of C takes md + 1 LCEW queries, where md is the number of non-zero entries
in this diagonal. Summing over all 2p − 1 diagonals, this gives a total of 2p − 1 + mout

queries. As a corollary, we obtain the following algorithm for the multiplication of sparse
matrices.

Theorem 6.4.6. Let A and B be n×n sparse Boolean matrices such that A and B contain
min non-zero entries and C = (AB) contains mout non-zero entries. There is a determin-
istic combinatorial algorithm that computes C in time O(n

√
min · (n+mout) log

2 n).

Proof. We assume that the matrices are given as a list of coordinates of 1 bits, sorted by
row index and then by column index: this compact representation has size O(min).

We can assume without loss of generality that min ≥ n, otherwise we can remove
the empty rows and columns (i.e., rows and columns with zeroes only) from A and B (an
empty row in A induces an empty row in C, while an empty column in B induces an empty
column in C), and pad the output with zeroes where necessary. (For sparse matrices, this
means offsetting the indices of the non-zeroes.) This procedure takes O(min +mout) time
overall.

Consider the string S = SASB defined in the proof of Theorem 6.4.2, which has length
2n2 and contains G ≤ min + 1 groups of wildcards, and let t = n

√
G/(n+mout). If

t ≤ G, we instantiate the data structure of Theorem 6.1.2 for S with this parameter t,
and if t > G, we use the data structure of Corollary 6.1.3. This is always possible as
t ≤ n

√
G ≤ G · |S|1/2. Then, using the argument described just above this theorem, we

can compute C using 2n+mout − 1 LCEW queries.
For t ≤ G, construction takes time O(n2(G/t) · log n) = O(n

√
min · (n+mout) log n)

and answering the queries takes total time O((n + mout) · t) = O(n
√
min · (n+mout)).

In the other case, constructing the data structure takes O(n2) time, and answering the
queries takes the same time as in the first case.

Accounting for the preprocessing to ensure that min ≥ n, the total running time is
O(n2 + n

√
min · (n+mout) log n +min +mout). As n ≤ min ≤ n2 and mout ≤ m2

in, the
n
√

min · (n+mout) term is asymptotically larger than n2 +min +mout. This yields the
desired runtime.

Choosing t requires knowing an estimate of mout: if it is not known, we estimate it
using binary search between 1 and n2. For a given estimate of mout, we run the algorithm,
halting and restarting whenever the total query time exceeds the construction time. This
search adds an extra O(log n) factor in the time complexity.

6.5 Faster Approximate Pattern Matching and Com-
putation of Periodicity Arrays construction

In this section, we use the data structure of Theorem 6.1.2 to derive improved algorithms
for the k-PMWE problem and the problem of computing periodicity arrays of strings with
wildcards.
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6.5.1 Faster Pattern Matching with Errors and Wildcards

We first consider the problem of pattern matching with errors, where both the pattern and
the text may contain wildcards. Recall that the edit distance between two strings X, Y ,
denoted by ed(X, Y ), is the smallest number of insertions, deletions, and substitutions of
a character, required to transform X into Y . The problem is formally defined as follows:

Problem 6.5.1 (k-PMWE).
▷ Input: A text T of length n, a pattern P of length m and an integer threshold k.
▷ Output: Every position p for which there exists i ≤ p such that ed(T [i. .p], P ) ≤ k.

Akutsu [20] gave an algorithm for this problem that runs in time Õ(n
√
km). Build-

ing upon their framework, we show that the complexity can be reduced to O(n(k +√
kG logm)), where G is the cumulative number of groups of wildcards in P and T (or

equivalently, the number of groups of wildcards in P$T ).2

Theorem 6.5.2. There is an O(n(k +
√
kG logm))-time algorithm for k-PMWE.

Proof. Akutsu [20, Proposition 1] shows that, if after an α-time preprocessing, LCEW
queries between P and T can be answered in time β ≥ 1, then the k-PMWE problem can
be solved in time O(α + nβk).

First, assume that G logm ≥ k. We use the data structure of Theorem 6.1.2 with
t =

√
(G/k) · logm ≥ 1 to answer LCEW queries: we then have α = O(n

√
Gk logm)

(here we use the standard trick to replace the log n factor in the construction time with
logm, namely, if n ≥ 2m, we divide T into n/m blocks of length ≤ 2m overlapping by m
characters, and build such a data structure for each block independently) and β = O(t) =
O(
√
(G/k) · logm). Therefore, the running time of the algorithm is O(n

√
Gk logm).

Second, if G logm < k, we simply set t = 1: the total running time is then O(nG logm+
nk) = O(nk). Accounting for both cases, the time complexity of this algorithm is O(n(k+√
Gk logm)).

6.5.2 Faster Computation of Periodicity Arrays

Our data structure also enables us to obtain efficient algorithms for computing periodicity
arrays of a string with wildcards (Theorem 6.5.3). These algorithms build on and improve
upon the results of Iliopoulos and Radoszewski [180].

Theorem 6.5.3. Let S be a string of length n with G groups of wildcards. The prefix
array, the quantum and deterministic border arrays and the quantum and deterministic
period arrays of S can be computed in O(n

√
G log n) time and O(n) space.

By Fact 6.2.2, it remains to show that the prefix array of S can be computed in
O(n
√
G log n) time and O(n) space. Recall that the prefix array of a string S of length

n is an array π of size n such that π[i] = LCEW(1, i). Consequently, π can be computed
using n LCEW queries in S. By instantiating our data structure with t =

√
G, we obtain

an algorithm running in O(n
√
G log n) time, but its space usage is Θ(n

√
G). Below, we

show how one can slightly modify the data structure of Theorem 6.1.2 to reduce the space
complexity to O(n), extending the ideas of Iliopoulos and Radoszewski [180].

2The additive “k” term in our complexity is necessary because G logm might be smaller than k. On
the other hand, one can assume w.l.o.g. that m ≥ k. Hence this additional term is hidden in the runtime
of Akutsu’s algorithm [20].
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Lemma 6.5.4. Let S be a string of length n with G groups of wildcards. The prefix array
of S can be computed in O(n

√
G log n) time and O(n) space.

Proof. We add the index 1 to the set of selected positions Sel and preprocess S in O(n)
time and space to support LCE queries on S# in O(1) time [138].

Notice that, using the dynamic programming algorithm of Lemma 6.3.2, for any r < λ,
the row (Jump[ir, j], j = 1, . . . , n) of the Jump table can be computed in time O(n log n)
and O(n) space from the next row (Jump[ir+1, j], j = 1, . . . , n). It suffices to compute
the array Ar of occurrences of Pr in time O(n log n) using the algorithm of Clifford and
Clifford [100], and then apply the recurrence relation of Eq. (6.1).

To answer an LCEW(1, j) query, we perform the following steps: first, we issue a
Jump[1, j] query followed by at most t regular LCE queries. If after this process we reach
a mismatch or the end of S, we are done. Otherwise, we need to perform another Jump
query from indices (ℓj, irj), where irj = j+ ℓj − 1 is a selected position, and then perform
at most t more regular LCE queries from the resulting positions. We store the indices
(ℓj, irj) for every value j, grouped by selected position irj .

To answer the first batch of Jump[1, j] queries, we use the above observation iter-
ated λ − 1 times to compute the first row of the Jump table in O(n(G/t) · log n) time
and O(n) space. To answer the next batch of queries (i.e., Jump[ℓj, irj ] queries) in
O(n(G/t) · log n) time and O(n) space, we again use the above observation to iterate
over the rows of the Jump table, starting from row iλ and going up, storing only one row
at a time. After computing the row corresponding to a selected position ir, we answer all
Jump queries with irj = ir and then perform the remaining LCE queries to answer the
corresponding LCEW(1, j) query.

The claimed bounds follow by setting t =
√
G ≤ G.
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Chapter 7

Overview

7.1 Property Testing: Superfast Approximate Decision
Procedures

Introduced in 1998 by Goldreich, Goldwasser, and Ron [166], Property Testing studies
the amount of information needed to “analyze” an input X, e.g. to compute a function
F on X, or to decide whether it has a given property P . In this thesis, we focus on the
latter task: we are given an input X of length n and have to decide which of P (X) and
¬P (X) holds. However, it turns out that, in almost all cases, distinguishing between the
two cases requires having almost complete information about X, i.e. reading Ω(n) bits
of X. Therefore, most efforts have focused on testing properties approximately : the task
becomes deciding whether X has the property P or whether X is far from having P .
Consequently, Property Testing is often described as the field of “super-fast approximate
decision procedures” [165, Preface]. The notion of being “far” from a property depends on
the task at hand and is usually parameterized by a real ε > 0: then, X is ε-far from P if
one needs to change at least an ε-fraction of X to obtain an object Y that has property P .

Property testing has been studied for a wide variety of objects. The idea was first
introduced as a tool for program checking, with applications to locally-testable error-
correcting codes and probabilistically checkable proofs (PCPs) [73, 258]. Properties of
statistical distributions are a natural candidate for randomized approximate testing, and
also received a lot of interest [54, 55, 82, 282]. Other lines of work studied testing properties
of Boolean functions, such as juntas [135] and linearity [247], and of graphs [22, 166], such
as triangle-freeness [26], or k-colorability [21]. Alon et al. [24], followed by others [136, 142,
231, 248] considered testing membership in formal (regular and context-free) languages:
in Chapter 8 of this thesis, we follow the same line of work.

7.1.1 Queries: measuring “information complexity”

The “amount of information” needed to decide the property is formally defined by query
complexity. In the property testing framework, the input is initially hidden, and the
algorithm can make queries to an oracle to reveal information about the input. The in-
formation returned by the oracle depends on the input object and the task. For statistical
distributions, a query usually returns a sample from the distribution. For discrete objects
such as graphs or strings, a query reveals a specific part of the input. For example, in
graphs, the oracle may reveal whether two given vertices are adjacent. In string problems,
such as the one studied in Chapter 8, a query on a given index i returns the letter at that
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position in the input. The query complexity of an algorithm A for a property testing task
is the function that, given n, measures the number of queries A makes to the input, in
the worst case over all inputs of length n. The main line of research in Property Testing
focuses on understanding the exact asymptotic query complexity of testing a property,
both in terms of upper and lower bounds.

The motivation for query complexity arises from situations where reading the input is
expensive, so the algorithm should access it as infrequently as possible. For example, this
may be due to latency when the input is stored in distributed remote storage (such as
AWS cloud services [122]), or due to computational cost when the input must be computed
via an API call or decoded.

It turns out that, in many cases, by a clever combination of random sampling and
algorithmic decisions, one can test a property with a number of queries that is sublinear
in n, and sometimes even with a constant number of queries. A landmark result in graph
property testing is the result of Alon and Shapira [23, Theorem 1], who showed that every
monotone graph property is testable with a constant number of queries, i.e. a number
of queries that does not depend on the size of the input graph (but it does depend on
the proximity parameter ε). Alon, Fischer, Newman, and Shapira [25] later gave an
exact characterization of the graph properties that can be tested with a constant number
of queries. Property Testing results usually come with and are based on combinatorial
results that reveal useful structure in ε-far instances (see e.g. [21, 24]). These results
show that such instances contain many “obstructions” to the property, and that random
sampling can find one with high probability. For example, in the case of triangle-freeness
of graphs, the result of Alon et al. [26] is based on the Triangle Removal Lemma of Ruzsa
and Szemerédi [260], which shows that any graph on n vertices that is ε-far from being
triangle-free contains at least δεn

3 triangles, where δε is a constant that depends only
on ε, but not on n.

7.1.2 Testing formal languages

In 2001, Alon, Krivelevich, Newman, and Szegedy [24] initiated the study of property
testing of formal languages. In this task, one is given a language L, and the goal is
to decide whether the input x is in L, or if it is ε-far from L. Being “ε-far from L” is
defined with respect to a metric d between strings, which depends on the context, usually
the Hamming distance or the edit distance (in what follows, we assume the Hamming
distance, unless explicitly stated otherwise). Here, “x is ε-far from L” means that the
distance d(x, L) between x and L is at least εn, where n is the length of L. The distance
between x and the language L is defined as the minimum distance between x and an
element of L, or +∞ if L is empty:

d(x, L) = min
y∈L

d(x, y).

Alon et al. [24] study algorithms for testing membership in regular and context-free lan-
guages, using the Hamming distance for d. For regular languages, they show an upper
bound of O(log3(ε−1)/ε) queries and a lower bound of Ω(1/ε) queries for a large class
of non-trivial languages. On the other hand, they exhibit a context-free language for
which membership testing requires Ω(

√
n) queries. Building on their work, Magniez and

de Rougemont [231] gave a tester using O(log2(ε−1)/ε) queries for regular languages un-
der the “edit distance with moves”, and François et al. [142] gave a tester using O(1/ε2)
queries for the weighted edit distance. For context-free languages, subsequent work has
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considered testing specific context-free languages such as the Dyck languages [136, 248]
or regular tree languages [231].

7.1.3 The Complexity of Testing Regular Languages

The results of Alon, Krivelevich, Newman, and Szegedy [24] on the complexity of testing
membership in a regular language leave a gap between the upper bound of O(log3(ε−1)/ε)
queries and the lower bound of Ω(1/ε) queries. In [48], T. Starikovskaya and I showed
that any regular language can be tested using O(log(ε−1)/ε) queries, and that there exists
a regular language L0 that requires Ω(log(ε−1)/ε) queries, closing the complexity gap.

Alon et al. [24] remarked that some regular languages, which they call trivial lan-
guages, are much easier to test: for sufficiently large n, the answer depends only on the
input length n, and not on the input itself, therefore they can be tested without query-
ing the input. Alon et al. [24] also showed that testing a non-trivial language requires
Ω(1/ε) queries. However, one can observe that many non-trivial languages can be tested
with O(1/ε) queries, in contrast to the harder language L0 which requires Ω(log(ε−1)/ε)
queries. In summary, some regular languages are easier to test than others, and the above
observations lead to the definition of three classes of “trivial”, “easy”, and “hard” languages,
with respective query complexity 0, Θ(1/ε) and Θ(log(ε−1)/ε). This raises the following
two questions:

1. Are there other complexity classes of regular languages, e.g. languages with com-
plexity Θ(1

ε
log log(1/ε))?

2. Can we give an effective characterization of the languages in each class?
In Chapter 8, we answer both questions. Building on the work of Alon et al. [24] and
François et al. [142], we define the set MBS of minimal blocking sequences of a regular
language, and show that this set gives an exact characterization of the complexity of
testing a regular language L:

• L is trivial if and only if MBS(L) is empty,
• L is easy if and only if MBS(L) is finite but non-empty, and
• L is hard if and only if MBS(L) is infinite.

In particular, this shows that there are no other complexity classes. To obtain the result
for trivial languages, we show that languages with an empty MBS are exactly the trivial
languages identified by Alon et al. [24]. To separate easy and hard languages, we establish
a structural connection between L and MBS(L): if L is recognized by an NFA with m
states, then MBS(L) is also a regular language and is recognized by an NFA of size 2O(m).
Therefore, if MBS(L) is infinite, we can use the Pumping Lemma [254] to extract from
MBS(L) an infinite language L′ of minimal blocking sequences with a very repetitive
structure. Using this language L′, we can replicate the argument that gives a lower bound
for L0, showing that L is also hard. Incidentally, the characterization of MBS(L) as a
regular language shows that our characterization is effective, in the sense that membership
in each of the three classes is decidable in polynomial space; we further show that these
problems are complete for PSPACE.

The work presented in this chapter previously appeared in two articles: one with
T. Starikovskaya [48], which was published at ICALP’21, and one with C. Mascle and
N. Fijalkow, accepted for publication at ICALP’25.



84 7.2. Distance to a Language, in Small Space

7.2 Distance to a Language, in Small Space

In Chapter 9, we study the problem of computing how far an input X is from having the
target property, a natural extension of deciding whether X has the property P . When
we consider the language LP that represents P , this problem is known as the language
distance problem. Introduced in the early 1970s by Aho and Peterson [18], the language
distance problem has been studied extensively for regular languages under Hamming
and edit distances [57], for general context-free languages, focusing mainly on the edit
distance [18, 79, 98, 228, 242, 261], and the Dyck language (the language of well-nested
parentheses sequences) [11, 43, 79, 98, 120].

7.2.1 Small space algorithms

While the algorithms in the above works often have an asymptotically optimal time com-
plexity, their space usage is often prohibitively large. For example, the CYK algorithm1

and its derivatives use space quadratic in the input size. Therefore, recent research efforts
have focused on designing algorithm with a lower space usage, often in the streaming or in
the read-only model. Babu et al. [41] gave streaming algorithms for deciding membership
in the DLIN and LL(k) subclasses of context-free languages. Ganardi et al. [153] studied
the space complexity of recognizing context-free languages in the sliding window model,
a variant of the streaming model where one must decide whether the string formed by
the last n characters of the text is in a given language. Ganardi [149] later considered the
same problem for the subclass of Visibly Pushdown languages, and Ganardi et al. [155]
gave low-latency algorithms that extend these results.

7.2.2 Low distance regime

In some cases, we only want to know whether an input is close to the language, and
if so, how close. This is formalized using the “low-distance regime”: we are given a
threshold parameter k, and either report that the distance is greater than k, or report
the distance if it does not exceed k. In this framework, many problems have solutions
that are more efficient than for the general case, with a complexity usually parameterized
by k. For example, the best known algorithm for computing the edit distance between two
strings of length n takes time O(n2/ log n) [237], and under the Strong Exponential Time
Hypothesis (SETH), this cannot be improved [42] to O(n2−ε) for any ε > 0. On the other
hand, in the low-distance regime, we can compute the edit distance with threshold k in
time O(n+ k2) [226]. Similarly, the best algorithm for computing the Hamming distance
between a pattern P of length m and all substrings of length m of a text T of length n takes
O(n
√
m) time [86], which is improved to O(n

√
k log k) in the low-distance regime [32].

7.2.3 Computing the distance to palindromes and squares, online
and in small space

In Chapter 9, we study the complexity of the online and low-distance version of the
language distance problem, with an emphasis on small-space algorithms. We consider
both the edit distance and the Hamming distance, and focus on two classical languages:
the language PAL of all palindromes, where a palindrome is a string that is equal to its

1See Section 1.2.
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reversed copy, and the language SQ of all squares, where a square is the concatenation
of two copies of a string. These two languages are very similar and yet very different in
nature: PAL is not regular but context-free, while SQ is not even context-free. Amir and
Porat [31] gave a randomized streaming algorithm that solves the problem of computing
the k-bounded distance to PAL in Õ(k) space and Õ(k2) time per input character. Con-
tinuing their line of research, we give streaming algorithms using poly(k, log n) time per
character and poly(k, log n) space for all four problems. As a corollary, building on the
work of Gawrychowski et al. [161], we obtain new streaming algorithms for approximating
the maximal length of a substring of a given text that is close to PAL in a text.

While streaming algorithms are extremely efficient (in particular, the above space
complexities account for all the space used by the algorithms, including the space needed
to store information about the input), they are inherently randomized, which means
that there is a small probability that they will produce incorrect results. Motivated
by this, we also study the problems in the read-only model: for the four problems, we
show deterministic algorithms that use poly(k, log n) time per character and poly(k, log n)
extra space (not accounting for the input). As a side result of independent interest, we
develop the first deterministic read-only algorithms for computing k-mismatch and k-edit
occurrences of a pattern in a text using poly(k, log n) space.

All the results in this chapter use similar techniques. First, we show that the distance
(Hamming or edit) from a string U to PAL or SQ can be expressed in terms of the
distance between substrings of U or its reversal. Using small-space distance sketches
(of Clifford et al. [107] for the Hamming distance, and of Bhattacharya and Koucký [61]
for the edit distance), we obtain streaming algorithms for computing the distance to PAL.
By combining these sketches with streaming approximate pattern matching algorithms
and an ad hoc filtering procedure, we obtain algorithms for computing the distance to SQ.
By replacing the streaming pattern matching algorithms with read-only algorithms, either
off-the-shelf or custom, we obtain small-space read-only algorithms for both problems.

The results presented in this chapter appeared in an article published at ISAAC’23 [49],
co-authored with T. Kociumaka and T. Starikovskaya.

7.3 Palindromic Length: a Different Notion of Proxim-
ity

In the previous section, we discussed algorithms for computing the (Hamming or edit)
distance between a string X and a language L, as a measure of how far X is from the
property defined by L. However, this approach does not take into account the semantic
meaning of L. For example, consider PAL, the language of palindromes: a palindrome
is a non-empty string that reads the same forward and backward, e.g. X = abba is
a palindrome. The string Y = anbn = aa . . . abb . . . b is at distance n from the set of
palindromes, but it can be written as the concatenation of two palindromes an and bn.
In this sense, Y is close to being a palindrome, and this notion of proximity is hard to
capture with a metric over strings. The palindromic length extends this notion to all
strings: the palindromic length of the string Y is the smallest integer p such that Y can
be written as the concatenation of p palindromes.
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7.3.1 Previous work on algorithms for palindromic length and
related problems

The problem of computing palindromic length was first studied in the low-distance regime.
In terms of formal languages, this means deciding whether the input is in the language
PALk. Galil and Seiferas [148] gave linear-time recognition algorithms for the cases
k = 1, 2, 3, 4, but the general question remained open for almost 40 years. Only in
2015, Kosolobov et al. [216] showed an O(nk)-time recognition algorithm for PALk for
all positive k, which was finally improved to the optimal O(n) time by Rubinchik and
Shur [257] in 2020 .

For computing the palindromic length of a string T , multiple independent O(n log n)-
time algorithms were presented in [133, 179, 256]. More recently, Borozdin, Kosolobov,
Rubinchik, and Shur [76] showed an optimal O(n)-time algorithm for this problem.

Since one-letter strings are all palindromes, any string can be written as the concate-
nation of some number of palindromes and has a finite palindromic length. This property
does not hold for the languages even-length palindromes PALev and the language of palin-
dromes of length greater than one PAL>1, which are natural derivations of PAL. The
problem of recognizing the languages PAL∗

ev (often referred to as “palstar”), PAL∗
>1, is

a classical question of formal language theory, initiated in the seminal paper of Knuth,
Morris, and Pratt [201]. In the early 1970s, it was widely believed that PAL∗

ev could not
be recognised in linear time, and it was considered as a candidate for a “hard” context-
free language [201, Section 6]. However, Knuth, Morris, and Pratt [201] refuted this
hypothesis by showing an O(n)-time recognition algorithm for PAL∗

ev. Manacher [234]
found another way to recognize PAL∗

ev in linear time, and Galil [145] derived a real-time
recognition algorithm (see also Slisenko [270]). Later, Galil and Seiferas [148] showed a
linear-time recognition algorithm for PAL∗

>1.

7.3.2 Small-space algorithms for palindromic length in the low-
distance regime

All known near-linear-time algorithms for computing the palindromic length of a string
use linear space. In Chapter 10, we focus on the space complexity of recognizing PALk

and computing the palindromic length of a string, and give a small-space algorithm for
computing the palindromic length in the low-distance regime.

Our algorithm is based on a more versatile data structure that space-efficiently encodes
the prefixes of a text that are in PALk, called k-palindromic prefixes; this data structure
uses 6O(k2) · logk n space. The linear-time algorithm of Borozdin et al. [76] for computing
the palindromic length is based on a combinatorial characterization of the structure of
palindromic prefixes of a text: they have a highly repetitive structure and can be par-
titioned into O(log n) arithmetic progressions. Our data structure is based on a novel
higher-order extension of this idea: we show that the set of k-palindromic prefixes of a
string can be partitioned into a small number of affine prefix sets, a high-order extension
of arithmetic progressions that can be stored compactly. We also show that our char-
acterization leads to efficient algorithms for constructing the encoding of k-palindromic
prefixes. Our algorithm for computing the palindromic length of a string is a by-product
of this data structure.

We also give an information-theoretic lower bound on the space required to encode
the k-palindromic prefixes of a text of length n, showing that our data structure cannot
be drastically improved.
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The results presented in this chapter resulted in an article co-authored with J. Ellert
and T. Starikovskaya, available as a preprint on the ArXiv [53].
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Chapter 8

The Complexity of Testing Regular
Languages

8.1 Introduction

Property testing was introduced by Goldreich, Goldwasser, and Ron [166] in 1998: it is the
study of randomized approximate decision procedures that must distinguishing objects
that have a given property of those that are far from having it. Because of this relaxation
on the input object, the field focuses on very efficient decision procedures, typically with
sublinear (or even constant) running time – in particular, the algorithm does not even
have the time to read the whole input.

In a seminal paper, Alon, Krivelevich, Newman, and Szegedy [24] introduced property
testing of formal languages: given a language L (a set of finite words), the goal is to
determine whether an input word u belongs to the language or is ε-far1 from it, where
ε is the precision parameter. The model assumes random access to the input word: a
query specifies a position in the word and asks for the letter at that position, and the
query complexity of the algorithm is the worst-case number of queries it makes to the
input. Alon et al. [24] showed a surprising result: under the Hamming distance, all
regular languages are testable with O(log3(ε−1)/ε) queries, where the O(·) notation hides
constants that depend on the language, but, crucially, not on the length of the input word.
In that paper, they also identified the class of trivial regular languages, those for which
the answer only depends on the length n of the input (and not on the content of the input
word) for sufficiently large n, e.g. finite languages or the set of words starting with an a.
They showed that testing membership in a non-trivial regular language requires Ω(1/ε)
queries.

The results of Alon et al. [24] leave a gap of O(log3(1/ε)) between the best upper and
lower bounds. We set out to improve our understanding of property testing of regular
languages by closing this gap. With Tatiana Starikovskaya, we obtained in 2021 [48] the
first improvement over the result of Alon et al. [24] in more than 20 years:

Theorem 8.1.1 (From [48, Theorem 5]). Under the edit distance, every regular language
can be tested with O(log(ε−1)/ε) queries.

Testers under the edit distance are weaker than testers under the Hamming distance,
hence this result does not exactly improve the result of Alon et al. [24]. We overcome this

1Informally, u is ε-far from L means that even by changing an ε-fraction of the letters of u, we cannot
obtain a word in L. See Section 8.2 for a formal definition.
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shortcoming later in this chapter: Theorem 8.4.16 extends the above result to the case of
the Hamming distance.

We also showed that this upper bound is tight, in the sense that there is a regular
language L0 for which this complexity cannot be further improved, thereby closing the
query complexity gap.

Theorem 8.1.2 (From [48, Theorem 15]). There is a regular language L0 with query
complexity Ω(log(ε−1)/ε) under the edit distance2, for all small enough ε > 0.

Furthermore, it is easy to find specific non-trivial regular languages for which there is
an algorithm using only O(1/ε) queries, e.g. L = a∗ over the alphabet {a, b}, L = (ab)∗

or L = (aa+ bb)∗.
Hence, these results combined with those of Alon et al. [24] show that there exist

trivial languages (that require 0 queries for large enough n), easy languages (with query
complexity Θ(1/ε)) and hard languages (with query complexity Θ(log(ε−1)/ε)). This
raises the question of whether there exist languages with a different query complexity
(e.g. Θ(log log(ε−1)/ε)), or if every regular language is either trivial, easy or hard. This
further asks the question of giving a characterization of the languages that belong to each
class, inspired by the recent success of exact characterizations of the complexity of sliding
window recognition [152] and dynamic membership [29] of regular languages.

In this chapter, we answer both questions: we show a trichotomy of the complexity of
testing regular languages under the Hamming distance, showing that there are only the
three aforementioned complexity classes (trivial, easy and hard), we give a characteriza-
tion of all three classes using a combinatorial object called blocking sequences, and show
that this characterization can be decided in polynomial space (and that it is complete for
PSPACE).

8.1.1 Overview of the chapter

In this section, we give a high-level overview of the approach and notions used for proving
the results of this chapter. This sections assumes familiarity with classical notions such
as finite automata; the formal definitions of all concepts used in this section can be found
in Section 8.2.

Let us start with the notion of a property tester for a language L: the goal is to
determine whether an input word u belongs to the language L, or whether it is ε-far from
it. We say that u of length n is ε-far from L with respect to a metric d over words if all
words v ∈ L satisfy d(u, v) ≥ εn, written d(u, L) ≥ εn. Throughout this work and unless
explicitly stated otherwise, we will consider the case where d is the Hamming distance,
defined for two words u and v as the number of positions at which they differ if they
have the same length, and as +∞ otherwise. In that case, d(u, L) ≥ εn means that one
cannot change a proportion ε of the letters in u to obtain a word in L. We assume random
access to the input word: a query specifies a position in the word and asks for the letter
in this position. A ε-property tester (or for short, simply a tester) T for a language L
is a randomized algorithm that, given an input word u of length n, always answers “yes”
if u ∈ L and answers “no” with probability bounded away from 0 when u is ε-far from
L. The measure of complexity of a tester that focus we on in this chapter is its query
complexity, which is the maximum number of queries that T makes to an input of length

2Note that, as opposed to testers, lower bounds for the edit distance are stronger than lower bounds
of the Hamming distance.
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n, as a function of n and ε, in the worst case over all words of length n and all possible
random choices.

We can now formally define the classes of trivial, easy and hard regular languages.

Definition 8.1.3 (Hard, easy and trivial languages). Let L be a regular language. We
say that:

• L is hard if the optimal query complexity for a property tester for L is Θ(log(ε−1)/ε).
• L is easy if the optimal query complexity for a property tester for L is Θ(1/ε).
• L is trivial if there exists ε0 > 0 such that for all positive ε < ε0, there is a property

tester and some n0 ∈ N such that the tester makes 0 queries on words of length
≥ n0.

Remark 8.1.4. If L is finite, then it is trivial: since there is a bound B on the lengths of
its words, a tester can reject words of length at least n0 = B + 1 without querying them.
For that reason, we only consider infinite languages in the rest of the chapter.

Our characterization of those three classes uses the notion of blocking sequence of a
language L. Intuitively, they are sequences of words such that finding those words as
factors of a word w proves that w is not in L. We also define a partial order on them,
which gives us a notion of minimal blocking sequence.

Theorem 8.1.5. Let L be an infinite regular language recognized by an NFA A and let
MBS(A) denote the set of minimal blocking sequences of A. The complexity of testing L
is characterized by MBS(A) as follows:

1. L is trivial if and only if MBS(A) is empty;
2. L is easy if and only if MBS(A) is finite and nonempty;
3. L is hard if and only if MBS(A) is infinite.

In the case where L is recognized by a strongly connected automaton, blocking se-
quences can be replaced by blocking factors. A blocking factor is a single word that is not
a factor of any word in L.

Section 8.2 defines the necessary terms and notations. The rest of the chapter is
structured as follows. In Sections 8.3 and 8.4, we delimit the set of hard languages, that
is, the ones that require Θ(log(ε−1)/ε) queries.

More precisely, Section 8.3 focuses on the subcase of languages defined by strongly
connected automata. First, we combine the ideas of Alon et al. [24] with those that
we presented in [48] to obtain a property tester that uses O(log(ε−1)/ε) queries for any
language with a strongly connected automaton, under the Hamming distance. Second, we
show that if the language of a strongly connected automaton has infinitely many blocking
factors then it requires Ω(log(ε−1)/ε) queries. This result generalizes the result that we
previously gave in [48], which was for a single language, to all regular languages with
infinitely many minimal blocking factors. We use Yao’s minimax principle [286]: this
involves constructing a hard distribution over inputs, and showing that any deterministic
property testing algorithms cannot distinguish between positive and negative instances
against this distribution.

In Section 8.4, we extend those results to all automata. The interplay with the pre-
vious section is different for the upper and the lower bound. For the upper bound of
O(log(ε−1)/ε) queries, we use a natural but technical extension of the proof in the strongly
connected case. Note that this result is an improvement over the result that we obtained
in [48], which works under the edit distance, and testers for the Hamming distance are also
testers for the edit distance. For the lower bound of Ω(log(ε−1)/ε) queries for languages
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with infinitely many minimal blocking sequences, we reduce to the strongly connected case.
The main difficulty is that it is not enough to consider strongly connected components in
isolation: there exists finite automata that contain a strongly connected component that
induces a hard language, yet the language of the whole automaton is easy. We solve this
difficulty by carefully defining the notion of minimality for a blocking sequence.

Section 8.5 completes the trichotomy, by characterizing the easy and trivial languages.
We show that languages of automata with finitely many blocking sequences can be tested
with O(1/ε) queries. We also prove that if an automaton has at least one blocking
sequence, then it requires Ω(1/ε) queries to be tested, by showing that the languages that
our notion of trivial language coincides with the trivial languages of Alon et al. [24]. By
contrast, we show that automata without blocking sequences recognize trivial languages.

Once we have the trichotomy, it is natural to ask whether it is effective: given an
automaton A, can we determine if its language is trivial, easy or hard? The answer is
yes, and we show in Section 8.6 that all three decision problems are PSPACE-complete,
even for strongly connected automata.

8.1.2 Related work

Building upon the seminal work of Alon et al. [24], Magniez and de Rougemont [231]
gave a tester using O(log2(ε−1)/ε) queries for regular languages under the edit distance
with moves, and François et al. [142] gave a tester using O(1/ε2) queries for the case
of the weighted edit distance. Alon et al. [24] also show that context-free languages
cannot be tested with a constant number of queries, and subsequent work has considered
testing specific context-free languages such as the Dyck languages [136, 248] or regular
tree languages [231]. Property testing of formal languages has been investigated in other
settings: Ganardi et al. [154] studied the question of testing regular languages in the
so-called “sliding window model”, while François et al. [142] considered property testing
for Visibly Pushdown languages in the streaming model.

8.2 Preliminaries

Words and languages.

In this chapter, words are usually denoted with lowercase letters u, v, . . ., and their letters
are indexed starting at 0. To avoid collision with the precision threshold ε, the empty
word is denoted γ. We use w ≼ u to denote “w is a factor of u”. Furthermore, if w is a
factor of u and w ̸= u, we say that w is a proper factor of u.

Finite automata.

Definition 8.2.1 (Nondeterministic Finite automaton). A nondeterministic finite au-
tomaton (NFA) A is a transition system defined by a tuple (Q,Σ, δ, q0, F ), with Q a finite
set of states, Σ a finite alphabet, δ : Q × Σ → 2Q the transition function, q0 ∈ Q is the
initial state and F ⊆ Q is the set of final states.

The size of an automaton, denoted |A|, is its number of states. We say that A is
deterministic (resp. complete [249, Section 2.4]) if |δ(q, a)| ≤ 1 (resp. ≥ 1) for all q ∈ Q
and a ∈ Σ. We say that there is a transition, or a run, from p ∈ Q to q ∈ Q labeled by
w ∈ Σ∗, denoted p

w−→ q, if there exist states p0, p1, . . . , p|w| such that p0 = p, p|w| = q,
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and for every i = 0, . . . , |w| − 1, pi+1 ∈ δ(pi, w[i]). In this case, we say that q is reachable
from p and that p is co-reachable from q. The language recognized by A, denoted L(A),
is the set of words that label a transition from the initial state to a final state, i.e.

L(A) = {w ∈ Σ∗ | ∃qf ∈ F : q0
w−→ qf}.

We say that an NFA is trim if every state is reachable from the initial state and co-
reachable from some final state [249, Section 2.4]. An NFA A can always be converted
into a trim NFA that recognizes the same language by removing the states of A that are
either not reachable from q0 or not co-reachable from any final state. Therefore, in this
chapter, we assume w.l.o.g. that the NFA A, which describes the language that we test,
is trim.

To illustrate some of our examples and results, we use the classical representation of
finite automata as state machines, as depicted in Fig. 8.1.

q0start q1

a

a

b b

Figure 8.1: Graphical representation of a finite automaton. Circles represent the states of
the automaton: the initial state is marked by an arrow coming from the word “start” and
accepting states are marked by an outgoing arrow. The transition function is represented
using arrows between states: if q ∈ δ(p, a), then there is an arrow from p to q with the
label a. This finite automaton recognize the language of words with an odd number of
a’s.

Property testing.

Definition 8.2.2. Let L be a language, let u be a word of length n, let ε > 0 be a precision
parameter and let d : Σ∗ ×Σ∗ → N ∪ {+∞} be a metric. We say that the word u is ε-far
from L w.r.t. d if d(u, L) ≥ εn, where

d(u, L) := min
v∈L

d(u, v).

Throughout this work and unless explicitly stated otherwise, we will consider the case
where d is the Hamming distance, defined for two words u and v as the number of positions
at which they differ if they have the same length, and as +∞ otherwise. In that case,
d(u, L) ≥ εn means that one cannot change an ε-fraction of the letters in u to obtain a
word in L.

Definition 8.2.3. A property tester for the language L with precision ε > 0 is a random-
ized algorithm T that, for any input u of length n, given random access to u, satisfies the
following properties:

if u ∈ L, then T (u) = 1,

if u is ε-far from L, then P (T (u) = 0) ≥ 2/3.

The query complexity of T is a function of n and ε that counts the maximum number of
queries that T makes over all inputs of length n and over all possible random choices.



94 8.2. Preliminaries

Note that the above definition corresponds to property testers with perfect com-
pleteness : they always accept positive instances. Because they are based on the no-
tion of blocking factors that we will discuss below, all known testers for regular lan-
guages [24, 48, 142, 231] have perfect completeness.

In this chapter, we assume that the automaton A that describes the tested language
L is fixed, and not part of the input. Therefore, we consider its number of states m as a
constant.

Graphs and periodicity.

We now recall tools introduced by Alon et al. [24] to deal with periodicity in finite au-
tomata.

Let G = (V,E) with E ⊆ V 2 be a directed graph. A strongly connected component (or
SCC) of G is a maximal set of vertices that are all reachable from each other. It is trivial
if it contains a single state with no self-loop on it. We say that G is strongly connected if
its entire set of vertices is an SCC.

The period λ = λ(G) of a graph G is the greatest common divisor of the length of the
cycles in G. If G is acyclic, we set λ(G) =∞. Following the work of Alon et al. [24], we
will use the following property of directed graphs.

Fact 8.2.4 (From [24, Lemma 2.3]). Let G = (V,E) be a nonempty, strongly connected
directed graph with finite period λ = λ(G). Then there exists a partition V = Q0⊔. . .⊔Qλ−1

and a reachability constant ρ = ρ(G) that does not exceed 3|V |2 such that:
1. For every 0 ≤ i, j ≤ λ − 1 and for every u ∈ Qi, v ∈ Qj, the length of any directed

path from u to v in G is equal to (j − i) mod λ.
2. For every 0 ≤ i, j ≤ λ− 1, for every u ∈ Qi, v ∈ Qj and for every integer r ≥ ρ, if

r = (j − i) (mod λ), then there exists a directed path from u to v in G of length r.

The sets (Qi : i = 0, . . . , λ − 1) are the periodicity classes of G. In what follows,
we will slightly abuse notation and use Qi for arbitrary non-negative integers i to mean
Qi (mod λ) when i ≥ λ.

Given a finite automaton A = (Q,Σ, δ, q0, F ), we can naturally obtain the underlying
directed graph by removing the labels from the transitions: it is the graph G = (Q,E)
where E = {(p, q) ∈ Q2 | ∃a ∈ Σ : q ∈ δ(p, a)}. In what follows, we naturally extend
the notions of period3, reachability constant and periodicity classes to finite automata
through this graph G. Note that the numbering of the periodicity classes is defined up to
a shift mod λ: we can thus always assume that Q0 is the class that contains the initial
state q0. Similarly, we say that a finite automaton is strongly connected if the underlying
graph is strongly connected. A strongly connected component (SCC for short) S of an
automaton A is a maximal subset of states such that every state of S is reachable from
every other one. Its period λ(A) is the period of the graph G.

Positional words and positional languages.

Consider the language L1 = (ab)∗, recognized by the automaton depicted in Fig. 8.2. The
word v = ab can appear as a factor of a word u ∈ L1 if v occurs at an even position in u.
However, if v occurs at an odd position in u, then u cannot be in L1. Therefore, v can be

3Note that in this context, an aperiodic automaton means an automaton with an aperiodic underlying
graph, which is not the same thing as a counter-free automata, which are sometimes called aperiodic
automata.
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q0start q1

a

b

aw =

Figure 8.2: An automaton A that recognizes the language L1 = (ab)∗. A witness that a
word is not in this language is an a on an odd position or a b on an even position, hence
w is not in L(A).

used to witness that u is not in L1, but only if we find it at an odd position. This example
leads us to introducing p-positional words, which additionally encode information about
the index of each letter modulo an integer p.

More generally, we will associate to each regular language a period λ, and working
with λ-positional words will allow us to define blocking factors in a position-dependent
way without explicitly considering the index at which the factor occurs.

Definition 8.2.5 (Positional words). Let p be a positive integer. A p-positional word is a
word over the alphabet Z/pZ×Σ of the form (n (mod p), a0)((n+1) (mod p), a1) · · · ((n+
ℓ) (mod p), aℓ) for some non-negative integer n. If u = a0 · · · aℓ, we write (n : u) to denote
this word.

With this definition, if u = abcd and we consider the 2-positional word τ = (0 : u), the
factor bc appears at position 1 in u and is mapped to the factor µ = (1, a)(0, b). In this
case, even when taking factors of µ, we still retain the (congruence classes of the) indices
in the original word τ .

Any strongly connected finite automaton A = (Q,Σ, δ, q0, F ) can naturally be ex-
tended into an automaton over λ(A)-positional words as follows. Let Q0, . . . , Qλ−1 be the
partition of the states of A given by Fact 8.2.4, where λ = λ(A) is the period of A. The
positional extension of A is the finite automaton Â defined by:

Â = (Q,Z/λZ× Σ, δ′, q0, F ), where δ′(q, (i, a)) =

{
δ(q, a) if q ∈ Qi,

∅ otherwise.

By Fact 8.2.4, any transition from a state in Qi goes to a state in Qi+1, hence Â recognizes
well-formed λ-positional words.

We call the language recognized by Â the positional language of A, and denote it
PL(A). This definition is motivated by the following property:

Property 8.2.6. For any word u ∈ Σ∗, we have u ∈ L(A) if and only if (0 : u) ∈ PL(A).
Positional words make it easier to manipulate factors with positional information,

hence we phrase our property testing results in terms of positional languages. Notice that
a property tester for PL(A) immediately gives a property tester for L(A), as one can
simulate queries to (0 : u) with queries to u by simply pairing the index of the query
modulo λ(A) with its result.

8.3 Hard Languages for Strongly Connected NFAs
Before considering the case of arbitrary NFAs, we first study the case of strongly connected
NFAs, which are NFAs such that for any pair of states p, q ∈ Q, there exists a word w



96 8.3. Hard Languages for Strongly Connected NFAs

such that p
w−→ q. We will later generalize the results of this section to all NFAs.

We show that the query complexity of the language of such an NFAA can be character-
ized by the cardinality of the set of minimal blocking factors ofA, which are factor-minimal
λ(A)-positional words that witness the fact that a word does not belong to PL(A). In
this section, we consider a fixed NFA A and simply use “positional words” to refer to
λ-positional words, where λ = λ(A) is the period of A.

Definition 8.3.1 (Blocking factors). Let A be a strongly connected NFA. A positional
word τ is a blocking factor of A if for any positional word µ, we have τ ≼ µ⇒ µ /∈ PL(A).

Further, we say that τ is a minimal blocking factor of A if no proper factor of τ is a
blocking factor of A. We use MBF(A) to denote the set of all minimal blocking factors
of A.

Intuitively and in terms of automata, the positional word (i : u) is blocking for A if
there is no transition in A labeled by u that starts from a state of Qi. (This property is
formally established later in Lemma 8.3.5.) The main result of this section is the following:

Theorem 8.3.2. Let L be an infinite language recognized by a strongly connected NFA A.
If MBF(A) is infinite, then L is hard, i.e., it has query complexity Θ(log(ε−1)/ε).

This result is both an upper bound of O(log(ε−1)/ε) queries and a lower bound
of Ω(log(ε−1)/ε) queries on the complexity of a tester for L: we prove the upper bound
in Section 8.3.2 and the lower bound in Section 8.3.3.

8.3.1 Positional words, blocking factors and strongly connected
NFAs

We first establish some properties of positional words that will help us ensure that we
are creating well-formed positional words, that is, positional words where the index i of
a letter (i : a) is equal to j + 1 (mod λ), where j is the index of the previous letter. In
Section 8.3.2, we highlight the connection between property testing and blocking factors
in strongly connected NFAs.

We start with the following properties, which are consequences of Fact 8.2.4.

Corollary 8.3.3. Let n be a nonnegative integer, let w be a word of length n. If for some
states p ∈ Qi, q ∈ Qj of A we have p

w−→ q, then the indices i, j satisfy the equation

j − i = |w| (mod λ)

Corollary 8.3.4. Let τ = (i : u) and µ = (j : v) be positional words. If τ ≼ µ, then there
exists positional words η, η′ with |η| = i − j (mod λ) such that µ = ητη′. In particular,
this implies that there exists words w,w′ with |w| = i− j (mod λ) such that v = wuw′.

These properties allows us to formalize the intuition we gave earlier about blocking
factors.

Lemma 8.3.5. A positional word τ = (i : u) is a blocking factor for A iff for every states
p ∈ Qi, q ∈ Q, we have p ̸u−→ q.

Proof. We first show that if there exists states p ∈ Qi, q ∈ Q such that p u−→ q, then τ is not
blocking, i.e. there exists µ ∈ PL(A) such that τ ≼ µ. As A is strongly connected, there
exist positional words η, η′ such that q0

η−→ p and q
η′−→ qf for some qf ∈ F . By Fact 8.2.4,



Chapter 8. The Complexity of Testing Regular Languages 97

the positional word µ = ητη′ is well formed. Furthermore, it labels a transition from q0
to qf , hence it is in PL(A), and τ is not blocking.

For the converse, assume that τ is non-blocking: we show that there exists two states
p ∈ Qi, q ∈ Q such that p

u−→ q. As τ is non-blocking, there exists a positional word
µ = (0 : w) such that τ ≼ µ and there exists a final state r such that q0

µ−→ r, and
equivalently, q0

w−→ r. By Corollary 8.3.4, since τ ≼ µ, there exists words v, v′ such that
w = vuv′ and the length of v is equal to i modulo λ. In particular, the path q0

w−→ r can
be decomposed into q0

v−→ p
u−→ q

w−→ r, and we have p
u−→ q. It only remains to show that p

is in Qi: this follows by Corollary 8.3.3 since |v| = i (mod λ).

Next, we show that the Hamming distance between u and L(A) is the same as the
(Hamming) distance between (0 : u) and PL(A).

▷ Claim 8.3.6. For any word u ∈ Σ∗, we have d(u,L(A)) = d((0 : u),PL(A)).

Claim proof. The ≤ part is straightforward. For the reverse inequality, if suffices to see
that in any minimal substitution sequence from (0 : u) to a positional word in PL(A), no
operation changes only the index of an (index, letter) pair. ◁

The above claim allows us to interchangeably use the statements “u is ε-far from L(A)”
and “(0 : u) is ε-far from PL(A)”.

8.3.2 An efficient property tester for strongly connected NFAs.

In this section, we show that for any strongly connected NFA A, there exists an ε-property
tester for L(A) that uses O(log(ε−1)/ε) queries.

Theorem 8.3.7. Let A be a strongly connected NFA. For any ε > 0, there exists an
ε-property tester for L(A) that uses O(log(ε−1)/ε) queries.

Our proof is similar to the one we gave in [48], with one notable technical improvement:
we use a new method for sampling factors in u, which greatly simplifies the correctness
analysis.

8.3.2.1 An efficient sampling algorithm

We first introduce a sampling algorithm (Algorithm 3) that uses few queries and has
a large probability of finding at least one factor from a large set S of disjoint “special”
factors. Using this algorithm on a large set of disjoint blocking factors gives us an efficient
property tester for strongly connected NFAs. We will re-use this sampling procedure later
in the case of general NFAs (Theorem 8.4.16).

The procedure is fairly simple: the algorithm samples factors of various lengths in u
at random. On the other hand, the correctness of the tester is far from trivial. The
lengths and the number of factors of each length are chosen so that the number of queries
is minimized and the probability of finding a “special” factor is maximized, regardless of
their repartition in u. (In what follows, the “special” factors are blocking factors.)

▷ Claim 8.3.8. A call to Sampler(u,N, L) (Algorithm 3) makes O(n log(L)/N) queries
to u.
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Algorithm 3 Efficient generic sampling algorithm
1: function OneSample(u, ℓ)
2: i← uniform(0, n− 1)
3: l← max(i− ℓ, 0), r ← min(i+ ℓ, n− 1)
4: return u[l. .r]

5: function Sampler(u,N, L)
6: n← |u|
7: β ← n/N
8: T ← ⌈log(L)⌉
9: F ← ∅

10: for t = 0 to T do
11: ℓt ← 2t, rt ← ⌈2 ln(3)β/ℓt⌉
12: for i = 0 to rt do
13: F ← F ∪ {OneSample(u, ℓt)}
14: return F

Claim proof. A call to OneSample(u, ℓt) makes at most 2ℓt queries to u. The function
Sampler(u,N, L) makes rt = 2 ln(3) ·β/ℓt = 2 ln(3) ·n/(Nℓt) calls to OneSample(u, ℓt)
for each t = 0, . . . , T , where T = ⌈log(L)⌉. This adds up to

T∑
t=0

rt · ℓt = ⌈log(L)⌉ · 2 ln(3) · n/N = O(n log(L)/N)

queries to u. ◁

Lemma 8.3.9. Let u be a word of length n, and consider a set S containing at least N
disjoint factors of u, each of length at most L. A call to the function Sampler(u,N, L)
(Algorithm 3) returns a set F of factors of u such that there exists a word of S that is a
factor of some word of F , with probability at least 2/3.

Proof. We conceptually divide the blocking factors in S into different categories depending
on their length: let T = ⌈log(L)⌉, and for t = 0, . . . , T, let St denote the subset of S which
contains factors of length at most ℓt = 2t. We then carefully analyze the probability that
randomly sampled factors of length 2ℓt contains a factor from St, and show that over all t,
at least one sampled factor contains a factor of S, with probability at least 2/3.

▷ Claim 8.3.10. If in a call to OneSample, the value i is such that there exists indices l
and r such that l ≤ i ≤ r and u[l, r] contains a factor in S, then the set F returned by
the algorithm has the desired property.

As the factors given in S are disjoint, the probability pt that the factor returned
by OneSample contains a factor from S is lower bounded by pt ≥ 1

n

∑
v∈St
|v|. The

OneSample function is called rt = 2 ln(3)β/ℓt times independently for each t, hence the
probability p that the algorithm samples a factor containing a factor from S satisfies the
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following:

(1− p) =
T∏
t=0

(1− pt)
rt ≤ exp

(
−

T∑
t=0

ptrt

)

≤ exp

(
−2 ln(3)β

n

T∑
t=0

1

ℓt

∑
v∈St

|v|
)

= exp

−2 ln(3)β

n

∑
v∈S

|v|
T∑

t=⌈log |v|⌉

2−t

 .

Now, inverting the order of summation, and lower bounding the sum of powers of 2 by
its first term, we obtain:

(1− p) ≤ exp

(
−2 ln(3)β

n

∑
v∈S

|v| · 2−⌈log |v|⌉

)

≤ exp

(
−2 ln(3)β

n

∑
v∈S

|v| 1

2|v|

)

= exp

(
−2 ln(3)β

n
· |S|
2

)
≤ exp

(
− ln(3)βN

n

)
= exp (− ln(3)) = 1/3

It follows that p ≥ 2/3, which concludes the proof.

8.3.2.2 The tester

The algorithm for Theorem 8.3.7 is given in Algorithm 4.

Algorithm 4 Generic ε-property tester that uses O(log(ε−1)/ε) queries
1: function Tester(u, ε)
2: n← |u|,m← |Q|
3: L← 12m2/ε
4: if L(A) ∩ Σn = ∅ then
5: Reject
6: else if n < L then
7: Query all of u and run A on it
8: Accept if and only if A accepts
9: else

10: F ← Sampler((0 : u), n/L, L)
11: Reject if and only if F contains a blocking factor for A.

We now show that Algorithm 4 is a property tester for L(A) that uses O(log(ε−1)/ε)
queries. In what follows, we use n to denote the length of the input word u and m to
denote the number of states of A.

▷ Claim 8.3.11. The tester given in Algorithm 4 makes O(log(ε−1)/ε) queries to u.

Proof. If n ≤ L, then the tester makes n ≤ L = O(1/ε) queries, and the claim holds. Oth-
erwise, the number of queries is given by the call to Sampler(u, n/L, L): by Claim 8.3.8,
this uses O(n logL

n/L
) = O(L logL) = O(log(ε−1)/ε) queries.
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Alon et al. [24, Lemma 2.6] first noticed that if a word u is ε-far from L(A), then it
contains Ω(εn) short factors that witness the fact that u is not in L(A). We start by
translating the lemma of Alon et al. on “short witnesses” to the framework of blocking
factors. More precisely, we show that if u is ε-far from L(A), then (0 : u) contains many
disjoint (i.e. non-overlapping) blocking factors.

Lemma 8.3.12. Let ε > 0, let u be a word of length n ≥ 6m2/ε and assume that L(A)
contains at least one word of length n. If τ = (0 : u) is ε-far from PL(A), then τ contains
at least εn/(6m2) disjoint blocking factors.

Proof. We build a set P of disjoint blocking factors of τ as follows: we process u from
left to right, starting at index i1 = ρ, where ρ is the reachability constant of A (see
Fact 8.2.4). Next, at iteration t, set jt to be the smallest integer greater than or equal
to it and smaller than n − ρ such that τ [it. .jt] is a blocking factor. If there is no such
integer, we stop the process. Otherwise, we add τ [it. .jt + ρ− 1] to the set P , and iterate
starting from the index it+1 = jt + ρ.

Let k denote the size of P . We will show that we can substitute at most 3(k +
1)m2 positions in τ to obtain a word in PL(A). (See Fig. 8.3 for an illustration of this
construction.) Using the assumption that τ is ε-far from PL(A) (which follows from
Claim 8.3.6) will give us the desired bound on k.

a) τ [i1. .j1] τ [i2. .j2] . . . τ [ik. .jk]
p1 qf

b) τ [i1. .j1 − 1]
p1 q1

τ [i2. .j2 − 1]
p2 q2 p3 . . .

. . . τ [ik. .jk − 1]
pk qk qf

c) τ [i1. .j1 − 1]
p1 q1

τ [i2. .j2 − 1]
p2 q2 p3 . . .

. . . τ [ik. .jk − 1]
pk qkq0 qf

Figure 8.3: a) The decomposition process returns k factors τ [i1, jt], . . . , τ [ik, jk] (repre-
sented as diagonally hatched in gray regions), separated together and with the start of
the text by padding regions of ρ− 1 letters (red crosshatched regions). b) If we exclude
the last letter of each blocking factor, we obtain factors that label transitions between
some pair of states pt, qt for each t = 1, . . . , k. c) We use the padding regions to bridge
between consecutive factors as well as the start and end of the word.

For every t, we chose jt to be minimal so that τ [it. .jt] is blocking, hence τ [it. .jt − 1]
is not blocking, and therefore τ [it. .jt − 1] labels a run from some state pt ∈ Qit to some
state qt ∈ Qjt . Therefore, using the strong connectivity of A and Fact 8.2.4, we can
substitute the letters in τ [jt. .jt + ρ− 1] to obtain a factor that labels a transition from qt
to pt+1. After this transformation, the word τ [it. .jt + ρ − 1] labels a transition from pt
to pt+1. Using the ρ letters at the start and the end of the word, we add transitions from
an initial state to p1 and from qk to a final state: the assumption that L(A) contains
a word of length n ensures that Qn contains a final state, hence this is always possible.
The resulting word is in PL(A) and was obtained from τ using (k + 1)ρ ≤ 3(k + 1)m2

substitutions. As τ is ε-far from PL(A), we obtain the following bound on k:

3(k + 1)m2 ≥ εn =⇒ k ≥ εn

3m2
− 1

=⇒ k ≥ εn

6m2
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The last implication uses the assumption that n ≥ 6m2/ε.

Next, we show that if u is ε-far from L(A), then (0 : u) contains Ω(εn) blocking
factors, each of length O(1/ε).

Lemma 8.3.13. Let ε > 0, let u be a word of length n ≥ 6m2/ε and assume that L(A)
contains at least one word of length n. If u is ε-far from L(A), then the positional word
(0 : u) contains at least εn/(12m2) disjoint blocking factors of length at most 12m2/ε.

Proof. Let u,A be a word and an automaton satisfying the above hypotheses. By
Lemma 8.3.12, (0 : u) contains at least εn/(6m2) disjoint blocking factors. As these
factors are disjoint, at most half of them (that is, εn/(12m2) of them) can have length
greater than 12m2/ε, as the sum of their lengths cannot exceed n.

Proof of Theorem 8.3.7. First, note that if u ∈ L(A), (0 : u) cannot contain a blocking
factor for A, hence Algorithm 4 always accepts u. Next, if L(A) ∩ Σn is empty or if
|u| ≤ L = 12m2/ε, the tester has the same output as A, hence it is correct.

In the remaining case, u is long enough and ε-far from L(A), hence Lemma 8.3.13
gives us a large set of short blocking factors in (0 : u): this is exactly what the Sampler
function needs to find at least one factor containing a blocking factor with probability at
least 2/3. More precisely, by Lemma 8.3.13, (0 : u) contains at least εn/(12m2) = n/L
blocking factors of length at most L = 12m2/ε, hence the conditions of Lemma 8.3.9 are
satisfied.

As a factor containing a blocking factor is also a blocking factor, the set F computed
on line 10 of Algorithm 4 contains at least one blocking factor with probability at least 2/3,
and Algorithm 4 satisfies Definition 8.2.3.

8.3.3 Lower bound from infinitely many minimal blocking factors

We now show that languages with infinitely many minimal blocking factors are hard, i.e.
any tester for such a language requires Ω(log(ε−1)/ε) queries.

Let us first give an example that will motivate our construction. Consider the parity
language P consisting of words that contain an even number of b’s, over the alphabet
{a, b}. Distinguishing u ∈ P from u /∈ P requires Ω(n) queries, as changing the letter at
single position can change membership in P . However, P is trivial to test, as any word is
at distance at most 1 from P , for the same reason. Now, consider language L2 consisting
of words over {a, b, c, d} such that between a c and the next d, there is a word in P .
Intuitively, this language encodes multiple instances of P , hence we can construct words
ε-far from L2, and each instance is hard to recognize for property testers, hence the whole
language is. In [48, Theorem 15], we proved a lower bound of Ω(log(ε−1)/ε) on the query
complexity of any property tester for L2, matching the upper bound in the same paper.

The minimal blocking factors of L2 include all words for the form cvd where v /∈ P :
there are infinitely many such words. This is no coincidence: we show in this thesis than
this lower bound can be lifted to any language with infinitely many minimal blocking
factors, under the Hamming distance.

Theorem 8.3.14. Let A be a strongly connected NFA. If MBF(A) is infinite, then there
exists a constant ε0 such that for any ε < ε0, any ε-property tester for L = L(A) uses
Ω(log(ε−1)/ε) queries.
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The proof of this result is full generalization of the lower bound against the “repeated
Parity” example given above.

Our proof is based on (a consequence of) Yao’s Minimax Principle [286]: if there is a
distribution D over inputs such that any deterministic algorithm that makes at most q
queries errs on u ∼ D with probability at least p, then any randomized algorithm with q
queries errs with probability at least p on some input u.

To prove Theorem 8.3.14, we first exhibit such a distribution D for q = Θ(log(ε−1)/ε).
We take the following steps:

1. we show that with high probability, an input u sampled w.r.t. D is either in or ε-far
from L (Lemma 8.3.21),

2. we show that with high probability, any deterministic tester that makes fewer than
c · log(ε−1)/ε queries (for a suitable constant c) cannot distinguish whether the
instance u is positive or ε-far, hence it errs with large probability.

3. combine the above two results to prove Theorem 8.3.14 via Yao’s Minimax principle.

8.3.3.1 The structure of MBF(A)
Before diving into the proof of Theorem 8.3.14, we show that if MBF(A) is infinite, then
we can find minimal blocking factors with a “regular” structure, a crucial ingredient for
our proof. First, we prove that the set of minimal blocking factors of an automaton
is a regular language, recognized by an automaton that is possibly exponentially larger
than A. We first prove the result for blocking factors of the form (i : u) for a fixed
i ∈ Z/λZ.

Lemma 8.3.15. Let A = (Q,Σ, δ, I, F ) be a strongly connected NFA with m states and
let λ = λ(A). For every i ∈ Z/λZ, the set of minimal blocking factors of A of the form
(i : u) is a regular language recognized by a NFA of size 2O(m).

Proof. We call blocking factors of A of the form (i : u) its i-blocking factors.
We first show that the set of i-blocking factors of A, but not necessarily minimal ones,

is a regular language recognized by an NFA Ai with m + 1 states. The result follows by
using standard constructions for complement and intersection of automata [249, Chapter
1, Section 3]: these constructions give an automaton of size 2O(m) that recognizes words
in L that have no proper factor in L.

Consider the NFA Ai obtained by adding a new sink state ⊥ to A, making it the
only accepting state, with set of initial states Qi. Formally, Ai is defined as Ai = (Q ∪
{⊥},Σ, δ′, Qi, {⊥}), where δ′ is defined as follows:

∀p ∈ Q,∀a ∈ Σ : δ′(p, a) =

{
{⊥} if δ(p, a) = ∅,
δ(p, a) otherwise.

This automaton4 recognizes the set of i-blocking factors of A and has size O(m). Applying
the aforementioned construction to L = L(Ai) yields the desired automaton, of size
2O(m).

It follows that the set of minimal blocking factors of A is also a regular language.

Corollary 8.3.16. Let A be an NFA with m states. The set of minimal blocking factors
of A is a regular language recognized by an NFA of size 2O(m).

4Our definition of NFAs does not allow for multiple initial states. As there is no constraint of strong
connectivity for Ai, this can be solved using a simple construction that adds a new initial state.
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Therefore, if MBF(A) is infinite, we can use the Pumping Lemma [249, Chapter 1,
Proposition 2.2] to find an infinite family of minimal blocking factors with a shared struc-
ture {ϕνrχ, r ∈ N}, for some non-empty positional words ϕ, ν and χ. We will use this
property later, when proving a lower bound against the language of automata with in-
finitely many blocking factors.

Lemma 8.3.17. If MBF(A) is infinite, then there exist positional words ϕ, ν+, ν−, χ such
that:

1. the words ν+ and ν− have the same length,
2. there exists a constant S = 2poly(m) such that |ϕ|, |ν+|, |ν−|, |χ| ≤ S,
3. there exists an index i∗ ∈ Z/λZ and a state q∗ ∈ Qi∗ such that for every integer

r ≥ 1, the positional word τ−,r = ϕ(ν−)
rχ is blocking for A, and for every s < r, we

have
q∗

τ+,r,s−−−→ q∗ where τ+,r,s = ϕ(ν−)
jν+(ν−)

r−1−sχ.

In particular, τ+,r,s is not blocking for A.

Note that here, the state q∗ is the same for every integers r, s.

Proof. As MBF(A) is infinite, there must exist an integer i∗ such that A has infinitely
many minimal i∗-blocking factors; we fix such i∗ in what follows.

Let us recall the Pumping Lemma [249, Chapter 1, Proposition 2.2].

Fact 8.3.18 (Pumping Lemma). Let L be a regular language recognized by an automaton
of size T . There exists an integer S = O(T ) such that any word u of L of length at least
S can be factorized as u = xyz such that |xy| ≤ S, |y| ≥ 1 and, for all k ≥ 0, xykz ∈ L.

As the set of minimal i∗-blocking factors is an infinite regular language recognized by
an NFA of size T = 2O(m). Let S = 2O(m) be the constant given by the Pumping Lemma:
since the language is infinite, it contains at least one positional word of length greater
than S. Hence, there exist positional words τ, µ and η, with |µ| ≥ 1, such that for any
non-negative integer k, τµkη is a minimal i∗-blocking factor. By removing factors that
label loops in the automaton, we can assume that each of them has length at most S.
Furthermore, we can assume w.l.o.g. that neither τ nor η is empty, otherwise we set their
value to µ: after this modification, τµkη is still a minimal i∗-blocking factor for every
k ≥ 0.

Notice that the word τµm is not a blocking factor, as a proper factor of the minimal
blocking factor τµmη. Therefore, by the pigeonhole principle, there exist integers k0, k1 ≥
1 with k0 + k1 = m and states p, p1 such that we have

p
τµk0−−→ p1

µk1−−→ p1.

Note that, by Fact 8.2.4, p1
µk1−−→ p1 implies that k1 · |µ| = 0 (mod λ).

Similarly, the word µmη is not a blocking factor, since it is a proper factor of the
minimal i∗-blocking factor τµmη. Again, there exist integers k2 ≥ 1, k3 summing to m
and states p2 and q such that

p2
µk2−−→ p2

µk3η−−→ q.

Now, define ϕ = τµk0 , χ = µk3η and ν− = µK , where K = ρ · k1 · k2. As there are
transitions starting from p1 and p2 labeled by µ, p1 and p2 belong to the same periodicity
class. Therefore, by Fact 8.2.4, as K ≥ ρ and K · |µ| = 0 (mod λ), there exists a word
ν+ of length K · |µ| such that p1

ν+−→ p2. This choice of ϕ, ν+, ν− and χ satisfies all the
conditions of the lemma.
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8.3.3.2 Constructing a Hard Distribution D
Let ε > 0 be sufficiently small and let n be a large enough integer. In what follows, m
denotes the number of states of A. To construct the hard distribution D, we will use an
infinite family of blocking factors that share a common structure, given by Lemma 8.3.17.

The crucial property here is that τ−,r and τ+,r,s are very similar: they have the same
length, differ in at most S letters, yet one of them is blocking and the other is not.

We now use the words τ−,r and τ+,r,s and the constant S to describe how to sample
an input µ = (0 : u) of length n w.r.t. D.

Let π be a uniformly random bit. If π = 1, we will construct a positive instance
µ ∈ PL(A), and otherwise the instance will be ε-far from PL(A) with high probability.
We divide the interval [0. .n− 1] into k = εn intervals of length ℓ = 1/ε, plus small initial
and final segments µi and µf of length O(ρ) to be specified later. For the sake of simplicity,
we assume that k and ℓ are integers and that λ divides ℓ. For j = 1, . . . , k, let aj, bj denote
the endpoints of the j-th interval. For each interval, we sample independently at random
a variable κj with the following distribution:

κj =

{
t, with prob. pt = 3 · 2tSε/ log((Sε)−1) for t = 1, 2, . . . , log((Sε)−1),

0, with prob. p0 = 1−∑log((Sε)−1)
t=1 pt.

(8.1)

The event κj > 0 means that the j-th interval is filled with N ≈ 2−κj/ε “special” factors.
When π = 0, these “special” factors will be minimal blocking factors τ−,r for r = 2κj ,
whereas when π = 1, they will instead be similar non-blocking factors τ+,r,s for a uniformly
random s: they will be hard to distinguish with few queries. On the other hand, the event
κj = 0 means that the j-th interval contains no specific information. More precisely, we
choose a positional word η∗ of length ℓ such that q∗

η∗−→ q∗: by Fact 8.2.4, this is possible
as ℓ = 0 (mod λ). Then, if κj = 0, we set µ[aj. .bj] = η∗, regardless of the value of π.

Formally, if κj > 0, let r = 2κj , N = 2−κj/(Sε) and let η be a word of length ℓ−N ·|τ−,r|
such that q∗

η−→ q∗: such a word exists as λ divides ℓ and |τ−,r|. We construct the j-th
interval as follows:

• if π = 0, we set µ[aj. .bj] = (τ−,r)
Nη,

• if π = 1, we select s ∈ [0. .r− 1] uniformly at random, and set µ[aj. .bj] = (τ+,r,s)
Nη.

Finally, the initial and final fragments µi and µf of µ are chosen to be the shortest words
that label a transition from q0 to q∗ and q∗ to a final state, respectively.

8.3.3.3 Properties of the distribution D
Next, we establish that the distribution D has the desired properties.

Observation 8.3.19. If ε is small enough, D is well-defined, i.e. for every t between 0
and log((Sε)−1), we have 0 ≤ pt ≤ 1.

Observation 8.3.20. If π = 1, then µ ∈ PL(A).

Lemma 8.3.21. Conditioned on π = 0, the probability of the event F = {µ is ε-far from
PL(A)} goes to 1 as n goes to infinity.

Proof. When π = 0, the procedure for sampling µ puts blocking factors of the form (i∗ : x)
at positions equal to i∗ mod λ. Any word containing such a factor at such a position
is not in PL(A), therefore any sequence of substitutions that transforms µ into a word
of PL(A) must make at least one substitution in every such factor. Consequently, the
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distance between µ and PL(A) is at least the number of blocking factors in µ. To prove
the lemma, we show that this number is at least εn with high probability, by showing
that it is larger than εn by a constant factor in expectation and using a concentration
argument.

Let Bj denote the number of blocking factors in the j-th interval: it is equal to
2−κj/(Sε) when κj > 0 and to 0 otherwise.

▷ Claim 8.3.22. Let B =
∑k

j=1Bj, and let E = E [B]. We have E ≥ 2εn.

Claim proof. By direct calculation:

E =
k∑

j=1

E [Bj] =
k∑

j=1

log(S/ε)∑
t=1

2−t/(Sε) · pt

=
k∑

j=1

log(S/ε)∑
t=1

2−t/(Sε) · 3 · 2tεS/ log(S/ε) =
k∑

j=1

log(S/ε)∑
t=1

3/ log(S/ε)

= 3k ≥ 2εn

We will now show that P(B < εn) goes to 0 as n goes to infinity. We use Hoeffding’s
inequality, which we recall here:

Fact 8.3.23 ([174, Theorem 2]). Let X1, . . . , Xk be independent random variables such
that for every i = 1, . . . , k, we have ai ≤ Xi ≤ bi, and let S =

∑k
i=1Xi. Then, for any

t > 0, we have

P (E[S]− S ≥ t) ≤ exp

(
− 2t2∑k

i=1(bi − ai)2

)
.

By Claim 8.3.22, we have B < εn⇒ E − B ≥ εn, and therefore P(B < εn) ≤ P(E −
B ≥ εn). The random variable B is the sum of k independent random variables, each
taking values between 0 and 1/(Sε). Therefore, by Hoeffding’s inequality (Fact 8.3.23),
we have

P(E −B < εn) ≤ exp

(
− 2ε2n2

k/(Sε)2

)
≤ exp

(
−2S2ε4n2

εn

)
as k ≤ εn

≤ exp
(
−2S2ε3n

)
This probability goes to 0 as n goes to infinity, which concludes the proof.

Corollary 8.3.24. For large enough n, we have P (F) ≥ 5/12.

Intuitively, our distribution is hard to test because positive and negative instances are
very similar. Therefore, a tester with few queries will likely not be able to tell them apart:
the perfect completeness constraint forces the tester to accept in that case. Below, we
establish this result formally.

Lemma 8.3.25. Let T be a deterministic tester with perfect completeness (i.e. it always
accepts τ ∈ PL(A)) and let qj denote the number of queries that it makes in the j-th
interval. Conditioned on the event M = {∀j s.t. κj > 0, qj < 2κj}, the probability that T
accepts µ ∼ D is 1.
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Proof. We proceed by contradiction, and show that if there exists a word τ with non-
zero probability w.r.t. D under M that T rejects, then there exists a word τ ′ ∈ PL(A)
that T rejects that also has non-zero probability, contradicting the fact that T has perfect
completeness.

Let τ be the word rejected by T : as T has perfect completeness, τ is not in PL(A),
and there must be at least one interval with κj > 0. Consider every interval j such that
κj > 0: it is of the form (τ−,r)

Nη where r = 2κj and τ−,r = ϕ(ν−)
rχ. Therefore, if qj < 2κj ,

then there is a copy of ν− that has not been queried by T across all copies of τ−,r. Consider
the word τ ′ obtained by replacing this copy of ν− with ν+ in all N copies of τ−,r in the
block. The result block is of the form (τ+,r,s)

Nη for some s < r, and by construction it is
not blocking. Applying this operation to all blocks results in a word τ ′ that is in PL(A).
Furthermore, τ ′ has non-zero probability under D conditioned onM: it can be obtained
by flipping the random bit π and choosing the right index s in every block.

Next, we show that if a tester makes few queries, then the event M has large proba-
bility.

Lemma 8.3.26. Let T be a deterministic tester, let qj denote the number of queries that
it makes in the j-th interval, and assume that T makes at most 1

72
· log(S/ε)/ε queries,

i.e.
∑

j qj ≤ 1
72
· log(S/ε)/ε. The probability of the event M = {∀j s.t. κj > 0, qj < 2κj}

is at least 11/12.

Proof. We show that the probability of M, the complement of M, is at most 1/12. We
have:

P
(
M
)
= P (∃j : κj > 0 ∧ qj ≥ 2κj)

≤
∑
j

P (κj > 0 ∧ qj ≥ 2κj) by union bound

≤
∑
j

⌊log qj⌋∑
t=1

pt =
∑
j

⌊log qj⌋∑
t=1

3 · 2tε
log(S/ε)

by def. of pt

≤ 3ε

log(S/ε)

∑
j

⌊log qj⌋∑
t=1

2t

By upper bounding the sum of power of 2 up to k = ⌊log qj⌋ by 2k+1, we obtain:

P
(
M
)
≤ 3ε

log(S/ε)

∑
j

2qj

=
3ε

log(S/ε)
· 2
72
· log(S/ε)

ε

≤ 1/12

We are now ready to prove Theorem 8.3.14.

Proof of Theorem 8.3.14. We want to show that any tester with perfect completeness
for L(A) requires at least 1

72
· log(S/ε)/ε queries, by showing that any tester with fewer

queries errs with probability at least 1/3. We show that any deterministic algorithm T
with perfect completeness that makes less than 1

72
· log(S/ε)/ε queries errs on u when

(0 : u) ∼ D with probability at least 1/3, and conclude using Yao’s Minimax principle.
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Consider such an algorithm T . The probability that T makes an error on u is lower-
bounded by the probability that u is ε-far from L(A) and T accepts, which in turn is
larger than the probability of M∩ F . By Corollary 8.3.24, we have P (F) ≥ 5/12, and
by Lemma 8.3.26, P (M) is at least 11/12. Therefore, we have

P (T errs) ≥ P (M∩F) ≥ 1− 7/12− 1/12 = 4/12 = 1/3.

This concludes the proof of Theorem 8.3.14, and consequently of Theorem 8.3.2.

8.4 Characterisation of Hard Languages for All NFAs
In this section we extend the results of the previous section to all finite automata. This
extension is based on a generalization of blocking factors: we introduce blocking sequences,
which are sequences of factors that witness the fact that we cannot take any path through
the strongly connected components of the automaton. For the lower bound, we define a
suitable partial order on blocking sequences, which extends the factor relation on words
to those sequences, and allows us to define minimal blocking sequences.

8.4.1 Blocking sequences

8.4.1.1 Examples motivating blocking sequences

Before presenting the technical part of the proof, let us go through two examples, which
motivate the notions that we introduce and illustrate some of the main difficulties.

Example 8.4.1. Consider the automaton A1 depicted in Fig. 8.4: it recognizes the
language L1 of words in which all c’s appear before the first b, over the alphabet {a, b, c}.

q0start q1 q2
b c

a, c a, b a, b, c

Figure 8.4: An automaton A1 that recognizes the language L1 = (a+ c)∗(a+ b)∗.

The set of minimal blocking factors of A1 is infinite: it is the language ba∗c. Yet, L1

is easy to test: we sample O(1/ε) letters at random, answer “no” if the sample contains
a c occurring after a b, and “yes” otherwise. To prove that this yields a property tester,
we rely on the following property:

Property 8.4.2. If u is ε-far from L1, then it can be decomposed into u = u1u2 where
u1 contains Ω(εn) letters b and u2 contains Ω(εn) letters c.

The pair of factors (b, c) is an example of blocking sequence: a word that contains an
occurrence of the first followed by an occurrence of the second cannot be in L1. We can
also show that a word ε-far from L1 must contains many disjoint blocking sequences –
this property (Lemma 8.4.18) underpins the algorithm for general regular languages.

What this example shows is that blocking factors are not enough: we need to consider
sequences of factors, yielding the notion of blocking sequences. Intuitively, a blocking
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sequence for L is a sequence σ = (v1, . . . , vk) of (positional) words such that if each word
of the sequence appears in u, with the occurrences of the vi’s ordered as in σ, then u is
not in L.5 While L1 has infinitely many minimal blocking factors, it has a single minimal
blocking sequence σ = (b, c).

Notice that the (unique) blocking sequence (b, c) can be visualized on Fig. 8.4: it is
composed of the red letters that label transitions between the different SCCs. This is no
coincidence: in many simple cases, blocking sequences are exactly sequences that contain
one blocking factors for each SCC. This fact could lead one to believe that the set of
minimal blocking sequences is exactly the set of sequences of minimal blocking factors,
one for each SCC. In particular, this would imply that as soon as one SCC has infinitely
many minimal blocking factors, the language of the whole automaton is hard to test. We
show in the next example that this is not always the case, because SCCs might share
minimal blocking factors.

Example 8.4.3. Consider the automaton in Fig. 8.5: it has two SCCs and a sink state.
The minimal blocking factors of the first SCC are given by B1 = be∗c+ a, and B2 = {a}
for the second SCC. This automaton is easy to test: intuitively, a word that is ε-far from
this language has to contain many a’s, as otherwise we can make it accepted by deleting
all a’s, thanks to the second SCC. However, a is also a blocking factor of the first SCC,
therefore, as soon as we find two a’s in the word, we know that it is not in L2.

q1

q0start

q2 q3
a, c a

a

b, e

c, d, e

b, c, d, e a, b, c, d, e
db

Figure 8.5: An automaton A2 that recognizes the language L2 = [((c + d + e)∗b(b +
e)∗d)∗a](b+ c+ d+ e)∗.

The crucial facts here are that the set B2 of minimal blocking factors of the second
SCC is finite and it is a subset of B1: the infinite nature of B1 is made irrelevant because
any word far from the language contains many a’s. Therefore, A2 has a single minimal
blocking sequence, σ = (a).

8.4.1.2 Portals and SCC-paths

Intuitively, blocking sequences are sequences of blocking factors of successive strongly
connected components. To formalize this intuition, we use portals, which describe how
a run in the automaton interacts with a strongly connected component, and SCC-paths,
that describe a succession of portals.

5This is not quite the definition, but it conveys the right intuition.
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In what follows, we fix an NFA A = (Q,Σ, δ, q0, {qf}). We assume w.l.o.g. that A
has a unique final state qf . Let S be the set of SCCs of A. We define the partial order
relation ≤A on S by S ≤A T if and only if T is reachable from S. We write <A for its
strict part ≤A \ ≥A. These relations can be naturally extended to states through their
SCC: if s ∈ S and t ∈ T , then s ≤A t if and only if S ≤A T .

We define p as the least common multiple of the lengths of all simple cycles of A.
Given a number k ∈ Z/pZ, we say that a state t is k-reachable from a state s if there is
a path from s to t of length k modulo p. In what follows, we use “positional words” for
p-positional words with this value of p.

Remark 8.4.4. In the rest of this section we will not try to optimize the constants in the
formulas. They will, in fact, become quite large in some of the proofs. We make this
choice to make the proofs more readable, although some of them are already technical.

For instance, the choice of p as the lcm of the lengths of simple cycles is not optimal:
we could use, for instance, the lcm of the periods of the SCCs.

Definition 8.4.5 (Portal). A portal is a 4-tuple P = s, x ⇝ t, y ∈ (Q × Z/pZ)2, such
that s and t are in the same SCC. It describes the first and last states visited by a path in
an SCC, and the positions x, y (modulo p) at which it first and lasts visits that SCC.

The positional language of a portal is the set

L(s, x⇝ t, y) = {(x : w) | s w−→ t ∧ x+ |w| = y (mod p)}.

Portals were already defined by Alon et al. [24], in a slightly different way. Our definition
will allow us to express blocking sequences more naturally.

Definition 8.4.6. A positional word (n : u) is blocking for a portal P if it is not a factor
of any word of L(P ). In other words, there is no path that starts in s and ends in t, of
length y − x modulo p, which reads u after n− x steps modulo p.

The above definition matches the definition of blocking factors for strongly connected
automata. This is no coincidence: we show in the next lemma that the language of a
portal has a strongly connected automaton.

Lemma 8.4.7. Let A be an automaton and P a portal of A. There is a strongly connected
NFA with at most p|A| states that recognizes L′ = L(P ).

Proof. Let S denote the SCC of s and t in A, and let λ denote its period. By definition of
p, λ divides p: let k be the integer such that p = λk. The automaton A′ for L′ simulates
the behavior of A restricted to S starting from the state s, while keeping track of the
number of letters read modulo p, starting from x. More precisely, let Q0, . . . Qλ−1 be the
partition of the states of S given by Fact 8.2.4. The set of states of A′ is given by

Q′ = {(s′, i+ jλ) | s′ ∈ Qi ∧ i = 0 . . . , λ− 1 ∧ j = 0, . . . , k − 1}.

It is a subset of Q × Z/pZ, hence it has cardinality at most p|A|. The transitions in A′

are of the form (s1, i+ jλ)
(i,a)−−→ (s2, i+ jλ+ 1 (mod p)) for any s1, s2 such that s1

a−→ s2
in A.

Furthermore, A′ is strongly connected. Let i1, i2 be indices of periodicity classes of S,
and let s1 ∈ Qi1 , s2 ∈ Qi2 be states of S. We show that for any j1, j2 < k, there is a path
from σ1 = (s1, i1 + j1λ) to σ2 = (s2, i2 + j2λ) in A′. Let ℓ be a sufficiently large integer
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equal to (i2 − i1) + (j2 − j1)λ (mod p). As λ divides p, ℓ is equal to (i2 − i1) (mod λ).
By taking ℓ larger than the reachability constant of S, Fact 8.2.4 gives us that there is a
path of length ℓ from s1 to s2 in S, labeled by some word u. The positional word (x : u)
labels a transition from σ1 to σ2 in A′, hence it is strongly connected.

Note that the period of A′ is p, hence we can apply the results we obtained on strongly
connected NFAs in Section 8.3 to portals, with p|A| as the number of states and p as the
period.

Portals describe the behavior of a run inside a single strongly connected component
of the automaton. Next, we introduce SCC-paths, which describe the interaction of a run
with multiple SCCs and between two successive SCCs.

Definition 8.4.8 (SCC-path). An SCC-path π of A is a sequence of portals linked by
single-letter transitions π = s0, x0 ⇝ t0, y0

a1−→ s1, x1 ⇝ t1, y1 · · · ak−→ sk, xk ⇝ tk, yk, such
that for all i ∈ {1, . . . , k}, xi = yi−1 + 1 (mod p), ti−1

ai−→ si, and ti−1 <A si.

Intuitively, an SCC-path is a description of the states and positions at which a path
through the automaton enters and leaves each SCC.

Definition 8.4.9. The language L(π) of an SCC-path π = P0
a1−→ P1

a2−→ · · ·Pk is the set

L(π) = L(P0)a1L(P2)a2 · · · L(Pk).

We say that π is accepting if P0 = s0, x0 ⇝ t0, y0, Pk = sk, xk ⇝ tk, yk with x0 = 0,
s0 = q0, tk = qf and L(π) is non-empty.

Lemma 8.4.10. We have PL(A) = ⋃π accepting L(π).

Proof. We show that for any word µ in PL(A), there is an accepting SCC-path π whose
language contains µ. Let µ = a1 · · · an be a word of length n in PL(A): there exists an
accepting run ρ = q0

a1−→ q1 · · · an−→ qn = qf in A.
We define the sequence of indices i0 < i1 < . . . < ik < ik+1 as follows:
• i0 = 0, ik+1 = n+ 1,
• for every j = 1, . . . , k, ij is the smallest index such that qij−1 <A qij , i.e. qij−1 and qij

belong to distinct SCCs.
In other words, those are the indices at which ρ enters a new SCC. We then define the
SCC-path π(ρ) as follows:

π(ρ) = q0, 0⇝ qi1−1, y0
ai1−→ qi1 , x1 ⇝ qi2−1, y1 · · ·

aik−−→ qik , xk ⇝ qn, yk

where xj = ij (mod p) and yj = xj+1 − 1 (mod p) for all j = 0, . . . , k + 1.
By construction, µ ∈ L(π(ρ)) and π(ρ) is an accepting SCC-path.
The converse inclusion follows by definition of (accepting) SCC-paths.

As a consequence the distance between a word µ and the (positional) language of A
is equal to the minimum of the distances between µ and the languages of the SCC-paths
of A.

Corollary 8.4.11. For any positional word µ, we have

d(µ,PL(A)) = min
π accepting

d(µ,L(π)).
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Decomposing A as a union of SCC-paths allows us to use them as an intermediate
step to define blocking sequences. We earlier defined blocking factors for portals: we now
generalize this definition to blocking sequences for SCC-paths, to finally define blocking
sequence of automata.

Definition 8.4.12 ((Strongly) Blocking Sequences for SCC-paths). We say that a se-
quence σ = (µ1, . . . , µℓ) of positional factors is blocking for an SCC-path π = P0

a1−→ · · ·Pk

if there is a sequence of indices i0 ≤ i1 ≤ · · · ≤ ik such that for every j, µij is blocking
for Pj.

Furthermore, if there is a sequence of indices i0 < i1 < · · · < ik with the same property,
then σ is said to be strongly blocking for π.

Note that, crucially, in the definition of blocking sequences, consecutive indices ij
and ij+1 can be equal, i.e. a single factor of the sequence may be blocking for multiple
consecutive SCCs in the SCC-path. This choice is motivated by Example 8.4.3, where
the language is easy because consecutive SCCs share blocking factors.

We say that two occurrences of blocking sequences in a word µ are disjoint if the
occurrences of their factors appear on disjoint sets of positions in µ.

In the strongly connected case, we had the property that if µ contains an occurrence of
a factor blocking for A, then µ is not in the language of A. The following lemma gives an
extension of this result to strongly blocking sequences and the language of an SCC-path.

Lemma 8.4.13. Let π be an SCC-path. If µ contains a strongly blocking sequence for π,
then µ /∈ L(π).

Proof. We proceed by induction on the length k of the SCC-path π = P0
a1−→ P1 · · · ak−→ Pk.

Let σ = (ν0, . . . , νk) be a strongly blocking sequence for π that occurs in µ. If k = 0,
then σ consists only of a blocking factor for P0, hence µ is not in L(P0), which is equal
to L(π).

For k > 0, assume for the sake of contradiction that µ ∈ L(π). By definition of L(π),
µ can then be written as µ0a1µ

′, with µ0 ∈ L(P0) and µ′ ∈ L(π′), where π′ = P1
a2−→

· · · ak−→ Pk. As ν0 is blocking for P0, the prefix µ0 of µ must end before the occurrence
of ν0 in µ, and the sequence σ′ = (ν1, . . . , νk) occurs in µ′. Furthermore, because σ is
strongly blocking for π, σ′ is strongly blocking for π′. Using the induction hypothesis
on µ′ and the path π′ of length k − 1, this implies that µ′ /∈ L(π′), a contradiction.

We can now define sequences that are blocking for an automaton: they are sequences
that are blocking for every accepting SCC-path of the automaton.

Definition 8.4.14 (Blocking sequence for A). Let σ = (µ1, . . . , µℓ) be a sequence of
positional words. We say that σ is blocking for A if it is blocking for all accepting SCC-
paths of A.

As an example, observe that the sequences ((0 : ab), (1 : ab)) and ((0 : aa), (0 : b)) are
both blocking for the automaton displayed in Fig. 8.6 (see Example 8.4.15).

Example 8.4.15. Consider the automaton displayed in Fig. 8.6. The lcm of the lengths
of its simple cycles is p = 2. This automaton has six accepting SCC-paths, including

π1 = q0, 0⇝ q0, 0
a−→ q1, 1⇝ q1, 1

a−→ q3, 0⇝ q3, 0
b−→ q4, 1⇝ q4, 1

π2 = q0, 0⇝ q0, 0
a−→ q2, 1⇝ q1, 0

a−→ q3, 1⇝ q3, 0
b−→ q4, 1⇝ q4, 1



112 8.4. Characterisation of Hard Languages for All NFAs
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q2

q3

q4

a

a

a

b

b

a

ba

Figure 8.6: Automaton used for Example 8.4.15.

The language of the portal π1 is a(ba)∗a(a2)∗b. A blocking sequence for this SCC-path
is ((0 : aa), (0 : b)), which is in fact blocking for all of the SCC-paths.

On the other hand, ((0 : ab)) is not blocking for π1, as (0 : ab) is not a blocking factor
for the portal q1, 1 ⇝ q1, 1. It is, however, a blocking sequence for π2. This is because if
we enter the SCC {q1, q2} through q1, a factor ab can only appear after an even number
of steps, while if we enter through q2, it can only appear after an odd number of steps.

8.4.2 An efficient property tester

In this section, we show that for any regular language L and any small enough ε > 0,
there is an ε-property tester for L that uses O(log(ε−1)/ε) queries.

Theorem 8.4.16. For any NFA A and any small enough ε > 0, there exists an ε-property
tester for L(A) that uses O(log(ε−1)/ε) queries.

As mentioned in the overview, this result supersedes the one that we obtained in [48]:
while both testers use the same number of queries, the tester in [48] works under the edit
distance, while that of Theorem 8.4.16 is designed for the Hamming distance. As the
edit distance never exceeds the Hamming distance, the set of words that are ε-far with
respect to the former is contained in the set of words ε-far for the latter. Therefore, an
ε-tester for the Hamming distance is also an ε-tester for the edit distance, and this result
is stronger.

The property tester behind Theorem 8.4.16 uses the property tester for strongly con-
nected NFAs as a subroutine, and its correctness is based on an extension of Lemma 8.3.13
to blocking sequences. We show that we can reduce property testing of L(A) to a search
for blocking sequences in the word, in the following sense:

• If µ contains a strongly blocking sequence for each of the SCC-paths of A, then it
is not in the language and we can answer no (Corollary 8.4.17).

• If µ is ε-far from the language, then for each accepting SCC-path π of A, µ is far
from for the language of π and contains many disjoint strongly blocking sequences
for π (Lemma 8.4.18), hence random sampling is likely to find at least one of them,
and we reject µ with constant probability.

Corollary 8.4.17. If µ contains a strongly blocking sequence for each SCC-path of A,
then µ /∈ PL(A).

Proof. This follows from Lemma 8.4.10.
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The next lemma expresses a partial converse to Corollary 8.4.17 and generalizes
Lemma 8.3.12 from the strongly connected case: if a word is far from the language,
then it contains many strongly blocking sequences for any SCC-path.

Lemma 8.4.18. Let π = P0
a1−→ · · ·Pk be an SCC-path, let L = L(π), and let µ be a

positional word of length n such that d(µ, L) is finite. There is a constant C such that
if n ≥ C/ε and µ is ε-far from L, then µ can be partitioned into µ = µ0µ1 · · ·µk such
that for every i = 0, . . . , k, µi contains at least εn

C
disjoint blocking factors for Pi, each of

length at most O(1/ε).

Proof. We proceed similarly to the proof of Lemma 8.3.12, and only sketch this proof.
Starting from the left end of µ, we accumulate letters until we find a factor blocking for P0,
and iterate again starting from p positions later, where p is the lcm of the length of all
cycles in A; notably, it is a multiple of the reachability constant of a strongly connected
automaton recognizing L(P0). When we have found at least K = εn

C
blocking factors (C

is to be determined later) for L(Pi), this position marks the end of µi, and we iterate with
the next portal in π.

Let us assume that the process ends (i.e. we reach the right end of µ) before finding
enough blocking factors for all portals. We show that in this case, the distance between µ
and L is at most εn. Assume that we stop before finding enough blocking factors for the
i-th portal, Pi. As in the proof of Lemma 8.3.12, we replace the last letter of each blocking
factor and use the padding between them to make the run accepted by the SCC-path:
this uses at most ((i + 1) · (K + 1) + 2)p substitutions. If we set C = 4(k + 3)p, this is
less than εn when n ≥ C/ε. Therefore, if µ is ε-far from L(π), then the decomposition
process finds at least K blocking factors for Pi in µi for each i.

Then, since all of these factors are disjoint, we can use the same technique as in
Lemma 8.3.13 to show that at least half of these factors have length O(1/ε), and the
result holds, up to doubling C.

Corollary 8.4.19. Let L = PL(A) and let µ be a positional word of length n. If L
contains a word of length n and µ is ε-far from L, then µ contains Ω(εn) disjoint blocking
sequences for A.

Proof. We use a proof identical to that of Lemma 8.4.18, except that we consider a linear
ordering of all the portals of A given by topological ordering, instead of the linear given
by an SCC-path. The graph used for the topological ordering is the graph of all portals
of A, with an edge from P to P ′ when P and P ′ appear consecutively in some SCC-path
of A. Since any two portals in an SCC-path are from different SCCs of A, this graph is
acyclic, and its vertices can be topologically ordered.

We are now ready to prove Theorem 8.4.16.

Proof of Theorem 8.4.16. Our algorithm iterates over all K accepting SCC-paths π =
P0

a1−→ . . .
ak−→ Pk of A, and for each π, searches for blocking sequences for π in µ = (0 : u).

If we find a strongly blocking sequence for π in µ, then by Lemma 8.4.13, µ is not in
PL(A) and we can reject. Note that if µ ∈ PL(A), then the algorithm will not reject,
hence the perfect completeness property is satisfied.

Next, we show that if µ is ε-far from PL(A), then we can find a strongly blocking
sequence for π with probability at least 1 − 1/(3K) using O(log(ε−1)/ε) queries. Our
algorithm is based on the following observation:
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Observation 8.4.20. Let π = P0
a1−→ · · ·Pk be an SCC-path. Let ν0, . . . , νk be positional

words such that νi is blocking for Pi. Then, σ = (ν0, . . . , νk) is a strongly blocking sequence
of π.

We can assume w.l.o.g. that µ has length at least 2C/ε, where C is the constant
defined in Lemma 8.4.18, otherwise we can read all of µ using O(1/ε) queries. Therefore,
we can apply Lemma 8.4.18, and µ can be partitioned into k+1 words µ0, . . . , µk such that
each µi contains at least εn/C disjoint blocking factors for C, each of length L = O(1/ε).

For each i, we can use the algorithm of Lemma 8.3.9 to sample from µ a set F that
contains a factor that contains a νi with probability at least 2/3. By repeating the
procedure O(ln(3K · (k + 1))) times and taking the union of all returned sets F , we can
increase this probability to 1 − 1

3K·(k+1)
. Then, by the union bound, we find a blocking

factor νi for each Pi in the corresponding µi with probability at least 1 − 1/(3K). As
observed above, the sequence σ = (ν0, . . . , νk) is strongly blocking for π.

By union bound again, this algorithm finds a strongly blocking sequence for each of
the K SCC-paths in A, and therefore rejects µ, with probability at least 2/3.

For a single µi of a given SCC-path, the sampling procedure uses O(log(ε−1)/ε) queries
(by Claim 8.3.8). As the lengths and number of SCC-paths in A does not depend on the
input length, this algorithm uses O(log(ε−1)/ε) queries in total.

8.4.3 Lower bound

In order to characterize hard languages for all automata, we define a partial order ⊴ on
sequences of positional factors. It is an extension of the factor partial order on blocking
factors. It will let us define minimal blocking sequences, which we use to characterize the
complexity of testing a language.

Definition 8.4.21 (Minimal blocking sequence). Let σ = (µ1, µ2, . . . , µk) and σ′ =
(µ′

1, . . . , µ
′
t) be sequences of positional words. We have σ ⊴ σ′ if there exists a sequence of

indices i1 ≤ i2 ≤ . . . ≤ ik such that µj is a factor of µ′
ij

for all j = 1, . . . , k.
A blocking sequence σ of A (resp. π) is minimal if it is a minimal element of ⊴ among

blocking sequences of A (resp. π). The set of minimal blocking sequences of A (resp. π)
is written MBS(A) (resp. MBS(π)).

Remark 8.4.22. If σ ⊴ σ′ and σ is a blocking sequence for an SCC-path π then σ′ is also
a blocking sequence for π.

We make the remark that minimal blocking sequences have a bounded number of
terms. This is because if we build the sequence from left to right by adding terms one
by one, the minimality implies that at each step we should block a previously unblocked
portal.

Lemma 8.4.23. A minimal blocking sequence for A contains at most p2|Q|2 terms.

Proof. First, remark that there at most p2|Q|2 portals in A. Let σ = (µ1, . . . , µℓ) be a
minimal blocking sequence for A. For all i = 1, . . . , ℓ, we define σi = (µ1, . . . , µi), and σ0

is the empty sequence.
Then, for each i, we consider the set Si of portals P such that for all accepting SCC-

path π of A containing P , the prefix of π ending at P is blocked by σi. We have S0 = ∅,
and Sℓ is the set of all portals of A.

We claim that for every i < ℓ, Si is a proper subset of Si+1. Otherwise, if Si =
Si+1, then removing µi+1 from σ gives a blocking sequence σ′ of A, such that σ′ ⊴ σ,
contradicting the minimality of σ. Therefore, it follows that ℓ ≤ p2|Q|2.
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8.4.3.1 Reducing to the strongly connected case

To prove a lower bound on the number of queries necessary to test a language when
MBS(A) is infinite, we present a reduction to the strongly connected case. Under the
assumption that A has infinitely many minimal blocking sequences, we exhibit a portal
P of A with infinitely many minimal blocking factors and “isolate it” by constructing two
sequences of positional factors σl and σr such that for all µ, σl, (µ), σr is blocking for A
if and only if µ is a blocking factor of P . Then we reduce the problem of testing the
language of this portal to the problem of testing the language of P .

To define “isolating P ” formally, we define the left (and right) effect of a sequence on
an SCC-path. Informally, the left effect of a sequence σ on an SCC-path π is related to
the index of the first portal in π where a run can be after reading σ, because all previous
portals have been blocked. The right effect represents the same in reverse, starting from
the end of the run.

More formally, the left effect of a sequence σ on an SCC-path π = P0
a1−→ · · ·Pk is

the largest index i such that the sequence is blocking for P0
a1−→ · · ·Pi (−1 if there is no

such i). We denote it by [σ ≫ π]. Similarly, the right effect of a sequence on π is the
smallest index i such that the sequence is blocking for Pi

ai+1−−→ · · ·Pk (k + 1 if there is no
such i); we denote it by [π ≪ σ].

Remark 8.4.24. A sequence σ is blocking for an SCC-path π = P0
a1−→ · · ·Pk if and only if

[σ ≫ π] = k, if and only if [π ≪ σ] = 0.
Also, given two sequences σl, σr, the sequence σlσr is blocking for π if and only if

[σl ≫ π] ≥ [π ≪ σr].

For the next lemma we define a partial order on portals: P ⪯ P ′ if all blocking factors
of P ′ are also blocking factors of P . We write ⪰ for the reverse relation, ≃ for the
equivalence relation ⪯ ∩ ⪰ and ̸≃ for the complement relation of ≃.

Additionally, given an SCC-path π = P0
x1−→ . . . Pk and two sequences of positional

words σl, σr, we say that the portal Pi survives (σl, σr) in π if [σl ≫ π] < i < [π ≪ σr].

Definition 8.4.25. Let P be a portal and σl and σr sequences of positional words.
We define three properties that those objects may have:

P1) σlσr is not blocking for A
P2) P has infinitely many minimal blocking factors
P3) for any accepting SCC-path π in A, every portal in π which survives (σl, σr) is ≃-

equivalent to P .

Lemma 8.4.26. If A has infinitely many minimal blocking sequences, then there exist a
portal P and sequences σl and σr satisfying properties P1, P2 and P3.

Proof. By Lemma 8.4.23, a minimal blocking sequence has a bounded number of elements.
Therefore, if A as an infinite number of minimal blocking sequences, there exists an
integer i∗ and an infinite family (σj)j∈N of minimal blocking sequences of A such that
the length of i∗-th term of σj is at least j, for every j. For each j, let σj,l denote the
sequence containing the elements of σj, up to index i∗−1, and let σj,r denote the sequence
with the elements starting from index i∗ + 1. As there is a finite number of SCC-paths
in A, we can extract from the sequence (σj)j an infinite subsequence (σ′

j)j∈N such that
for all SCC-paths π of A, all of the σj,l have the same left effect as σl = σ0,l on π, and
symmetrically for the right effect of the (σj,r)j and σr = σ0,r.
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Then, we can replace σj,l with σl and σj,r with σr in each σ′
j, to obtain an infinite se-

quence of minimal blocking sequences of the form (σl, νj, σr), where each νj is a positional
word of length at least j. As these blocking sequences are minimal, the pair (σl, σr) is not
blocking for A, there is an accepting SCC-path π∗ and a portal P∗ that survives (σl, σr)
in that π∗. If there are multiple possible choices for π∗ and P∗, we choose them so that P∗
is ⪯-minimal among the possible choices. The following claim shows that we can choose
such a P∗ with infinitely many minimal blocking factors.

▷ Claim 8.4.27. There exists such a P∗ with infinitely many minimal blocking factors.

Claim proof. The word νj is blocking for all portals that survive (σl, σr), and there are
arbitrarily long νj such that (σl, νj, σr) is a minimal blocking sequence. Therefore, all
letters in each νj must belong to a minimal blocking factor of some ⪯-minimal portal,
hence one of them has infinitely many minimal blocking factors. ◁

So far, properties P1 and P2 are satisfied. Next, we extend the sequences σl and σr

until the property P3 is satisfied, while preserving properties P1 and P2.

▷ Claim 8.4.28. There exist σl, σr such that σlσr is not a blocking sequence for A, and
for any accepting SCC-path π in A, every surviving portal in π is ≃-equivalent to P∗.

Claim proof. Note that for each P ̸≃ P∗, we can pick a positional word τP that is blocking
for P but not for P∗, since P∗ is ⪯-minimal.

We extend σl and σr as follows. While there is a surviving portal P that is not
≃-equivalent to P∗:

• We pick an SCC-path π = P0
a1−→ . . . Pk such that P survives in π.

• Let iℓ = [σl ≫ π] and ir = [π ≪ σr]
• If for all i ∈ {iℓ + 1, . . . , ir − 1}, Pi ̸≃ P∗ then we append at the end of σl the

sequence τPiℓ+1
, . . . , τPir−1

. The sequence σlσr is now blocking for π. On the other
hand, since we did not add any blocking factor for P∗, there must still be a surviving
portal that is ≃-equivalent to it.

• If there is an i ∈ {iℓ + 1, . . . , ir − 1} such that Pi ≃ P∗ then let c be the maximal
index in {iℓ + 1, . . . , i} such that Pc is not equivalent to P∗ for ≃, or iℓ if there is
no such index. Symmetrically, let d the minimal index in {i, . . . , ir − 1} such that
Pd ̸≃ P∗, or ir if there is no such index. We append at the end of σl the sequence
τPiℓ+1

, . . . , τPc . We append at the beginning of σr the sequence τPd
, . . . , τPir−1

. Now
all surviving portals in π are ≃-equivalent to P∗, and Pi still survives.

We iterate this step until all surviving portals are ≃-equivalent to P∗. We made
sure that at least one portal was still surviving after each step, hence in the end the
sequence σlσr is not blocking for A. ◁

Lemma 8.4.29. Let π = P0
a1−→ · · ·Pℓ be an accepting SCC-path, denote Pj = sj, xj ⇝

tj, yj for each j = 0, . . . , ℓ, let i ∈ {0, . . . , ℓ}, and let σl = (ν1,l, . . . , νk,l) be a sequence
such that [σl ≫ π] < i.

Then, for any integer N ∈ N, there is a positional word w∗
l of length at most (3|A|3 +

|A|)(k+1)+N(2p2 + p)k|A|+ pN
∑k

t=1 |νt,l| such that |w∗
l | = xi− x0 (mod p), there is a

run reading w∗
l from s0 to si in A, and (x0 : w

∗
l ) contains N occurrences of ν1,l, followed

by N occurrences of ν2,l, etc. up to νk,l, all disjoint.



Chapter 8. The Complexity of Testing Regular Languages 117

Proof. We define w∗
l by induction on k, the length of σl. As π is accepting, by definition

its language L(π) is nonempty, and thus for all j ∈ {0, . . . , ℓ}, there exists a word uj of
length yj − xj (mod p) that labels a path from sj to tj. By Fact 8.2.4, there is such a
word uj of length at most 3|A|2. As a result, for all z ∈ {0, . . . , ℓ} we can form a word
wz = u0a1u1 · · · az, of length at most 3|A|3 + |A|, that labels a path of length xz − x0

(mod p) from q0 to sz in A. If k = 0, we can simply set w∗
l = wi.

Let k > 0, and assume that the lemma holds for k − 1. Let j = [ν1,l ≫ π]. As
[ν1,l ≫ π] ≤ [σl ≫ π] < i, we have j < i, hence ν1,l is not blocking for Pj+1. As a
consequence, there is a word vj that labels a path from sj to tj such that τj = (xj : vj)
has ν1,l as a factor. We can remove cycles of length 0 (mod p) in that path, before and
after reading τj, so we can assume that |vj| ≤ |ν1,l|+ 2p|A|. As sj and tj are in the same
SCC, we can extend vj into a word v′j of length at most |vj| + |A| ≤ |ν1,l| + (2p + 1)|A|
that labels a cycle from sj to itself.

Let σ′ = (ν2,l, . . . , νk,l) and π′ = Pj+1
aj+2−−→ · · ·Pℓ. As σl is the concatenation of ν1,l

and σ′, and j = [ν1,l ≫ π], we have [σ′ ≫ π′] < i − j − 1. By induction hypothesis,
there is a word w′ of length at most (3|A|3+ |A|)k+N(2p2+p)(k−1)|A|+pN

∑k
t=2 |νt,l|

such that |w′| = xi − xj+1 (mod p), there is a run reading w′ from sj+1 to si in A, and
(xj+1 : w

′) contains N occurrences of νt,l, all disjoint, for each t = 2, . . . , k.
We set w∗

l = wj+1(v
′
j)

pNw′. This word has length xi − x0 (mod p), and satisfies:

|w∗
l | ≤ |wj+1|+ pN |v′j|+ |w′|
≤ 3|A|3 + |A|+ pN(|ν1,l|+ (2p+ 1)|A|) + |w′|

≤ (3|A|3 + |A|)(k + 1) +N(2p2 + p)k|A|+ pN
k∑

t=1

|νt,l|.

By construction, the word (x0 : w
∗
l ) labels a path from s0 to si, and contains N occurrences

of ν1,l, followed by N occurrence of ν2,l, etc. up to νk,l, all disjoint, which concludes the
proof.

Lemma 8.4.30. Let π = P0
a1−→ · · ·Pℓ be an accepting SCC-path, denote Pj = sj, xj ⇝

tj, yj for each j = 0, . . . , ℓ, let i ∈ {0, . . . , ℓ}, and let σr = (ν1,r, . . . , νk,r) be a sequence
such that [σl ≫ π] < i.

Then, for any integer N ∈ N, there is a word w∗
r of length at most (3|A|3 + |A|)(k +

1) + N(2p2 + p)k|A| + pN
∑k

i=1 |νi,r| such that |w∗
r | = xi − x0 (mod p), there is a run

reading w∗
r from s0 to si in A, and (x0 : w∗

r) contains N occurrences of ν1,r, followed by
N occurrence of ν2,r, etc. up to νk,r, all disjoint.

Proof. By a proof symmetric to the one of the previous lemma.

Given a sequence σ, define ||σ|| as the sum of the lengths of the terms of σ.

Lemma 8.4.31. If there exist a portal P and σl, σr satisfying properties P1, P2 and P3
then L(A) is hard.

Proof of Lemma 8.4.31. A direct consequence of properties P1 and P3 is that for all ν ′,
then σlν

′σr is blocking for A if and only if ν ′ is blocking for P .
The proof goes as follows: we show that we can turn an algorithm testing L(A)

with f(ε) samples into an algorithm testing L(P ) with f(ε/X) samples with X a constant.
We then apply Theorem 8.3.14 from the strongly connected case to obtain the lower bound.
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Consider an algorithm testing L(A) with f(ε) samples for some function f . We de-
scribe an algorithm for testing L(P ). Say we are given a threshold ε and a word v of
length n. First of all we can apply Lemmas 8.4.29 and 8.4.30 to compute two words w∗

l

and w∗
r of length at most E + εnF for some constants E and F such that we can read w∗

l

from q0 to s and w∗
r from t to qf and w∗

l contains occurrences of each element of σl at least
εn times, all disjoint, with all occurrences of the i-th of σl appearing before element j for
i < j, and similarly for w∗

r and σr. Let w = w∗
l vw

∗
r , and assume that |v| ≥ 6p2|A|2

ε
and

that d(v,L(P )) < +∞.
• If v ∈ L(P ) then clearly w ∈ L(A).
• If d(v,L(P )) ≥ εn then by Lemma 8.3.12 (in light of Lemma 8.4.7), (x : v) contains

at least εn
6p2|A|2 blocking factors for P . Then we have that w contains at least εn

6p2|A|2

disjoint blocking sequences for A. As a result, d(w,L(A)) ≥ εn
6p2|A|2 . We divide this

by the length of w, which is at most 2E + 2Fεn+ n. We obtain that d(w,L(A)) ≥
ε
X
|w| for some constant X.

Let us now describe the algorithm for testing L(P ).
• If L(P ) ∩ Σn = ∅ then we reject.
• If |v| < 6p2|A|2

ε
then we read v entirely and check that it is in L(P ).

• If v ∈ L(P ) then we apply our algorithm for testing L(A) on w = w∗
l vw

∗
r with

parameter ε′ = ε
X

.
The number of queries used on v is at most the number of queries needed on w, hence

at most f(ε/X) queries. We obtain a procedure to test L(P ) using f(ε/X) queries. By
Theorem 8.3.14, f(ε/X) = Ω(log(ε−1)/ε), hence f(ε) = Ω(log(ε−1)/ε). This concludes
our proof.

Proposition 8.4.32. If A has infinitely many minimal blocking sequences, then L(A) is
hard.

Proof. We combine Lemmas 8.4.26 and 8.4.31.

8.5 Trivial and Easy languages

8.5.1 Upper bound for easy languages

We first establish that an automaton with finitely many minimal blocking sequences is
easy (or trivial) to test.

Lemma 8.5.1. Let A be an NFA with a finite number of minimal blocking sequences,
let π = P0

a1−→ · · ·Pk be an SCC-path of A, let L = L(π), and let µ be a positional word
of length n such that d(µ, L) is finite. There are constants B,D such that if n ≥ 2D/ε
and µ is ε-far from L, then µ can be partitioned into µ = τ0τ1 · · · τk such that for every
i = 0, . . . , k, τi contains at least εn

D
disjoint blocking factors for Pi, each of length at

most B.

Proof. By Corollary 8.4.19, the positional word µ contains N ≥ εn/C disjoint blocking
sequences (σj)j=1,...,N for A, for some constant C. We can extract from each σj a minimal
blocking sequence σ′

j = (ν0,j, . . . , νsj ,j). By definition of blocking sequences, σ′
j is also

blocking for π.
As A has a finite number of minimal blocking sequences, hence there is a constant B

such that any νi,j has length at most B.
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We build the decomposition µ = τ0τ1 · · · τk with the following iterative process. For
the index i = 0, we set τ0 to the shortest prefix of µ that contains the leftmost N/(k+1)
components of the σ′

j that are blocking for P0. Since the (σj)j are disjoint in µ, so are
the (νi,j)i,j, and this leaves us with at least N(1 − 1/(k + 1)) of the σ′

j that have their
component blocking for P0, and therefore also for P1 in the part of µ outside of τ0. We then
iterate again for i = 1, . . . , k+1, with the invariant that at step i, we have N(1−i/(k+1))
of the σ′

j that have their component blocking for Pi outside for τ0 . . . τi−1. We then take
for τi the shortest prefix of the rest of µ that contains the leftmost N/(k+1) components
of these σ′

j that are blocking for Pi.
At each step, the factor τi contains N/(k + 1) blocking factors for Pi, hence the

decomposition µ = τ0τ1 · · · τk has the desired property for D = C · (k + 1).

Corollary 8.5.2. If A has finitely many minimal blocking sequences, then there is a tester
for L(A) that uses O(1/ε) queries.

Proof. We use the same algorithm that for Theorem 8.4.16, except that we use the factors
given by Lemma 8.5.1, therefore, in the call to the Sampler function (Algorithm 3), the
upper bound on the length of the factors is B instead of O(1/ε). In that case, the query
complexity becomes O(log(B)/ε) = O(1/ε).

This already gives us a clear dichotomy: all languages either require Θ(log(ε−1)/ε)
queries to be tested, or can be tested with O(1/ε) queries.

8.5.2 Separation between trivial and easy languages

It remains to show that languages that can be tested with O(1/ε) queries have query
complexity either Θ(1/ε), or 0 for large enough n. Our proof uses the class of trivial
regular languages identified by Alon et al. [24], which we revisit next.

An example of a trivial language is L2 consisting of words containing at least one a
over the alphabet {a, b}. For any word u, replacing any letter by a yields a word in L2,
hence d(u, L2) ≤ 1. Therefore, for n > 1/ε, no word of length n is ε-far from L2, and the
trivial property tester that answers “yes” without sampling any letter is correct.

Alon et al. [24] define non-trivial languages as follows.

Definition 8.5.3 ([24, Definition 3.1]). A language L is non-trivial if there exists a
constant ε0 > 0, so that for infinitely many values of n the set L ∩ Σn is non-empty, and
there exists a word w ∈ Σn so that d(w,L) ≥ ε0n.

It is easy to see that if a language is trivial in the above sense (i.e. not non-trivial),
then for large enough input length n, the answer to testing membership in L only depends
n, and the algorithm does not need to query the input. Alon et al. [24, Property 2] show
that if a language is non-trivial, then testing it requires Ω(1/ε) queries for small enough
ε > 0.

To obtain our characterization of trivial languages, we show that MBS(A) is non-
empty if and only if L(A) is non-trivial (in the above sense). It follows that if MBS(A)
is empty, then testing L(A) requires 0 queries for large enough n. Furthermore, by the
result of Alon et al. [24], if MBS(A) is non-empty, then testing L(A) requires Ω(1/ε)
queries.

Recall that we focus on infinite languages, since we know that all finite ones are trivial
(Remark 8.1.4).
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Lemma 8.5.4. MBS(A) is empty if and only if L = L(A) is trivial.

We prove the two directions separately.

Lemma 8.5.5. If MBS(A) is empty, then L = L(A) is trivial in the sense of Defini-
tion 8.5.3.

Proof. We showed in Corollary 8.4.19 that if µ is long enough and ε-far from L, then µ
contains Ω(εn) disjoint blocking sequences forA. AsA has no minimal blocking sequences,
it does not have blocking sequences either, and long enough words cannot be ε-far from
L, hence it is trivial in the sense of Definition 8.5.3.

To prove the converse property, we need the following extension of Kleene’s Lemma
for languages of SCC-paths: for large enough ℓ, whether L(π) contains a word of length ℓ
only depends on the value of ℓ modulo p (p is the lcm of all the lengths of the simple
cycles in A).

Lemma 8.5.6. Let π = P0
a1−→ · · ·Pk be an SCC-path. There exists a constant B such

that, for all ℓ ≥ B, if there is a word µ of length ℓ in L(π), then there exists a word µ′ of
length ℓ− p and a word µ′′ of length ℓ+ p in L(π).

Proof. Recall the definition of L(π) (Definition 8.4.9):

L(π) = L0a1L1a2 · · ·Lk, where Li = L(Pi) for i = 0, . . . , k.

It follows that a word µ ∈ L(π) can be written as µ = µ1a1µ2 . . . µk with µi ∈ Li. Each
Li is recognized by a strongly connected automaton Ai with at most p|A| states. Let
B = 5(p|A|)2. If the length ℓ of µ exceeds B, then the run of µ in each of the Ai’s
contains simple loops with sum of lengths greater than p+3(p|A|)2. Let ℓ0+p denote the
sum of the length of these simple cycles: by construction ℓ0 is greater than 3(p|A|)2. We
remove these simple cycles from the run: the resulting run is still in L(π). Next, select
any non-trivial SCC Si in π and let s be a state of Si used by the run. As ℓ0 ≥ 3(p|A|)2,
by Fact 8.2.4, there is a path of length ℓ0 from s to itself in Ai. Adding this path to the
run yields an accepting run of length ℓ− (ℓ0 + p) + ℓ0 = ℓ− p: the word labeling this run
is the desired word µ′.

To obtain µ′′, consider any simple cycle in the run of µ in A, and let m denote the
length of this cycle. By definition of p, m divides p. Iterating this cycle p/m times yields
a word µ′′ of length ℓ+ p that is in L(π).

Corollary 8.5.7. Let π be an SCC path. For large enough ℓ, whether there is an word of
length ℓ in L(π) only depends on the value of ℓ (mod p).

To finish our characterization of trivial languages, we show that if MBS(A) is not
empty, then L = L(A) is non-trivial in the sense of Alon et al. [24].

Lemma 8.5.8. Let A be a trim NFA such that L = L(A) is infinite. If A admits a
blocking sequence, then there exists ε0 > 0, such that for infinitely many n there exist
words in L(A) ∩ Σn and there exists w ∈ Σn such that d(w,L(A)) ≥ ε0n

Proof. Let σ = (µ1, . . . , µk) be a blocking sequence for A. We can assume w.l.o.g. that
σ is strongly blocking for every accepting π of A, as we can make it strongly blocking
by concatenating σ to itself K times, where K is the maximum length of an accepting
SCC-path in A. Let C be the maximum length of a µi’s. As L is infinite, there exists an
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accepting SCC-path π in A and w ∈ L(π) with |w| ≥ t for arbitrary t. By Corollary 8.5.7,
for all sufficiently large ℓ such that ℓ = |w| (mod p), there exists w′ ∈ L(π) with |w′| = ℓ.

For all i = 1, . . . , k, let νi be a shortest word of the form (0 : vi), for some vi, and of
length ℓi equal to 0 modulo p, such that µi is a factor of νi. By minimality, ℓi is at most
C+2p. Then, for any integer N ∈ N, let wN = νN

1 · · · νN
k (0 : a|w|), where a is an arbitrary

letter.
As wN is of length |w| (mod p), there is a word of the same length in L(A), i.e.

L(A) ∩ Σn is nonempty. On the other hand, it contains N disjoint occurrences of σ,
which is a strongly blocking sequence for every accepting SCC-path of A, therefore, the
distance between wN and L(A) is at least N . Furthermore, the length of wN is less
than |w| + N(C + 2p). Therefore, if we let ε0 = 1

C+2p+|w| , then we have ε0|wN | ≤ N ≤
d(wN ,L(A)), i.e. wN is ε-far from L for any ε ≤ ε0 and any N .

It is easy to see that if a language is trivial in the above sense, then for large enough
input length n, membership in L only depends n, and the algorithm does not need to
query the input. Alon et al. [24] show that if a language is non-trivial, then testing it
requires Ω(1/ε) queries for small enough ε > 0. As a corollary of that lower bound, we
obtain that if MBS(A) is non-empty, then testing L(A) requires Ω(1/ε) queries.

8.6 The Complexity of Classifying Regular Languages

In the previous sections, we have shown that testing some regular languages (easy ones)
that requires fewer queries than testing others (hard ones). Therefore, given the task
of testing a word for membership in L(A), it is natural to first try to determine if the
language of A is easy, and if this is the case, run the appropriate ε-tester, that uses fewer
queries. In this section, we investigate the computational complexity of checking which
class of the trichotomy the language of a given automaton belongs to. We formalize this
question as the following decision problems:

Problem 8.6.1 (Triviality problem). Given an finite automaton A, is L(A) trivial?

Problem 8.6.2 (Easiness problem). Given an finite automaton A, is L(A) easy?

Problem 8.6.3 (Hardness problem). Given an finite automaton A, is L(A) hard?

In these problems, the automaton A is the input and is no longer fixed. We show
that, our combinatorial characterization based on minimal blocking sequences is effective,
in the sense that all three problems are decidable. However, it does not lead to efficient
algorithms, as both problems are PSPACE-complete.

Theorem 8.6.4. The triviality and easiness problems are both PSPACE-complete, even
for strongly connected NFAs.

In Section 8.6.1 we show the PSPACE upper bounds on the hardness and triviality
problems (Propositions 8.6.11 and 8.6.13). The upper bound on the easiness problem
follows immediately, as the three properties form a trichotomy.

In Section 8.6.2, we show that all three problems are PSPACE-hard (Lemma 8.6.15
and Corollary 8.6.17).
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8.6.1 A PSPACE upper-bound

8.6.1.1 Testing hardness

A naive algorithm to check hardness of a language L(A) would be to construct an au-
tomaton recognising blocking sequences of L(A) (exponential in A), and use it to get an
automaton recognising the minimal ones (which requires complementation and could yield
another exponential blow-up). This would a priori not give a PSPACE algorithm, since
we obtain a doubly-exponential state space. We solve this by providing another charac-
terisation of automata with hard languages, resulting in a recursive PSPACE algorithm to
test it.

Lemma 8.6.5. Let π = P0
a1−→ · · ·Pℓ be an SCC-path, i an index, Π a set of SCC-paths

and (σπ′)π′∈Π a family of sequences of positional words such that [σπ′ ≫ π] < i for all π′.
There exists a sequence of positional words σ such that:
• [σ ≫ π] < i
• [σπ′ ≫ π′] ≤ [σ ≫ π′] for all π′ ∈ Π.

Proof. We prove this by induction on the sum of the lengths of the elements of Π. If Π is
empty or contains only empty sequences, then we can set σ as the empty sequence.

If not, let π∗ be such that the first term ν1 of σπ∗ = (ν1, . . . , νk) has the least left effect

on π among all SCC-paths in Π; let π∗ = P ′
0

a′1−→ · · ·P ′
ℓ′ . We consider the effect of ν1 (as a

single-element sequence) on π∗ and π: let j = [ν1 ≫ π∗] and r = [ν1 ≫ π].
Next, we build a set Π′ of SCC-paths as follows. Let π denote the part of π∗ that

survives ν1, if any, i.e. π = P ′
j+1

a′j+1−−→ · · ·P ′
ℓ′ . We define Π′ = Π \ {π∗} ∪ {π} if j < ℓ′

and Π′ = Π \ {π∗} otherwise. In the first case the sequence associated with π is σπ =
(ν2, . . . , νk).

We now wish to apply the induction hypothesis to the set Π′ and the part of π that
survives ν1, i.e. on π̃ = Pr+1

ar+1−−→ . . . → Pℓ, with a target left effect of i − r − 1. By
construction, the sum of the lengths of the elements in Π′ is smaller than that of Π. The
following claim shows that, for any π′ in Π′, the left effect of σπ′ on π̃ is at most i− r− 1.

▷ Claim 8.6.6. For all π′ ∈ Π′, we have [σπ′ ≫ π̃] < i− r − 1.

Claim proof. Let π′ ∈ Π \ {π∗}, and let σπ′ = (ν ′
1, . . . , ν

′
m). Since the first term of σπ∗ was

the one with the least left effect on π, the first term of every other sequence has a left
effect at least r on it. Formally, let z = [ν ′

1 ≫ π]: we have z ≥ r.
In other words, ν ′

1 is blocking for all portals in π̃ up to Pz. Therefore, the sequence
(ν ′

2, . . . , ν
′
m) will be applied to the same portals in π and in π̃. Since portal Pi survives

in π, it must also survive in π̃, and we have [σπ′ ≫ π̃] < i− r − 1. ◁

By induction hypothesis, we obtain a sequence σ̃ such that
• [σ̃ ≫ π̃] < i− r − 1
• [σπ′ ≫ π′] ≤ [σ̃ ≫ π′] for all π′ ∈ Π′.

Then, the sequence obtained by prepending ν1 to σ̃ satisfies both conditions of the lemma,
as π̃ is the part of π that survives ν1, and prepending ν1 cannot decrease the left effect of
a sequence.

Lemma 8.6.7. An automaton A is hard if and only if there exists an accepting SCC-path
π containing a portal P such that:

• P has infinitely many minimal blocking factors.
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• For any accepting SCC-path π′ there exist sequences σl,π′ , σr,π′ such that:
– P survives (σl,π′ , σr,π′) in π
– All portals surviving (σl,π′ , σr,π′) in π′ are ≃-equivalent to P

Proof. The left-to-right direction follows from Corollary 8.5.2, by taking σl,π′ = σl and
σr,π′ = σr for every π′.

Let us now prove the other direction. Suppose we have π and P satisfying the condi-
tions of the lemma. We only need to construct two sequences σl, σr such that properties
P1 and P3 are satisfied. The result follows by Lemma 8.4.31.

Let Π be the set of accepting SCC-paths inA. Consider families of sequences (σl,π′)π′∈Π
and (σr,π′)π′∈Π such that for all π′ ∈ Π:

• P survives (σl,π′ , σr,π′) in π
• All portals surviving (σl,π′ , σr,π′) in π′ are ≃-equivalent to P
Let i be the index of P in π. By Lemma 8.6.5 we can build a sequence σl such that
• [σl ≫ π] < i, and
• [σl,π′ ≫ π′] ≤ [σl ≫ π′] for all π′ ∈ Π.
Using a symmetric argument, we build a sequence σr such that
• i < [π ≪ σr], and
• [π′ ≪ σr,π′ ] ≥ [π′ ≪ σr] for all π′ ∈ Π.
As a consequence, for all accepting SCC-path π′ ∈ Π, all portals surviving (σl, σr) in

π′ are ≃-equivalent to P . Furthermore, P survives (σl, σr) in π.
We have shown that P and (σl, σr) satisfy properties P1 and P3. P2 is immediate by

assumption. We simply apply Lemma 8.4.31 to obtain the result.

Next, we establish that the items listed in the previous lemma can all be checked in
polynomial space in |A|.

Lemma 8.6.8. Given a portal P , we can check whether it has infinitely many minimal
blocking factors in space polynomial in |A|.

Proof. Recall that, by Lemma 8.4.7, L = L(P ) is recognized by a strongly connected
automaton A′ with at most p|A| states. While this number may be exponential in |A|,
the transition function of A′ can be computed in polynomial space from the polynomial-
sized representation of a state. Furthermore, in this case, we can show that the same
property holds for the construction used in Lemma 8.3.15, as in the determinization step,
all states share the index modulo p.

We then simply need to check if the resulting automaton has an infinite language,
which is the case if and only if it has a cycle reachable from the initial state and from
which a final state is reachable. This can be checked by exploring the state space of
the automaton, in non-deterministic polynomial space (in |A|), and applying Savitch’s
theorem [268, Theorem 1], which states that PSPACE = NPSPACE.

Lemma 8.6.9. Given two SCC-paths π and π′, one can check in PSPACE whether there
is a sequence σ that is blocking for π and not π′.

Proof. The algorithm relies on the following property.

▷ Claim 8.6.10. There is a sequence σ that is blocking for π = P0
a1−→ · · ·Pk and not

π′ = P ′
0

a′1−→ · · ·P ′
ℓ if and only if either:

• there is a positional word µ that is a blocking factor for P0 and not P ′
0 and there is

a sequence σ′ that is blocking for P1
a2−→ · · ·Pk and not π′,
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• or there is a positional word µ that is a blocking factor for P0 and P ′
0 and there is

a sequence σ′ that is blocking for P1
a2−→ · · ·Pk and not P ′

1

a′2−→ · · ·P ′
ℓ.

Claim proof. The right-to-left direction is clear (just take σ = µσ′ in both cases).
For the left-to-right direction, consider a sequence σ that is blocking for π and not π′,

of minimal length. Let σ+ and µ be such that σ = µσ+.
• If µ is not blocking for P0 then σ+ is blocking for π and not π′, contradicting the

minimality of σ.
• If µ is blocking for P0 and not P ′

0 then we set σ′ = σ. We know that σ is not blocking
for π′. On the other hand, as σ is blocking for π, it is also blocking for P1

a2−→ · · ·Pk.
• If µ is blocking for both P0 and P ′

0 then we set σ′ = σ. As σ is blocking for π, it is

also blocking for P1
a2−→ · · ·Pk. On the other hand, if σ was blocking for P ′

1

a′2−→ · · ·P ′
ℓ,

then it would also be blocking for π′, a contradiction. Hence σ is not blocking for
P ′
1

a′2−→ · · ·P ′
ℓ

◁

The claim above lets us define a recursive algorithm.
• First check if there is a positional word µ that is blocking for P0 and not P ′

0. If it is
the case, make a recursive call to check if there is a sequence σ′ that is blocking for
P1

a2−→ · · ·Pk and not π′. If it is the case, answer yes.
• Then check if there is a positional word µ that is a blocking factor for P0 and P ′

0.
If so, make a recursive call to check if there is a sequence σ′ that is blocking for
P1

a2−→ · · ·Pk and not P ′
1

a′2−→ · · ·P ′
ℓ. If it is the case, answer yes.

If both items fail, answer no.
The existence of those positional words can be checked in polynomial space using the

automaton B constructed in the proof of Lemma 8.6.8. The depth of the recursive calls
is at most the sum of the lengths of π and π′, which is bounded by 2|A|. In consequence,
this algorithm runs in polynomial space.

Proposition 8.6.11. The hardness problem is in PSPACE.

Proof. Our algorithm is based on Lemma 8.6.7. We use the following algorithm to check
whether the characterization holds.

1. First, we nondeterministically guess an SCC-path π = P0
a1−→ · · ·Pk and an index i.

2. Using Lemma 8.6.8, we check that Pi has infinitely many minimal blocking factors.
3. For each accepting SCC-path π′ = P ′

0

a′1−→ · · ·P ′
ℓ of A, we guess indices jl and jr,

and check that every portal P ′
j with jl < j < jr is ≃-equivalent to Pi.

4. Then, we use Lemma 8.6.9 to check that there is a sequence σl that is blocking for
P ′
0

a′1−→ · · ·P ′
jl

and not P0
a1−→ · · ·Pi. Symmetrically, we check that there is a sequence

σr that is blocking for P ′
jr

a′1−→ · · ·P ′
ℓ and not Pi

ai+1−−→ · · ·Pk.
If all those tests succeed, we answer “yes”, otherwise we answer “no”. This algorithm

is correct and complete by Lemma 8.6.7.

8.6.1.2 Testing triviality

We show the PSPACE upper bound on the complexity of checking if a language is trivial.
It is based on the characterisation of trivial languages given by Lemma 8.5.8, and uses
the following result.
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Lemma 8.6.12. Given a portal P , we can check whether it has a blocking factor in space
polynomial in |A|.

Proof. We proceed as in the proof of Lemma 8.6.8, except that we only need to check
whether some final state is reachable from the final state.

Proposition 8.6.13. The triviality problem is in PSPACE.

Proof. Recall that L(A) is trivial if and only if A has no blocking sequences.

▷ Claim 8.6.14. There is an accepting SCC-path π of A that contains a portal P with
no blocking factors if and only if A has no blocking sequence.

Claim proof. Any blocking sequence of A is blocking for π, therefore it contains a blocking
factor for P . ◁

Therefore, it suffices to enumerate all accepting SCC-paths π in the automaton, and
then check that all portals in π have at least one blocking factor, using Lemma 8.6.12.

8.6.2 Hardness of classifying automata

We prove hardness of the triviality problem and easiness problems, concluding on their
PSPACE-completeness. We reduce from the universality problem for NFAs, which is well-
known to be PSPACE-complete (see e.g. [17, Theorem 10.14]).

Lemma 8.6.15. The triviality and hardness problems are PSPACE-hard.

Proof. Consider an NFA A = (Q,Σ, δ, q0, F ) on an alphabet Σ. Without loss of generality,
we assume that A is trim (up to removing unreachable or non-co-reachable states) and
that it accepts all words of length less than 2: this can be checked in polynomial time
and does not affect the PSPACE-hardness of universality. Let # and ! be two letters that
are not in Σ. We apply the following transformations to A:

• add a transition labeled by ! from every final state to the initial state q0
• add a self-loop labeled by # to each state.
We call the resulting automaton B = (Q,Σ∪ {!,#}, δ′, q0, F ). Note that B is strongly

connected: consider any two states q, q′ ∈ Q, we show that q′ is reachable from q. As A
is trim, there exists qf ∈ F that is reachable from q, and q′ is reachable from the initial
state q0. Furthermore, we have put a ! transition from qf to q0, hence q′ is reachable
from q.

Recall that the language of a strongly connected automaton is trivial if and only if it
has no minimal blocking factor, and hard if and only if it has infinitely many minimal
blocking factors.

Hence, to complete the proof, we show that MBF(B) is empty when A is universal and
infinite otherwise.

First, let us describe the language recognized by B. It is given by

L(B) = {u1!u2! · · ·!un | ∀i, ui ∈ (Σ ∪ {#})∗ ∧ πΣ(ui) ∈ L(A)},

where πΣ(u) is the word in Σ∗ obtained by removing all letters not in Σ from u.

▷ Claim 8.6.16. If A is universal, then B is also universal.
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Claim proof. Indeed, any word in u in can be uniquely decomposed into u = u1!u2! · · ·!un

where each ui does not contain the letter “!”. As # is idempotent on B, δ′(q0, ui) is equal
to δ(q0, πΣ(ui)) for every i. Since A is universal, each of the δ′(q0, ui) contains a final state,
hence δ′(q0, ui!) = {q0}. Therefore, the set δ′(q0, u) is equal to δ′(q0, un), which contains a
final state, and u is in L(B), which shows that B is universal. ◁

This shows that if A is universal, then MBF(B) is empty.
Now we show that a word w ∈ Σ∗ not in L(A) induces infinitely many minimal

blocking factors for B. Consider such a w of minimal size. As we assumed that A accepts
all words of size less than 2, |w| ≥ 2. Let u, v be words of length at least 1 such that
w = uv. For all n ∈ N, at least one of u#nv, !u#nv, u#nv!, !u#nv! is a minimal blocking
factor (depending respectively on whether w is not a factor of any word of L(A) or is a
prefix/suffix of a word of L(A) or not). As a consequence, B has infinitely many blocking
factors, and is thus hard to test by Theorem 8.3.2.

In summary, A is universal if and only if B is trivial to test, andA is not universal if and
only if B is hard to test. This shows the PSPACE-hardness of the triviality problem.

The above proof can be extended to show the PSPACE-hardness of the easiness prob-
lem.

Corollary 8.6.17. The easiness problem is PSPACE-hard.

Proof. We proceed as in the proof of Lemma 8.6.15: given an automaton A over an
alphabet Σ, we build an automaton B over the alphabet Σ ∪ {!,#} such that if A is
universal, MBF(B) is empty, and if A is not universal, then MBF(B) is infinite.

To show the hardness of the easiness problem, let ♭ denote a new letter not in Σ∪{#, !}
and consider the automaton B′ equal to B but taken over the alphabet Σ ∪ {#, !, ♭}. As
there are no transitions labeled by ♭ in B′, the word ♭ is always a minimum blocking factor
of B′. As a result, we have MBF(B′) = MBF(B) ∪ {♭}, hence A is universal if and only if
MBF(B′) is finite but non-empty: by Theorem 8.3.2, this is equivalent to L(B′) is easy to
test. Therefore, the easiness problem is also PSPACE-hard.

This concludes the proof of Theorem 8.6.4



Chapter 9

Online Language Distance to
Palindromes and Squares

9.1 Introduction

The language distance problem is one of the most fundamental problems in formal language
theory. In this problem, the task is to compute the minimal distance between a given
input string S and any string of a formal language L. Introduced in the early 1970s by Aho
and Peterson [18], the language distance problem has been studied extensively for regular
languages under Hamming and edit distances [57], for general context-free languages,
focusing mainly on the edit distance [11, 18, 79, 98, 228, 242, 261, 264, 265, 267], and the
Dyck language (the language of well-nested parentheses sequences) [11, 43, 79, 98, 120,
126, 144, 218, 219, 263, 264, 265].

9.1.1 Our results.

In this chapter, we study the complexity of the online and low-distance version of the
language distance problem. In the online version, where we are given a string T of length
n, and the task is to compute the minimum distance from every prefix of T to a formal
language L (the distance and the language are specified in the problem definition). In
the low-distance regime, we are given a threshold parameter k, and either report that the
distance is larger than k, or report the distance if it does not exceed k. In this chapter,
we consider the language distance problem for both the edit distance and the Hamming
distance (see Section 9.2 for definitions). We study the problem for two classical languages:
the language PAL of all palindromes, where a palindrome is a string that is equal to its
reversed copy, and the language SQ of all squares, where a square is the concatenation of
two copies of a string. These two languages are very similar yet very different in nature:
PAL is not regular but is context-free, whereas SQ is not even context-free. Formally,
the problems we consider are defined as follows:

Problem 9.1.1 (k-LHD-PAL (resp. k-LHD-SQ)).
▷ Input: A string T of length n and a positive integer k.
▷ Output: For each 1 ≤ i ≤ n, report min{k + 1, hdi}, where hdi is the minimum
Hamming distance between T [1. .i] and a string in PAL (resp. in SQ).

Problem 9.1.2 (k-LED-PAL (resp. k-LED-SQ)).
▷ Input: A string T of length n and a positive integer k.

127
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▷ Output: For each 1 ≤ i ≤ n, report min{k + 1, edi}, where edi is the minimum edit
distance between T [1. .i] and a string in PAL (resp. in SQ).

Amir and Porat [31] showed that there is a randomized streaming algorithm that
solves the k-LHD-PAL problem in Õ(k) space and Õ(k2) time per input character. We
continue their line of research and give streaming algorithms using poly(k, log n) time per
character and poly(k, log n) space for all four problems. As a corollary, we obtain new
streaming algorithms for approximating the maximal length of a substring of a given text
that is close to PAL in a text. The problem is formally defined as follows:

Problem 9.1.3 ((1 + ε)-k-HD-PAL (resp. (1 + ε)-k-ED-PAL)).
▷ Input: A string T of length n, a positive integer k and a real number ε > 0.
▷ Output: An integer ℓ such that ℓ∗ ≥ ℓ ≥ ℓ∗/(1 + ε), where ℓ∗ is the maximum length
of a substring of T that is within Hamming (resp. edit) distance k of PAL.

The previous best algorithm for (1+ ε)-k-HD-PAL is by Grigorescu et al. [167]. They
extended the works [60, 161] that studied the question of computing the length of a
maximal substring of a stream that belongs to PAL and gave an algorithm that solves
(1+ε)-k-HD-PAL using O( k log9 n

ε log(1+ε)
) time per character and O( k log7 n

ε log(1+ε)
) space. We give an

algorithm that uses O((k/ε) log4 n) time per character and O((k/ε) log2 n) bits of space,
a significant improvement over the result of Grigorescu et al. [167]. We also give the first
streaming algorithm for (1 + ε)-k-ED-PAL which uses Õ(k2/ε) time per character and
bits of space.

While streaming algorithms are extremely efficient (in particular, the above space
complexities account for all the space used by the algorithms, including the space needed
to store information about the input), they are randomized by nature, which means that
there is a small probability that they may produce incorrect results. Motivated by this,
we also study the problems in the read-only model, where random access to the input is
allowed (and not accounted for in the space usage, e.g. we are given a pointer to the input,
and are not allowed to modify it). In this model, we show deterministic algorithms for the
four problems that use poly(k, log n) time per character and poly(k, log n) extra space (not
accounting for the input); see Table 9.1 for a summary. As a side result of independent
interest, we develop the first deterministic read-only algorithms for computing k-mismatch
and k-edit occurrences of a pattern in a text using poly(k, log n) space.

9.1.2 Related work

Offline model. In the classical offline model, the problem of finding all maximal sub-
strings that are within Hamming distance k from PAL can be solved in O(nk) time as a
simple application of the kangaroo jumps technique [147]. For the edit distance, Porto and
Barbosa [251] showed an O(nk2) solution. For the SQ language, the best known solutions
take O(nk log k+output) time for the Hamming distance [210] and O(nk log2 k+output)
for the edit distance [223, 271, 272].

Online model. The k-LHD-PAL and k-LED-PAL problems can be viewed as a gen-
eralization of the classical online palindrome recognition problem (see [146] and references
therein).
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Problem Model Time (per char.) Space Reference

k-LHD-PAL Streaming O(k log3 n) O(k log n) Thm 9.3.2

k-LHD-SQ Streaming Õ(k) O(k log2 n) Thm 9.3.15

k-LHD-PAL Read-only O(k log n) O(k log n) Thm 9.4.8

k-LHD-SQ Read-only O(k log n) O(k log n) Thm 9.4.10

k-LED-PAL Streaming Õ(k2) Õ(k2) Thm 9.3.9

k-LED-SQ Streaming Õ(k2) Õ(k2) Thm 9.3.23

k-LED-PAL Read-only Õ(k4) (amort.) Õ(k4) Thm 9.5.9

k-LED-SQ Read-only Õ(k4) (amort.) Õ(k4) Thm 9.5.11

(1 + ε)-k-HD-PAL Streaming O((k/ε) log4 n) O((k/ε) log2 n) Cor 9.3.12

(1 + ε)-k-ED-PAL Streaming Õ(k2/ε) Õ(k2/ε) Cor 9.3.14

Table 9.1: Summary of the complexities of the algorithms introduced in this chapter.

9.1.3 Technical overview

9.1.3.1 Hamming distance problems.

Our first step is to show that the Hamming distance from a string U to PAL or SQ
can be expressed in terms of the distance between substrings of U or its reversal. Using
the small-space sketches of Clifford et al. [107] to compute these distances, we obtain
small-space streaming algorithms for k-LHD-PAL and (1 + ε)-k-HD-PAL.

Furthermore, using small-space pattern-matching algorithms together with the struc-
tural properties of the k-mismatch occurrences of a pattern in a text [89], we develop
space-efficient filtering-based algorithms for k-LHD-SQ (streaming and read-only) and
k-LHD-PAL (read-only).

9.1.3.2 Edit distance problems.

Informally, the edit distance between two strings U and V , denoted by ed(U, V ), is the
minimum number of character insertions, deletions, and substitutions required to trans-
form U into V . Similar to the Hamming distance, we show that the edit distance from a
string U to PAL or SQ can be expressed in terms of “self-similarity” of U . This allows
us to use similar approaches as for the Hamming distance problems, where tools for the
Hamming distance are replaced by appropriate tools for the edit distance.

First, by replacing the Hamming distance sketch with the edit distance sketch of
Bhattacharya and Koucký [61], we obtain streaming algorithms for k-LED-PAL and
(1 + ε)-k-ED-PAL.

Furthermore, the results of Bhattacharya and Koucký [61] show a reduction from the
edit distance to the Hamming distance via locally consistent string decompositions, which
allows us to solve k-LED-SQ in streaming by reducing to k-LHD-SQ.

Finally, by replacing the online read-only algorithm for finding the k-mismatch oc-
currences of a pattern in a text with an online read-only algorithm for finding k-error
occurrences, and replacing the structural results for the Hamming distance with the struc-
tural results for the edit distance, we obtain read-only algorithms for k-LED-PAL and
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k-LED-SQ.

9.2 Preliminaries
Given two non-empty strings U,Q and an operator F defined over pairs of strings (such
as a distance), we use the notation F (U,Q∞) for the application of F to U and the prefix
of Q∞ = QQ · · · that has the same length as U , i.e., F (U,Q∞) = F (U,Qm[. .|U |]), where
m is any integer such that |Qm| ≥ |U |. We define F (Q∞, U) symmetrically.

9.2.1 Hamming distance, palindromes, and squares

The Hamming distance between two strings S, T (denoted hd(S, T )) is defined to be equal
to infinity if S and T have different lengths, and otherwise to the number of positions where
the two strings differ (mismatches). We define the mismatch information between two
length-n strings S and T , MI(S, T ) as the set {(i, S[i], T [i]) : i ∈ [1. .n] and S[i] ̸= T [i]}.
For two strings P, T , a position i ∈ [|P |. .|T |] of T is a k-mismatch occurrence of P
in T if hd(T (i − |P |. .i], P ) ≤ k. For an integer k, we denote hd≤k(X, Y ) = hd(X, Y ) if
hd(X, Y ) ≤ k and k + 1 otherwise.

A basic property of the Hamming distance is that it is additive:

Observation 9.2.1. Let U,U ′, V, V ′ be strings such that |U | = |U ′| and |V | = |V ′|. We
have hd(UV,U ′V ′) = hd(U,U ′) + hd(V, V ′).

A direct consequence is that the Hamming distance cannot increase when removing
the first (or last) character of both strings.

Corollary 9.2.2. For any strings U, V and characters a, b, we have

hd(U, V ) ≤ hd(aU, bV ) and hd(U, V ) ≤ hd(Ua, V b).

Due to the self-similarity of palindromes and squares, the Hamming distance from a
string U to PAL and SQ can be measured in terms of the self-similarity of U .

Property 9.2.3. Let U be a string of length m, and let U1 = U [. .⌊m/2⌋] and U2 =
U(⌈m/2⌉. .]. We have

hd(U,PAL) = hd(U1, U
R
2 ) =

1

2
hd(U,UR).

Proof. We show the first equality via two inequalities. Let P denote the palindrome UR
2 U2

if m is even and UR
2 U [⌈m/2⌉]U2 otherwise. The Hamming distance between U and P is

hd(U1, U
R
2 ), hence we have hd(U,PAL) ≤ hd(U1, U

R
2 ).

Conversely, let V be a palindrome such that hd(U, V ) = hd(U,PAL). We similarly
decompose V into V1V

R
1 (or V1bV

R
1 for odd m) and obtain hd(U, V ) ≥ hd(U1, V1) +

hd(U2, V
R
1 ). Using the fact that hd(U2, V

R
1 ) = hd(UR

2 , V1) and applying the triangle in-
equality, we get hd(U1, U

R
2 ) ≤ hd(U, V ) = hd(U,PAL).

For the second equality, note that hd(U2, U
R
1 ) = hd(U1, U

R
2 ), hence we have

hd(U,UR) = hd(U1, U
R
2 ) + hd(U2, U

R
1 ) = 2 · hd(U1, U

R
2 ).
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Property 9.2.4. Each string U ∈ Σm satisfies hd(U,SQ) = hd(U [. .m/2], U(m/2. .]) if m
is even and hd(U,SQ) =∞ if m is odd.

Proof. Every square has even length; hence, if m is odd, the distance between U and SQ
is infinite. In what follows, we assume that m = 2i for some i ∈ N. Let U1 = U [. .i] and
U2 = U(i. .]. By modifying the copy of U1 in U into U2, we obtain a square U2U2; hence,
hd(U,SQ) ≤ hd(U1, U2).

For the converse inequality, let V 2 be a square such that hd(U,SQ) = hd(U, V 2). We
have |V | = |U1| = |U2|; hence, hd(U, V 2) = hd(U1, V ) + hd(V, U2). Applying the triangle
inequality, we obtain hd(U,SQ) = hd(U, V 2) ≥ hd(U1, U2).

9.2.2 Edit distance, palindromes, and squares

The edit distance between two strings U and V , denoted by ed(U, V ), is the minimum num-
ber of character insertions, deletions, and substitutions required to transform U into V .
For a formal definition, we first rely on the notion of an alignment between fragments of
strings.

Definition 9.2.5 ([207]). A sequence A = (ut, vt)
m
i=0 is an alignment of U onto V if

(u0, v0) = (0, 0), (ut, vt) ∈ {(ut−1 + 1, vt−1 + 1), (ut−1 + 1, vt−1), (ut−1, vt−1 + 1)} for i ∈
[1. .m], and (um, vm) = (|U |, |V |).

• If (ut, vt) = (ut−1 + 1, vt−1), we say that A deletes U [ut],
• If (ut, vt) = (ut−1, vt−1 + 1), we say that A inserts V [vt],
• If (ut, vt) = (ut−1+1, vt−1+1), we say that A aligns U [ut] and V [vt]. If additionally
U [ut] = V [vt], we say that A matches U [ut] and V [vt]; otherwise, A substitutes
V [vt] for U [ut].

The cost of an alignment A of U onto V , is the total number of characters that A
inserts, deletes, or substitutes. Now, we define the edit distance ed(U, V ) as the minimum
cost of an alignment of U onto V . An alignment of U onto V is optimal if its cost is equal
to ed(U, V ).

A sequence of edits that an alignment A uses to transform U into V (specifying the
involved positions and characters) is called an edit sequence (of the alignment).

Example 9.2.6. A string U = ababc can be transformed onto V = bbac by substituting
U [1] = a for V [1] = b and deleting U [4] = b. The corresponding alignment is (0, 0), (1, 1),
(2, 2), (3, 3), (4, 3), (5, 4).

For an integer k, we denote

ed≤k(X, Y ) =

{
ed(X, Y ) if ed(X, Y ) ≤ k,

k + 1 otherwise.

For strings P, T ∈ Σ∗, we say that a position i is a k-error occurrence of P in T if
ed(T (j. .i], P ) ≤ k for some j ∈ [1. .i].

Similar to the Hamming distance, the edit distance cannot increase when removing
the first (or last) character of both strings.

Observation 9.2.7. For any strings U, V and characters a, b, we have

ed(U, V ) ≤ ed(aU, bV ) and ed(U, V ) ≤ ed(Ua, V b).
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Similarly to the Hamming distance, we can measure the edit distance from a string U
to PAL and SQ in terms of the self-similarity of U .

Property 9.2.8. For any string U ∈ Σ∗, we have

ed(U,PAL) = min
i
{min{ed(U [. .i], U(i. .]R), ed(U [. .i], U(i+ 1. .]R)}}.

As a corollary, ed(U,PAL) = 1
2
ed(U,UR).

Proof. First, consider an optimum alignment (ut, u
′
t)

m
t=0 of U onto UR. For every t ∈

[0. .m], the alignment maps U [. .ut] onto UR[. .u′
t] and U(ut. .] onto UR(u′

t. .]. In particular,

ed(U,UR) = ed(U [. .ut], U
R[. .u′

t]) + ed(U(ut. .], U
R(u′

t. .]).

Suppose that there exists an index t ∈ [0. .m] such that ut + u′
t = |U |. In this case,

UR[. .u′
t] = U(ut. .]

R and UR(u′
t. .] = U [. .ut]

R. Consequently,

ed(U,UR) = ed(U [. .ut], U
R[. .u′

t]) + ed(U(ut. .], U
R(u′

t. .])

= ed(U [. .ut], U(ut. .]
R) + ed(U(ut. .], U [. .ut]

R)

= 2 · ed(U [. .ut], U(ut. .]
R),

that is, ed(U,UR) = ed(U [. .i], U(i. .]R) holds for i = ut.
Otherwise, as the sequence (ut + u′

t)
m
t=0 increases from 0 to 2|U |, there exists t ∈

[1. .m] such that ut−1 + u′
t−1 < |U | < ut + u′

t. In particular, (ut, u
′
t) = (ut−1 + 1, u′

t−1 +
1), so UR[. .u′

t−1] = U(ut. .]
R, UR(u′

t−1. .u
′
t] = U(ut−1. .ut], and UR(u′

t. .] = U [. .ut−1].
Consequently,

ed(U,UR) = ed(U [. .ut−1], U
R[. .u′

t−1])

+ ed(U(ut−1. .ut], U
R(u′

t−1. .u
′
t])

+ ed(U(ut. .], U
R(u′

t. .])

= ed(U [. .ut−1], U(ut. .]
R)

+ ed(U(ut−1. .ut], U(ut−1. .ut]
R)

+ ed(U(ut. .], U [. .ut−1]
R)

= 2 · ed(U [. .ut−1], U(ut. .]
R),

that is, ed(U,UR) = ed(U [. .i], U(i+ 1. .]R) holds for i = ut−1 = ut − 1.
This completes the proof that

2min
i
{min{ed(U [. .i], U(i. .]R), ed(U [. .i], U(i+ 1. .]R)}} ≤ ed(U,UR) (9.1)

Next, consider a palindrome V such that ed(U,PAL) = ed(U, V ). The triangle in-
equality implies

ed(U,UR) ≤ ed(U, V ) + ed(V, UR)

= ed(U, V ) + ed(V R, UR) (9.2)
= 2ed(U, V ) = 2ed(U,PAL).
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Finally, for any palindrome V , we have ed(U,PAL) ≤ ed(U, V ). In what follows, we
give for each i ∈ [1. .|U |] palindromes Vi, V

′
i such that ed(U, Vi) ≤ ed(U [. .i], U(i. .]R) and

ed(U, V ′
i ) ≤ ed(U [. .i], U(i+ 1. .]R).

Let Vi = U(i. .]R · U(i. .]: it is a palindrome, and we can obtain it from U by trans-
forming its prefix U [. .i] into U(i. .]R, hence ed(U, Vi) ≤ ed(U [. .i], U(i. .]R). Similarly,
V ′
i = U(i + 1. .]R · U [i + 1] · U(i + 1. .] has the desired property. As a consequence, we

obtain

ed(U,PAL) ≤ min
i
{min{ed(U [. .i], U(i. .]R), ed(U [. .i], U(i+ 1. .]R)}}. (9.3)

Combining (9.1), (9.2), and (9.3) yields the desired result.

Corollary 9.2.9. Let U be a string of length n and m = ⌊n/2⌋. We have

ed≤k(U,PAL) =

min
i∈[m−k. .m+k]

{min{ed≤k(U [. .i], U(i. .]R), ed≤k(U [. .i], U(i+ 1. .]R)}.

Proof. The edit distance between two strings is at least the difference of their lengths,
hence we only need to consider strings that differ by at most k in length.

Property 9.2.10. Let U ∈ Σn. We have ed(U,SQ) = mini{ed(U [. .i], U [i+ 1. .])}.

Proof. First, for any i ∈ [1. .n], we have ed(U,SQ) ≤ ed(U [. .i], U(i. .]), as editing the
substring of U equal to U [. .i] into U(i. .] yields the string U(i. .]U(i. .], which is a square.

Now, let V 2 be a square such that ed(U,SQ) = ed(U, V 2). Let r be the position of the
rightmost character of U that was not deleted, and whose position in V 2 (after applying
the edits) is at most |V |. If there is no such character, we set r = 0.

We then have ed(U, V 2) = ed(U [. .r], V )+ed(U(r. .], V ). Applying the triangle inequal-
ity, we obtain ed(U,SQ) = ed(U, V 2) ≥ ed(U [. .r], U(r. .]), hence we have

ed(U,SQ) ≥ min
i∈[1. .n]

{ed(U [. .i], U(i. .])}.

Corollary 9.2.11. Let U ∈ Σn and m = ⌊n/2⌋. We have

ed≤k(U,SQ) = min
i∈[m−k. .m+k]

min ed≤k(U [. .i], U(i. .]).

9.2.3 Models of computation

In this work, we focus on two by now classical models of computation: streaming and
read-only random access.

In the streaming model, we assume that the input string T arrives as a stream, one
character at a time. We account for all the space used, including the space needed to
store any information about T . In contrast, in the read-only model, we assume that, after
receiving T [i], we have read-only random access to all of T [1. .i], and measure only the
additional space required for the computation.

In both models, we report the results online, i.e. for each prefix T [1. .i], we must
report the distance to PAL or SQ after receiving T [i] and before receiving T [i+ 1].
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9.3 Streaming algorithms

In this section, we give streaming algorithms for all six problems presented in the intro-
duction.

Our solutions rely on space-efficient distance sketches, an extension of Karp-Rabin
fingerprints. The Karp-Rabin fingerprints [190] are a family of hash functions over strings
that can be updated when a character is appended to the string without recomputing
the hash from scratch. Furthermore, if two strings are different, then their hashes are
different with high probability. In summary, these functions allow testing whether two
strings are equal, i.e. whether the distance between them is 0 or greater than 0.

The distance sketches described in this section are a generalization of Karp-Rabin fin-
gerprints, which were first introduced to solve approximate pattern matching in stream-
ing [61, 107]. Distance sketches allow testing whether the distance between two strings is
at most k, and if so, computing that distance. We give an overview of Hamming distance
sketches in Section 9.3.1.1 and edit distance sketches in Section 9.3.2.1.

9.3.1 Streaming algorithm for Hamming distance to PAL

9.3.1.1 Hamming distance sketches

We use the Hamming distance sketches introduced by Clifford et al. [107] to solve the
streaming k-mismatch problem. Their construction is the following:

Fact 9.3.1. There exists a function skhdk (parameterized by a constant c > 1, integers
n ≥ k ≥ 1, and a seed of O(log n) random bits) that assigns an O(k log n)-bit sketch to
each string in Σ≤n. Moreover:

1. There is an O(k log2 n)-time encoding algorithm that given U ∈ Σ≤k, builds skhdk (U).
2. There is an O(k log n)-time algorithm that, given any two among skhdk (U), skhdk (V ),

or skhdk (UV ), computes the third one (provided that |UV | ≤ n).
3. There is an O(k log3 n)-time decoding algorithm that, given skhdk (U) and skhdk (V ),

computes MI(U, V ) if hd(U, V ) ≤ k and otherwise reports that hd(U, V ) > k. The
error probability is O(n−c).

9.3.1.2 Algorithm

We now show that the sketches described in Fact 9.3.1 give a simple algorithm for k-
LHD-PAL, improving upon the result of Amir and Porat [31] and achieving the time
complexity of Õ(k) per character.

Theorem 9.3.2. There is a randomised streaming algorithm that solves the k-LHD-PAL
problem using O(k log n) bits of space and O(k log3 n) time per character. The algorithm
errs with probability inverse-polynomial in n.

Proof. Using Property 9.2.3, we can reduce the k-LHD-PAL problem to that of comput-
ing the threshold Hamming distance between the current prefix of the input string and
its reverse. The algorithm maintains the sketches skhd2k(T [. .i]) and skhd2k(T [. .i]

R). When it
receives T [i], it constructs skhd2k(T [i]), updates both skhd2k(T [. .i]) and skhd2k(T [. .i]

R), and com-
putes d = hd≤2k(T [. .i], T [. .i]

R) (in O(k log3 n) total time, by Fact 9.3.1). Property 9.2.3
implies hd≤k(T [. .i],PAL) = d/2. The error probability of the algorithm follows from the
error probability for the decoding algorithm for Hamming distance sketches.
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The algorithm uses O(k log n) bits of space, which is nearly optimal. Indeed, by
Property 9.2.3, if U = VW , with |V | = |W |, then hd(U,UR) = 2·hd(V,WR). Furthermore,
there is a lower bound of Ω(k) bits on the communication complexity of computing the
Hamming distance between two strings V,W [178]. Therefore, using a standard reduction
from one-way communication complexity protocols to streaming algorithms , we obtain
a lower bound of Ω(k) bits for the space complexity of streaming algorithms for the
k-LHD-PAL problem.

9.3.2 Streaming algorithm for edit distance to PAL

Next, by replacing the Hamming distance sketches by edit distance sketches, we obtain a
similar algorithm for k-LED-PAL.

9.3.2.1 Locally consistent decompositions and edit distance sketches

For the edit distance, our algorithms use locally consistent string decompositions and the
edit distance sketches of Bhattacharya and Koucký [61]. We store additional information
along with the sketches to ensure that we can both prepend and append characters to a
sketch.

Locally consistent string decompositions.

The randomized decomposition algorithm of Bhattacharya and Koucký [61]1, which we call
the BK-decomposition algorithm, receives two integers k, n as input, and chooses random
of hash and compression functions (Hℓ), (Cℓ) (which we discuss later). Then, given a
string U of length at most n as input, the algorithm outputs a sequence G(U) of context-
free grammars G(U) = GU

1 · · ·GU
s with certain properties, called run-length straight-line

programs, or RLSLP for short2 (the exact definition of an RLSLP is not important for this
work; we refer the interested reader to [246] for more details). We denote the length s
of the sequence by |G(U)| and extend notation for indexing and concatenating strings
(e.g. sequences of characters) to sequences of grammars in a natural way. Each grammar
G(U)[i] output by the algorithm represents a unique string, denoted by eval(G(U)[i]).
We homomorphically extend eval over grammar sequences: for grammars G1, . . . , Gs, we
define eval(G1 · · ·Gs) = eval(G1) · · · eval(Gs).

The BK-decomposition satisfies the following properties:

Fact 9.3.3 ([62, Theorem 3.1]). Let U, V be a pair of strings of length at most n such
that ed(U, V ) ≤ k. Let G(U) and G(V ) be the sequences of grammars output by the BK-
decomposition algorithm on inputs U and V respectively using the same choice of random
hash and compression functions. The following is true for n large enough:

1. With probability at least 1− 2/n, U = eval(G(U)) and V = eval(G(V )) ;
2. With probability at least 1 − 2/

√
n, for all i, j, the grammars G(U)[i] and G(V )[j]

have size Õ(k);

1In what follows, we will refer to the full version [62] of [61], as we will need to adapt proofs that only
appear in the full version.

2While it is not stated explicitly in [62], the grammars returned by their algorithm are RLSLPs, up
to adding rules of the form Sa → a for every a ∈ Σ and applying the algorithm to the word obtained by
replacing a by Sa.
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3. With probability at least 0.9, there is an integer s = |G(U)| = |G(V )|, we have
G(U)[i] = G(V )[i] for all but at most k indices i such that 1 ≤ i ≤ s, and

ed(U, V ) =
s∑

i=1

ed(eval(G(V )[i]), eval(G(U)[i])).

Overview of the decomposition algorithm. The BK-decomposition algorithm pro-
cesses the input string U in λ = O(log n) stages3, gradually compressing the string. The
algorithm uses a work alphabet Γ that contains Σ and has size polynomial in n. The
compression process iteratively replaces pairs of characters (a, b) ∈ Γ2 by another charac-
ter cab ∈ Γ, in a lossless manner. (The BK-decomposition algorithm is probabilistic, the
description that we give here is true with high probability, e.g. the compression is lossless
with probability at least 1 − 1/ poly(n). In what follows, we assume that this property
holds.) The goal of the BK-decomposition algorithm is to obtain similar output sequences
for similar input strings, so characters in identical substrings should be compressed the
same way. To obtain this property, Bhattacharya and Koucký [62] use locally consistent
coloring functions to choose which pairs of characters should be replaced and compressed.
These coloring functions have the following properties:

Fact 9.3.4 ([62, Proposition 2.4]). There exists a function FCV L : Γ∗ → {1, 2, 3}∗ with
the following properties. Let ρ = O(log∗ n). For each string U ∈ Γ∗ with no two identical
consecutive characters:

1. |FCV L(U)| = |U | and FCV L(U) can be computed in time O(ρ|U |),
2. for each i = 1, . . . , |U |, the i-th character of FCV L(U) is a function of U [i−ρ. .i+ρ]

only,
3. no two consecutive characters of FCV L(U) are the same,
4. out of every three consecutive characters of FCV L(U), at least on of them is 1.

To choose which symbols to compress, the BK-decomposition algorithm computes
FCV L(U), and replaces U [i]U [i + 1] with Cℓ(U [i]U [i + 1]) at every position i such that
the coloring is 1. Here, (Cℓ)0,...,λ are a family of random functions Γ2 → Γ. By taking Γ
sufficiently large, the compression is lossless with high probability. The ℓ-th function Cℓ

is used for the ℓ-th compression iteration. Item 3 ensures that the compression process is
well defined, i.e. if the i-th position is colored 1, the i + 1-th cannot be. Item 4 ensures
that the length of the compressed string is at most two thirds of the length of U , hence
after λ = O(log n) steps, the string is reduced to to a single character. A string U can
only be colored with FCV L if it does not contain two identical consecutive characters. To
ensure that this holds, U is run-length encoded before running the compression process,
i.e. maximal runs of the form ar for a ∈ Γ and r ≥ 2 are replaced by a special character
ca,r ∈ Γ that encodes the character and the length of the run, followed by a special
character #.

We will later talk about the decompression process : it corresponds to the inverse
operation. To compute the decompression at level ℓ, every character c in U such that
there exist a, b ∈ Γ such that Cℓ(a, b) = c is replaced by ab.

The other important operation of the BK-decomposition algorithm is splitting strings
into blocks (i.e. substrings). A string U is split into blocks using a family of hash functions
Hℓ : Γ

2 → {0, . . . , D} for D = O(k log n log∗ n) and ℓ = 0, . . . , λ. At stage ℓ, the string U

3In [62], λ is denoted by L, τ by T , ρ by R, and µ by M . We changed the notation to avoid collisions.



Chapter 9. Online Language Distance to Palindromes and Squares 137

is split at position i when Hℓ(U [i], U [i + 1]) = 0. The family of hash functions is chosen
so that this happens with probability 1/D for any symbols U [i], U [i+ 1].

The BK-decomposition algorithm repeatedly applies these operations. If a string has
length 1, we convert it into a grammar and append it to the decomposition (the algorithm
for constructing the grammar is beyond the scope of this chapter). Otherwise, the string
is compressed, the resulting string is then split, and the procedure is applied recursively
to each block obtained from splitting. The index ℓ of hash and compression functions
used corresponds to the recursion depth.

Dynamically updating the BK-decomposition. Bhattacharya and Koucký [62]
show that this decomposition can be updated efficiently when appending a character
to a string. In what follows, we argue that the same is true for prepending a character.
While it may happen that G(UV ) is shorter than G(U), these decompositions are related
as follows:

Corollary 9.3.5 (Of [62, Lemmas 4.1, 4.2]). Consider U, V ∈ Σ∗ such that |U |+ |V | ≤ n
and let τ = λ · ρ = O(log n log∗ n). Let G = G(U), G′ = G(UV ), G′′ = G(V U), and
s = |G|, s′ = |G′|, s′′ = |G′′|. We have:

1. G[. .s− τ ] = G′[. .s− τ ] and |U | ≤ |eval(G′[. .min{s+ τ, s′}])|,
2. G(τ. .] = G′′(s′′ − s+ τ. .] and |U | ≤ |eval(G′′(max{s′′ − s+ τ, 0}. .])|.

Proof. Item 1 is a direct consequence of [62, Lemmas 4.1, 4.2].
Item 2 can be proved using similar ideas, which we sketch here. Consider the coloring

X = FCV L(U) and Y = FCV L(V U) obtained using the locally consistent coloring of
Fact 9.3.4. Because of the local property of FCV L (Item 2 in Fact 9.3.4), we have X[ρ. .] =
Y [|V |+ ρ. .], therefore the compression and the splitting are the same in the last |U | − ρ
characters of V U and of U . This is for the first compression level. Similarly, at each
level, the result may only change for ρ additional characters of U , and there are a total of
λ = O(log n) levels. Therefore, overall, the part that corresponds to U in both grammar
sequences differs by at most τ = O(log n log∗ n) grammars.

In particular, this result implies that if the index of a grammar in G(U) is less than
|G(U)| − τ (resp. more than τ), then appending (resp. prepending) characters to U
will not change that grammar. Extending the terminology of [62], we call a grammar
that remains unchanged when appending (resp. prepending) any string a right-committed
grammar (resp. left-committed grammar), while the others are right-active (resp. left-
active) grammars. When a grammar is both left- and right-committed, we simply say
that it is committed. In what follows, we use αr(G(U)) (resp. αl(G(U))) to denote the
number of right-active (resp. left-active) grammars in G(U). Corollary 9.3.5 implies that
αl(G(U)), αr(G(U)) ≤ τ .

Theorem 5.1 in [62] presents an algorithm only for the case of appending a character,
we argue that essentially the same can be used to prepend one.

Corollary 9.3.6 (Of [62, Theorem 5.1]). Let U ∈ Σ≤n−1, G = G(U), and s = |G|. There
are two algorithms AppendCharacter and PrependCharacter that run in Õ(k) time and:

1. Given a character a ∈ Σ and G[max{1, s − τ}. .s], the algorithm AppendCharacter
outputs G′ such that G(Ua) = G[1. .max{1, s− τ})G′ and |G′| ≤ 4τλ.

2. Given a character a ∈ Σ and G[1. .min{τ + 1, s}], the algorithm PrependCharacter
outputs G′ such that G(aU) = G′ ·G(min{τ + 1, s}. .s] and |G′| ≤ 4τλ.
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Proof. Bhattacharya and Koucký [62, Theorem 5.1] shows how to append a character to
a grammar decomposition. The algorithm for appending a character a starts from the
string Z obtained by concatenating the starting symbol of each grammar in G. It then
decompresses the end of Z, until the decompression has length at least τ , appends a, and
recompresses the result. The algorithm of Bhattacharya and Koucký [62] uses several
subroutines (Algorithms 5-15 from [62, Section 5]) to compute which part to decompress,
and to ensure efficient recompression.

We now argue that this algorithm can be adapted to prepend a character. Algo-
rithms 5, 6, 7, 8 and 11 of [62] are not specific to appending a character, so they do
not need to be adapted. Algorithm 9 finds the shortest prefix of a compressed string Z
whose decompression at level ℓ has a length exceeding a given threshold: it can easily
be adapted to find the shortest suffix with the same property by starting from the end
of Z. Algorithm 10 partially decompresses a string Z, starting from the end, until it
reaches length τ : by iterating on Z from left to right, we obtain the symmetric version
which decompresses starting from the beginning. Algorithms 12-15 use Algorithms 5-11
as subroutines. Their symmetric versions can be obtained by working symmetrically and
using the symmetric versions of Algorithms 9 and 10 described above.

It follows from the above two results that, by storing the last αr(G(U))+ τ (resp. first
αl(G(U)) + τ) grammars of G(U), we can compute the last αr(G(UV )) + τ grammars
of G(UV ) (resp. first αl(G(V U))+τ grammars of G(V U)) by applying the corresponding
algorithm of Corollary 9.3.6 |V | times. These grammars include the right-active grammars
of G(UV ) (resp. left-active grammars of G(V U)).

Edit distance sketches.

Our algorithms exploit an extension of the edit distance sketches of Bhattacharya and
Koucký [62], which are based on the above grammar decomposition.

Fact 9.3.7 ([62, Lemma 3.13]). Let µ = Õ(k) be a parameter (see Footnote 3). There is
an injective mapping enc from the set of grammars output by the decomposition algorithm
to the set of strings of length µ on an alphabet of size polynomial in n that guarantees that
the following is satisfied:

1. A grammar can be encoded and decoded in O(µ) time;
2. The encodings of two equal grammars are equal;
3. The encodings of two distinct grammars output by the decomposition algorithm differ

in all µ characters with probability at least 1− 2µ/n.

We homomorphically extend this encoding to sequences of grammars: enc(G1 · · ·Gs) =
enc(G1) · · · enc(Gs). We are now ready to describe our extension of the edit distance
sketches of [62]. Informally, to construct the sketch of a string U , we first compute its
grammar decomposition G(U), and compute its encoding EU = enc(G(U)). The sketch
skedk (U) is given by the Hamming distance sketch of EU with threshold k′ = k · µ. If
the edit distance between two strings U and V is at most k, then by Fact 9.3.3, their
grammar decompositions differ in at most k grammars, and in turn EU and EV differ in
at most k′ = k · µ positions, by definition of enc. Recall from Fact 9.3.1 that, in this
case, given skhdk′ (EU) and skhdk′ (EV ), we can compute the mismatch information between
EU and EV , that is, the list of positions where these strings differ and the characters at
those positions. By Fact 9.3.7, we have a high probability of recovering the encoding of
all grammars that differ, from which we can recover the differing grammars themselves,
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which finally allows computing the edit distance. The time and space complexity of these
operations is Õ(k′) = Õ(k2). The actual sketches are slightly more complex: we only
encode in EU the committed grammars, and explicitly store a small superset of active
grammars.

In the remainder of this section, we give a formal and detailed construction of the edit
distance sketches, building on the work of Bhattacharya and Koucký [62]. Our result is
the following.

Lemma 9.3.8. There is an edit distance sketch skedk that uses Õ(k2) bits of space, and
supports the following operations assuming that all involved strings have length at most n:

1. Append: given skedk (U) and a character a ∈ Σ, compute skedk (Ua),
2. Prepend: given skedk (U) and a character a ∈ Σ, compute skedk (aU),
3. Distance: given skedk (U) and skedk (V ), compute ed≤k(U, V ).

All three operations take Õ(k2) time and space and err with probability inverse polynomial
in n.

Proof. Let G(U) be the locally consistent decomposition of a string U . In what follows,
we denote αr = αr(G(U)) and αl = αl(G(U)). If s = |G(U)| ≤ 4τ , skedk (U) = enc(G(U))
and takes Õ(k) space. Otherwise, skedk (U) is defined as a tuple

(Gl,S,Gr) =
(
G(U)[1. .sl], sk

hd
k·µ(enc(G(U)(sl. .s− sr])),G(U)(s− sr. .s]

)
,

where sl and sr are integers satisfying the invariant

2τ ≥ sl ≥ αl + τ and 2τ ≥ sr ≥ αr + τ. (9.4)

Note that this definition does not define skedk (U) uniquely (as there are multiple possible
choices of sl and sr), but the invariant of Eq. (9.4) ensures that we can always perform
updates and distance operations using the sketch. Initially (i.e., the first time s becomes
larger than 4τ), we set sl = sr = 2τ , which satisfy the invariant of Eq. (9.4) by Corol-
lary 9.3.5.

Update operations. Let (Gl,S,Gr) be the sketch of U , sl = |Gl| and sr = |Gr|. Given
a character a ∈ Σ, we obtain the sketch of Ua feeding (Gr[sr−τ. .sr], a) into the algorithm
AppendCharacter (Corollary 9.3.6). Let Gout be the sequence of grammars output by
this algorithm and let G′ = Gr[. .sr − τ)Gout be the sequence of grammars obtained by
replacing Gr[sr− τ. .sr] with Gout in Gr. If |G′| ≤ 2τ , we output (Gl,S, G′) for the sketch
of Ua. Otherwise, we only store explicitly the last 2τ grammars of G′, and add the
others at the end of the Hamming sketch S. More formally, we construct the Hamming
distance sketch S ′ by concatenating S and Ŝ = skhdk·µ(enc(G

′[. .|G′|−2τ ])). We then output
skedk (Ua) = (Gl,S ′, G′(|G′| − 2τ. .]). By Corollary 9.3.6, |G′| ≤ 4τλ+ τ = Õ(1), hence we
can build Ŝ in time Õ(k2) using Fact 9.3.1, and the subsequent sketch concatenation also
takes Õ(k2) time. In both cases, Corollary 9.3.5 ensures that the invariant of Eq. (9.4) is
satisfied.

Prepending a character works similarly using Gl and the PrependCharacter algorithm
of Corollary 9.3.6.

Distance operation. Let U, V be strings satisfying the conditions of Fact 9.3.3, and
consider the sketches skedk (U) = (Gl,S,Gr) and skedk (V ) = (G′

l,S ′,G′
r) obtained from de-

compositions such that the properties of Fact 9.3.3 hold. By Fact 9.3.3(3), at most k gram-
mars of the decompositions of U and V differ: we can recover them from skhdk·µ(enc(G(U)))
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and skhdk·µ(enc(G(V ))). We can obtain skhdk·µ(enc(G(U))) by concatenating skhdk·µ(enc(Gl)),
S and skhdk·µ(enc(Gr)), which takes Õ(k2) time, and similarly for skhdk·µ(enc(G(V ))). Notice
that the above operation results in skhdk·µ(enc(G(U))) regardless of the length of |Gl| and
|Gr|: this normalization helps us avoid issues related to the definition of the sketches.
Using these sketches, we can recover enc(Gi) for every i such that G(U)[i] ̸= G(V )[i], and
by decoding we recover the corresponding grammar Gi. We can then compute the edit
distance between U and V using Fact 9.3.3(3):

ed(U, V ) =
s∑

i=1

ed(eval(G(U)[i]), eval(G(V )[i]))

=
∑

i:G(U)[i]̸=G(V )[i]

ed(eval(G(U)[i]), eval(G(V )[i]))

Given two RLSLPs G,G′ of size at most m and d = ed(eval(G), eval(G′)), one can compute
min{d, k+1} in time Õ(m+ k2) using the algorithm of Ganesh et al. [156]. Using binary
search over k, we can reduce this running time to Õ(m+ d2) when d ≤ k. Therefore, we
can compute the above sum in time Õ(k2): there are k RLSLPs of size Õ(k), and we can
stop the computation as soon as the sum of di = ed(eval(G(U)[i]), eval(G(V )[i])) exceeds
k. In total, this costs Õ(µ+ k2 +

∑
i(µ+ d2i ) ≤ kµ+ (

∑
i di)

2) = Õ(k2) time. The space
complexity can be upper-bounded (up to polylog factors) by the time complexity.

Probability of success. The results of Fact 9.3.3 hold with constant probability, which
can be boosted in a standard way by repeating the scheme a logarithmic number of
times.

9.3.2.2 Algorithm

Theorem 9.3.9. There is a randomised streaming algorithm that solves the k-LED-PAL
problem for a string of length n using Õ(k2) bits of space and Õ(k2) time per character.

Our algorithm maintains two sketches x, x′ initialised to sketches of the empty string
sked2k(ε). Upon receiving T [i], we append it to x and prepend it to x′. After performing
this update, we have x = sked2k(T [. .i]), and x′ = sked2k(T [. .i]

R). We then use them to
compute ed≤2k+1(T [. .i], T [. .i]

R), which gives us ed≤k(T [. .i],PAL) by Property 9.2.8. By
Lemma 9.3.8, updating the sketches and using them to compute the edit distance takes
Õ(k2) time per character and Õ(k2) bits of space.

9.3.3 Streaming algorithms for approximating the longest ap-
proximate subpalindrome

In this section, we use the streaming algorithms of Theorem 9.3.2 and Theorem 9.3.9
together with the framework of Gawrychowski et al. [161] to give algorithms for (1 + ε)-
k-HD-PAL and (1 + ε)-k-ED-PAL.

Gawrychowski et al. [161] introduce a function ttlε (which stands for time to live)
which satisfies the following property: for any interval [i. .j], there exists a position r such
that there is a prefix of the interval [r. .r + ttlε(r)] centered at the same position as [i. .j]
and has length at least (j − i+ 1)/(1 + ε).

More formally, the properties of the ttlε function can be summarized as follows:
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Fact 9.3.10 ([161, Lemmas 5-8]). For any 0 < ε ≤ 1, there exists a function ttlε : N→ N
satisfying each of the following:

1. ttlε(n) can be computed in time and space O(log(n)/ε),
2. for all integers i < j, there exists an integer r, i ≤ r ≤ j, such that r + ttlε(r) ≥

j − (r − i) and ttlε(r) ≥ (j − i+ 1)/(1 + ε),
3. for every integer i, 1 ≤ i ≤ n, there are O( log(nε)

ε
) integers r such that r ≤ i ≤

r + ttlε(r).

As a corollary we obtain that if T [i. .j] is a palindrome of length ℓ, then there exists r
such that T [r. .r+ ttlε(r)] has a prefix palindrome of length ℓ/(1+ ε). The same property
holds if we replace “palindrome” with “string within distance k of PAL” in the previous
sentence.

This gives a streaming algorithm for solving (1+ε)-k-HD-PAL in T : for every position
r, start an instance of the algorithm for k-LHD-PAL on T [r. .r + ttlε(r)], and return the
length of the longest prefix found over all instances of the algorithm. The next observation
follows from Property 9.2.3 and Corollary 9.2.2.

Observation 9.3.11. Let P be a string of length m such that hd(P,PAL) ≤ k. Then,
for any t ≤ ⌊m/2⌋, we have hd(P [t. .m− t+ 1],PAL) ≤ k.

Corollary 9.3.12. For any 0 < ε ≤ 1, there is a streaming algorithm for (1 + ε)-k-HD-
PAL that uses O(k log4 n

ε
) time per character and O(k log2 n

ε
) bits of space.

Proof. Correctness follows from the above observation and Observation 9.3.11. Fact 9.3.10
ensures that at most O( log(nε)

ε
) copies of the algorithm of Theorem 9.3.2 are running in

parallel at every position: the time and space complexities follow.

To obtain a similar algorithm for (1 + ε)-k-ED-PAL, we give an analogue of Obser-
vation 9.3.11 for the edit distance.

Observation 9.3.13. Let P be a string of length m such that ed(P,PAL) ≤ k. Then,
for any t ≤ ⌊m/2⌋, we have ed(P [t. .m− t+ 1],PAL) ≤ k.

This observation follows from Property 9.2.8 and Observation 9.2.7.

Corollary 9.3.14. For any 0 < ε ≤ 1, there is a streaming algorithm for (1 + ε)-k-ED-
PAL that uses Õ(k

2

ε
) time per character and Õ(k

2

ε
) bits of space.

9.3.4 A streaming algorithm for k-LHD-SQ

In this section, we show the following theorem:

Theorem 9.3.15. There is a randomized streaming algorithm that solves the k-LHD-SQ
problem for a string T ∈ Σn using O(k log2 n) bits of space and Õ(k) time per character.
The algorithm errs with probability inverse-polynomial in n.

Property 9.2.4 allows us to derive hd≤k(T [. .2i],SQ) from the sketches skhdk (T [. .i])
and skhdk (T [. .2i]): we can combine them to obtain skhdk (T (i. .2i]), and a distance computa-
tion on skhdk (T [. .i]) and skhdk (T (i. .2i]) returns hd≤k(T [. .i], T (i. .2i]) = hd≤k(T [. .2i],SQ).

Naively applying this procedure requires storing the sketch skhdk (T [. .i]) until the algo-
rithm has read T [. .2i], that is, storing Θ(n) sketches at the same time. To reduce the
number of sketches stored, we use a filtering procedure based on the following observation:
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Observation 9.3.16. If hd(T [. .2i],SQ) ≤ k and ℓ ∈ [1. .i], then i + ℓ is a k-mismatch
occurrence of T [. .ℓ], that is, hd(T [. .ℓ], T (i. .i+ ℓ]) ≤ k.

Example 9.3.17. For k = 1, ℓ = 2, and i = 3, the word T [. .6] = abcacc is a 1-mismatch
square (by Property 9.2.4) and the fragment T (3. .5] = ac is a 1-mismatch occurrence of
the prefix T [. .2] = ab.

Observation 9.3.16 motivates our filtering procedure: if we choose some prefix P =
T [. .ℓ] of the string, we only need to store the sketch of T [. .i] for every i ≥ ℓ such that
i + ℓ is a k-mismatch occurrence of P . Clifford et al. [107] showed a data structure S
that exploits the structure of such occurrences and stores them using O(k log2 n) bits
of space while allowing reporting the occurrence at position i + ℓ when T [i + ℓ + ∆] is
pushed into S – we say that S reports the k-mismatch occurrences of P in T with a fixed
delay ∆. Our algorithm needs to receive the occurrence at position i + ℓ when T [2i] is
pushed into the stream, i.e. we require S to report occurrences with a non-decreasing
delay. In Section 9.3.4.1 we present a modification of the data structure of [107] to allow
non-decreasing delays, and in Section 9.3.4.2 we explain how we use it to implement a
space-efficient streaming algorithm for k-LHD-SQ.

9.3.4.1 Reporting k-mismatch occurrences with nondecreasing delay.

The algorithm of Clifford et al. [107] reports additional information along with the posi-
tions of the k-mismatch occurrences: specifically, it produces the stream of k-mismatch
occurrences of P in T , defined as follows.

Definition 9.3.18 ([107, Definition 3.2]). The stream of k-mismatch occurrences of a pat-
tern P in a text T is a sequence Sk

P such that Sk
P [i] = (i, MI(T (i−|P |. .i], P ), skhdk (T [. .i−

|P |])) if hd(P, T (i− |P |. .i]) ≤ k and Sk
P [i] = ⊥ otherwise.

As explained next, the algorithm of [107] can report the k-mismatch occurrences with
a prescribed delay.

Corollary 9.3.19 (of [107]). There is a streaming algorithm that, given a pattern P
followed by a text T ∈ Σn, reports the k-mismatch occurrences of P in T using O(k log2 n)

bits of space and O(
√

k log3 n+log4 n) time per character. The algorithm can report each
occurrence i with no delay (that is, upon receiving T [i]) or with any prescribed delay ∆ =
Θ(|P |) (that is, upon receiving T [i +∆]). For each reported occurrence i, the underlying
tuple Sk

P [i] can be provided on request in O(k log2 n) time.

Proof. If no delay is required, we use [107, Theorem 1.2], which reports k-mismatch
occurrences of P in T and, upon request, provides the mismatch information MI(T (i −
|P |. .i], P ); this algorithm uses O(k log2 n) bits of space and takes O(

√
k log3 n + log4 n)

time per character. We also use [107, Fact 4.4] to maintain the sketch skhdk (T [. .i]) (reported
on request); this algorithm uses O(k log n) bits of space and takes O(log2 n) time per
character.

Whenever requested to provide Sk
P [i] for some k-mismatch occurrence i of P in T ,

we retrieve the mismatch information MI(T (i− |P |. .i], P ) (in O(k) time) and the sketch
skhdk (T [. .i]) (in O(k log2 n) time). Combining skhdk (P ) with MI(T (i− |P |. .i], P ), we build
skhdk (T (i−|P |. .i]) (using [107, Lemma 6.4] in O(k log2 n) time) and then derive skhdk (T [. .i−
|P |]) using Fact 9.3.1 (in O(k log n) time). Processing the request takes O(k log2 n) time
and O(k log2 n) bits of space overall.
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If a delay ∆ = Θ(|P |) is required, our approach depends on whether there exists
p ∈ [1. .k] such that hd(P [. .|P |−p], P (p. .|P |]) ≤ 2k (such p is called a 2k-period in [107]).
This property is tested using a streaming algorithm of [107, Lemma 4.3], which takes
O(k log n) bits of space, O(

√
k log n) time per character of P , and requires O(k

√
k log n)-

time post-processing (performed while reading T [. .k]). If P satisfies this condition, then
we just use [107, Theorem 4.2], whose statement matches that of Corollary 9.3.19.

Otherwise, [107, Observation 4.1] shows that P has at most one k-mismatch occurrence
among any k consecutive positions in T . In that case, we use the aforementioned approach
to produce the stream Sk

P with no delay and the buffer of [107, Proposition 3.3] to delay
the stream by ∆ characters. The buffering algorithm takes O(k log2 n) bits of space and
processes each character T [i] in O(k log2 n+log3 n) time (if P has k-mismatch occurrences
at positions i or i−∆) or O(

√
k log n+log3 n) time (otherwise). Since the former case holds

for at most two out of every k consecutive positions, we can achieve O(
√
k log3 n+log4 n)

worst-case time per character by decreasing the delay to ∆ − k and buffering up to k
characters of T and up to k elements of Sk

P . While the algorithm processes T [i+∆], the
latter buffer already contains Sk

P [i], but O(k) time is still needed to output this value (if
Sk
P [i] ̸= ⊥).

The algorithm of Corollary 9.3.19 has a fixed delay ∆, i.e., it outputs Sk
P [i] upon

receiving T [i+∆]. Our application requires a variable delay: we need to access Sk
P [i+ |P |]

upon reading T [2i], that is, with a delay of i− |P |. We present a black-box construction
that extends the data structure of Corollary 9.3.19 to support non-decreasing delays ∆i,
i ∈ [1. .d]. Naively, one could use the algorithm A of Corollary 9.3.19 with a fixed delay
∆1 and buffer the input characters so that A receives T [i + ∆1] only when we actually
process T [i + ∆i]. Unfortunately, this requires storing T [i + ∆1. .i + ∆i), which could
take too much space. Thus, we feed A with T [1. .∆1] followed by blank characters ⊥
(issued at appropriate time steps without the necessity of buffering input characters) so
that A reports k-mismatch occurrences i ∈ [1. .∆1] with prescribed delays. Then, we
use another instance of the algorithm of Corollary 9.3.19, with a fixed delay ∆1+∆1 , to
output k-mismatch occurrences i ∈ (∆1. .∆1 + ∆1+∆1 ]; we continue this way until the
whole interval [1. .d] is covered. We formalise this idea in the following lemma.

Lemma 9.3.20. Let ∆1 ≤ ∆2 ≤ · · · ≤ ∆d be a non-decreasing sequence of d = O(|P |)
integers ∆i = Θ(|P |), represented by an oracle that reports each element ∆i in constant
time.

There is a streaming algorithm that, given a pattern P followed by a text T , reports the
k-mismatch occurrences of P in T using O(k log2 n) bits of space and O(

√
k log3 n+log4 n)

time per character. The algorithm reports each occurrence i ∈ [1. .d] with delay ∆i, that
is, upon receiving T [i+∆i]. For each reported occurrence i ∈ [1. .d], the underlying tuple
Sk
P [i] can be provided on request in O(k log n) time.

Proof. We use multiple instances A1, . . . ,At of the algorithm of Corollary 9.3.19. We
define a sequence (sr)

t
r=0 so that Ar works with a fixed delay ∆sr−1 , it is given T [1. .sr) ·

⊥∆sr−1 , and it reports k-mismatch occurrences i ∈ [sr−1. .sr). Specifically, we set s0 = 1
and sr = sr−1 +∆sr−1 , with t chosen as the smallest integer such that st > d. Note that
sr − sr−1 = ∆sr−1 ≥ ∆1 implies t ≤ 1 + d

∆1
= O(1).

We assign three different roles to the algorithms A1, . . . ,Ar: passive, active, and
inactive. While we process T [j], the algorithm Ar is passive if j < sr, active if j ∈
[sr. .sr+1), and inactive if j ≥ sr+1. Our invariant is that, once we process T [j], each
passive algorithm Ar has already received T [1. .j], the unique active algorithm Ar has
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already received T [1. .sr)·⊥1+i−sr−1 , where i is the largest integer such that i+∆i ≤ j, and
each inactive algorithm Ar has already received its entire input, that is, T [1. .sr) · ⊥∆sr−1 .

Upon receiving T [j], we simply forward T [j] to all passive algorithms. Moreover, if
j = i + ∆i for some i ∈ [1. .d], we feed the active algorithm with ⊥ so that it checks
whether i is a k-mismatch occurrence of P in T and, upon request, outputs Sk

P [i].
Let us argue that this approach is correct from the perspective of a fixed algorithm

Ar. As we process T [1. .sr), the algorithm is passive, and it is fed with subsequent
characters of T . For j = sr − 1, the position i = sr−1 − 1 is the maximum one such
that i + ∆i ≤ j. Consequently, the input T [1. .sr) already satisfies the invariant for
passive algorithms. For subsequent iterations j ∈ [sr. .sr+1), as Ar is active, it receives
⊥ whenever i increases, so its input stays equal to T [1. .sr) · ⊥1+i−sr−1 . The length of
this string is sr + i − sr−1 = i + ∆sr−1 , so the algorithm indeed checks whether i is a
k-mismatch occurrence of P in T at each such iteration (recall that its fixed delay is
∆sr−1), and it satisfies the invariant for active algorithms. Once we reach j = sr+1−1, we
have i = sr − 1 = sr−1 +∆sr−1 − 1, so the input becomes T [1. .sr) · ⊥∆sr−1 , and it already
satisfies the invariant for inactive algorithms. The state of inactive algorithms does not
change, so this invariant remains satisfied as Ar stays inactive indefinitely.

The time and space complexity analysis follows from the fact that t = O(1).

9.3.4.2 Algorithm

We now show how to use the data structure of Lemma 9.3.20 to implement our filtering
procedure using low space. For each j ∈ [1. .⌊log n⌋], let Pj denote the prefix of the
text of length ℓj = 2j, i.e., Pj = T [. .2j]. We search for k-mismatch occurrences of
Pj in Tj = T (3ℓj/2. .4ℓj]. As argued below, this allows filtering positions in (3ℓj. .6ℓj].
Additionally, our choice of (ℓj)j ensures that we do not miss any k-mismatch square when
running our search for every Pj in parallel.

▷ Claim 9.3.21. For each j ∈ [1. .⌊log n⌋], let Occj be the set of k-mismatch occurrences
of Pj in Tj = T (3ℓj/2. .4ℓj]. If hd(T [. .2i],SQ) ≤ k and 2i ∈ [3ℓj. .6ℓj), then p = i− ℓj/2 ∈
Occj. Note that here, p is an index in Tj, and is therefore offset by 3ℓj/2 compared to
indices in T .

Proof. Since ℓj ≤ i, Observation 9.3.16 implies that i+ℓj is a k-mismatch occurrence of Pj

in T . Moreover, when 2i ∈ [3ℓj. .6ℓj), we have 3ℓj/2 ≤ i ≤ 3ℓj; therefore, that k-mismatch
occurrence of Pj is fully contained within Tj, and it ends at positions i+ℓj−3ℓj/2 = i−ℓj/2
of Tj.

In what follows, we use p to denote indices in Tj, whereas i denotes indices in the
original text T . As Tj = T (3ℓj/2. .4ℓj], the correspondence is given by i = p + 3ℓj/2. In
other words, we only need to compute hd≤k(T [. .2i],SQ) when i− ℓj/2 ∈ Occj. As noted
in Property 9.2.4, it suffices to know the sketches skhdk (T (i. .2i]) and skhdk (T [. .i]). We store
skhdk (Pj) = skhdk (T [. .ℓj]) as well as sj = skhdk (T [. .3ℓj/2]) and maintain skhdk (T [. .2i]) in a
rolling manner as we receive the characters of the text.

We use the algorithm of Lemma 9.3.20, asking for k-mismatch occurrences of Pj in
Tj, to report skhdk (Tj[. .i − ℓj]) = skhdk (T (ℓj. .i]) for every i ∈ Occj. The delay sequence
is specified as ∆p = p − ℓj/2 for p ∈ [ℓj. .5ℓj/2) so that the conditions of Lemma 9.3.20
are satisfied. (For p < ℓj, we can assume ∆p = ∆ℓj = ℓj/2; anyway, there cannot be a
k-mismatch occurrence of Pj before position ℓj.) This way, for every i ∈ [3ℓj/2. .3ℓj), we
receive Sk

Pj
[i + ℓj] (which corresponds to a potential k-mismatch occurrence starting at
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position i+1) while processing Tj[p+∆p] for p = i+ℓj−3ℓj/2 = i−ℓj/2. As ∆p = p−ℓj/2,
this corresponds to position p′ = 2p − ℓj/2 in Tj, or position i′ = 2p + ℓj = 2i in T , i.e.,
this happens precisely as we are processing T [2i]. See Fig. 9.1 for an illustration of the
above. If Sk

Pj
[i + ℓj] is blank, we move on to the next position. Otherwise, we retrieve

the sketch skhdk (Tj[. .i]) = skhdk (T (3ℓj/2. .i]), combine it with sj = skhdk (T [. .3ℓj/2]) and
skhdk (T [. .2i]) to obtain skhdk (T [. .i]) and skhdk (T (i. .2i]), and use the latter two sketches to
compute hd≤k(T [. .i], T (i. .2i]), which is equal to hd≤k(T [. .2i],SQ) by Property 9.2.4.

T
3ℓj/2 4ℓji i+ ℓj 2i

Pj P ′

Tj

0

p = i− ℓj/2
∆p = p− ℓj/2

Figure 9.1: Illustration of our filtering procedure. Here, P ′ is a k-mismatch occurrence of
Pj at position i+ℓj in T and position p = i−ℓj/2 in Tj, reported with delay ∆p = p−ℓj/2
in Tj, hence it arrives at time 2i in T .

We proceed with the complexity analysis of our algorithm. The k-mismatch pattern
matching algorithm of Lemma 9.3.20 uses O(k log2 n) bits of space and Õ(k) time per
character, and we maintain O(log n) instances of this algorithm. However, since all the
patterns Pj are prefixes of T , the instances can share the pattern processing phase. More-
over, since any position is contained in at most three fragments T [ℓj. .6ℓj) (each such
fragment follows Pj and contains Tj), at most three instances contribute to the time and
space complexity at any given moment. Thus, the entire algorithm uses O(k log2 n) bits
of space and Õ(k) time per character, which completes the proof of Theorem 9.3.15.

Our streaming algorithm for k-LED-SQ (Theorem 9.3.23) relies on the streaming al-
gorithm for k-LHD-SQ. It requires testing hd(T [. .2i],SQ) ≤ k only for selected positions
i, and thus it benefits from the following variant of Theorem 9.3.15:

Proposition 9.3.22. There is a randomized streaming algorithm that, given a string T ∈
Σn, upon receiving T [2i], can be requested to test whether hd(T [. .2i],SQ) ≤ k and, if so,
report the mismatch information between T [. .2i] and a closest square. The algorithm uses
O(k log2 n) bits of space and processes each character in Õ(

√
k) or Õ(k) time, depending

on whether the request has been issued at that character.

Proof. We follow the algorithm above with minor modifications. First, instead of main-
taining skhdk (T [. .2i]) explicitly, we apply [107, Fact 4.4], which uses O(k log n) bits of space,
takes O(log2 n) time per character, and reports skhdk (T [. .2i]) on demand in O(k log2 n)
time.

To process a request concerning position 2i, we retrieve skhdk (T [. .2i]) and ask the
pattern-matching algorithm of Lemma 9.3.20 to output Sk

Pj
[i] (normally, the algorithm

only reports whether i is a k-mismatch occurrence of Pj in Tj). In this case, we build
skhdk (T [. .i]) and skhdk (T (i. .2i]) as in algorithm above. The decoding algorithm not only
results in hd≤k(T [. .i], T (i. .2i]) = hd≤k(T [. .2i],SQ) but, if hd(T [. .2i],SQ) ≤ k, also the
underlying mismatch information.

The space complexity of the modified algorithm is still O(k log2 n) bits. The running
time is Õ(

√
k) if we do not ask the algorithm to test hd(T [. .2i],SQ) ≤ k and Õ(k) if we

do.



146 9.3. Streaming algorithms

9.3.5 A streaming algorithm for k-LED-SQ

Theorem 9.3.23. There is a randomized streaming algorithm that solves the k-LED-SQ
problem for a string of length n using Õ(k2) bits of space and Õ(k2) time per character.

Let U = T [. .i] be such that ed(U,SQ) ≤ k. By Property 9.2.10, there exist strings
V,W such that U = VW and ed(V,W ) ≤ k. Let G = G(V ) and G′ = G(W ). Under the
assumptions of Fact 9.3.3, we have |G| = |G′| = s and G and G′ differ at at most k indices,
hence the Hamming distance between enc(G)enc(G′) and SQ is at most kµ = Õ(k2).
Therefore, our idea is to use the algorithm of Theorem 9.3.15 with parameter K = kµ to
detect approximate squares in the stream of encoded grammars, and use this information
to find positions i in the text where ed(T [. .i],SQ) ≤ k. We first discuss the reduction to
k-LHD-SQ, and then describe how to use it to solve k-LED-SQ.

Reduction to k-LHD-SQ. Two issues arise for the reduction to k-LHD-SQ: the gram-
mar decomposition of U is not necessarily equal to the concatenation of G and G′, and
adding a character to the text may reduce the size of the decomposition, hence the con-
version of the stream of characters to a stream of grammars is not trivial.

Let G′′ = G(U) and q = |G′′|. We assume w.l.o.g. that q ≥ 8τ (which implies s ≥ 2τ);
otherwise, we store all the grammars in G′′ explicitly (taking O(τµ) = Õ(k) bits of space),
and do not use the following reduction to k-LHD-SQ to find all the differing grammars,
but use exhaustive pairwise comparison.

While G′′ is not necessarily equal to GG′, it follows from Corollary 9.3.5 that they share
long prefixes and suffixes, namely G′′[1. .s− τ ] = G[1. .s− τ ], G′′(q − s+ τ. .q] = G′(τ. .s]
and 2s ≤ q + 2τ . In other words, G′′ is equal to GG′ with at most 4τ = Õ(1) modified,
inserted or deleted grammars. Furthermore, while appending a character to the text may
reduce the number of grammars in its decomposition, right-committed grammars will
not change when appending a character. Therefore, we can build a monotone stream of
grammars by including only right-committed grammars, i.e., grammars whose index has
been at τ positions away from the end of the decomposition at some point.

We decompose G′′ as follows (see Fig. 9.2 for an illustration):

A = G′′[1. .τ ] D = G′′(q − s+ τ. .q − τ ]

B = G′′(τ. .s− τ ] E = G′′(q − τ. .q]

C = G′′(s− τ. .q − s+ τ ]

V

G[1. .τ ] G(τ. .s− τ ] G(s− τ. .s]

W

G′[1. .τ ] G′(τ. .s− τ ] G′(s− τ. .s]

U = VW

G′′[1. .τ ] G′′(τ. .s− τ ] G′′(s− τ. .q − s+ τ ] G′′(q − s+ τ. .q − τ ] G′′(q − τ. .q]

A B C D E

Figure 9.2: Decomposition of U = VW . Dashed lines indicate equal grammar sequences
in the grammar decompositions of U, V or W .

By Corollary 9.3.5, we have the following identities: A = G[1. .τ ], B = G(τ. .s − τ ],
D = G′(τ. .s − τ ], and E = G′(s − τ. .s]. Furthermore, by Fact 9.3.3, hd(B,D) ≤ k,
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where the Hamming distance between two equal-length sequences of grammars is defined
as the number of positions where they differ. A and E are stored explicitly, which takes
O(τ · µ) = Õ(k) space.

Further, for c ∈ [1. .4τ ], define Âc as follows:

Âc =

{
A(τ − c. .], if c ≤ τ,

#c−τA, otherwise,

where # denotes the dummy (empty) grammar.
If G,G′ are two grammar sequences, we define the Hamming distance between G and

G′, denoted hd(G,G′), as the number of indices i = 1, . . . , s, such that G[i] ̸= G′[i] if G
and G′ have the same length s, and +∞ otherwise.

▷ Claim 9.3.24. If ed(U,SQ) ≤ k, then there exists c ≤ 4τ such that hd(ÂcB,CD) ≤
k + 4τ .

Proof. For c = |C| ≤ 4τ , we have |Âc| = c, and hd(ÂcB,CD) = hd(Âc, C) + hd(B,D) ≤
4τ + k.

For each c ∈ [1. .4τ ], we create a stream Tc = ÂcBCD from a stream of ABCD (by ei-
ther dropping the first τ−c+1 values if c ≤ τ , or by inserting c−τ dummy grammars at the
start otherwise) and apply the algorithm for k-LHD-SQ (Theorem 9.3.15) with parameter
K = (k+4τ)µ = Õ(k2) to it, which returns every position where hd(ÂcB,CD) ≤ k+4τ .
We use this information as a filter before testing whether ed(U,SQ) ≤ k.

Finally, notice that E contains τ grammars, which may be more than just the right-
active grammars, as the size of the decomposition may shrink after appending a character.
We only want grammars up to index q−τ to be in the stream of right-committed RLSLPs,
i.e., we need to remove grammars from the stream when the size of the decomposition is
reduced. To circumvent this issue, we simply store the grammars output by the algorithm
for each of the τ latest updates. When the grammar decomposition shrinks, we simply
go back to the corresponding grammars output and proceed from there. This takes
τ · Õ(k2) = Õ(k2) bits of space.

Computing the edit distance between V and W . Using Proposition 9.3.22 and
Fact 9.3.7, we can also retrieve from the algorithm for k-LHD-SQ the list of mismatches
between enc(ÂcBCD) and the closest square, from which we can extract the mismatching
grammars in ÂcB and CD. As we store A explicitly, we can assume to know every
grammar of C.

We would like to compute d = ed≤k(V,W ). Under the assumption of Fact 9.3.3, we
have

ed(V,W ) =
s∑

i=1

ed(eval(G[i]), eval(G′[i]))

= ed(eval(G[. .τ ]), eval(G′[. .τ ]))

+
∑

j:B[j] ̸=D[j]

ed(eval(B[j]), eval(D[j])) + ed(eval(G(s− τ. .]), eval(G′(s− τ. .])).

As for any strings X,X ′, Y, Y ′ we have ed(XY,X ′Y ′) ≤ ed(X,X ′) + ed(Y, Y ′), we can
combine any two terms of the above sum by concatenating the corresponding grammars



148 9.4. Deterministic Read-Only Algorithms for the Hamming Distance Problems

in the eval function. Therefore, we have

ed(V,W ) = ed(eval(EA), eval(G(s− τ. .s]G′[1. .τ ])) +
∑

j:B[j] ̸=D[j]

ed(eval(B[j]), eval(D[j])).

Finally, note that eval(G[s− τ + 1. .s]G′[1. .τ ]) = eval(C) (see Fig. 9.2), and thus we have

ed(V,W ) = ed(eval(EA), eval(C)) +
∑

j:B[j] ̸=D[j]

ed(eval(B[j]), eval(D[j])).

Both eval(EA) and eval(C) can be represented by RLSLPs of size Õ(k) obtained by
concatenating the RLSLPs G[s − τ + 1], . . . , G[s], G′[1], . . . , G′[τ ] and the RLSLPs in C
respectively. We can now apply the algorithm of Ganesh et al. [156] to compute each of
the terms in the sum above in Õ(k2) time and space.

Complexity analysis. Our algorithm runs Õ(1) copies of the algorithm of Theo-
rem 9.3.15 in parallel, with distance parameter K = (k + 4τ)µ = Õ(k2): this uses Õ(k2)
bits of space. Upon receiving the ith character of the text, we use the algorithm of Corol-
lary 9.3.6 to update the decomposition of the text, which takes time Õ(k). We add all
but the last τ grammars to the stream of right-committed grammars. The algorithm of
Corollary 9.3.6 may add up to 4τλ = Õ(1) grammars to the decomposition of the text,
hence we commit at most Õ(1) grammars per character of the text. Note that we only
need to know whether the stream of right-committed grammars is close to a square after
pushing all symbols in the encoding of the grammars, and do not need the intermediate
results. Therefore, we can use the algorithm of Proposition 9.3.22 to push the at most
4τλµ = Õ(k) symbols in the encoding of the grammars into the k-LHD-SQ subroutines
using Õ(k

√
K +K) = Õ(k2) time. After adding all the new right-committed grammars,

if any copy of the k-LHD-SQ algorithm signals that the current stream of grammars is
within distance K of SQ, we run the above algorithm to compute the distance between
T [. .i] and SQ, which costs Õ(k2) time and space.

Finally, the algorithm explicitly stores the RLSLPs in A, the last τ grammars and the
last τ outputs of each k-LHD-SQ subroutine, which uses τµ+τµ+2τµ+τÕ(k2) = Õ(k2)
bits of space in total.

Overall, our algorithm uses Õ(k2) time per character and Õ(k2) bits of space.

9.4 Deterministic Read-Only Algorithms for the Ham-
ming Distance Problems

In this section, we present deterministic read-only algorithms for k-LHD-PAL and k-
LHD-SQ. We start by recalling structural results for k-mismatch occurrences used by the
algorithms.

9.4.1 Structure of k-mismatch occurrences

In exact pattern matching, the structure of occurrences is related to periodicity [134];
in approximate pattern matching, the structure of approximate occurrences is related to
approximate periodicity, which is defined as follows.
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Definition 9.4.1 ([89]). A string U is d-mismatch periodic if there exists a primitive
string Q such that |Q| ≤ |U |/128d and hd(U,Q∞) ≤ 2d. Such a string Q is called the
d-mismatch period of U .

The condition |Q| ≤ |U |/128d implies that Q is equal to some substring of U ; hence,
given the starting and ending positions of Q in U and random access to U , we can simulate
random access to Q. Furthermore, the approximate period of a string is related to the
approximate period of its long prefixes.

Fact 9.4.2 (From [207, Claim 7.1]). Let U and V be strings such that U is a prefix of V ,
and |V | ≤ 2|U |. If U is d-mismatch periodic with d-mismatch period Q, then V either is
not d-mismatch periodic or has the same d-mismatch period Q.

Charalampopoulos et al. [89] showed that the set of k-mismatch occurrences has a
very regular structure:

Fact 9.4.3 (See [89, Section 3]). Let P and T be two strings such that |P | ≤ |T | ≤ 3/2|P |.
1. If P is not k-mismatch periodic, then there are O(k) k-mismatch occurrences of P

in T .
2. If P is k-mismatch periodic with period Q, then any two k-mismatch occurrences

i ≤ i′ of P in T satisfy i ≡ i′ (mod |Q|) and hd(T (i− |P |. .i′], Q∞) ≤ 3k.

They also presented efficient offline algorithms for computing the k-mismatch period
and the k-mismatch occurrences in the so-called PILLAR model, which we briefly present
here. In this model, one is given a family of strings X for preprocessing. The elementary
objects are fragments X[i. .j] of strings X ∈ X . Given elementary objects S, S1, S2, the
PILLAR operations are:

1. Access(S, i): Assuming i ∈ [1. .|S|], retrieve S[i].
2. Length(S): Retrieve the length |S| of S.
3. LCP(S1, S2): Compute the length of the longest common prefix of S1 and S2.
4. LCPR(S1, S2): Compute the length of the longest common suffix of S1 and S2.
5. IPM(S1, S2): Assuming that |S2| ≤ 2|S1|, compute the set of the starting positions

of occurrences of S1 in S2, which by Fine and Wilf periodicity lemma [134] can be
represented as one arithmetic progression.

This model allows abstracting string algorithms in terms of the above operations, without
considering the details of their implementation. The complexity of an algorithm is ex-
pressed in terms of the asymptotic number of PILLAR operations, plus some non-string
operations, such as sorting numbers. Depending on the specific use case, we can choose
an optimized implementation of these operations to minimize complexity, whether in the
RAM model, on a quantum computer, in streaming, etc.

For example, Charalampopoulos et al. [89, Lemma 4.4] showed that the d-mismatch
period of a string u can be computed using O(d) time and space plus O(d) PILLAR
operations. In the read-only model, we can implement all PILLAR operations to run in
linear time using O(logm) bits of space. The first four operations are implemented naively
with linear scans; to implement the IPM operation, we use the algorithm of Rytter [262].
As a corollary, we immediately obtain:

Corollary 9.4.4. Given random access to a string U , testing whether it is d-mismatch
periodic, and, if so, computing its d-mismatch period, can be done using O(d|U |) time and
O(d) space.
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9.4.2 Pattern matching with k mismatches in the read-only model

The above implementation of the PILLAR operations further implies an offline algorithm
that finds all k-mismatch occurrences of P in T in Õ(k2 · |T |) time and Õ(k2) space (see
[89, Main Theorem 8]). Nevertheless, we provide a more efficient online algorithm that
additionally provides the mismatch information for every k-mismatch occurrence of P .

Theorem 9.4.5. There is a deterministic online read-only algorithm that finds all k-
mismatch occurrences of a length-m pattern P within a text T using O(k logm) space and
O(k logm) time per character. The algorithm outputs the mismatch information along
with every reported k-mismatch occurrence of P .

Consistently with the streaming algorithm of [107], our algorithm uses a family of
exponentially-growing prefixes to filter out candidate positions. However, in order to
use the structural properties of Fact 9.4.3 efficiently, we construct a different family P
to ensure that we are either working in an approximately periodic region of the text or
processing an aperiodic prefix.

We first add to P the prefixes Rj = P [. .min{m, ⌊(3/2)j⌋}] for j ∈ [0. .⌈log3/2m⌉]. If
Rj is k-mismatch periodic but Rj+1 is not, we also add to P the shortest extension of Rj

that is not k-mismatch periodic. Hereafter, let P = (Pj)
t
j=1 denote the resulting sequence

of prefixes, sorted in order of increasing lengths, and let ℓj = |Pj| for every j ∈ [1. .t].

▷ Claim 9.4.6. The sequence P = (Pj)
t
j=1 satisfies the following properties:

1. P1 = P [1] and Pt = P ,
2. t = |P| = O(logm),
3. for every j ∈ [1. .t), we have ℓj+1 ≤ 3ℓj/2,
4. for every j ∈ [1. .t), if Pj is k-mismatch periodic with period Qj, then we have

hd(Pj+1, Q
∞
j ) ≤ 2k + 1.

Proof. Properties (1), (2), and (3) are straightforward. For (4), there are two possi-
ble cases: if Pj+1 is k-mismatch periodic, Fact 9.4.2 implies that Pj+1 has the same
k-mismatch period Qj as Pj, that is hd(Pj+1, Q

∞
j ) ≤ 2k. Otherwise, by construction,

Pj+1 is the shortest extension of Pj that is not k-mismatch periodic. By minimality, re-
moving its last character yields a k-mismatch periodic prefix, and by Fact 9.4.2, it has
the same k-mismatch period Qj as Pj, i.e., we have hd(P [. .ℓj+1), Q

∞
j ) ≤ 2k. Adding one

more character to P [. .ℓj+1) can increase the Hamming distance by at most one.

Processing the pattern. We first preprocess the pattern: in this phase, we build the
set P and, for each k-mismatch periodic prefix Pj ∈ P \ {P}, we also compute its k-
mismatch period Qj (represented as a fragment of Pj) and the mismatch information
MI(Pj+1, Q

∞
j ). Below, we describe the preprocessing procedure.

For each index j ∈ [1. .⌈log3/2m⌉], we add the prefix Rj = P [. .min{m, ⌊(3/2)j⌋}] to
P . We apply Corollary 9.4.4 to test whether Rj is k-mismatch periodic and, if so, retrieve
the period Qj and compute MI(Rj, Q

∞
j ) using a linear scan. Then, we extend Rj to the

right while maintaining the mismatch information with the appropriate prefix of Q∞
j . We

proceed until we reach length |Rj+1| or 2k + 1 mismatches, whichever comes first. If we
reach 2k + 1 mismatches before reaching length |Rj+1|, we add the obtained extension
R′

j to P , along with its mismatch information MI(R′
j, Q

∞
j ). Processing a given j takes

O(|Rj+1|k) time and O(k) space, for a total of O(mk) time and O(k logm) space across
j ∈ [1. .⌈log3/2m⌉].
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Processing the text. Our online algorithm processing the text T consists of t = |P|
layers, where the j-th layer reports the k-mismatch occurrences of Pj ∈ P , along with the
corresponding mismatch information.

The first layer, responsible for P1 = P [1], is implemented naively in O(1) space and
time per character. Then, the layer j +1 receives the k-mismatch occurrences of Pj from
layer j and outputs the k-mismatch occurrences of Pj+1. The filtering is based on the
following simple observation:

Observation 9.4.7. If there is a k-mismatch occurrence of Pj+1 at position i in T , then
there is a k-mismatch occurrence of Pj at position i− ℓj+1 + ℓj in T .

In layer j + 1, we partition T into blocks of length b := ⌈ℓj/2⌉ and, for each block
T (rb. .(r+1)b], r = 0, . . . , ⌊m/b⌋, use a separate subroutine to output k-mismatch occur-
rences of Pj+1 at positions i ∈ (rb. .(r+1)b]. This subroutine receives the k-mismatch oc-
currences of Pj at positions i′ = i−ℓj+1+ℓj in the interval (rb−ℓj+1+ℓj. .(r+1)b−ℓj+1+ℓj].
We say that a subroutine is active while the algorithm reads T (rb−ℓj+1+ℓj. .(r+1)b]; since
ℓj+1 ≤ 3

2
ℓj, at most two subroutines are active at any given time. The implementation of

the subroutine depends on whether Pj is k-mismatch periodic or not.

Pj is not k-mismatch periodic. In this case, for every received k-mismatch occur-
rence i′ of Pj, we receive the mismatch information MI(T (i′− ℓj. .i

′], Pj) from the previous
layer, and extend it letter by letter for ℓj+1 − ℓj positions, as long as there are less than
k mismatches. If this is still the case for i = i′ + ℓj+1 − ℓj, we report a k-mismatch
occurrence of Pj+1 and output MI(T (i′ − ℓj. .i], P [. .ℓj + i− i′]) = MI(T (i− ℓj+1. .i], Pj+1).
By Observation 9.4.7, no k-mismatch occurrence of Pj+1 is missed. Moreover, Fact 9.4.3
guarantees that the subroutine receives in total at most O(k) k-mismatch occurrences of
Pj, hence this subroutine uses O(k) space and O(k) time per character.

Pj is k-mismatch periodic with period Qj. In this case, by Fact 9.4.3, the frag-
ment of the text spanned by occurrences of Pj in the active block is similar (within 3k
mismatches) to a prefix of Q∞

j .
More precisely, we consider the leftmost k-mismatch occurrence p ∈ (rb − ℓj+1 +

ℓj. .(r + 1)b − ℓj+1 + ℓj] of Pj; we ignore all subsequent occurrences of Pj. We receive
from layer j the mismatch information MI(T (p − ℓj. .p], Pj): we use the precomputed
MI(Pj, Q

∞
j ) to construct MI(T (p− ℓj. .p], Q

∞
j ); by the triangle inequality, the size of this

set is guaranteed to be at most 3k. Then, as the algorithm receives subsequent characters
of T [i] for i ∈ (p. .(r+1)b], we maintainM = MI(T (p− ℓj. .i], Q

∞
j ) as long as the number

of mismatches does not exceed 6k + 1. Then, if i ≥ p + ℓj+1 − ℓj and i ≡ p + ℓj+1 − ℓj
(mod |Qj|), we extract MI(T (i−ℓj+1. .i], Q

∞
j ) fromM and use the precomputed mismatch

information MI(Pj+1, Q
∞
j ) to compute MI(T (i − ℓj+1. .i], Pj+1). If it is of size at most k,

we report i as a k-mismatch occurrence of Pj+1.
Note that, if Pj is k-mismatch periodic, then we have precomputed MI(Pj+1, Q

∞
j ),

because either Pj+1 is k-mismatch periodic, and by Fact 9.4.2, Pj+1 has the same period
as Pj, or it is not k-mismatch periodic: in this case, it is a minimal aperiodic extension
R′

j of Pj, and we explicitly computed its at most 2k + 1 mismatches to Q∞
j .

As for the correctness, we argue that we miss no k-mismatch occurrence of Pj+1 in
T . Assume that there is such an occurrence at position i ∈ (rb. .(r + 1)b]. First, by
Observation 9.4.7, i− ℓj+1+ ℓj is a k-mismatch occurrence of Pj in T . Furthermore, since
hd(T (i− ℓj+1. .i], Pj+1) ≤ k and hd(Pj+1, Q

∞
j ) ≤ 2k+1, we have hd(T (i− ℓj+1. .i], Q

∞
j ) ≤
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3k + 1. Fact 9.4.3 further implies that i− ℓj+1 + ℓj ≡ p (mod |Qj|) and hd(T (p− ℓj. .i−
ℓj+1], Q

∞
j ) ≤ 3k. Consequently, by the triangle inequality, hd(T (p− ℓj. .i], Q

∞
j ) ≤ 6k + 1,

and thus we compute MI(T (i− ℓj+1. .i], Q
∞
j ) and report i as a k-mismatch occurrence of

Pj+1.
We conclude with the complexity analysis of this case: the working space is O(k),

dominated by the maintained mismatch information. Moreover, whenever we compute
MI(T (i − ℓj+1. .i], Pj), the size of this set is, by the triangle inequality, at most 6k + 1 +
2k + 1 ≤ 8k + 2, and it can be computed in O(k) time.

Complexity analysis. Overall, each subroutine of each level takes O(k) space and
O(k) time per character. Since there are t = O(logm) levels and each level contains at
most two active subroutines, the algorithm takes O(k logm) space and O(k logm) time
per text character.

Furthermore, although our pattern preprocessing algorithm is an offline procedure, we
can run it while the algorithm reads the first m/2 characters of the text. Then, while the
algorithm reads further m/2 characters, it can process two characters at a time to catch
up with the input stream. This does not result in any delay on the output because the
leftmost k-mismatch occurrence of P is at position m or larger.

9.4.3 Read-only algorithm for k-LHD-PAL

In this section, we present an efficient online read-only algorithm for k-LHD-PAL.

Theorem 9.4.8. There is a deterministic online algorithm that solves the k-LHD-PAL
problem for a string of length n using O(k log n) space and O(k log n) worst-case time per
character.

The algorithm uses a filtering approach similar to that of the previous section. The
filtering procedure selects a subset of positions where a prefix close to PAL can end, and
we only need to verify these positions. We use the family P = {Pj = T [. .⌊(3/2)j⌋] : j ∈
[1. .⌊log3/2 n⌋]} of prefixes of the text, and let ℓj = |Pj|, with the convention that ℓ0 = 0.

▷ Claim 9.4.9. Consider an index j ∈ [1. .⌊log3/2 n⌋] and a position i ∈ (2ℓj−1. .2ℓj].
If hd(T [. .i],PAL) ≤ k, then i is a 2k-mismatch occurrence of PR

j in T . Moreover,
hd(T [. .i],PAL) = hd(T (i− i′. .i], Pj[1. .i

′)R) for i′ = ⌊i/2⌋.

Proof. Note that i > 2ℓj−1 ≥ ℓj implies that Pj is a prefix of T [. .i] and, equivalently,
PR
j is a suffix of T [. .i]R. Property 9.2.3 implies 2 · hd(T [. .i],PAL) = hd(T [. .i], T [. .i]R) ≥

hd(T (i − ℓj. .i], Pj). Thus, if hd(T [. .i],PAL) ≤ k, then i is a 2k-mismatch occurrence of
Pj in T . Since T [. .i′] is a prefix of Pj, Property 9.2.3 further implies that

hd(T [. .i],PAL) = hd(T (i− i′. .i], T [. .i′]R) = hd(T (i− i′. .i], Pj[1. .i
′)R).

The algorithm constructs the family P as it reads the text. For each level j, we
implement a subroutine responsible for identifying k-mismatch squares for the form T [. .i]
for i ∈ (2ℓj−1. .2ℓj]. This subroutine searches occurrences of PR

j in T (2ℓj−1. .2ℓj] using the
algorithm of Theorem 9.4.5.

We briefly discuss how to de-amortize the execution of the algorithm of Theorem 9.4.5.
We run the pattern-preprocessing phase of this algorithm as well as its processing of
T [. .2ℓj) while reading T [ℓj. .2ℓj−1). In this phase, we have random access to T [. .ℓj] =
Pj, hence we can simulate random access to PR

j . This first phase requires feeding the
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algorithm 3ℓj characters over 2ℓj−1 − ℓj = ℓj−1/2 = ℓj/3 positions, so we can feed the
algorithm with O(1) characters for every scanned character of T .

Then, while reading T [2ℓj−1. .2ℓj), we feed the pattern-matching algorithm with sub-
sequent characters of T . For every reported 2k-mismatch occurrence i of PR

j in Tj, we
retrieve the mismatch information MI(T (i−ℓj. .i], PR

j ) and obtain MI(T (i−i′. .i], Pj[. .i
′]R)

by removing the entries corresponding to the leftmost ℓj− i′ positions. We report the size
of this set (or k + 1 if the size exceeds k) as hd≤k(T [. .i],PAL).

By Claim 9.4.9, all positions i ∈ (2ℓj−1. .2ℓj] such that hd(T [. .i],PAL) ≤ k pass the
test and the distance hd(T [. .i],PAL) is equal to the size of the set MI(T (i−i′. .i], Pj[. .i

′]R).
As for the complexity analysis, observe that, for each level j, we have j = O(log ℓj), the
pattern-matching algorithm uses O(k · j) space and takes O(k · j) time per character.
Since, at any time, there is a constant number of active levels, the main algorithm uses
O(k log n) space and takes O(k log n) time per character.

9.4.4 Read-only algorithm for k-LHD-SQ

Theorem 9.4.10. There is a deterministic online algorithm that solves the k-LHD-SQ
problem for a string T ∈ Σn using O(k log n) space and O(k log n) worst-case time per
character.

Our algorithm is very similar to the pattern-matching algorithm of Theorem 9.4.5.
We use the same sequence P = (Pj)

t
j=1 of prefixes, now defined as prefixes of T . Again,

we set ℓj = |Pj| for j ∈ [1. .t]. Instead of Observation 9.4.7, we use Observation 9.3.16 to
argue that our filtering procedure is correct.

Computing P. We build P in an online fashion using the procedure described in Sec-
tion 9.4.2, processing letters in batches of constant size so that so that the prefix Pj is
constructed while scanning T (ℓj. .⌈3ℓj/2⌉]. If Pj is k-mismatch periodic with period Qj,
then we also identify Pj+1 and build MI(Pj+1, Q

∞
j ), which has size at most 2k + 1 by

construction of P . Across all indices j ∈ [0. .⌊log3/2 n⌋], the preprocessing algorithm takes
O(k log n) space and time per character (since no two indices are processed simultane-
ously).

Computing the distances. For each level j ∈ [1. .t], we implement a subroutine
responsible for testing whether T [. .i] is a k-mismatch square for even positions i ∈
[2ℓj. .2ℓj+1); this procedure is active as we read T [ℓj. .2ℓj+1). As described above, the
pattern Pj is identified while the algorithm reads T (ℓj. .⌈3ℓj/2⌉] and, if Pj is k-mismatch
periodic, the period Qj and the mismatch information MI(Pj+1, Q

∞
j ) are also computed

at that time.
While reading T [⌈3ℓj/2⌉. .2ℓj), we launch the pattern-matching algorithm of Theo-

rem 9.4.5 to report the k-mismatch occurrences of Pj in Tj = T [ℓj. .ℓj + ℓj+1). As no
such occurrence appears before position 2ℓj in T , we can use the same de-amortization
technique to feed Pj and T [ℓj. .2ℓj) to the algorithm while reading T [ℓj. .2ℓj), feeding O(1)
character per character of the text. Then, while reading T [2ℓj. .ℓj + ℓj+1), we resume to a
normal execution of the pattern matching algorithm, feeding it one character per position
of T .

If the algorithm reports that i′ ∈ [2ℓj. .ℓj + ℓj+1) is a k-mismatch occurrence of Pj in
T with mismatch information MI(Pj, T (i

′ − ℓj. .i
′]), we use this output to decide whether

T [. .2i] is a k-mismatch square, where i = i′ − ℓj. How we utilize this output depends
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on whether Pj is k-mismatch periodic or not: if Pj is not k-mismatch periodic, then Tj

contains O(k) k-mismatch occurrences of Pj and storing them explicitly requires little
space. When Pj is k-mismatch periodic, Tj must exhibit similar periodicity, which we can
use to avoid storing all occurrences explicitly.

Pj is not k-mismatch periodic. In this case, for every received k-mismatch occurrence
i′ of Pj, define i = i′ − ℓj: we store the cardinality Ni,i′ of the mismatch information
Mi,i′ = MI(Pj, T (i. .i

′]). Note that, by definition of Pj,Mi,i′ = MI(T [. .ℓj], T (i. .i
′]). Then,

as the algorithm receives the subsequent characters T [p] for p ∈ (i′. .2i], we compare T [p]
to T [p− i] to compute Ni,p, the cardinality ofMi,p = MI(T [. .p− i], T (i. .p]), from Ni,p−1.
We have:

Ni,p =

{
Ni,p−1 + 1 if T [p] ̸= T [p− i]

Ni,p−1 otherwise.

When p = 2i, we have Mi,p = MI(T [. .i], T (i. .2i]): by Property 9.2.4, Ni,2i is equal to
the distance between T [. .2i] and SQ, and we can report whether T [. .2i] is a k-mismatch
square.

By Observation 9.3.16, no k-mismatch square T [. .2i] is missed. Moreover, Fact 9.4.3
guarantees that there are O(k) k-mismatch occurrences of Pj, and thus we use O(k) space
and O(k) time per character to process all of them.

Pj is k-mismatch periodic with period Qj. In this case, we wait for the leftmost
k-mismatch occurrence i′ ∈ [2ℓj. .ℓj+ℓj+1) of Pj in T and ignore all the subsequent occur-
rences of Pj. Let i = i′ − ℓj. We use the received mismatch information MI(T (i. .i′], Pj)
and the preprocessed mismatch information MI(Pj, Q

∞
j ) to construct MI(T (i. .i′], Q∞

j ); by
the triangle inequality, the size of this set is guaranteed to be at most 3k.

As the algorithm receives subsequent characters of T [p] for p ∈ (i′. .2ℓj+1), we maintain
MI(T (i. .p], Q∞

j ) as long as the number of mismatches does not exceed 6k + 1. Then, for
any even p = 2p′ ≥ 2i such that p′ ≡ i (mod |Qj|), we extract M = MI(T (p′. .p], Q∞

j )
from MI(T (i. .p], Q∞

j ), and extractM′ = MI(T [. .p′], Q∞
j ) from the precomputed mismatch

information MI(Pj+1, Q
∞
j ). We combineM andM′ to compute hd(T [. .p′], T (p′. .p]): if it

is less than k, we report T [. .p] as a k-mismatch square.
For the correctness, by Observation 9.3.16, if T [. .p] is a k-mismatch square, then p′+ℓj

is a k-mismatch occurrence of Pj. Fact 9.4.3 further implies that p′ + ℓj ≡ i′ (mod |Qj|)
and hd(T (i. .p], Q∞

j ) ≤ 3k. Consequently, hd(T (i. .p], Q∞
j ) ≤ 6k + 1, and the position p is

correctly reported.
We conclude with the complexity analysis of this procedure: the working space is O(k),

dominated by the maintained mismatch information which have size O(k). It follows that
the distances can be computed in O(k) time.

Complexity analysis. Overall, each level j takes O(k log n) space and O(k log n) time
per character, dominated by the pattern-matching algorithm of Theorem 9.4.5. However,
since a constant number of levels are processed in parallel at any given time, the entire
algorithm still uses O(k log n) space and O(k log n) time per character overall.
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9.5 Deterministic Read-Only Algorithms for the Edit
Distance Problems

In this section, we present read-only algorithms for k-LED-PAL and k-LED-SQ, and the
edit-distance-related tools required to analyse them: an online read-only algorithm for
k-error pattern matching occurrences and the structural results of k-error occurrences.

9.5.1 Structure of k-error occurrences

Approximate periodicity.

Definition 9.5.1 ([89]). A string U is d-error periodic if there exists a primitive string
Q such that |Q| ≤ |U |/128d and ed(U,Q∞) ≤ 2d. Such a string Q is called the d-error
period of U .4

Similarly to the Hamming distance, the condition |Q| ≤ |U |/128d implies that if U is d-
error periodic with d-error period Q, then Q is equal to some substring of U . Furthermore,
we exploit the following properties:

Fact 9.5.2 ([207]). Suppose that a string X is a prefix of a string Y , where |X| < |Y | ≤
2|X|. If X is k-error periodic with k-error period Q, then either Y is not k-error periodic,
or Y is k-error periodic with k-error period Q.

Lemma 9.5.3. Given random access to a string U , testing whether it is d-error periodic,
and in the relevant case computing its d-error period, can be done using O(|U |d2) time
and O(d) space.

Proof. Consider a partition of U into 4d substrings S1, . . . , S4d of equal length |U |/4d.
At most 2d of them can contain an edit operation, hence the others must be equal to a
substring of Q∞, and as |Q| ≤ |U |/128d = |Si|/32, these Si are (exactly) periodic.

This observation leads to the following algorithm: For i ∈ [1. .4d], we test whether Si

is (exactly) periodic: if it is, we compute its period Q′
i; otherwise, we go to the next i.

Assume that we are in the periodic case, and let pi denote the ending position of Si in U .
We construct the string S ′

i by extending Si to the left with copies of Q′
i until its length

exceeds pi, and test whether there exists an index j such that the edit distance between
U [. .pi] and S ′

i[j. .] is at most 2d. Let Qi be the cyclic left rotation of Q′
i by j mod |Q′

i|
positions: it is a candidate for the d-error period of U . We then test whether the edit
distance between U and (Q′

i)
∞ is at most 2d: in the affirmative case, Qi is a d-error period

of U ; otherwise, we go to the next i. If U is d-error periodic, at least one of the first 2d+1
tests must return the d-error period.

Computing the exact period of a string R can be done in linear time using O(log n) bits
of space, using the algorithm of Rytter [262] to find the first occurrence of R in R[2. .]R.
Computing the index that minimizes the edit distance upper bounded by d can be done
in O(|U |d) time and O(d) space using the classical dynamic programming algorithm for
the edit distance [279]. We process O(d) substrings Si sequentially, hence our algorithm
takes O(|U |d2) time and O(d) space.

4The original definition of [89] considered the distance between U and a substring of Q∞. Changing
it does not break the structure of k-error occurrences, but is important for the read-only algorithms for
k-LED-PAL and k-LED-SQ.
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Structure of approximate occurrences.

Definition 9.5.4 (Chain of k-error occurrences). A sequence C = p1 < · · · < pℓ of k-error
occurrences of P in T forms a chain if the following two conditions are satisfied:

1. There exists an integer q such that p1, . . . , pℓ is an arithmetic progression with dif-
ference q;

2. There exists an integer k′ ≤ k such that for every pi,minj≤pi ed(P, T [j. .pi]) = k′.

The following fact follows from [89, Theorem 5.1, Claim 5.16, Claim 5.17], see also [207,
Corollary III.5]:

Fact 9.5.5. Let P, T be two strings such that |T | ≤ 3/2|P | and T starts and ends with a
k-error occurrence of P . Then one of the following holds:

1. Either there are O(k2) k-error occurrences of P in T , or
2. There is a primitive string Q such that P is 2k-error periodic with 2k-error period

Q, ed(T,Q∞) ≤ 6k, and the occurrences of P in T can be decomposed into O(k3)
chains. For each chain, its difference equals |Q| and the first position in it is within
distance 10k from a multiple of |Q|.

9.5.2 Online deterministic read-only algorithm for finding k-error
occurrences

Fact 9.5.6 ([226]). Given two strings U, V , there is a data structure that can be built
using O(k2) LCP queries, occupies O(k2) space and allows retrieving, for any two prefixes
U ′, V ′ of U, V respectively, the value of ed≤k(U

′, V ′) in O(k) time.

To be able to utilise this fact, we show how to answer LCP queries in k-error periodic
strings:

Lemma 9.5.7. Consider three strings U, V,Q ∈ Σ∗. Assume that Q is a primitive string
and that there exist O(k)-length edit sequences ESU ,ESV between U and Q∞[1. .|U |] and
V and Q∞[1. .|V |], respectively. There is a read-only algorithm that receives as an input
U, V and ESU ,ESV and computes LCP(U [i. .], V [j. .]) in time O(k|Q|) and space Õ(1).

Proof. We can assume w.l.o.g. that U [i] = V [j], otherwise the LCP is 0.
We consider two cases: (1) Both U [i] and V [j] are unedited by the edit sequences; (2)

Either U [i] is edited by ESU or V [j] is edited by ESV .
In the first case, let i′ (resp., j′) be the length of U [1. .i] (resp., V [1. .j]) after we ap-

ply ESU (resp., ESV ) to it. These indices correspond to the position that U [i] and V [j]
have in Q∞. We perform an LCP query on Q∞[i′. .] and Q∞[j′. .]. If i′ = j′ (mod |Q|),
the answer is +∞, and otherwise, we compute the answer in a naive way, comparing
Q∞[i′. .] and Q∞[j′. .] character-by-character. As Q is primitive, we will find a mismatch
after performing O(|Q|) comparisons in the latter case. Let ℓ = LCP(Q∞[i′. .], Q∞[j′. .]).
If the prefixes of length ℓ of U [i. .] and V [j. .] are unedited by ESU and ESV , then
LCP(U [i. .], V [j. .]) = min{ℓ, |U [i. .]|, |V [j. .]|}. Otherwise, let tU and tV be indices such
that i+ tU (resp. j+ tV ) is the leftmost edited character in U [i. .] (resp. in V [j. .]), and let
t = min{tU , tV }: the LCP is equal to t− 1+ LCP(U [i+ t. .], V [j+ t. .]), which we compute
recursively.

Consider now the second case, when one of U [i] or V [j] is affected by an edit operation.
As U [i] = V [j], the LCP is equal to 1+ LCP(U [i+1. .], V [j+1. .]), which we can compute
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with a recursive call. As the edit sequences have length O(k), this case can occur at most
O(k) times.

An LCP query in Q∞ (the first case) takes O(k) time and is either the last step of the
algorithm or is followed by a call to the second case of the algorithm. As the second case
happens O(k) times, the algorithm takes O(k|Q|) time.

Lemma 9.5.8. There is a deterministic online read-only algorithm that finds all k-error
occurrences of a length-m pattern P in a text T using Õ(k4) bits of space and Õ(k4)
amortized time per character.

Proof. We prove that, for every d ∈ Z≥0, there is an algorithm reporting the k-error
occurrences with a delay exactly d.

If d ≥ m
4
, then we partition the text into disjoint blocks of b = ⌊m

4
⌋ characters.

Consider a block T (r−b. .r]. Having processed T [r+d−b], we use the offline algorithm [89,
Main Theorem 9] to retrieve the k-error occurrences of P ending within the block T (r −
b. .r], reported as O(k3) chains. This costs Õ(bk4) time and uses Õ(k4) space. For every
i ∈ (r−b. .r], while processing T [i+d], we check if any of the chains contain an occurrence
ending at position i and, if so, report the underlying distance minj ed≤k(P, T (j. .i]).

Now, suppose that k ≤ d < m
4
. We partition P into a prefix L = P [1. .m − 4d] and

a suffix R = P (m − 4d. .m]. We recursively report the occurrences of L with a delay of
5d− k ≥ 4d and store them in a buffer of size 2k + 1. In particular, while the algorithm
processes T [i+d], we have access to minj ed≤k(L, T (j. .i

′]) for all i′ ∈ [i−4d−k. .i−4d+k].
We also partition the text into disjoint blocks of d characters. Consider a block T (r−d. .r].
Having received the entire block, we use the offline algorithm [89, Main Theorem 9] to
retrieve the k-error occurrences of R ending within the block T (r − d. .r], reported as
O(k3) chains. This costs Õ(dk4) time and uses Õ(k4) space. If R is far from periodic,
it has O(k2) occurrences. Otherwise, R has a 2k-error period Q and, if p and p′ are the
leftmost and rightmost positions in T (r− d. .r] where the reported occurrences end, then
T (p−4d−k. .p′] is at edit distance O(k) from a substring of Q∞. In that case, we retrieve
the underlying edits as well as the O(k) edits between R and a substring of Q∞. In either
case, while processing T [i+ d], if a k-edit occurrence of R ends at position i, we compute
ed≤k(R, T (i′. .i]) for all i′ ∈ [i− 4d− k. .i− 4d+ k] using Fact 9.5.6. In the non-periodic
case, we use the naive O(d)-time implementation of LCP queries. This costs O(dk2) time
per occurrence and O(k4) amortized time per position. Otherwise, we use the O(|Q| · k)-
time implementation of LCP queries; see Lemma 9.5.7. This costs O(|Q| · k3) time per
occurrence and, since there are O(k) occurrences per every |Q| positions, O(k4) amortized
time per position as well. We can combine ed≤k(R, T (i′. .i]) with minj ed≤k(L, T (j. .i

′])
(minimizing over i′ ∈ [i− 4d− k. .i− 4d+ k]) to obtain minj ed≤k(P, T (j. .i]).

Finally, if d < k, we partition P into a prefix L = P [1. .m − 4k] and a suffix R =
P (m−4k. .m]. We recursively report the occurrences of L with a delay of d+3k > 4d and
store them in a buffer of size 2k+1. In particular, while the algorithm processes T [i+d], we
have access to minj ed≤k(L, T (j. .i

′]) for all i′ ∈ [i− 5k. .i− 3k]. While processing T [i+ d],
we compute ed≤k(R, T (i′. .i]) for all i′ ∈ [i−5k. .i−3k] using Fact 9.5.6 and the naive O(k)-
time implementation of LCP queries. This costs O(k3) time per position. We can combine
ed≤k(R, T (i′. .i]) with minj ed≤k(L, T (j. .i

′]) (minimizing over i′ ∈ [i− 4d− k. .i− 4d+ k])
to obtain minj ed≤k(P, T (j. .i]).

At each level of the recursive algorithm, we use Õ(k4) space and amortized time per
character. The recursive calls decrease the pattern length and increase the delay by a
factor of at least 4, so the depth of the recursion is O(logm).
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9.5.3 Read-only algorithm for k-LED-PAL

Theorem 9.5.9. There is a deterministic online read-only algorithm that solves the k-
LED-PAL problem for a string of length n using Õ(k4) bits of space and Õ(k4) time per
character.

Consider a family P = {Pj : Pj = T [. .2j], j ∈ [1. .⌊log n⌋]} of prefixes of the text. For
each j, define ℓj = |Pj|, Tj = T [. .ℓj+1), and Occj to be the set of 2k-error occurrences
of PR

j in Tj at position greater than or equal to ℓj. Using Lemma 9.5.3, we can decide
whether Pj is 2k-error periodic and if it is, compute its 2k-error period Qj in O(|Pj|k2)
time and O(k) space. Using Ukkonen’s algorithm [279], we can also compute a O(k)-
length edit sequence ESj from Pj to (Qj)

∞ in O(k) amortized time per character and
Õ(k2) space.

▷ Claim 9.5.10. If ed(T [. .i],PAL) ≤ k, then i ∈ Occj∗ for j∗ = max{j : ℓj ≤ i}.

Proof. By Corollary 9.2.9, ed(T [. .i], T [. .i]R) ≤ 2k. We also have ℓj ≤ i ≤ 2ℓj − 1. Hence,
i ∈ Occj.

Define i′ = ⌊i/2⌋. By Corollary 9.2.9, to decide the edit distance between T [. .i] and
PAL, it suffices to compute

e = min
j∈[i′−k. .i′+k]

{min{ed≤k(T [. .j], T [j + 1. .]R), ed≤k(T [. .j], T [j + 2. .]R)}}.

We will only compute this value if the index i is in the set Occ′j∗ , a superset of Occj∗ that
we define below, and otherwise we will output k + 1.

For each j, we run the online algorithm of Lemma 9.5.8 that uses Õ(k4) amortized time
per character and Õ(k4) space to find the set Occj of k-error occurrences of PR

j in Tj. We
start it immediately after receiving T [ℓj] and catch up by processing the first ℓj characters
of Tj at once to be online. If Pj is not 2k-error periodic, then by Fact 9.5.5, |Occj| = O(k2)
and we define Occ′j = Occj. If Pj is 2k-error periodic, let pj be the leftmost position in
Occj, and rj the largest integer such that ed(T [pj. .pj + rj · |Qj|], (QR

j )
∞) ≤ 12k. Define

Occ′j = {pj +m · |Qj| + ∆ : 0 ≤ m ≤ rj, |∆| ≤ 10k}. By Fact 9.5.5, Occ′j ⊇ Occj. The
integer rj can be computed by running an instance of Ukkonen’s online algorithm [279]
for T [pj + 1. .] and (QR

j )
∞, which takes O(k) amortized time per character and Õ(k2)

space. If i ≤ pj + rj · |Qj| is the current position, the algorithm also allows extracting an
O(k)-length edit sequence ES′

j between T [pj. .i] and (QR
j )

∞ in O(k) time.

Computing the distances. Let i be the current position and j∗ = max{j : ℓj ≤ i}.
Assume that i ∈ Occ′j. If Pj is not 2k-error periodic, we compute e using k instances
of Ukkonen’s online algorithm [279], which takes O(k2) amortized time per character in
total and Õ(k2) space. Otherwise, the value e is computed as follows. First, if i = pj,
we run another instance of Ukkonen’s online algorithm [279] to compute an O(k)-length
edit sequence ES′′

j between T (pj − ℓj − k. .pj] and (QR
j )

∞, which must exist as pj is a
2k-error occurrence of PR

j and Pj is k-error periodic with period Qj. This takes O(k)

amortized time and Õ(k2) space. Now, to compute the value e, we extract O(k)-length
edit sequences between T [1. .ℓj + k] and Q∞

j and between T (i − ℓj − k. .i] and (QR
j )

∞

in O(k) time from ESj, ES′
j, and ES′′

j , and then apply Fact 9.5.6 and Lemma 9.5.7 to
compute e in O(k3|Qj|) time and Õ(k2) space.
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Summary. The algorithm of Lemma 9.5.8 uses Õ(k4) amortized time per character and
Õ(k4) space. Processing aperiodic prefixes costs Õ(k2) amortized time per character and
Õ(k2) space. To upper bound the complexity of processing periodic prefixes, note that
we test O(k) positions out of |Qj|, and therefore use O(k4) amortized time per character
and Õ(k2) space.

9.5.4 Read-only algorithm for k-LED-SQ

Theorem 9.5.11. There is a deterministic online read-only algorithm that solves the k-
LED-SQ problem for a string of length n using Õ(k4) bits of space and Õ(k4) amortized
time per character.

We first define a filtering family of prefixes P of the text. Start by considering the
prefixes Rj = T [. .⌊(3/2)j⌋], j ∈ [1. .⌊log3/2 n⌋]. If Rj is k-error periodic but Rj+1 is not,
add to P the shortest extension of Rj that is not k-error periodic. Hereafter, let P = {Pj}
denote the resulting family of prefixes, sorted in order of increasing lengths. For each j,
let ℓj = |Pj|, Tj = T [1. .ℓj+1+ ℓj], and Occj the set of 3k-error occurrences of Pj in Tj. We
build P as we read T . When T [ℓj] arrives, we add Rj to Pj and launch an instance of the
patter-matching algorithm for Tj to compute Occj (we process the first ℓj characters of Tj

at once to be online). Finally, we apply Lemma 9.5.3 to test Rj for 3k-error periodicity,
which requires O(k2) amortized time and Õ(k) space. If Rj is 3k-periodic, the lemma
also allows to compute the period Qj of Rj. We finish by computing the longest 3k-
error periodic extension R′

j of Rj: by Fact 9.5.2, the 3k-error period of R′
j equals Qj and

therefore we can compute R′
j by running Ukkonen’s algorithm [279] on T and Qj, which

requires O(k) amortized time and Õ(k2) space. The algorithm also outputs O(k)-length
edit sequence ESj between R′

j and Q∞
j [1. .|R′

j|].

▷ Claim 9.5.12. If ed(T [. .i],SQ) ≤ k, then i′ + ℓj∗ ∈ Occj∗ , where i′ = ⌊i/2⌋ and j∗ =
max{j : ℓj + ⌈k/2⌉ ≤ i′}. Furthermore, if Pj∗ is 3k-periodic, then ed(T (i′ + ℓj∗ . .i], Q

∞
j∗) ≤

10k + 1.

Proof. By Corollary 9.2.11, we have ed(T [. .i′+t], T [i′+t+1. .i]) ≤ k for some t, |t| ≤ ⌈k/2⌉.
As Pj∗ is a prefix of T [. .i′ + t], we have ed(Pj∗ , T [i

′ + t+1. .i′ + t+ ℓj∗ +∆]) ≤ k for some
−k ≤ ∆ ≤ k and therefore by the triangle inequality ed(Pj∗ , T [i

′+ t+1. .i′+ ℓj∗ ]) ≤ 3k. It
follows that ℓj∗ < i′ + ℓj∗ ≤ ℓj∗+1 + ℓj∗ is a 3k-error occurrence of Pj∗ and hence i′ + ℓj∗ ∈
Occj∗ . To show the second part of the claim, note that i′ + t ≤ ℓj∗+1 + k. Additionally,
by the construction of P and Fact 9.5.2 we have ed(Pj∗ , (Qj∗)

∞) ≤ 7k + 1. Applying the
triangle inequality one more time, we obtain that ed(T [i′ + t + 1. .i], (Qj∗)

∞) ≤ 10k + 1,
as removing equal-length suffixes of both strings cannot increase the edit distance.

By Corollary 9.2.11, to get the edit distance between T [. .i] and SQ, it suffices to
compute the value e = minj∈[i′−k. .i′+k] ed≤k(T [. .j], T (j. .]). We will only compute this
value if i′ + ℓj∗ ∈ Occ′j∗ ⊇ Occj∗ to be defined below, and otherwise we output k+1. The
set Occ′j∗ is defined differently depending on whether Pj is 3k-error periodic.

If Pj is not 3k-error periodic, Occ′j∗ = Occj∗ and by Fact 9.5.5, occupies Õ(k2) space.
Using Lemma 9.5.8, Occ′j∗ can be computed in Õ(k4) amortized time per character and
Õ(k4) space. If Pj is 3k-error periodic with a period |Qj|, Occ′j∗ is defined to be {pj∗ +
t · |Qj∗| + ∆ : 0 ≤ t ≤ rj∗ , |∆| ≤ 10k}, where pj∗ is the leftmost position in Occj∗ and
rj∗ is the largest integer such that ed(T [pj∗ . .pj∗ + rj∗ · |Qj∗|], (QR

j∗)
∞) ≤ 2 · (10k + 1).

By Fact 9.5.5 and Claim 9.5.12, Occ′j∗ ⊇ Occj∗ . The set Occ′j∗ is computed as follows in



160 9.5. Deterministic Read-Only Algorithms for the Edit Distance Problems

this case: First, we identify pj∗ using Lemma 9.5.8. Then, we launch Ukkonen’s online
algorithm [279] to compute rj∗ , which takes O(k2) amortized time per character and Õ(k2)
space. This procedure also returns an edit sequence ES′

j∗ of length at most 2 · (10k + 1)
between T [pj∗ . .pj∗ + rj∗ · |Qj∗|] and (QR

j∗)
∞.

Computing the distances. Consider the moment when T [i] arrives. Let i′ = ⌊i/2⌋
and j∗ = max{j : ℓj + ⌈k/2⌉ ≤ i′}. If i′+ ℓj∗ /∈ Occ′j∗ , the algorithm outputs k+1. Below
we assume i′ + ℓj∗ ∈ Occ′j∗ .

If Pj∗ is not 3k-error periodic, we compute e = minj∈[i′−k. .i′+k] ed≤k(T [. .j], T (j. .]) by
running k instances of Ukkonen’s algorithm [279]. As |Occ′j∗| = O(k2), testing all positions
in Occ′j∗ requires Õ(k) space and O(k4) amortized time per character in total.

Otherwise, we compute e as follows. If i′+ ℓj∗ = pj∗ , we use one instance of Ukkonen’s
algorithm [279] to compute an O(k)-length edit sequence ES′′

j∗ between T [i′. .i′+ ℓj∗ ]
R and

Q∞
j [1. .ℓj∗ ]. For each j ∈ [i′−k. .i′+k], we first extract O(k)-edit sequences between T [1. .j]

and (Qj∗)
∞[1. .j] and between T (j. .i] and (Qj∗)

∞[1. .j − i] from ESj∗ , ES′
j∗ , and ES′′

j∗ in
O(k) time, and then apply Fact 9.5.6 and Lemma 9.5.7 to compute ed≤k(T [. .j], T (j. .])
using O(|Qj∗|k3) time and O(k2) space.

Summary. Computing P takes Õ(k) amortized time per character and Õ(k2) space.
The algorithm of Lemma 9.5.8 takes Õ(k4) amortized time per character and Õ(k4) space.
Processing aperiodic prefixes requires O(k4) amortized time per character and Õ(k) space.
Processing periodic prefixes takes O(k4) time and O(k2) space as by the definition of Occj
we test O(k) positions out of |Qj|.



Chapter 10

Small-space algorithms for Palindromic
Length

10.1 Introduction

A palindrome is a non-empty string that equals its reversed copy, i.e., a string that reads
the same both forward and backward. Throughout this work, we denote the language
of palindromes by PAL, and the language of concatenations of k palindromes by PALk =
{P1P2 . . . Pk : Pi ∈ PAL, 1 ≤ i ≤ k}, for any k ∈ N+.

Recognizing PALk appeared to be and intricate problem. Galil and Seiferas [148]
succeeded to design linear-time recognition algorithms for the cases k = 1, 2, 3, 4, but the
general question remained open for almost 40 years. Only in 2015, Kosolobov et al. [216]
showed an O(nk)-time recognition algorithm for PALk for all positive k, which was finally
improved to the optimal O(n) time by Rubinchik and Shur [257] in 2020. A related
question is that of computing the palindromic length of a string T , which is defined to
be the smallest integer k such that T ∈ PALk. The first O(n log n)-time algorithms for
computing the palindromic length were presented in [133, 179, 256]. Finally, Borozdin,
Kosolobov, Rubinchik, and Shur [76] showed an optimal O(n)-time algorithm for this
problem.

Our contributions. In this work, we turn our attention to the space complexity of
recognizing PALk and computing the palindromic length. We start by presenting a char-
acterization of prefixes of a given string that belong to PALk. For k = 1, we refer to
these prefixes as prefix-palindromes, and otherwise as k-palindromic prefixes. A crucial
component of the linear time algorithm by Borozdin et al. [76] is the following well-known
property: the prefix-palindromes of a length-n string can be expressed as O(log n) arith-
metic progressions. If x + a · q with a ∈ {1, . . . , u} is such a progression, then there are
strings X of length x and Q of length q such that XQa is a prefix-palindrome, for every
a ∈ {1, . . . , u}. The arithmetic progression can be encoded in O(1) space, as it suffices to
store x, q, and u.

In order to encode k-palindromic prefixes, we generalize arithmetic progressions to
so-called affine prefix sets of order k. Intuitively, such a set consists of prefixes of the
form XQa1

1 Qa2
2 . . . Qak

k with ∀i ∈ [1, k] : ai ∈ {1, . . . , ui}. That is, rather than a single
repeating substring Q, we allow multiple different substrings Qi of different lengths. An
affine prefix set of order k can then be encoded in O(k) space. By carefully analyzing the
rich structure of periodic substrings induced by k-palindromic prefixes, we show that the
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k-palindromic prefixes can be expressed by a small number of affine prefix sets.

Theorem 10.1.1. Let 0 < ϵ < 1 be constant. Let T be a string of length n and let k ∈ N+.
The set of prefixes of T that belong to PALk is the union of O(6k

2/(2−ϵ) · logk n) affine prefix
sets, each of order at most k.

Surprisingly, this representation is within polylog(n)-factors of the optimal encoding,
at least for small values of k. We show the lower bound by explicitly constructing a large
family of strings that can be uniquely identified by their palindromic prefixes:

Theorem 10.1.2. Let T be a string of length n and let k ∈ N+. Encoding the lengths of
the prefixes of T that belong to PALi, for each i ∈ [1, k], requires Ω(k−k · (log3 n)k) bits of
space.

As our final contribution, we derive a small-space read-only algorithm for constructing
the affine prefix sets of Theorem 10.1.1. Particularly, we show how to compute a small-
space representation of the i-palindromic prefixes of T for each i ≤ k. Recall that, in
the read-only model of computation, one has constant-time random access to the input
string. The space complexity of the algorithm is the space used beyond storing the input
string.

Theorem 10.1.3. Let 0 < ϵ < 1 be constant. Given a string T of length n and k ∈ N+,
there is a read-only algorithm that returns a compressed representation of all prefixes of T
that belong to PALi, for each i ∈ [1, k], in O(n·6k2/(2−ϵ) ·logk n) time and O(6k

2/(2−ϵ) ·logk n)
space.

As a corollary, we derive a parametrized read-only algorithm for computing the palin-
dromic length.

Theorem 10.1.4. Given a string T of length n, there is a read-only algorithm that com-
putes the palindromic length k of T in O(n · 6k2 · log⌈k/2⌉ n) time and O(6k

2 · log⌈k/2⌉ n)
space.

In particular, for k = O(log log n), the algorithm uses n logO(k) n time and logO(k) n
space, and for k = o(

√
log n), it uses n1+o(1) time and sublinear no(1) space. In the

regime of small palindromic length, this is an improvement over all previously-known
algorithms [76, 257], which require Ω(n) space. It remains an intriguing open question
whether it is possible to achieve both optimal linear time and sublinear space.

Note however that the lower bound of Theorem 10.1.2 does not imply a lower bound
for our read-only algorithm as it has access to the input, and even more so for an algorithm
that computes only the palindromic length of the input. On the other hand, proving an
Ω(logf(k) n) space lower bound for a read-only algorithm might be well beyond the current
techniques: the only lower bound technique for read-only string processing algorithms the
authors are aware of is based on deterministic branching programs [75], and it shows that
any read-only algorithm for computing the longest common substring of two strings that
works in sublinear space must use slightly superlinear time; formally, an algorithm that
uses O(τ) space requires Ω(n

√
log(n/τ log n)/ log log(n/τ log n)) time [204].

Related work. Berenbrink, Ergün, Mallmann-Trenn, and Azer [60] initiated a study
of the space complexity of computing the longest palindromic substring of a string in
the streaming model, where the input arrives letter by letter and the space complexity is
defined as the total space used, including any information an algorithm stores about the
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input. They developed the first trade-offs between the bound on the error and the space
complexity for approximating the length of the longest palindrome with either additive
or multiplicative error, which were sequentially tightened by Gawrychowski, Merkurev,
Shur, and Uznanski [161].

Amir and Porat [31] gave the first streaming algorithm for computing all approximate
prefix-palindromes of a string. Namely, given an integer parameter k, their algorithm
computes all prefixes within Hamming distance k from PAL. Bathie, Kociumaka, and
Starikovskaya [49] improved their result for the Hamming distance and expanded it to the
edit distance and the read-only setting (these results are presented in Chapter 9).

The problem of recognizing formal languages in small space has been also studied
for regular languages, see [123, 150, 151, 152, 154], the Dyck language (the language
of well-parenthesized expressions), see [185, 219, 232], for visibly pushdown languages (a
language class strictly in-between the regular and context-free languages with good closure
and decidability properties [27]), see [47, 142, 149], general context-free languages [153],
and for DLIN and LL(k), see [41].

Roadmap. The remainder of the chapter is structured as follows. In Section 10.2, we
introduce notation, basic definitions, and auxiliary lemmas. We then show the lower
bound for encoding palindromic prefixes in Section 10.3. The space efficient encoding
is presented in two steps. First, in Section 10.4, we describe affine prefix sets, their
fundamental properties, and how they are related to the structure of periodic substrings.
Then, in Section 10.5, we show how to encode the k-palindromic prefixes using affine
prefix sets of order k, inductively assuming that the (k − 1)-palindromic prefixes are
already given as a union of affine prefix sets of order k − 1. Finally, the algorithms from
Theorem 10.1.3 and Theorem 10.1.4 are described in Section 10.6.

10.2 Preliminaries
Series, strings, and substrings. A series a1, b1, c1, a2, b2, c2, . . . , at, bt, ct is denoted by
(ai, bi, ci)

t
i=1. The empty series is denoted by ε. We use the dot-product to denote the

concatenation of two series, e.g., (ai, bi, ci)ti=1 = (ai, bi, ci)
t−3
i=1 ·(ai, bi, ci)ti=t−2. We may omit

the subscript and superscript for series of length one, e.g., (a1, b1, c1) = (ai, bi, ci)
1
i=1.

In this chapter, we use the string-related definitions and notations introduced in Sec-
tion 2.1, with the following modifications. We may call a substring T [i. .j] a fragment of
T to emphasize that we mean the specific occurrence of T [i. .j] that starts at a position i.
For example, in the string T = abcabc, the substrings T [1. .3] and T [4. .6] are identical,
but T [1. .3] and T [4. .6] are distinct fragments of T . Furthermore, when introducing a
string S, we may simply say “let S[1. .m] be a string” for “let S be a string of length m”.

Rational powers of strings. In this chapter, we extend the notation of string powers to
some rational numbers. Recall that for a non-negative integer m, the notation Qm denotes
the string obtained by concatenating m copies of Q. We extend this idea to non-negative
rational exponents α ∈ Q, for which we write Tα to denote T ⌊α⌋ · T [1. .(αn mod n)]. We
only use this notation if αn ∈ N. For example, (abcdef)4/3 = abcdefab.

Palindromes and periodicities. Recall that for a string T [1. .n], we write rev(T ) to
denote its reverse, i.e., rev(T ) = T [n]T [n−1] · · ·T [1]. We then say that T is a palindrome
if and only if T is non-empty and T = rev(T ). The set of all palindromes is denoted by
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PAL. For a positive integer k, the set PALk contains all the strings that can be written as
the concatenation of exactly k palindromes. We refer to such strings as k-palindromic; the
smallest k such that T is k-palindromic is called the palindromic length of T . If a string
P is a one-palindromic prefix of another string T , we also refer to it as prefix-palindrome
of T .

A string T [1. .n] has period p ∈ N if ∀i ∈ [1, n − p], T [i] = T [i + p], or equivalently
if T [1. .n − p] = T (p. .n]. The string T [1. .n − p] = T (p. .n] is a border of T . If T has
period p ≤ n/2, then we say that T is p-periodic. The smallest period of p is called the
period of T . If T is p-periodic, then it can be written as T = P ⌊n/p⌋P [1. .n mod p], where
P = T [1. .p]. Alternatively, using the rational exponent, we have T = P n/p.

We now provide some simple auxiliary lemmas regarding periodic string and palin-
dromes.

Lemma 10.2.1. For a primitive string Q, the period of Q2 is |Q|.
Proof. Let q = |Q|. If Q2 has period q′ < q, then Fact 2.1.1 implies that p = gcd(q′, q) < q
is a period of Q2, hence also of Q. Then, however, it holds that Q = Q[1. .p]q/p, and q/p
is an integer as p divides q, which contradicts the fact that Q is primitive.

Lemma 10.2.2. If a palindrome P has a q-periodic prefix of length m ≥ 3q/2, then either
P is q-periodic, or |P | > 2m− q.

Proof. Since P is a palindrome, it does not only have a q-periodic prefix of length m, but
also a q-periodic suffix of length m. If |P | ≤ 2m − q, then the periodic prefix overlaps
the periodic prefix by at least q letters, and hence it is easy to see that the entire P is
q-periodic.

Lemma 10.2.3. Let Q be a string with suffix S and prefix P . For any positive integer x,
the string SQxP is a palindrome if and only if rot|P |−|S|(Q) = rev(Q).

Proof. Let q = |Q|, s = |S|, p = |P |, Q = rev(Q), S = rev(S), and P = rev(P ). We first
assume s ≤ p and show that SQxP is a palindrome if and only if rotp−s(Q) = rev(Q).
The individual steps are explained below.

P ·Qx · S = S ·Qx · P ⇐⇒ (i) P ·Qx
= S ·Qx · P [1. .p− s]

⇐⇒ (ii) P ·Q = S ·Q[1. .p− s] · rotp−s(Q)

⇐⇒ (iii) Q = rotp−s(Q).

For (i), the (⇒)-direction is trivial, as we merely trim a suffix of length s on both sides.
For the (⇐)-direction, P ·Qx

= S ·Qx ·P [. .p−s] with s ≤ p implies that S is a prefix of P ,
which means that S is a suffix of P . Hence S = P [p− s+ 1. .p], and the (⇐)-direction of
(i) follows. For step (ii), we use the fact that P is a prefix of Q. Finally, the (⇒)-direction
of (iii) is trivial, as we trim a prefix of length p on both sides. For the (⇐)-direction,
note that Q = rotp−s(Q) can be rewritten as

Q[. .q − p] · P = Q[p− s+ 1. .q] ·Q[. .p− s].

By trimming a prefix of length q − p on both sides, we obtain

P = Q[q − s+ 1. .q] ·Q[. .p− s] = SQ[. .p− s].

Hence Q = rotp−s(Q) implies P ·Q = SQ[. .p− s] · rotp−s(Q), and the (⇐)-direction of
(iii) follows.
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If s > p, then we simply invoke the lemma with Q′ = Q, which has suffix S ′ = P of
length s′ = p and prefix P ′ = S of length p′ = s with s′ < p′. We have already shown the
correctness of the lemma for this case. Thus, S ′(Q′)xP ′ = rev(SQxP ) is a palindrome if
and only if rotp′−s′(Q′) = rev(Q′), which is equivalent to rot−(s−p)(Q) = Q.

Corollary 10.2.4. Let y be a positive integer, let Q be a string, and let S and P be
respectively a suffix and a prefix of Qy. Let x be a positive integer, then SQxP is a
palindrome if and only if rot|P |−|S|(Q) = rev(Q).

Proof. Let q = |Q|, s = (|S| mod q), p = (|P | mod q), x′ = ⌊|S|/q⌋ and x′′ = ⌊|P |/q⌋.
Using these notations, we have S = Q[q − s + 1. .]Qx′ and P = Qx′′

Q[. .p]. Hence,
by Lemma 10.2.3, SQxP = Q[q − s + 1. .]Qx′+x+x′′

Q[1. .] is a palindrome if and only if
rotp−s(Q) = rev(Q). Note that |P | − |S| = q · (x′′ − x′) + p − s, hence |P | − |S| = p − s
(mod q) and thus rot|P |−|S|(Q) = rotp−s(Q), which concludes the proof.

10.3 Lower Bound
We now show that the size of our representation of k-palindromic prefixes is close to
optimal when k is small. For constant k, we are within an O(log n) factor of the optimal
space (where the lower bound is Ω(logk n) bits, while our representation requires O(logk n)
words). For k = O(

√
log log n), we are within an O(polylog(n)) factor of the lower bound.

Theorem 10.1.2. Let T be a string of length n and let k ∈ N+. Encoding the lengths of
the prefixes of T that belong to PALi, for each i ∈ [1, k], requires Ω(k−k · (log3 n)k) bits of
space.

For some string X and positive integer s, let PalPrefs(X) ⊆ [1, |X|]× [1, s] be defined
such that (i, r) ∈ PalPrefs(X) if and only if r ≤ s is the palindromic length of X[..i].
We will provide a lower bound for the space needed to encode PalPrefs(X). For this
purpose, we construct for any integers t, s ≥ 1 a family of strings F (t, s) with the following
properties:

1. for every X ∈ F (t, s), |X| = 3t+s, and
2. we have |F (t, s)| ≥ 2b(t,s), where b(t, s) ≥

(
t+s
s

)
, and

3. the function fs(X) = PalPrefs(X) is injective on F (t, s), and its inverse is com-
putable.

Due to the second property, we can bijectively map all the possible bitstrings of length
b(t, s) to a subset of F (t, s), and hence encoding an element of F (t, s) requires at least
b(t, s) bits of space in the worst case. Assume that, for some string X ∈ F (t, s), we
are given the sets PALi(X) for every i ≤ s. From these sets, we can easily construct
PalPrefs(X). By the third property, we can then compute X = f−1

s (PalPrefs(X)). Hence
the sets uniquely encode X, which implies that they cannot be stored in fewer than b(t, s)
bits of space. If we let s = k and use n = 3t+k for any t ≥ 1, this bound is at least(
log3 n

k

)
≥ ((log3 n)/k)

k bits.

Recursive construction of F (t, s). For t ≥ 1 and s ≥ 1, we define

F (t, 1) = {aib3t+1−2iai : i = 1, . . . , 2t+1} where a, b are distinct letters in Σ, and
F (1, s) = {UV U : U, V ∈ F (1, s− 1)} when s ≥ 2, and
F (t, s) = {UV U : U ∈ F (t− 1, s) ∧ V ∈ F (t, s− 1)} when t, s ≥ 2.
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Note that F (t, 1) is well-defined, as t ≥ 1, hence 2t+2 < 3t+1. In the above definition
of F (1, s) and F (t, s), U and V are encoded on two disjoint copies of the alphabet, i.e.
strings of F (t, s) are defined over an alphabet of size 2s+t−1.

Properties of F (t, s). We now prove that F (s, t) has the desired properties. The
following claim can easily be proven by induction.

▷ Claim 10.3.1. For every X ∈ F (s, t), |X| = 3t+s and X ∈ PAL.

▷ Claim 10.3.2. Let b(t, s) = log2|F (t, s)|. We have b(t, s) ≥
(
t+s
s

)
.

Claim proof. We proceed by induction. For t ≥ 1, it holds |F (t, 1)| = 2t+1, i.e., b(t, 1) =
t+1 =

(
t+1
1

)
. In particular, |F (1, 1)| = 22 and b(1, 1) = 2 =

(
2
1

)
. For s ≥ 2, it clearly holds

|F (1, s)| = |F (1, s− 1)|2, and thus b(1, s) = 2 · b(1, s− 1) ≥ 2 ·
(

s
s−1

)
= 2s ≥ s+ 1 =

(
s+1
s

)
by immediate induction. It remains the case where t ≥ 2 and s ≥ 2, in which we have
|F (t, s)| = |F (t− 1, s)| · |F (t, s− 1)| and thus

b(t, s) = b(t− 1, s) + b(t, s− 1) ≥
(
t+ s− 1

s

)
+

(
t+ s− 1

s− 1

)
=

(
t+ s

s

)
,

where the second step is by induction. Hence the claim holds. ◁

Finally, we show that every X ∈ F (t, s) can be uniquely identified from PalPrefs(X).

▷ Claim 10.3.3. The function fs(X) = PalPrefs(X) is injective on F (t, s), and its inverse
is computable.

Claim proof. In accordance with the recursive definition of F (t, s), we proceed by in-
duction. We start with the base case s = 1. The elements of F (t, 1) are of the form
Xi = aib3

t+1−2iai for some i ≤ 2t+1. It follows that (j, 1) ∈ PalPref1(Xi) for all j ≤ i, and
(i+1, 1) /∈ PalPref1(Xi). Hence f1 is injective on F (t, 1), and we can compute the inverse
Xi = f−1

1 (PalPref1(Xi)) due to i = min{j ∈ N+ | (j + 1, 1) /∈ PalPref1(Xi)}.
Next, assume that t = 1 and s ≥ 2, and we inductively assume that fs−1 is injective

on F (1, s − 1). Let X, Y ∈ F (1, s), and assume that PalPrefs(X) = PalPrefs(Y ). Note
that there exist strings U,U ′, V, V ′ ∈ F (1, s − 1) such that X = UV U and Y = U ′V ′U ′.
We show U = U ′ and V = V ′, which implies X = Y . Note that, as U is a prefix of X,
PalPrefs−1(U) can be computed from PalPrefs(X) using

PalPrefs−1(U) = PalPrefs(X) ∩ ([1. .|U |]× [1. .s− 1]).

The same equation holds for U ′ and Y , hence PalPrefs−1(U) = PalPrefs−1(U ′). As in-
ductively assume that fs−1(X) = PalPrefs−1(X) is injective on F (1, s − 1), it follows
that U = U ′.

We now turn to showing that V = V ′. Consider an index i ∈ [|U | + 1. .|UV |], and
let s′ be the palindromic length of X[. .i] = U · V [. .i − |U |]. By definition, X[. .i] can
be decomposed into s′ palindromes. Since U and V are encoded over distinct alphabets,
any palindrome in this decomposition is fully contained in U or in V [. .i− |U |], therefore
V [. .i − |U |] can be decomposed into some number s′′ < s′ − 1 of palindromes. By
minimality of s′, the palindromic length of V [. .i − |U |] is at least s′ − 1, hence the
palindromic length of V [. .i− |U |] is exactly s′ − 1. Therefore, PalPrefs−1(V ) can also be
derived from PalPrefs(X):

PalPrefs−1(V ) = {(i− |U |, s′ − 1) : (i, s′) ∈ PalPrefs(X)}.
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As the same relation holds for V ′ and Y , it follows that PalPrefs−1(V ) = PalPrefs−1(V ′),
and by induction hypothesis, this implies that V = V ′, and therefore X = Y . The inverse
function f−1

s can be efficiently computed using two recursive calls to f−1
s−1.

The proof for the case when t, s ≥ 2 is highly similar, but the induction is over the
sum t+s. We inductively assume that fs−1 is injective on F (t, s−1), and that fs is injective
on F (t − 1, s). Instead of PalPrefs−1(U), we consider PalPrefs(U). The remainder of the
proof is the same as for t = 1 and s ≥ 2. ◁

This concludes the proof of Theorem 10.1.2.

10.4 Combinatorial Properties of Affine Prefix Sets
In this section, we study the combinatorial structure of k-palindromic prefixes of T . We
start with the definition of affine sets, which we will use as a scaffolding for our analysis.

Definition 10.4.1 (Affine sets). A set of strings A is affine if there exist t ∈ N0, a string
X, primitive strings Q1, . . . , Qt, and positive integers ℓ1, . . . , ℓt and u1, . . . , ut such that

∀i ∈ [1, t] : ℓi ≤ ui and A = {XQa1
1 . . . Qat

t | ∀r ∈ [1, t] : ar ∈ [ℓr, ur]}.

The tuple ⟨X, (Qi, ℓi, ui)
t
i=1⟩ is a representation of A, and t is the order of the represen-

tation. The order of A is the minimal order achieved by any of its representations. We
call {Qi} the components of a representation, and ℓi (resp., ui) the exponent lower (resp.,
upper) bounds.

A representation generates (the strings of) the corresponding affine string set. If
⟨X, (Qi, ℓi, ui)

t
i=1⟩ generates A and ⟨X ′, (Q′

i, ℓ
′
i, u

′
i)
t′

i=1⟩ generates B, then their concatena-
tion is defined as ⟨X, (Qi, ℓi, ui)

t
i=1 · (Y, a, a) · (Q′

i, ℓ
′
i, u

′
i)
t′

i=1⟩, where Y is a primitive string
and a is a positive integer such that Y a = X ′ (i.e., Y is the primitive root of X ′). The con-
catenation generates A·B = {A ·B : A ∈ A∧B ∈ B}. (If X ′ = ε, then the concatenation
is ⟨X, (Qi, ℓi, ui)

t
i=1 · (Q′

i, ℓ
′
i, u

′
i)
t′

i=1⟩.)
In what follows, we consider affine prefix sets, i.e., affine sets containing only prefixes

of the given input string T . We will show that a small number of affine prefix sets
suffices to represent the k-palindromic prefixes of T . An example for k = 2 is provided
in Fig. 10.1. The case where k = 1, i.e., the structure of prefix-palindromes, is well-
understood: there are O(log n) groups of such palindromes, where each group can be
expressed as an arithmetic progression and a corresponding periodic prefix of T (see
e.g. [76, Lemma 5]). Below, we restate this result in the framework of affine prefix sets
(with proofs provided merely for self-containedness).

Lemma 10.4.2. Let S be a palindrome, and let P be the longest proper prefix of S that
is a palindrome. If |S| ≤ 3|P |/2, then there exist strings U ∈ PAL∪{ε}, V ∈ PAL and an
integer i ≥ 3 such that P = U(V U)i−1 and S = U(V U)i. Furthermore, V U is primitive,
and |V U | is the minimal period of both S and P .

Proof. Let Q′ be such that S = PQ′, and let Q be the primitive root of Q′, i.e., Q′ = Qh

for some positive integer h. As |S| ≤ 3|P |/2, we have |Q′| ≤ |P |/2. Now, since P is a
prefix-palindrome of S and S is a palindrome, rev(P ) = P is a suffix of S. In other words,
S has a border |P |, and |Q′| is a period of S. Since S has suffix Q′, the periodicity implies
that S is a suffix of Q′i′ = Qhi′ for some positive integer i′. Therefore, it holds S = UQi
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a b a b a c c a b a b a c c a b a b a c c a b a bT =

⟨ε, (ababacc, 1, 3) · (ab, 1, 2)⟩

⟨ε, (ab, 1, 2)⟩

⟨ababa, (ccababa, 1, 2) · (c, 1, 2)⟩

⟨ababa, (c, 1, 2)⟩

prefix-palindromes of T

Figure 10.1: String T with prefix-palindromes a, aba, ababa, ababaccababa, and
ababaccababaccababa. The prefix-palindromes can be expressed using four affine prefix
sets with representations ⟨a, ε⟩, ⟨aba, ε⟩, ⟨a, (ba, 1, 2)⟩, and ⟨ababa, (ccababa, 1, 2)⟩. The
same number of affine prefix sets suffices to express the prefixes of T in PAL2, as shown
below T . There are 14 such prefixes, and some of them can be split into two palindromes
in multiple ways.

for some integer i ≥ h and a proper suffix U of Q. This implies P = UQi−h because of
S = PQh.

Let V be such that Q = V U , then S has a prefix UV and a suffix V U . Since S is
a palindrome, it holds UV = rev(V U) = rev(U)rev(V ). We know that V is non-empty
because U is a proper suffix of Q, thus V ∈ PAL and U ∈ PAL ∪ {ε}.

Let j = i − h + 1. Let P ′ = U(V U)j = (UV )jU = (rev(U)rev(V ))jrev(U) =
rev(U(V U)j) and note that P ′ is a palindrome of length |PQ|. If h > 1, i.e., if Q′ is
non-primitive, then P ′ is a proper prefix of S, which contradicts the fact that P is the
longest palindromic prefix of S. Hence h = 1 and Q′ = Q = V U is primitive. If i ≤ 2
then |Q| ≥ |P |/2, but we have already shown |Q′| ≤ |P |/2. Hence i ≥ 3. Finally, both P
and S have suffix Q2 and period |Q|. By Lemma 10.2.1, |Q| is the minimal period of Q2,
and thus also of P and S.

Corollary 10.4.3. The prefix-palindromes of a string T of length n can be partitioned
into O(log n) affine sets of order at most 1. Each set Si of order 1 has a representation of
the form ⟨Ui(ViUi)

ℓi , (ViUi, 1, ui)⟩ for some Ui ∈ PAL ∪ {ε}, Vi ∈ PAL and integers ℓi ≥ 1
and ui > 1.

Proof. Let P1, . . . , Pm denote the prefix-palindromes of T , ordered by increasing lengths.
We iterate over the prefix-palindromes starting with P2, maintaining an active affine set
A that is initially represented by ⟨T [1], ε⟩ of order 0 (because every string T has shortest
prefix-palindrome T [1]). When processing Pi, we consider two cases:

a) If |Pi| > 3|Pi−1|/2, we create a new affine set A containing only Pi, represented by
⟨Pi, ε⟩ of order 0. This set will become the new active affine set.

b) If |Pi| ≤ 3|Pi−1|/2, then we add Pi to the active set using one of two subcases.
i) If the representation of the active set is ⟨Pi−1, ε⟩, then we add Pi to the active

set. By Lemma 10.4.2, there are U ∈ PAL ∪ {ε}, V ∈ PAL and integer j ≥ 3
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such that Pi−1 = U(V U)j−1 and Pi = U(V U)j. Furthermore, V U is primi-
tive, and |V U | is the minimal period of Pi−1 and Pi. We replace ⟨Pi, ε⟩ with
⟨U(V U)j−2, (V U, 1, 2)⟩.

ii) Otherwise, we can inductively assume the following invariant. The active set
has representation ⟨U(V U)ℓ, (V U, 1, u)⟩ for integers ℓ ≥ 1 and u > 1, where
|V U | is the minimal period of the most recently added palindrome Pi−1 =
U(V U)ℓ+u. Clearly, the invariant holds if Pi−1 was processed using Case (b.i),
and we will ensure that it also holds after using Case (b.ii).
By Lemma 10.4.2, Pi and Pi−1 have the same minimal period, which is |V U |
due to the invariant. Also, the lemma implies Pi = Pi−1[. .|V U |]Pi−1, which is
U(V U)ℓ+u+1 due to the invariant. Hence we can add Pi to the active set by
merely increasing u in the representation by one, which clearly maintains the
invariant.

We then proceed with the next palindrome Pi+1. In Case (a)), the length of the current
prefix-palindrome exceeds the length of the previous one by a factor of 3/2. Hence this
case occurs at most ⌈log3/2 n⌉ times, resulting in O(log n) affine sets. In Case (b)), we do
not create any affine sets. The correctness follows from the description of the cases. In
particular, as seen in Case (b)), the representations of order 1 satisfy the stated properties.

10.4.1 Reducing affine prefix sets

In what follows, all affine sets that we consider are affine prefix sets, therefore the term
“affine set” implicitly means “affine prefix set”. A single affine set may have multiple
equivalent representations. For example, the affine set S = {caba, cababa, cabababa} is
represented by ⟨c, (ab, 1, 3), (a, 1, 1)⟩ and ⟨ca, (ba, 1, 3)⟩. Arguably, the latter representa-
tion is preferable, as it has a lower order and can thus be encoded more efficiently. Hence
we propose a way of potentially decreasing the order of a representation by reducing it.

Definition 10.4.4 (Irreducible representation). A representation ⟨X, (Qi, ℓi, ui)
t
i=1⟩ of an

affine string set is irreducible if:
• for every r ∈ [1. .t], ℓr = 1 < ur, and
• for every r ∈ [1. .t), we have |Qr| > |Qr+1|.
From now on, we say that Qr with r ∈ [1, t] is fixed if ℓr = ur, and flexible otherwise.

If there is some r ∈ [1, t) such that |Qr| ≤ |Qr+1|, then we say that there is an inversion
between Qr and Qr+1. Thus, a representation is irreducible if and only if all components
are flexible and have unit lower bounds, and there are no inversions. As per this defini-
tion, ⟨ca, (ba, 1, 3)⟩ is the only irreducible representation of S from the previous example.
Another example is provided in Fig. 10.2.

Properties of flexible components. Now we show how to make an arbitrary repre-
sentation irreducible, possibly decreasing (but never increasing) its order. The reduction
exploits the structure of periodic substrings induced by flexible components.

Lemma 10.4.5. Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a representation of an affine prefix set, and

consider any r ∈ [1, t) such that Qr is flexible. Then |Qr| is a period of every string
Qar

r Q
ar+1

r+1 . . . Qat
t that satisfies ar ∈ N0 and ∀j ∈ (r, t] : aj ∈ [ℓj, uj].

Proof. Let P = Qℓ1
1 Q

ℓ2
2 . . . Qℓr

r and S = Q
ar+1

r+1 Q
ar+2

r+2 . . . Qat
t . By the definition of an affine

prefix set, XPS is a prefix of the underlying string T . Since Qr is flexible, it holds ℓr < ur,
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X ′

Q′
1

Q′ Q2 Q2 Q2 Q2

Q′
1

Q′ Q2 Q2 Q2 Q2
Q3

T =

X

Q1

Q2 Q2 Q2

Q1

Q2 Q2 Q2 Q3

Figure 10.2: An affine prefix set A of a string T with representation ⟨X, (Q1, 1, 2) ·
(Q2, 1, 3) · (Q3, 1, 2)⟩ (drawn above T ). This representation is irreducible. The set A
contains all the prefixes of T that end at positions drawn in dotted lines. In this example,
the set A has the alternative representation ⟨X ′, (Q′

1, 1, 2) · (Q′, 1, 1) · (Q2, 2, 4) · (Q3, 1, 2)⟩.
This representation is reducible because Q′ has the same exponent upper and lower bound,
and because Q2 has an exponent lower bound larger than 1.

and thus XPQrS is also a prefix of T . If both XPS and XPQrS are prefixes of T , then
S is a prefix of QrS. Hence QrS has border S and period |Qr|. If QrS has period |Qr|,
then clearly Qa

rS, for all a ∈ Z+, also has period |Qr|.

If two adjacent components Qr and Qr+1 are flexible, then the lemma allows us to
obtain the following lower bound on the length of Qr.

Lemma 10.4.6. Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a representation of an affine prefix set, and let

r ∈ [1, t). If both Qr and Qr+1 are flexible, then either Qr = Qr+1 or

|Qr| > |Qur+1−1
r+1 |+

(
t∑

j=r+2

|Quj

j |
)

+ gcd(|Qr|, |Qr+1|).

Proof. For flexible Qr and Qr+1, let qr = |Qr|, qr+1 = |Qr+1|, and p = gcd(qr, qr+1). Let
Q′

r+1 = Q
ur+1

r+1 Q
ur+2

r+2 . . . Qut
t . By Lemma 10.4.5, both qr and qr+1 are periods of Q′

r+1, and
qr is a period of QrQ

′
r+1. Since qr is a period of QrQ

′
r+1, it is also a period of QrQr+1.

Hence Qr = Qr+1 if and only if qr = qr+1. For the sake of contradiction, assume that the
lemma does not hold, i.e., qr ̸= qr+1 and qr ≤ |Q′

r+1|−qr+1+p. We make two observations.
First, Q′

r+1 is of length |Q′
r+1| ≥ qr + qr+1 − p, and it has distinct periods qr and qr+1.

The Periodicity Lemma (Fact 2.1.1) implies that p is a period of Q′
r+1, and thus also a

period of its prefix Qr+1. If p < qr+1, then Qr+1 = Qr+1[1. .p]
qr+1/p, which contradicts the

primitivity of Qr+1. Second, Q′
r+1 is of length |Q′

r+1| ≥ qr + qr+1 − p ≥ qr. Since qr is a
period of QrQ

′
r+1, we know that Qr is a prefix of Q′

r+1. Hence p is also a period of Qr. If
p < qr, then Qr = Qr[1. .p]

qr/p, which contradicts the primitivity of Qr.
We have shown that gcd(qr, qr+1) ≥ max(qr, qr+1). This is only possible if the gcd of

qr and qr+1 is equal to both qr and qr+1, which contradicts the assumption that qr ̸= qr+1.
Therefore, the lemma holds.

Lemma 10.4.7. Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be an irreducible representation of an affine prefix

set A of a string of length n. Then it holds |A| =∏t
i=1 ui and t ≤ log2 n.
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Proof. Let E = {(ai)ti=1 | ∀i ∈ [1, t] : ai ∈ [1, ui]} of cardinality |E| = ∏t
i=1 ui be the set

of exponent configurations admitted by the representation (where [1, ui] = [ℓi, ui] because
the representation is irreducible). Then A = {XQa1

1 Qa2
2 . . . Qat

t | (ai)ti=1 ∈ E}. In order to
show |A| = |E|, it suffices to show that no two elements in E generate the same string.

For the sake of contradiction, assume that there are distinct sequences (ai)ti=1, (bi)
t
i=1 ∈

E that generate the same string S = XQa1
1 Qa2

2 . . . Qat
t = XQb1

1 Q
b2
2 . . . Qbt

t . Let r ∈ [1, t]
be the minimal index such that ar ̸= br, and assume w.l.o.g. that ar > br. Then S has
the prefix XQa1

1 . . . Q
ar−1

r−1 Q
br
r = XQb1

1 . . . Q
br−1

r−1 Q
br
r , and we can factorize the corresponding

suffix in two different ways as Qar−br
r Q

ar+1

r+1 . . . Qat
t = Q

br+1

r+1 . . . Qbt
t . However, the two

factorizations have different lengths |Qar−br
r Q

ar+1

r+1 . . . Qat
t | > |QrQr+1| > |Qur+1

r+1 . . . Qut
t | ≥

|Qbr+1

r+1 . . . Qbt
t |, where the second inequality is due to Lemma 10.4.6. Because of this

contradiction, there cannot be distinct sequences (ai)ti=1, (bi)
t
i=1 ∈ E that define the same

string.
Finally, it holds ∀i ∈ [1, t] : ui ≥ 2 for any irreducible representation, and thus

|A| =∏t
i=1 ui ≥ 2t. Since trivially |A| ≤ n, it follows 2t ≤ n or equivalently t ≤ log2 n.

Transforming representations. Now we use the properties of flexible components
to transform an arbitrary representation into an irreducible one. We use the following
operations.

Lemma 10.4.8. Let ρ = ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a representation of an affine prefix set.

1. If there is r ∈ [1, t) such that Qr is flexible and Qr+1 is fixed, then let x = |Qℓr+1

r+1 | mod
|Qr|. The affine prefix set has representation

switchr(ρ) = ⟨X, (Qi, ℓi, ui)
r−1
i=1 · (Qr+1, ℓr+1, ur+1) · (rotx(Qr), ℓr, ur) · (Qi, ℓi, ui)

t
i=r+2⟩.

2. If there is r ∈ [1, t) such that such that both Qr and Qr+1 are flexible and |Qr| ≤
|Qr+1|, then Qr = Qr+1 and the affine prefix set has representation

merger(ρ) = ⟨X, (Qi, ℓi, ui)
r−1
i=1 · (Qr, ℓr + ℓr+1, ur + ur+1) · (Qi, ℓi, ui)

t
i=r+2⟩.

3. If there is r ∈ [1, t] such that ℓr > 1, then the affine prefix set has representation

splitr(ρ) = ⟨X, (Qi, ℓi, ui)
r−1
i=1 · (Qr, ℓr−1, ℓr−1) · (Qr, 1, ur− ℓr+1) · (Qi, ℓi, ui)

t
i=r+1⟩.

4. If Q1 is fixed, then the affine prefix set has representation

truncate(ρ) = ⟨XQℓ1
1 , (Qi+1, ℓi+1, ui+1)

t−1
i=1⟩.

Proof. Statements (3) and (4) are trivial. For (2), if |Qr| ≤ |Qr+1| and both Qr and Qr+1

are flexible, then Lemma 10.4.6 implies Qr = Qr+1. Hence the statement follows.
Finally, we show that statement (1) holds. Assume that Qr is flexible and Qr+1 is fixed.

Then Lemma 10.4.5 implies that |Qr| is a period of QrQ
ℓr+1

r+1 , and thus Qℓr+1

r+1 = Qx
rQr[1. .y]

with x = ⌊|Qℓr+1

r+1 |/|Qr|⌋ and y = |Qℓr+1

r+1 | mod |Qr|. (Either x or y might be zero, but this
is irrelevant for the proof.) Let P = Qr[1. .y] and S = Qr(y. .|Qr|]. Any rotation of a
primitive string is primitive, and hence roty(Qr) = SP is primitive. For any exponent
a ∈ [ℓr, ur], it holds Qa

rQ
ℓr+1

r+1 = (PS)a(PS)xP = (PS)xP (SP )a = Q
ℓr+1

r+1 (rot
y(Qr))

a. Hence
the stated transformation does not change the represented affine prefix set.

The leftmost (i.e., lowest index) fixed component Qr of a representation can either be
removed with truncate (if r = 1), or it can be moved further to the left with switchr−1 (if
r > 1). By repeatedly applying truncate and switch, we obtain the following lemma.
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Lemma 10.4.9. Let ρ = ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a representation of an affine prefix set, and

let F = {j ∈ [1, t] | ℓj < uj} = {j1, . . . , j|F |} with j1 < j2 < · · · < j|F | be the indices of the
flexible components. Then the affine prefix set has a representation ⟨X̂, (Q̂ji , ℓji , uji)

|F |
i=1⟩

such that Q̂ji is a rotation of Qji for every i ∈ [1, |F |]. Both X̂ and all the Q̂ji are
functions of X, Q1, . . . , Qt, and ℓ1, . . . , ℓt, i.e., they are independent of u1, . . . , ut.

Proof. We transform ρ by repeatedly applying Lemma 10.4.8. First, as long as there is
some flexible component Qr that is followed by a fixed component Qr+1, we apply ρ ←
switchr(ρ). Conceptually speaking, this moves fixed components further to the left and
flexible components further to the right (without changing the order of the representation).
Hence it is easy to see that the procedure terminates. Afterwards, any component Qr is
fixed if and only if r ∈ [1, t − |F |]. Now we merge all the fixed components into X by
applying ρ ← truncate(ρ) exactly t− |F | times. This results in a representation of order
|F | (possibly 0) in which all components are flexible.

Whenever switchr produces a rotation of one of the primitive strings, the outcome
depends solely on the lengths and exponent lower bounds of the participating components,
while the exponent upper bounds are irrelevant. Similarly, truncate modifies X according
to its current value, as well as the length and exponent lower bound of the current leftmost
component. Hence X̂ and all the Q̂ji are indeed independent of the exponent upper
bounds.

After applying Lemma 10.4.9, we repeatedly apply merge to remove all inversions.
Then, we apply split until all flexible components have exponent lower bound 1. This
may result in new fixed components, which we remove with Lemma 10.4.9, resulting in
the following lemma.

Lemma 10.4.10. An affine prefix set represented by ρ = ⟨X, (Qi, ℓi, ui)
t
i=1⟩ has an irre-

ducible representation of order |L| ≤ t, where L = {|Qr| | r ∈ [1, t] : ℓr < ur} is the set of
distinct lengths of flexible components.

Proof. By applying Lemma 10.4.9 to ρ, we obtain a representation ρ′ = ⟨X, (Q′
i, ℓ

′
i, u

′
i)
t′

i=1⟩
of order t′ = |{i ∈ [1, t] | ℓi < ui}| that contains only flexible components. Note that
Lemma 10.4.9 implies that the components of this representation still have lengths in
L = {|Q′

r| | r ∈ [1, t′]}. Consider any length q ∈ L, and let rmin, rmax ∈ [1, t′] be the respec-
tively minimal and maximal index such that |Q′

rmin
| = |Q′

rmax
| = q. Then Lemma 10.4.6

implies that for every y in the interval [rmin, rmax], we have Q′
r = Q′

rmin
. We apply

ρ′ ← mergermin
(ρ′) exactly rmax−rmin times and merge all the components of length q into

a single one. By applying this procedure for each length q ∈ L, we obtain a representation
of |L| components.

Now ρ′ is inversion-free, contains only flexible components, and is of order |L|. As
long as there is a flexible component Qr such that ℓr > 1, we apply ρ ← splitr(ρ). This
creates at most one additional fixed component for each of the |L| flexible components.
We remove the fixed components using Lemma 10.4.9, leaving the number of flexible
components, their exponent lower bounds, and their lengths unchanged. Hence we obtain
the final irreducible representation of order |L|.

10.4.2 Strongly affine representations

Later, we will describe and exploit intricate properties of repetitive fragments induced by
affine prefix sets. These properties are easier to show if we can assume that the period-
icity can be extended beyond the considered region by a constant number of additional
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repetitions of the period. Consequently, we introduce the notion of a strongly affine rep-
resentation of an affine prefix set of T , which corresponds to representations in which the
exponent upper bound of every (flexible) component can be increased by five and still
yield an affine prefix set of T . This is visualized in Fig. 10.3.

X

Q1 Q1 Q2 Q1 Q1 Q1 Q1 Q1

Q2

T =

Figure 10.3: An affine prefix set A of a string T with representation ⟨X, (Q1, 1, 2) ·
(Q2, 1, 3)⟩ (drawn in black). If this representation is strongly affine, then its expansion
⟨X, (Q1, 1, 7) · (Q2, 1, 8)⟩ is also a representation of an affine prefix set of T (drawn in
gray).

Definition 10.4.11 (Strongly affine representations). A representation

ρ = ⟨X, (Qi, ℓi, ui)
t
i=1⟩

of an affine prefix set of a string T is strongly affine if and only if its periodic expansion

expand(ρ) = ⟨X, (Qi, ℓi, u
′
i)
t
i=1⟩ with ∀i ∈ [1, t] :

{
u′
i = ui if ui = ℓi

u′
i = ui + 5 otherwise

is also the representation of an affine prefix set of T .

Definition 10.4.12 (Canonical representation). A representation of an affine prefix set
is canonical if and only if it is both strongly affine and irreducible.

It can be readily verified that, if ρ is strongly affine, then truncate(ρ), splitr(ρ),
merger(ρ), and switchr(ρ) are also strongly affine (for any r, assuming that the respective
operation is indeed applicable). We obtained Lemma 10.4.10 by applying a sequence of
these operations, and hence we have the following immediate corollary.

Corollary 10.4.13. An affine prefix set with strongly affine representation

ρ = ⟨X, (Qi, ℓi, ui)
t
i=1⟩

has a canonical representation of order |L| ≤ t, where L = {|Qr| | r ∈ [1, t] : ℓr < ur} is
the set of distinct lengths of flexible components.

Whether a representation ρ of an affine prefix set A of T is strongly affine does not
only depend on ρ, it also depends on what T looks like beyond the end of the longest prefix
represented by ρ. Therefore, one cannot hope to transform an arbitrary representation
into an equivalent strongly affine representation. However, by “removing” the last five
copies of each component and treating them separately, we show that we can cover an
affine prefix set of order t with at most 6t canonical representations.

Lemma 10.4.14. An affine prefix set of order t can be partitioned into 6t affine prefix
sets, each of which has a canonical representation of order at most t.
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Proof. Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a representation of an affine prefix set. We produce a set

of representations defined by

R =
{
⟨X, (Qi, ℓ

′
i, u

′
i)
t
i=1⟩ : ∀r ∈ [1, t], (ℓ′r, u

′
r) ∈ Br

}
,

where ∀r ∈ [1, t] : Br = {(u, u) | u ∈ [max(ℓr, ur − 4), ur]} ∪ {(ℓr,max(ℓr, ur − 5))}.
(10.1)

It is easy to see that the affine sets generated by representations in R form a partition of the
affine set generated by ⟨X, (Qi, ℓi, ui)

t
i=1⟩. By design, for any representation in R, and for

any component Qr, we know that Qr is either fixed, or it has exponent lower bound ℓr and
exponent upper bound ur− 5. Hence the instances in R are strongly affine, and it follows
from Corollary 10.4.13 that each of them has an equivalent canonical representation of
order at most t. Finally, it holds ∀i ∈ [1, t] : |Br| ≤ 6 and thus |R| =∏t

i=1|Bi| ≤ 6t.

By applying the technique from the proof above to the prefix-palindromes, i.e., to each
of the representations of order 1 produced by Corollary 10.4.3, we obtain the following
result. (The difference with Corollary 10.4.3 is in the fact that here, the representations
of the sets of ordrer 1 are canonical.)

Corollary 10.4.15. The set of prefix-palindromes of a string T [1. .n] can be partitioned
into O(log n) affine sets of order at most 1. Each set of order 1 has a canonical rep-
resentation of the form ⟨Ui(ViUi)

ℓi , (ViUi, 1, ui)⟩ for some Ui ∈ PAL ∪ {ε}, Vi ∈ PAL and
integers ℓi ≥ 1 and ui > 1.

Corollary 10.4.16. Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set. Then it holds ∀r ∈ [1, t] : |Qr| >
∑t

j=r+1|Q
uj+4
j |.

Proof. If ρ = ⟨X, (Qi, ℓi, ui)
t
i=1⟩ is canonical, then clearly expand(ρ) = ⟨X, (Qi, ℓi, ui +

5)ti=1⟩ is irreducible. Thus, the statement follows from Lemma 10.4.6 applied to expand(ρ).

Lemma 10.4.17. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set, and let h ∈ [0, 5]. Then ⟨ε, (Qi, 1, ui + h)ti=2⟩ is an irreducible representation of an
affine prefix set of the string Q2

1, and, if h < 5, also of the string Q1.

Proof. Consider any h ∈ [0, 5]. Due to the strong affinity, ⟨X, (Qi, 1, ui+h)ti=1⟩ represents
an affine prefix set. Let (ai)ti=2 be a sequence of exponents with ∀j ∈ [2, t] : aj ∈ [1, ui+h].
By Lemma 10.4.5, the string Q1Q

a2
2 Qa3

3 . . . Qat
t has period Q1. Due to Lemma 10.4.6, it

holds |Qa2
2 Qa3

3 . . . Qat
t | < |Q1Q2| < |Q2

1|. Hence we have shown that Qa2
2 Qa3

3 . . . Qat
t is a

prefix of Q2
1, and ⟨ε, (Qi, 1, ui + h)ti=2⟩ is a representation of an affine prefix set of Q2

1.
Since ⟨X, (Qi, 1, ui)

t
i=1⟩ is irreducible, it is easy to see that also ⟨ε, (Qi, 1, ui + h)ti=2⟩ is

irreducible.
If h < 5, then Lemma 10.4.6 invoked with ρ = ⟨X, (Qi, 1, ui + 5)ti=1⟩ implies that

|Qa2
2 Qa3

3 . . . Qat
t | < |Q1|, and ⟨ε, (Qi, 1, ui + h)ti=2⟩ indeed only generates strings of length

less than |Q1|.

Corollary 10.4.18. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set. Then ⟨ε, (Qi, 1, ui)
t
i=2⟩ is a canonical representation of an affine prefix set of the string

Q2
1.

Proof. By Lemma 10.4.17, ⟨ε, (Qi, 1, ui+5)ti=2⟩ is an irreducible representation of an affine
prefix set of Q2

1. Hence ⟨ε, (Qi, 1, ui)
t
i=2⟩ is a canonical representation for Q2

1.



Chapter 10. Small-space algorithms for Palindromic Length 175
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Q3 Q3
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Q3 Q3
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Q1

Q2 Q2

Q3

Q1 Q2 Q2 Q3 Q̂3 Q̂2 Q̂1S =

Q̂1

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3Q̂3Q̂3

Q̂1

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3Q̂3Q̂3

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3Q̂3Q̂3

Q̂1

Q̂2

Q̂3

Figure 10.4: Lemma 10.4.19 applied to an irreducible representation ⟨X, (Q1, 1, 2) ·
(Q2, 1, 3) · (Q3, 1, 2)⟩. The drawing shows the longest prefix S = Q2

1Q
3
2Q

2
3 generated

by the representation. By the lemma, for any a1 ∈ [0, 2], a2 ∈ [0, 3] and a3 ∈ [0, 2], it
holds S = Q2−a1

1 Q3−a2
2 Q2−a3

3 · Q̂a3
3 Q̂a2

2 Q̂a1
1 , where each Q̂j is the length-|Qj| suffix of S.

The drawing highlights the case where a1 = a2 = a3 = 1.

10.4.3 Reversing the structure of affine prefix sets

We first show that a periodic fragment of T induced by an affine prefix set can be cov-
ered by a combination of a forward and a “backward” affine prefix set. This is formally
expressed by the lemma below, and visualized in Fig. 10.4.

Lemma 10.4.19. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be an irreducible representation of an affine prefix

set, let S = Qu1
1 Qu2

2 . . . Qut
t , and for j ∈ [1, t] let Q̂j be the length-|Qj| suffix of S. For any

sequence (ai)
t
i=1 with ∀j ∈ [1, t] : aj ∈ [0, uj], it holds

S = Qu1−a1
1 Qu2−a2

2 . . . Qut−at
t · Q̂at

t Q̂
at−1

t−1 . . . Q̂a1
1 .

Proof. If t = 1, then S = Qu1
1 = Q̂u1

1 = Qu1−a1
1 Q̂a1

1 . Inductively assume that the lemma
holds for representations of order t− 1. Now we show that it holds for representations of
order t. If ⟨X, (Qi, 1, ui)

t
i=1⟩ is an irreducible representation of an affine prefix set, then

clearly ⟨XQu1
1 , (Qi, 1, ui)

t
i=2⟩ is an irreducible representation of another affine prefix set.

This representation is of order t− 1, and hence the inductive assumption implies

S = Qu1
1 · Qu2−a2

2 Qu3−a3
3 . . . Qut−at

t · Q̂at
t Q̂

at−1

t−1 . . . Q̂a2
2 .

If a1 = 0, then there is nothing left to do. Hence assume a1 > 0. Since ⟨X, (Qi, 1, ui)
t
i=1⟩

is an irreducible representation, Lemma 10.4.5 implies that |Q1| and therefore also q =
a1 · |Q1| is a period of S. Hence S has a border of length s− q, where s = |S|, and it holds

S[1. .s− q] = S[1 + q. .s] = Qu1−a1
1 · Qu2−a2

2 Qu3−a3
3 . . . Qut−at

t · Q̂at
t Q̂

at−1

t−1 . . . Q̂a2
2 .

Finally, as mentioned before, S[s− q+1. .s] of length q = a1 · |Q1| has period |Q1|. Hence
S[s− q + 1. .s] = (S[s− |Q1|+ 1. .s])a1 = Q̂a1

1 , which concludes the proof.

We now build on this characterization to convert irreducible representations of affine
prefix sets of S into irreducible representations of affine prefix sets of rev(S).
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Corollary 10.4.20. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set, let s =
∑t

i=2(ui+1) · |Qi|, and for j ∈ [1, t] let Q̂j be the length-|Qj| suffix of rots(Q1).
Then ⟨ε, (rev(Q̂i), 1, ui)

t
i=2⟩ represents an affine prefix set of rev(rots(Q1)).

Proof. Consider any sequence (ai)
t
i=2 of exponents admitted by the representation, i.e.,

∀j ∈ [2, t] : aj ∈ [1, uj]. By Lemma 10.4.17, ⟨ε, (Qi, 1, ui+1)ti=2⟩ is an irreducible represen-
tation of an affine prefix set of Q1, which implies Q1[1. .s] = Qu2+1

2 Qu3+1
3 . . . Qut+1

t . For this
representation, Lemma 10.4.19 implies that Q̂at

t Q̂
at−1

t−1 . . . Q̂a2
2 is a suffix of Q1[1. .s]. Thus,

its reversal rev(Q̂at
t Q̂

at−1

t−1 . . . Q̂a2
2 ) = rev(Q̂a2

2 )rev(Q̂a3
3 ) . . . rev(Q̂at

t ) is a prefix of rev(Q1[1. .s]),
which is a prefix of rev(rots(Q1)).

10.5 Appending a Palindrome to an Affine Prefix Set
In this section, we describe how to extend an affine prefix set A with a palindrome. This
broadly means that we want to compute a union of multiple affine prefix sets, such that
each of the new prefixes is the concatenation of a prefix in A and a palindrome. We
distinguish two cases depending on whether or not the palindrome to be appended is
inside a periodic fragment of T or not. Regardless of the case, we may first overextend A
so that the new affine sets are not necessarily affine prefix sets. Whenever this happens,
we truncate the sets by restricting the length of their strings with the auxiliary lemma
below. For a set of strings A, denote A|m = {S ∈ A : |S| ≤ m}.

Lemma 10.5.1. Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a representation of an affine prefix set A. For

m ∈ N, we can express A′ = A|m as a union of at most t′ ≤ t affine prefix sets A′ =⋃t′

j=1Aj, each with a representation of order at most t.

Proof. Due to Lemma 10.4.10, we can assume that the given representation is irreducible.
If |XQ1| > m, then A′ is empty, and thus it is the union of zero affine prefix sets. If
|XQ1| ≤ m and t = 1, then we simply create a single new representation ⟨X, (Q1, 1, ⌊(m−
|X|)/|Q1|⌋)⟩ that represents A′. The proof for t > 1 works by induction.

Assume that the lemma holds for representations of order at most t − 1. Now we
show that it holds for representations of order t. Let a1 ∈ N be the minimal exponent
such that a1 ≥ ℓ1 and |XQa1

1 Qu2
2 Qu3

3 . . . Qut
t | > m. If a1 > u1, then A = A′ and there is

nothing left to do. If a1 ≤ u1, then Lemma 10.4.6 (and the fact that the representation is
irreducible) implies |XQa1+1

1 Q2| > |XQa1
1 Qu2

2 Qu3
3 . . . Qut

t | > m. Thus, we do not need to
consider prefixes that are generated by using an exponent larger than a1 for Q1, and we
partition the remaining prefixes into two affine prefix sets. The first one is A′′ represented
by ⟨XQa1

1 , (Qi, ℓi, ui)
t
i=2⟩, i.e., the set that contains all the strings that use exponent a1

for Q1. Its representation is of order t − 1, and the inductive assumption implies that it
is the union of t′− 1 ≤ t− 1 affine prefix sets A′′ =

⋃t′−1
j=1 Aj. For the remaining strings, if

a1 > ℓ1, we create one additional set At′ represented by ⟨X, (Q1, ℓ1, a1−1) · (Qi, ℓi, ui)
t
i=2⟩.

By minimality of a1, all strings in At′ have length at most m. It then holds A′ = A′′∪At′ .
If, however, a1 = ℓ1, then it already holds A′ = A′′ and there is nothing left to do.

10.5.1 Appending a long palindrome

Assume that the affine prefix set to be extended is given in a canonical representation
⟨X, (Qi, 1, ui)

t
i=1⟩. We first focus on appending long palindromes of length at least 2|Q1|,

and then we show that the shorter palindromes can be handled recursively. Note that,
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for a canonical representation, T has a prefix XQu1+5
1 . At the same time, the longest

prefix in the affine set is of length less than XQu1+1
1 . This leads us to a case distinction

based on the center of the palindrome to be appended. If the center is before position
|XQu1+3

1 |, then we can show that the entire palindrome is within the |Q1|-periodic prefix
of T [|X| + 1. .n]. Otherwise, the left half of the palindrome contains position |XQu1+2

1 |,
and we can use this position as an anchor point for the extension.

10.5.1.1 Appending a long palindrome within a run of Q1

We now focus on the case where the long palindrome to be appended is entirely within the
|Q1|-periodic prefix of T [|X|+1. .n]. We proceed in two steps. First (in Theorem 10.5.2),
we show how to append a palindrome under the assumption that the entire string has the
form XQx

1 for some integer x. The second step (Corollary 10.5.3) truncates the result of
the first step such that it corresponds to XQα

1 , where α ∈ Q is the largest value such that
XQα

1 is a prefix of T .

Theorem 10.5.2. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set A. Let s =
∑t

i=2(ui + 1) · |Qi|, and for j ∈ [1, t] let Q̂j be the length-|Qj| suffix of
rots(Q1). If rotr(Q1) = rev(Q1) for some r ∈ [s, s+ |Q1|), then

⟨X ·Q1 ·Q1[1. .r − s], (rotr−s(Q1), 1, x) · (rev(Q̂i), 1, ui)
t
i=2⟩ (10.2)

represents an affine prefix set A′ of XQx+3
1 , for any positive integer x. Additionally, each

of the following holds:
1. If Y ′ ∈ A′, then there is a string Y ∈ A and a palindrome P such that Y ′ = Y P .
2. For Y ∈ A and P ∈ PAL, if |P | ≥ 2|Q1| and Y P is a prefix of XQx+1

1 , then
Y P ∈ A′.

Proof. Let q = |Q1|. By Corollary 10.4.16, it holds s < q. Consider any string XS ′ ∈ A′.
Since this string is generated by Eq. (10.2), there must be exponents a1 ∈ [1, x] and
∀j ∈ [2, t] : aj ∈ [1, uj] such that

S ′ = Q1 ·Q1[1. .r − s] · rotr−s(Q1)
a1 ·Q′ = Qa1+1

1 ·Q1[1. .r − s] ·Q′,

where Q′ = rev(Q̂2)
a2rev(Q̂3)

a3 . . . rev(Q̂t)
at . We start by showing that Eq. (10.2) repre-

sents an affine prefix set of XQx+3
1 , i.e., we must show that S ′ is a prefix of Qx+3

1 . The suffix
Q′ of S ′ was generated by the last part (rev(Q̂i), 1, ui)

t
i=2 of Eq. (10.2). Corollary 10.4.20

implies that Q′ is a prefix of

rev(rots(Q1)) = rot−s(rev(Q1)) = rot−s(rotr(Q1)) = rotr−s(Q1).

Therefore, it holds

S ′ = Qa1+1
1 ·Q1[1. .r − s] · (rotr−s(Q1))[1. .|Q′|] = Qa1+1

1 · (Q2
1)[1. .r − s+ |Q′|],

and S ′ is a prefix of Qa1+3
1 , which is a prefix of Qx+3

1 .
Next, we show that S ′ = SP for some string S with XS ∈ A and a palindrome P . It

holds aj ∈ [1, uj] if and only if uj − aj + 1 ∈ [1, uj], and thus ⟨X, (Qi, 1, ui)
t
i=1⟩ generates

the string XS ∈ A with S = Q1
1Q

u2−a2+1
2 Qu3−a3+1

3 . . . Qut−at+1
t , where |S| = q + s − |Q′|.

Let P be the unique string such that S ′ = SP , i.e.,

P = S ′[q + s− |Q′|+ 1. .|S ′|] = Q1[s− |Q′|+ 1. .q] ·Qa1−1
1 · (Q2

1)[1. .r − s+ |Q′|].
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It remains to be shown that P is a palindrome. Let L = Q1[s− |Q′|+ 1. .q] and R =
(Q2

1)[1. .r−s+|Q′|], then Corollary 10.2.4 implies that P is a palindrome if rot|R|−|L|(Q1) =
rev(Q1). Indeed, cyclically shifting Q1 by

|R| − |L| = (r − s+ |Q′|)− (q − (s− |Q′|+ 1) + 1) = r − q

steps is equivalent to cyclically shifting it by r steps, and thus rot|R|−|L|(Q1) = rotr−q(Q1) =
rotr(Q1) = rev(Q1). Hence P is a palindrome.

Finally, consider any string XS ∈ A and a palindrome P ∈ PAL of length |P | ≥ 2|Q1|
such that SP is a prefix of Qx+1

1 . Since P is a substring of Qx+1
1 , it must be of the

form LQz
1R for some positive integer z, a suffix L of Q1, and a prefix R of Q1. Due

to XS ∈ A, there is some sequence ∀j ∈ [1, t] : aj ∈ [1, uj] of exponents such that
S = Qu1−a1+1

1 Qu2−a2+1
2 . . . Qut−at+1

t . Let q′ =
∑t

j=2 aj · |Qj|, then L = Q1[s − q′ + 1. .q]
and |R| = |P | − zq − q + s − q′. Since P is a palindrome, Corollary 10.2.4 implies that
rot|R|−|L|(Q1) = rev(Q1). Since Q1 is primitive and rev(Q1) = rotr(Q1), it is necessary
that |R| − |L| = z′q + r for some integer z′. This leads to

|R| − |L| = |P |+ 2(s− q′)− zq − 2q = z′q + r,

or equivalently
|P | = (z′ + z + 2)q + r − 2(s− q′).

We have shown that SP is of length |P | + |S| = (u1 − a1 + z′ + z + 2)q + q + r −
s + q′ for some integers z, z′ such that |SP | ≤ (x + 1)q. Let x′ = (u1 − a1 + z′ +
z + 2), and note that |SP | ≤ q(x + 1) implies x′ ≤ (q(x+ 1)− q − r + s− q′)/q ≤
x. Finally, the representation stated in the lemma generates the string XQ1Q1[1. .r −
s]rotr−s(Q1)

x′rev(Q̂2)
a2rev(Q̂3)

a3 . . . rev(Q̂t)
at of length |X|+ q+ r− s+ qx′+ q′ = |XSP |.

Hence XSP ∈ A′ as required.

Corollary 10.5.3. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set A. Let α ∈ Q be the largest possibly fractional exponent such that XQα
1 is a prefix of

T , and define

S = {S · P : S · P is a prefix of XQα
1 , S ∈ A, P ∈ PAL, |P | ≥ 2|Q1|}

There are t′ ≤ t affine prefix sets Bi, i ∈ [1, t′], each of order ≤ t, such that both of the
following properties hold for B =

⋃t′

i=1 Bi:
1. S ⊆ B.
2. For every Y ′ ∈ B, there is a string Y ∈ A and a palindrome P such that Y ′ = Y P .

Proof. If S is empty, then t′ = 0 trivially satisfies the claim of the lemma. Otherwise, note
that any palindrome P considered by S is a substring of Qα

1 . Hence, if S is non-empty,
there is a palindromic substring of Qα

1 that is of length at least 2|Q1|, and Corollary 10.2.4
implies that rev(Q1) is a rotation of Q1. Particularly, for arbitrary integer s, there is an
integer r ∈ [s, s + |Q1|) such that rev(Q1) = rotr(Q1). This allows us to apply Theo-
rem 10.5.2 to XQ

⌊α⌋+3
1 to obtain an affine prefix set A′ of order t satisfying each of the

following:
1. If Y ′ ∈ A′, then there is a string Y ∈ A and a palindrome P such that Y ′ = Y P .
2. For Y ∈ A and P ∈ PAL, if |P | ≥ 2|Q1| and Y P is a prefix of XQ

⌊α⌋+1
1 , then

Y P ∈ A′.
Let B = A′||X|+α·|Q1|. We have S ⊆ B and for all Y ′ ∈ B, there is a string Y ∈ A and
a palindrome P such that Y ′ = Y P . By Lemma 10.5.1, B is a union of ≤ t affine prefix
sets of order ≤ t.
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10.5.1.2 Appending a long palindrome outside a run of Q1

Theorem 10.5.4. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set A and s =
∑t

i=2(ui+1) · |Qi|. For j ∈ [1, t], let Q̂j be the length-|Qj| suffix of rots(Q1).
For any string P ,

⟨X ·Qu1+2
1 · P · rev(Q1)[1. .|Q1| − s], (rev(Q̂i), 1, ui)

t
i=1⟩

represents an affine prefix set A′ of the string X ·Qu1+2
1 · P · rev(Qu1+2

1 ), where

A′ = {SWP · rev(W ) | S ∈ A and SW = X ·Qu1+2
1 }.

Proof. Let q = |Q1|. We can split the output representation into a concatenation

⟨X ·Qu1+2
1 · P · rev(Q1)[1. .q − s], (rev(Q̂1), 1, u1)⟩ · ⟨ε, (rev(Q̂i), 1, ui)

t
i=2⟩. (10.3)

By Corollary 10.4.20, ⟨ε, (rev(Q̂i), 1, ui)
t
i=2⟩ represents an affine prefix set of rev(Q̂1).

Hence any string generated by Eq. (10.3) is a prefix of XQu1+2
1 P · rev(Q1)[1. .q − s] ·

rev(Q̂1)
u1+1. Due to rev(Q̂1) = rev(rots(Q1)) = rev(Q1)[q − s + 1. .q] · rev(Q1)[1. .q − s],

this string is in turn a prefix of XQu1+2
1 P · rev(Q1)

u1+2. We have shown that Eq. (10.3)
represents an affine prefix set of the string X ·Qu1+2

1 · P · rev(Qu1+2
1 ).

Every element in A contributes exactly one element to A′, and hence |A′| = |A|.
Whether or not an affine representation is irreducible depends solely on the lengths and
exponent bounds of its components. Since lengths and exponent bounds are identical for
the two representations stated in the lemma, it is clear that both of them are irreducible.
By Lemma 10.4.7, each of the two representations generates exactly |A| = |A′| =∏t

i=1 ui

distinct strings.
Since Eq. (10.3) generates exactly |A′| distinct strings, it suffices to show that any

string generated by Eq. (10.3) is in A′. It then readily follows that Eq. (10.3) gener-
ates exactly A′. Thus, consider any string S ′ generated by Eq. (10.3). Such a string
must be of the form S ′ = XQu1+2

1 P · rev(W ), where rev(W ) = rev(Q1)[1. .q − s] ·
rev(Q̂1)

a1rev(Q̂2)
a2 . . . rev(Q̂t)

at for some exponents ∀i ∈ [1, t] : a1 ∈ [1, ui]. By our previ-
ous observations, rev(W ) is a prefix of rev(Q1)

u1+2, and thus there is a unique string S
such that SW = XQu1+2

1 and S ′ = SWP · rev(W ). It remains to be shown that S ∈ A,
which then implies S ′ ∈ A′. For this purpose, we carefully analyze the length of S.

|S| = |XQu1+2
1 | − |W | = |XQu1+2

1 | − (q − s)−
∑t

i=1
ai · |Qi|

= |XQu1−a1+1
1 |+ s−

∑t

i=2
ai · |Qi|

= |X|+
∑t

i=1
(ui − ai + 1) · |Qi|

Recall that ∀i ∈ [1, t] : ai ∈ [1, ui] and thus (ui − ai + 1) ∈ [1, u1]. This means that
S = XQu1−a1+1

1 Qu2−a2+1
2 . . . Qut−at+1

t is indeed in A, which concludes the proof.

If a fragment P = T [x. .y] of T is a palindrome, denote its center (x+ y)/2 by cen(P ).

Corollary 10.5.5. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set A, and consider the set of strings

A′ = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL, cen(P ) > |XQu1+3
1 |}.

There are t′ = O(t log n) affine prefix sets Bi, i ∈ [1, t′], each of order ≤ t + 1, such that
both of the following properties hold for B =

⋃t′

i=1 Bi:
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1. A′ ⊆ B.
2. For every Y ′ ∈ B, there is a string Y ∈ A and a palindrome P such that Y ′ = Y P .

Proof. Consider any SP ∈ A′, where SP is a prefix of T , S ∈ A, P ∈ PAL, cen(P ) >
|XQu1+3

1 |. Due to S ∈ A, Corollary 10.4.16 implies |S| < |XQu1+1
1 |. Let P ′ = T [x. .y],

where x = 1 + |XQu1+2
1 | and y = 2 · cen(P ) − x. We claim that P ′ ∈ PAL. Indeed, the

starting position |S| + 1 of P is less than the starting position x of P ′, and the centers
of P and P ′ coincide with cen(P ) − x = y − cen(P ). We call P ′ the core palindrome of
SP . Note that every core palindrome is a prefix of T [x. .n] (which is independent of SP ).
Therefore, by Corollary 10.4.15, the set of core palindromes can be represented as the
union of O(log n) affine prefix sets. Let C be any of these sets. We now describe how to
compute the part of A′ that contains strings of the form SP = SWP ′ · rev(W ), where
S ∈ A, P ∈ PAL, and the core palindrome of SP is some P ′ ∈ C. The procedure depends
on the representation of C, which, by Corollary 10.4.15, is covered by one of the following
cases. Let q = |Q1|.

Case 1: C is given in strongly affine representation ⟨U · (V U)ℓ, (V U, 1, u)⟩, where V U
is primitive and |V U | > q. For any i ∈ [1, u], let Pi = U · (V U)ℓ+i be a core palindrome
in C. Using Theorem 10.5.4, we compute an affine prefix set Ci = {SWPi · rev(W ) | S ∈
A and SW = X ·Qu1+2

1 } of the string XQu1+2
1 Pi · rev(Q1)

u1+2 (not necessarily a prefix of
T ) with a representation

⟨X ·Qu1+2
1 · Pi · rev(Q1)[1. .|Q1| − s], (rev(Q̂i), 1, ui)

t
i=1⟩.

If A′ contains some string SWPi · rev(W ) = XQu1+2
1 Pi · rev(W ), then this string is clearly

also in Ci. Also, every string in Ci is the concatenation of some string in A and a
palindrome. However, there may be some strings in Ci that are not prefixes of T if
XQu1+2

1 Pi · rev(Q1)
u1+2 is not a prefix of T . We have already established that XQu1+2

1 Pi

is a prefix of T , and we split the representation of Ci into two parts by defining a set Wi

such that Ci = {XQu1+2
1 Pi · rev(W ) | rev(W ) ∈ Wi}. The first part has representation

⟨XQu1+2
1 Pi, ε⟩ of order 0. The second part Wi has representation

⟨rev(Q1)[1. .|Q1| − s], (rev(Q̂i), 1, ui)
t
i=1⟩

and contains prefixes of rev(Q1)
u1+2. Let x = 1 + |XQu1+2

1 | and yi = x + |Pi| − 1, i.e.,
T [x. .yi] = Pi. Our goal is to truncate Wi such that we remove exactly all the strings
that are not prefixes of T [yi + 1. .n]. Note that all the Wi’s are identical, i.e., they are
independent of i, and we will show that they remain identical even after truncating.

Recall that the given representation of C is strongly affine, and hence, T [x. .n] has a
prefix U · (V U)ℓ+u+5 = Pi · (V U)5+u−i (for any i ∈ [1, u]). This implies that T [yi + 1. .n]
has a prefix (V U)2. Let α ∈ Q be the largest (possibly fractional exponent) such that
rev(Q1)

α is a prefix of (V U)2. Since (V U) is primitive, and due to q < |V U |, it cannot be
that q is a period of (V U)2 (see Lemma 10.2.1). Hence |rev(Q1)

α| < |(V U)2|, and α is the
maximal exponent such that rev(Q1)

α is a prefix of T [yi +1. .n]. We apply Lemma 10.5.1
and obtain Wi|(α·q) as the union of t′ ≤ t representations, each of order at most t. Note
that α is independent of i, and thus all the Wi|(α·q) are indeed identical.

Finally, let W ′ = W1|(α·q). We must represent the union of all the truncated Ci’s,
defined by B(C) = {XQu1+2

1 · Pi · rev(W ) | i ∈ [1, u], rev(W ) ∈ W ′}. This set can be
readily obtained by creating t′ copies of ⟨XQu1+2

1 U(V U)ℓ, (V U, 1, u)⟩, and concatenating
each copy with one of the t′ representations of order at most t that make up W ′. Then,
B(C) is the union of t affine prefix sets, each of order at most t+ 1.
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Case 2: C is given in representation ⟨P ′, ε⟩ of order 0, i.e., it contains a single core
palindrome P ′. We proceed exactly like in Case 1, but with a single palindrome P1 = P ′.
In Case 1, we only use the periodic structure of the Pi’s to show that all the truncated sets
Wi|(α·q) are identical. Since this time we are only concerned with a single core palindrome,
we simply let α ∈ Q be the maximal value such that rev(Q1)

α is a prefix of T [y1+1. .n]. We
then continue just like in Case 1, performing the final step with the fixed set ⟨XQu1+2

1 P1, ε⟩
instead of ⟨XQu1+2

1 U(V U)ℓ, (V U, 1, u)⟩. This results in a set B(C) that is the union of at
most t representations, each of order at most t.

Case 3: C has strongly affine representation ⟨U · (V U)ℓ, (V U, 1, u)⟩, where V U is primi-
tive and |V U | = q. For i ∈ [1, u], let Pi = U · (V U)ℓ+i. We show that, if A′ contains some
SP = S ·W · Pi · rev(W ) = XQu1+2

1 Pi · rev(W ) with S ∈ A, then the entire SP can be
written as XQα

1 for some α ∈ Q. By the definition of a core palindrome, the center of Pi

is cen(Pi) > |XQu1+3
1 |, and its length is 2 · (cen(Pi)− x) + 1 ≥ 2q. The entire palindrome

P = WPi ·rev(W ) is then also of length at least 2q. It holds Pi[1. .2q] = Q2
1 because T has a

prefix XQu1+5
1 (since A is given in strongly affine representation) and Pi starts at position

x = 1 + |XQu1+2
1 |. It follows SWPi[1. .2q] = XQu1+4

1 with |S| > |X|. Therefore, P has
the q-periodic prefix WPi of length (|P |+ |Pi|)/2 ≥ |P |/2 + q > 3q/2, and Lemma 10.2.2
implies that P has period q. We have established that SWPi[1. .q] = XQu1+3

1 , and that
Pi · rev(W ) has period q. Since these fragments overlap by q letters, it is clear that
SWPi · rev(W ) is of the form XQα

1 for some exponent α ∈ Q.
We have shown that Case 3 is only concerned with prefixes of the form XQα

1 and with
palindromes of length at least 2q. Hence we can simply apply Corollary 10.5.3 and obtain
a set B(C) as the union of at most t representations of order at most t. This set then
contains every SP = SWPi ·rev(W ) = XQu1+2

1 Pi ·rev(W ) ∈ A′ for all the core palindrome
sets C that fall into Case 3, and Corollary 10.5.3 guarantees that any element in B(C) is
indeed the concatenation of a string in A and a palindrome.

Case 4: C has strongly affine representation ⟨U · (V U)ℓ, (V U, 1, u)⟩, where V U is prim-
itive and |V U | < q. As before, let x = 1 + |XQu1+2

1 |, and let Pi = U · (V U)ℓ+i. As seen
in Case 3, Pi is of length at least 2q and has prefix Pi[1. .2q] = Q2

1. Since Pi has a period
|V U | < q, its prefix Q2

1 also has a period |V U |. However, this contradicts the fact that
Q1 is primitive (see Lemma 10.2.1).

The list of cases is clearly exhaustive, and it remains to analyze the number of created
representations. There are O(log n) core palindrome sets, and each set is covered by
exactly one case. In every case, we create at most t representations, each of order at most
t+ 1, matching the statement of the corollary.

10.5.1.3 Appending all long palindromes

Lemma 10.5.6. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set A. Define the set of strings

A′ = {S · P | S ∈ A, P ∈ PAL, and S · P is a prefix of T}.

There are t′ = O(t log n) affine prefix sets Bi, 1 ≤ i ≤ t′, each of order at most t+1, that
satisfy both of the following:

1. A′ ⊆ ∪t′i=1Bi.
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2. For each string S ′ ∈ ∪t′
i=1Bi, there is a string S ∈ A and P ∈ PAL such that

S ′ = S · P .

Proof. We consider the sets from Corollary 10.5.3 and Corollary 10.5.5, defined by

A1 = {S · P : S · P is a prefix of XQα
1 , S ∈ A, P ∈ PAL, |P | ≥ 2|Q1|} and

A2 = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL, cen(P ) > |X|+ (u1 + 3) · |Q1|},
where α is the largest (possibly fractional) exponent such that XQα

1 is a prefix of T . Due
to Corollary 10.5.3 and Corollary 10.5.5, we can express (a superset of) A1 ∪ A2 as the
union of at most O(t log n) affine prefix sets, each of order at most t + 1, where every
string in each of the prefix sets is the concatenation of a string from A and a palindrome.

It remains to be shown that A′ ⊆ A1∪A2. For the sake of contradiction, assume that
there is some string SP ∈ A′ \ (A1 ∪ A2), where S ∈ A, P ∈ PAL and |P | ≥ 2|Q1|. Due
to SP /∈ A1, it cannot be that SP is a prefix of XQα

1 . Thus, SP must be longer than
XQα

1 . Let m = |XQα
1 | − |S|, then the length-m suffix of Qα

1 is a prefix of P . We show a
lower bound on m. Since the given representation is strongly affine, it holds α ≥ u1 + 5.
It is also irreducible, and hence Corollary 10.4.16 implies |S| < |XQu1+1

1 |. Therefore, it
holds m > 4|Q1|. Note that P does not have period |Q1|, but its length-m prefix does.
Hence, by Lemma 10.2.2, it follows that P is of length over 2m− |Q1|, and therefore

cen(P ) ≥ |S|+ |P |/2 > |S|+m− |Q1|/2 = |XQα
1 | − |Q1|/2 > |XQu1+4

1 |.

This implies SP ∈ A2, which contradicts the initial assumption.

10.5.2 Recursively appending shorter palindromes and the final
result

We have shown that appending palindromes of length at least 2|Q1| results in at most
O(t log n) affine prefix sets of order at most t+1. For appending shorter palindromes, we
will exploit properties of strongly affine prefix sets that allow us to apply the previously
described approach recursively.

Lemma 10.5.7. Let ⟨X, (Qi, 1, ui)
t
i=1⟩ be a canonical representation of an affine prefix

set A. Define the set of strings

A′ = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL}.

There are t′ = O((t + 1)2 log n) affine prefix sets Bi, 1 ≤ i ≤ t′, each of order at most
t+ 1, such that A′ = ∪t′i=1Bi.

Proof. For the sake of induction, consider the case where t = 0. It holds A = {X} and
A′ = {XP | P ∈ PAL and P is a prefix of T [1 + |X|. .n]}. By Corollary 10.4.15, we can
express the prefix-palindromes of T [1 + |X|. .n] as the union of O(log n) affine prefix sets,
and by prepending X we immediately obtain the statement of the lemma.

Now we show that the lemma holds for representations of order t > 0, inductively
assuming that we have already shown the correctness for representations of order t − 1.
We apply Lemma 10.5.6 and obtain O(t log n) affine prefix sets, each of order at most
t+ 1. These sets correspond to a superset of the prefixes in

A′
long = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL, |P | ≥ 2|Q1|},
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and each prefix contained in any of the sets is the concatenation of an element in A with
a palindrome. It remains to be shown how to cover

A′
short = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL, |P | < 2|Q1|}.

By Corollary 10.4.18, ⟨ε, (Qi, 1, ui)
t
i=2⟩ is a canonical representation of an affine prefix

set A′′ of Q2
1. By the inductive assumption, the set

A′′′ = {S · P : S · P is a prefix of Q3
1, S ∈ A′′, P ∈ PAL}

is the union of t′′ = O(t2 log n) affine prefix sets Bj, j ∈ [1, t′′] of order at most t. For
any set Bj, let ⟨X ′, (Q′

i, ℓ
′
i, u

′
i)
tj
i=1⟩ be a representation of order tj ≤ t. We obtain the set

B′
j defined by the representation ⟨X, (Q1, 1, u1) · (Q′

i, ℓ
′
i, u

′
i)
tj
i=1⟩ of order tj + 1 ≤ t+ 1. To

conclude the proof we show the following claims:
1. Each set B′

j is an affine prefix set of T .
2. Every element in any of the sets B′

j is also in A′.
3. Every element in A′

short is contained in at least one set B′
j.

For Claim 1, observe that a string in Bj is a prefix of Q3
1, and thus a string in B′

j is a
prefix of XQu1+3

1 . Since the original representation is strongly affine, XQu1+3
1 is a prefix

of T , and the correctness of the claim follows.
For Claim 2, every element in B′

j is of the form XQa1
1 SP for a palindrome P , some

S ∈ A′′, and a1 ∈ [1, u1]. Note that elements in A′′, hence also S, are of the form
Qa2

2 Qa3
3 . . . Qat

t with ∀i ∈ [2, t] : ai ∈ [1, ui]. Thus, XQa1
1 S is in A, and XQa1

1 SP is in A′

as claimed.
For Claim 3, consider an element SP ∈ A′

short where S ∈ A and P ∈ PAL with
|P | < 2|Q1|. We can write S as XQa1

1 Qa2
2 . . . Qat

t with ∀i ∈ [1, t] : ai ∈ [1, ui]. By
Corollary 10.4.16, Qa2

2 . . . Qat
t is of length less than Q1, and SP is of length less than

|XQa1+3
1 | ≤ |XQu1+3

1 |. Since the original representation is strongly affine, XQu1+3
1 is a

prefix of T . Since also XQa1
1 Qa2

2 . . . Qat
t P is a prefix of T , it is easy to see that Qa2

2 . . . Qat
t P

is a prefix of Q3
1. Finally, Qa2

2 . . . Qat
t is in A′′, and thus Qa2

2 . . . Qat
t P is in A′′′. It follows

that SP = XQa1
1 Qa2

2 . . . Qat
t P is in one of the B′

j.
We created O(t log n) representations of order at most t + 1 that cover A′

long, and
t′′ = O(t2 log n) representations of order at most t+1 that cover A′

short. Hence we created
O((t+ 1)2 log n) representations of order at most t+ 1, as required by the lemma.

Theorem 10.1.1. Let 0 < ϵ < 1 be constant. Let T be a string of length n and let k ∈ N+.
The set of prefixes of T that belong to PALk is the union of O(6k

2/(2−ϵ) · logk n) affine prefix
sets, each of order at most k.

Proof. We start with the empty affine prefix set representing PAL0. We proceed in k
levels k′ ∈ [0, k), and, on each level k′, we consider affine prefix sets of order k′. The
union of all the affine prefix sets of level k′ are exactly all of the prefixes of T that are
in PALk′ . For each affine prefix set of the current level k′, we first apply Lemma 10.4.10
and Lemma 10.4.14 to obtain 6k

′ canonical representations of order at most k′. Then,
for each of the representations, we append a palindrome using Lemma 10.5.7, resulting
in c · (k′ + 1)2 log n affine prefix sets of order at most k′ + 1, which we move to level
k′ + 1. Here, c is a positive constant that depends on the precise complexity analysis of
Lemma 10.5.7. Hence, after processing level k − 1, the total number of affine prefix sets
is bounded by

k−1∏
k′=0

(6k
′ · c · (k′ + 1)2 log n) ≤ (k!)2 · ck · 6(k2/2) · logk n.
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Let ϵ ∈ R+ with ϵ < 1 be constant. If k exceeds another constant that depends solely
on ϵ and c, then (k!)2 · ck < 6ϵ

′·k2 with ϵ′ = 1
2−ϵ
− 1

2
> 0. Hence the bound becomes

6ϵ
′·k2 · 6(k2/2) · logk n = 6k

2/(2−ϵ).

10.6 Read-only Algorithm for Encoding k-palindromic
Prefixes and Computing the Palindromic Length

Finally, using the combinatorial properties we showed above, we develop a read-only
algorithm that receives a string T of length n and an integer k, and computes a small
space-representation of i-palindromic prefixes of a string for all 1 ≤ i ≤ k. Additionally,
it can compute the palindromic length of T if its at most k.

The following lemma gives a small-space implementation of the procedure behind
Corollary 10.4.3 to compute the prefix-palindromes of a string as O(log n) affine prefix
sets of order at most 1. The general idea is to enumerate the prefix-palindromes in the
increasing order of length, using constant-space exact pattern matching.

Lemma 10.6.1. There is a read-only algorithm that enumerates all prefix-palindromes of
a string T [1. .n] in the increasing order of length in O(n) time and O(1) space.

Proof. For a fixed j ∈ [0, ⌈log2 n⌉], we show how to enumerate the prefix-palindromes
of length within range [2j, 2j+1). Consider any length m ∈ [2j, 2j+1). It is easy to see
that T [1. .m] is a palindrome if and only if rev(T [1. .2j]) = T (m− 2j. .m] because T [1. .2j]
spans more than half of T [1. .m]. Recall that for strings X, Y , a fragment Y [i. .j] = X
is an occurrence of X in Y . We use constant space and linear time pattern matching
(see [78] and references therein) to enumerate all occurrences of a string rev(T [1. .2j]) in
T [1. .2j+1) in the left-to-right order. Whenever the pattern matching algorithm outputs
an occurrence T [i. .i+2j) = rev(T [1. .2j]), we output that T [1. .m] with m = i+2j − 1 as
a palindromic prefix. By the previous observation, this reports all palindromic prefixes of
length within range [2j, 2j+1) in the increasing order of length, using constant space and
O(2j) time. Hence the total time for all j ∈ [0, ⌈log2 n⌉] is O(

∑⌈log2 n⌉
j=1 2j) = O(n).

Algorithm 10.6.2 (Implementation of Corollary 10.4.15). Given a string T [1. .n], there
is a read-only algorithm that uses O(log n) space and O(n) time and outputs all prefixes
of T that belong to PAL as O(log n) affine sets of order at most 1. Each set of order
1 is reported in canonical representation ⟨U(V U)ℓ, (V U, 1, u)⟩ for some U ∈ PAL ∪ {ε},
V ∈ PAL and integers ℓ ≥ 1 and u > 1.

Proof. We use the procedure described in the proof of Corollary 10.4.3. We start with
a single prefix-palindrome represented by ⟨T [1], ε⟩. Then, we use Lemma 10.6.1 to enu-
merate the remaining prefix-palindromes in increasing order of length. Let P ′ be the
most recently reported prefix-palindrome (initially P ′ = T [1]). Whenever some prefix
P = T [1. .m] is reported to be a palindrome, we consider two cases based on whether or
not |P | > 3|P ′|/2. We proceed as in the proof of Corollary 10.4.3, storing all affine sets
computed during the procedure (where creating or modifying a set takes constant time,
performing simple arithmetic operations that depend solely on |P | and |P ′|). The repre-
sentations may not be strongly affine, but the postprocessing described in Lemma 10.4.14
(and used to obtain Corollary 10.4.15) can be easily performed in constant time for each
affine prefix set. (This holds because the present representations are of order 1.) There are
at most O(log n) affine sets, hence the algorithm uses O(log n) space and O(n) time.
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Theorem 10.1.3. Let 0 < ϵ < 1 be constant. Given a string T of length n and k ∈ N+,
there is a read-only algorithm that returns a compressed representation of all prefixes of T
that belong to PALi, for each i ∈ [1, k], in O(n·6k2/(2−ϵ) ·logk n) time and O(6k

2/(2−ϵ) ·logk n)
space.

Proof. We first provide algorithmic implementations of the combinatorial lemmas we
showed above (rather straightforward, but we still provide them for completeness), and
then combine them into the final algorithm.

We assume that a representation ⟨X, (Qi, ℓi, ui)⟩ of an affine set is stored as a list of
the components Qi, associated with ℓi, ui, and X is stored separately.

Transforming representations

Algorithm 10.6.3 (Implementation of Lemma 10.4.8). Given a pointer to the i-th com-
ponent of the representation of an affine set, the four operations switchi, mergei, spliti,
and truncate can each be performed in constant time and space.

These four operations only change ℓi, ui, or replace Qi with its rotation, which can be
computed via a constant number of arithmetic operations. In case of mergei, the (i+1)-th
element in the list of components needs to be deleted, while spliti requires an insertion
between the i-th and (i+1)-th element. For switchi, we need to swap the i-th and (i+1)-
th element. Given a pointer to the i-th element, the required deletions, insertions, and
swaps take constant time. Hence all four operations can be implemented in O(1) time
and O(1) extra space. As a corollary, we obtain the following:

Algorithm 10.6.4 (Implementation of Lemma 10.4.9). Given the representation of an
affine prefix set of order t, we can remove all fixed components in O(t2) time and O(1)
space.

Algorithm 10.6.5 (Implementation of Lemma 10.4.10). Let A be an affine prefix set
of T [1. .n], given in representation ρ of order t. There is a read-only algorithm that, given
ρ and random access to T , transforms ρ into an irreducible representation ρ∗ of A in
O(t2) time and O(1) additional space. The representation ρ∗ is of order at most t.

We assume to receive an affine prefix set with a representation of order t, and transform
it into an irreducible representation. The transformation starts with an application of
Lemma 10.4.9, which requires O(t2) time and O(1) extra space. It then performs ≤ t
merge operations and ≤ t split operations in O(t2) total time and O(1) extra space.
Finally, the transformation applies Lemma 10.4.9 again in O(t2) time and O(1) extra
space.

Strongly affine representations

Algorithm 10.6.6 (Implementation of Lemma 10.4.14). Given an affine prefix set A as
a representation of order t, there is a read-only algorithm that computes, in O(6t · t2) total
time and O(6t · t) space, at most 6t canonical representations of order at most t of affine
sets that form a partition of A.

We start by applying Algorithm 10.6.5 to make the representation irreducible in O(t2)
time and O(1) space. We then create 6t representations of Eq. (10.1) naively in O(6t) time
and O(6t · t) space, and finally once more apply Algorithm 10.6.5 to each representation
in total O(6t · t2) time and O(6t · t) space. As observed in Lemma 10.4.14, this indeed
results in canonical representations.
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Appending a new palindrome

Algorithm 10.6.7 (Implementation of Lemma 10.5.1). Given an affine prefix set A with
its representation ⟨X, (Qi, ℓi, ui)

t
i=1⟩ and an integer m ∈ N, there is a read-only algorithm

that finds a decomposition of A|m into at most t affine prefix sets, each of order at most
t, in O(t2) time and space.

The representations of the sets are computed in a loop over i = 1, 2, . . . , t. For a fixed
i, the task is, given exponents a1, a2, . . . , ai−1, to compute the minimal ai ∈ [ℓi, ui] such
that

|XQa1
1 Qa2

2 . . . Q
ai−1

i−1 Q
ai
i Q

ui+1

i+1 . . . Qut
t | ≥ m.

We then add a set with a representation ⟨XQa1
1 Qa2

2 . . . Q
ai−1

i−1 , (Qi, ℓi, ai−1)·(Qj, ℓj, uj)
t
j=i+1⟩

to the union, but only if ai > ℓi. Either way, we continue with i+1. We can obtain ai by
first computing m′ = |XQa1

1 Qa2
2 . . . Q

ai−1

i−1 Q
ui+1

i+1 . . . Qut
t |, which takes O(t) time. Then, it

holds that ai = ⌈(m−m′)/|Qi|⌉ (unless this value is not in [ℓi, ui], which can be handled
trivially). Creating the new representation takes O(t) time and space, and the overall
time and space for all i is O(t2).

Algorithm 10.6.8 (Implementation of Corollary 10.5.3). Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a

canonical representation of an affine prefix set A. Let α be the largest (possibly frac-
tional) exponent such that XQα

1 is a prefix of T and define

S = {S · P : S · P is a prefix of XQα
1 , S ∈ A, P ∈ PAL, |P | ≥ 2|Q1|}

There is a read-only algorithm that computes in O(n) time and O(t2) space at most t affine
prefix sets Bi such that their union covers S and such that for every string Y ′ ∈ ∪iBi there
is a string Y ∈ A and P ∈ PAL satisfying Y ′ = Y ·P . Each set is reported in representation
of order at most t.

We first compute α, which takes O(n) time by naive scanning. We then apply The-
orem 10.5.2, which gives an affine set B in representation of order t in O(t) time and
space. Finally, we truncate B to prefixes of length |XQα

1 | in O(t2) time and space with
Algorithm 10.6.7, resulting in at most t representations of order at most t.

Algorithm 10.6.9 (Implementation of Corollary 10.5.5). Let ⟨X, (Qi, ℓi, ui)
t
i=1⟩ be a

canonical representation of an affine prefix set A. There is a read-only algorithm that
computes a decomposition of a superset of

A′ = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL, cen(P ) ≥ |X|+ (u1 + 3) · |Q1|}

(with the properties claimed in Corollary 10.5.5) into O(t log n) affine prefix sets of order
at most t+ 1 in O(n) time and O(t2 log n) space.

We start by searching the prefixes of T [|XQu1+2
1 | + 1. .] that belong to PAL. By

Algorithm 10.6.2, we can find O(log n) affine sets of order at most 1 containing all such
prefixes in O(n) time and O(log n) space. The sets of order 1 are reported in strongly
affine representation ⟨U(V U)ℓ, (V U, 1, u)⟩ for some U ∈ PAL∪ {ε}, V ∈ PAL and integers
ℓ ≥ 1 and u > 1.

As seen in Case 4 of the proof of Corollary 10.5.5, it cannot be that |V U | < |Q1|.
Also, as shown in Case 3, if |V U | = |Q1|, then we can simply apply Algorithm 10.6.8,
which takes O(n) time and O(t2) space. Hence we only have to consider the cases where
|V U | > |Q1| (Case 1), or where the affine prefix set is of order 0 (Case 2). For Case
1, let ρ1 = ⟨XQu1+2

1 U(V U)ℓ, (V U, 1, u)⟩, and let P ′ = U(V U)ℓ+u. We obtain ρ2 =
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⟨rev(Q1)[1. .|Q1| − s], (rev(Q̂i), 1, ui)
t
i=1⟩ in O(t) time, where s and the Q̂i are defined as

in Theorem 10.5.4. Then, we compute the maximal α ∈ Q such that XQu1+2
1 P ′ · rev(Q1)

α

is a prefix of T , which can be done naively in O(n) time. Now we truncate ρ2 such that
the generated strings are of length at most |Qα

1 |, which takes O(t2) time and space with
Algorithm 10.6.7, and results in at most t representations of order at most t. Finally, we
concatenate a copy of ρ1 with each of these representations. In theory, when concatenating
ρ1 with some representation ρ′2 = ⟨X ′, (Q′

i, ℓ
′
i, u

′
i)⟩, we have to compute the primitive root

Y of X ′. This is because (Y, |X
′|

|Y | ,
|X′|
|Y | ) will become a component of the concatenation.

However, we can omit this step by observing that the removal of fixed components with
Algorithm 10.6.4 does not depend on the primitiveness of fixed components, and hence we
can create and immediately remove a non-primitive component (X ′, 1, 1) instead. Thus,
we take O(t2) time per concatenation, or O(t3) time overall.We followed the computational
steps in Case 1 of the proof of Corollary 10.5.5, and the total time and space complexity
(for one affine set of core palindromes) are respectively O(n+ t3) and O(t2).

As seen in the proof of Corollary 10.5.5, if an affine set of prefix-palindromes of
T [|XQu1+2

1 | + 1. .] is given in representation ⟨P ′, ε⟩ (i.e., in Case 2), then we need a
subset of the operations used for Case 1, leading to (at most) the same time and space
complexity.

Summing over the O(log n) sets of core palindromes, the total time and space com-
plexity are respectively O(n log n + t3 log n) and O(t2 log n). This can be improved by
observing that processing a single set of core palindromes takes O(t3) time if we ignore
the O(n) time needed to find the maximal α ∈ Q such that XQu1+2

1 P ′ ·rev(Q1)
α is a prefix

of T . We only use α to truncate ρ2 to strings of length at most |Qα
1 |, and every string

generated by ρ2 is of length over |Q1|. Hence we only have to compute α if α > 1. In
Lemma 10.6.10 (below), we show how to perform this task in batch in overall O(n) time,
using O(log n) space. Hence the total time becomes O(n + t3 · log n), which is O(n) due
to Lemma 10.4.7.

Lemma 10.6.10. Let T [1. .n] be a string and let Q be a fragment of T . Let S1, . . . Sh be
prefixes of T , in increasing order of length. There is a read-only algorithm that, in O(n)
time and O(h) space, computes for each i ∈ [1, h] either the maximal α ∈ Q with α ≥ 1
such that Si · rev(Q)α is a prefix of T , or reports that such α does not exist.

Proof. For i ∈ [1, h], let xi = |Si| + 1. Using constant space and linear time pattern
matching (see [78]), we enumerate all the occurrences of rev(Q) in T in increasing or. This
makes it easy to filter out all the xi for which T [xi. .] does not have prefix rev(Q). Hence,
from now on we can assume that all the T [xi. .] have prefix rev(Q1). Let yi ∈ [xi+|Q|, n] be
the maximal index such that T [xi. .yi] has period |Q|. We argue that, if for any i ∈ [2, h]
it holds xi ≤ yi−1−|Q|+1, then yi−1 = yi. This is easy to see, because then T [xi−1. .yi−1]
and T [xi. .yi] have overlap T [xi. .yi−1] of length at least |Q|, such that T [xi−1. .yi−1] and
T [xi. .yi] must lie within a single |Q|-periodic fragment. For every i ∈ [1, h] in increasing
order, we compute yi as follows. If i = 1 or xi > yi−1 − |Q| + 1, then we naively scan
T [xi+q. .] until we reach the end position yi of the |Q|-periodic fragment (recall that T [xi. .]
has prefix rev(Q) due to the earlier filtering). Otherwise, it holds xi ≤ yi−1 − |Q| + 1,
and we can assign yi = yi−1 in constant time. We scan each position of T at most once
(because a scan always starts at a position xi + q > yi−1), and thus the time is O(n),
while the space is O(h).
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Recursively appending shorter palindromes

Algorithm 10.6.11 (Implementation of Lemma 10.5.7). Let A be an affine prefix set of
T [1. .n], given in canonical representation ρ of order t. Define the set S as

S = {S · P | S ∈ A, P ∈ PAL, and S · P is a prefix of T}.

There is a read-only algorithm that, given ρ and T , computes O((t+1)2 log n) affine prefix
sets whose union is S, using O(n) time and O((t+1)3 log n) space. Each affine prefix set
is reported in representation of order at most t+ 1.

As explained in Lemma 10.5.7, we can build O((t+1)2 log n) affine prefix sets such that
their union equals S by a recursive application of Algorithm 10.6.8 and Algorithm 10.6.9.
At every step of the recursion, the order of the affine set decreases by one, and hence the
depth of the recursion is t. More precisely, the initial step at depth 0 takes O(n) time and
O((t+1)2 log n) space by applying Algorithm 10.6.8 and Algorithm 10.6.9 to the original
canonical representation. Then, at depth i > 0 of the recursion, we apply the algorithms
to an affine prefix set of Q3

i , and this set is in canonical representation of order t − i.
Hence we use O(|Qi|) time and O((t− i+ 1)2 · log |Qi|) space at depth i. This results in
O((t − i + 1) · log |Qi|) representations of order at most (t − i + 1). Then, each of these
representations is appended to the same representation of order i, resulting in O((t− i+
1) · log |Qi|) representations of order at most t+ 1, taking O((t+ 1) · (t− i+ 1) · log |Qi|)
time and space. Summing over all i, the space complexity is

O((t+ 1)2 · log n+
∑t

i=1
(t+ 1) · (t− i+ 1) · log |Qi|) = O((t+ 1)3 log n).

The time complexity is the same, with an additional O(n +
∑t

i=1|Qi|) needed. Since
the representation is canonical, Lemma 10.4.6 implies |Q1| >

∑t
i=2|Qi| and thus O(n +∑t

i=1|Qi|) = O(n). Note that O(n) also dominates O((t+1)3 log n) due to Lemma 10.4.7.

Implementation of Theorem 10.1.1

The final component of the algorithm is a for-loop that goes over all 1 ≤ i ≤ k to
construct a collection Ci of affine sets containing all prefixes of T that belong to PALi,
where each affine set has canonical representation of order at most i. To construct C1
with |C1| = O(log n), we use Algorithm 10.6.2 in O(n) time and O(log n) space.

Now we inductively show how to compute Ci with i > 1 from Ci−1. For each affine
prefix set in Ci−1, or more precisely for its canonical representation (necessarily of order at
most i− 1), we proceed as follows. We apply Algorithm 10.6.11 to append a palindrome,
which takes O(|Ci−1| ·n) time and O(|Ci−1| · i3 log n) space in total, and results in O(|Ci−1| ·
i2·log n) representations of order at most i. Next, we have to make the new representations
canonical. We apply Algorithm 10.6.6 to each of them, which takes O(6i · i2) time and
O(6i · i) space per representation. The total time is O(|Ci−1| · i4 · log n · 6i), while the
total space is O(|Ci−1| · i3 · log n · 6i). The result are O(|Ci−1| · i2 · log n · 6i) canonical
representations, each of which is of order at most i. Finally, Ci consists exactly of the sets
represented by these representations.

Now we analyze the total time and space complexity. The algorithm terminates after
computing Ck, where k is the palindromic length of T . We focus on a fixed i ∈ [2, t] and
analyze the complexity of computing Ci. If we ignore the O(|Ci−1| · n) time needed to
append a palindrome, then the time and space for computing Ci, and also its cardinality
|Ci| are bounded from above by some value Ui = O(|Ci−1| · i4 · log n · 6i). Hence we can



Chapter 10. Small-space algorithms for Palindromic Length 189

find a constant c ≥ 2 independent of i and n such that Ui = c · |Ci−1| · i4 · log n · 6i. This
also holds for C1 if we define U0 = |C0| = 1, and hence we consider i ∈ [1, k] from now on.
We resolve the recurrence and obtain the bound

Ui = c · |Ci−1| · i4 · log n · 6i

≤ c · Ui−1 · i4 · log n · 6i

≤
i∏

j=1

c · j4 · 6j · log n

< ci · (i!)4 · 6i(i+1)/2 · logi n.

Let ϵ ∈ R+ with ϵ < 2 be an arbitrary constant, and let ϵ′ = 1
2−ϵ
− 1

2
− 1

2c
> 0 for c

large enough. If i ≤ c or (ii)6 ≥ 6ϵ
′·i2 , then i is constant and it holds Ui = O(logi n) =

O(6i
2/(2−ϵ)/i · logi n). Otherwise, i > c ≥ 2 implies i < ci < ii and thus ci · (i!)4 < (ii)6/i <

6ϵ
′·i2/i. We continue with

Ui < ci · (i!)4 · 6i(i+1)/2 · logi n
< (6ϵ

′·i2/i) · 6i(i+1)/2 · logi n
= (6i

2/(2−ϵ)/i) · logi n

We have shown Ui = O((6i
2/(2−ϵ)/i) · logi n). By summing over all i ∈ [1, t], we obtain

k∑
i=1

Ui = O(
k∑

i=1

(6i
2/(2−ϵ)/i) · logi n)

≤ O(
k∑

i=1

(6k
2/(2−ϵ)/k) · logk n)

= O(6k
2/(2−ϵ) · logk n),

where the middle step follows from the fact that (6i2/(2−ϵ)/i) · logi n ≤ (6k
2/(2−ϵ)/k) · logk n

for arbitrary n ∈ N+ and i ∈ [1, k]. We have shown that the total space for computing all
Ci with i ∈ [1, k] is O(6k

2/(2−ϵ) · logk n). For the time bound, we ignored the O(|Ci−1| · n)
time needed to compute Ci. However, we already know that

∑k
i=1|Ci| <

∑k
i=1 Ui =

O(6k
2/(2−ϵ) · logk n), and thus the time is bounded by O(n · 6k2/(2−ϵ) · logk n).

10.6.1 Computing the palindromic length

The algorithm of Theorem 10.1.3 can be used to test if the palindromic length of T is at
most k by checking whether T is a k-palindromic prefix. We now show how to improve
the complexity by using two copies of the data structure of Theorem 10.1.3.

Theorem 10.1.4. Given a string T of length n, there is a read-only algorithm that com-
putes the palindromic length k of T in O(n · 6k2 · log⌈k/2⌉ n) time and O(6k

2 · log⌈k/2⌉ n)
space.

Proof. Let 0 < ϵ < 1 be a constant. We will start with k = 1, and increment k until we
can verify that the palindromic length is indeed k. We will consider strings in PAL⌊k/2⌋ and
PAL⌈k/2⌉, and during the complexity analysis we encounter terms of the form 6⌈k/2⌉

2/(2−ϵ).
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Before we describe the algorithm, we point out that these terms can be bounded from
above using

6⌈k/2⌉
2/(2−ϵ) ≤ 6((k+1)/2)2/(2−ϵ) = 6(k

2+2k+1)/(8−4ϵ) < 6(k
2)/(8−4ϵ) · 63k < 6k

2/(8−6ϵ),

where the last step holds if k exceeds a constant that depends solely on ϵ.
The algorithm calls Theorem 10.1.3 to build a set P that contains O(6k

2/(8−6ϵ) ·
log⌈k/2⌉ n) affine prefix sets that describe the ⌈k/2⌉-palindromic prefixes of T . It then calls
Theorem 10.1.3 again to compute the set S that contains O(6k

2/(8−6ϵ) ·log⌊k/2⌋ n) affine pre-
fix sets of rev(T ) that describe the ⌊k/2⌋-palindromic prefixes of rev(T ). Each set is given
in canonical representation of order at most ⌈k/2⌉ for P , and at most ⌊k/2⌋ for S. The
required time is O(n · 6k2/(8−6ϵ) · log⌈k/2⌉ n), and the overall space is O(6k

2/(8−6ϵ) · log⌈k/2⌉ n).
Then, we iterate over each possible combination of a set A ∈ P and a set B ∈ S. We

use Lemma 10.6.12 (below) to check whether there exists A ∈ A and B ∈ B such that
T = A · rev(B). Then, T is in PALk if and only if at least one of these checks is succesful.
There are O(6k

2/(4−3ϵ) ·logk n) possible combinations, and each combination can be verified
in O(10k) time. Hence, the total time needed for verification is O(10k · 6k2/(4−3ϵ) · logk n).

For the final part of the analysis, recall that we have to increment k and rerun the
algorithm until the verification is successful. From now on, let k be the actual palindromic
length of T . The space is dominated by the final run, which requires O(6k

2/(8−6ϵ)·log⌈k/2⌉ n)
space. The total time is bounded by

O(k · n · 6k2/(8−6ϵ) · log⌈k/2⌉ n+ k · 10k · 6k2/(4−3ϵ) · logk n)
≤ O( n · 6k2/(8−7ϵ) · log⌈k/2⌉ n + 6k

2/(4−4ϵ) · logk n)
≤ O( n · 6k2 · log⌈k/2⌉ n + 6k

2 · logk n),

where we used the same trick as before to hide the factors k and 10k by increasing the
coefficient of ϵ. If k ≤

√
log6 n, then logk n = o(n) and the time complexity is clearly

dominated by the term n · 6k2 · log⌈k/2⌉ n. If k >
√

log6 n, then 6k
2
> n and both time and

space are superlinear. Hence, when running the algorithm, we stop increasing k as soon
as it exceeds

√
log6 n. If we terminate before, i.e., if the palindromic length is less than√

log6 n, then we achieve the claimed time complexity. Otherwise, i.e., if we terminate
because k exceeds

√
log6 n, we finish the computation using the algorithm by Borozdin

et al. [76], which takes O(n) ≤ O(6k
2
) time and space.

Lemma 10.6.12. Let A be an affine prefix set of T , and let B be affine prefix set rev(T ).
If A and B are given in canonical representation of orders respectively at most t and t′,
then we can decide if there are A ∈ A and B ∈ B with T = A · rev(B) in O(10t+t′) time
and space.

Proof. Let ρ = ⟨X, (Qi, 1, ui)
t
i=1⟩ and ρ′ = ⟨X ′, (Q′

i, 1, u
′
i)
t′
i=1⟩ be the respective canonical

representations of A and B. We implement the procedure recursively. If t = t′ = 0, then
we can check in constant time if the lengths of the two generated strings sum to n. If
t > 0 and t′ = 0 (the case t = 0 and t′ > 0 is symmetric), then B contains a single string
of some length m, and we only have to check if A contains a string of length n′ = n−m.
If |XQ1Q2Q3 . . . Qt| > n′, then every string generated by A is of length over n′, and we
can terminate with a negative answer. Otherwise, let

amin = (n′ − |X| − |Qu2
2 Qu3

3 . . . Qut
t |)/|Q1| and amax = (n′ − |X| − |Q2Q3 . . . Qt|)/|Q1|
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(both in Q), and note that a string XQa1
1 Qa2

2 . . . Qat
t with ∀i ∈ [1, t] : ai ∈ [1, ui] can only

be of length n′ if amin ≤ a1 ≤ amax. By Corollary 10.4.16, it holds amax − amin < 1, hence
there is at most one a ∈ N such that amin ≤ a ≤ amax. If a ∈ [1, u1], then we replace ρ
with ⟨XQa

1, (Qi, 1, ui)
t
i=2⟩ and recurse. Otherwise, we terminate with a negative answer.

It remains the most general case t > 0 and t′ > 0. If there are A ∈ A and B ∈ B
such that T = A · rev(B), then it holds A = XQa1

1 Qa2
2 . . . Qat

t and B = X ′Q
′a′1
1 Q

′a′2
2 . . . Q

at′
t′

for some exponents satisfying ∀i ∈ [1, t] : ai ∈ [1, ui] and ∀i ∈ [1, t′] : a′i ∈ [1, u′
i]. For

now, assume |Q1| = |Q′
1|. Let a = min(u1− a1, a

′
1− 1), then the representations generate

strings such that

T = XQa1+a
1 Qa2

2 . . . Qat
t · rev(X ′Q

′a′1−a
1 Q

′a′2
2 . . . Q

at′
t′ ).

Note that either a1 + a = u1 or a′1 − a = 1 (or both). We proceed with two recursive
calls. In the first one, we replace ρ with ⟨XQu1

1 , (Qi, 1, ui)
t
i=2⟩. In the second one, we

replace ρ′ with ⟨X ′Q′
1, (Q

′
i, 1, u

′
i)
t′
i=1⟩. If both recursive calls have negative answer, then

we terminate with negative answer. Otherwise, we terminate with a positive answer.
Now we can assume t > 0, t′ > 0, and |Q1| ≠ |Q′

1|. We only consider |Q1| > |Q′
1|,

as the other case is symmetric. We again assume that there are A ∈ A and B ∈ B such
that T = A · rev(B), where A and B are defined as before. Since a canonical represen-
tation is strongly affine, A′ = XQa1+2

1 Qa2
2 . . . Qat

t is a prefix of T . By Corollary 10.4.16
and Lemma 10.4.5, it is clear that A = XQa1

1 Q1[1. .s] and A′ = XQa1+2
1 Q1[1. .s] =

A · (rots(Q1))
2 for some s ∈ [1, |Q1|). If |A′| < n − |X ′|, then the primitive square

(rots(Q1))
2 is not only a prefix of rev(B) = rev(X ′(Q′

1)
a′1(Q′

2)
a′2 . . . (Q′

t′)
at′ ), but also a

prefix of B′ = rev((Q′
1)

a′1(Q′
2)

a′2 . . . (Q′
t′)

at′ ). However, by Lemma 10.4.5, we know that B′

and thus also (rots(Q1))
2 has period |Q′

1| < |Q1|, which contradicts Lemma 10.2.1. Hence
we have shown that |A′| ≥ n− |X ′|, which implies

a1 ≥ (n− |X ′| − |X| − |Qa2
2 Qa3

3 . . . Qat
t |)/|Q1| − 2 > (n− |X ′| − |X|)/|Q1| − 3,

where the second inequality is due to Corollary 10.4.16. We define

amin = (n− |X| − |X ′|)/|Q1| − 3 and amax = (n− |X| − |X ′|)/|Q1|

(both in Q), and observe that a1 < amax because otherwise |A| ≥ n − |X ′| and thus
|A · rev(B)| > n. We have established amin < a1 < amax. It holds amax − amin = 3, which
means that there are at most three possible a ∈ N such that amin < a < amax. For each
a ∈ [1, u1] with amin < a < amax, we recurse by replacing ρ with ⟨XQa

1, (Qi, 1, ui)
t
i=2⟩.

If all of the at most three recursive calls have a negative answer, we terminate with a
negative answer. Otherwise, we terminate with a positive answer.

Regardless of the case, we perform at most three recursive calls, and with each call
the combined order of the representations decreases by one. Thus, the total number of
calls is at most 3t+t′ . In each call, computing the new representations takes O(t + t′)
time with a naive implementation (only simple arithmetic operations are needed). At
all times, the required space is linear in the time spent. Hence the total time and space
are O(3t+t′ · (t + t′)), which is less than O(10(t+t′)/2) if t + t′ exceeds a sufficiently large
constant.
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Conclusion and Perspectives

In this thesis, we study problems related to approximate pattern matching and approx-
imate language membership, for different notions of approximation: string distances,
property testing, and others. Chapter 2 introduces the concepts used in this thesis.

In the first part of this thesis, we present algorithms and data structures for approx-
imate pattern matching tasks. In Chapter 4 and Chapter 6, we give data structures for
operations that are crucial for approximate pattern matching (as observed by Charalam-
popoulos et al. [89]), with a focus on time-space trade-offs. Chapter 4 gives a small-space
data structure for internal pattern matching, which we then use to give algorithms for
circular pattern matching and longest common substring in low-memory settings. In
Chapter 6, we give a data structure for longest common extension in string with wild-
cards that offers a time-space trade-off that interpolates smoothly between the solution of
Crochemore et al. [117] and the kangaroo jumping method of Landau and Vishkin [224].
We show that this data structure allows faster algorithms for approximate pattern match-
ing and analysis of strings with wildcards. In Chapter 5, we study approximate pattern
matching under the Hamming distance in strings with wildcards. We give an efficient al-
gorithm for the low-distance regime, in the case when there are few contiguous groups of
wildcards in the input strings. We further use our algorithm to give insight on the struc-
ture of the occurrences of a pattern in a text as a small number of arithmetic progressions
in this setting, and give an almost-tight lower bound for this characterization.

In Part II, we give algorithms for deciding approximate membership in formal lan-
guages. In Chapter 8, we give a complete characterization of the complexity of property
testing of regular languages under the Hamming distance. Our results close a line of work
opened by Alon et al. [24]: we not only find the exact (asymptotic) complexity of the
problem, but also outline three complexity classes, show that there are no other classes,
and give a combinatorial characterization of each class. Furthermore, we show that our
characterization is decidable: it is complete for PSPACE. In Chapter 9, we give streaming
and read-only algorithms for computing the distance to the languages of palindromes or
squares under the Hamming and edit distances, in the low-distance regime. Our algo-
rithms rely on approximate pattern matching algorithms similar to those discussed in
Part I and on distance sketches [62, 107]. Finally, in Chapter 10, we consider the problem
of computing the palindromic length of a string. We first establish results on the structure
of prefixes of palindromic length k of a string. We then show that this structure can be
computed efficiently in small space, leading to a space-efficient algorithm for computing
the palindromic length in the low-distance regime.

Next, we discuss some open questions and research directions related to the topics
covered in this thesis.
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Longest common extension with mismatches

Our study of longest common extension with wildcards, presented in Chapter 6, originally
started as a study of longest common extension with mismatches in the low-distance
regime, with the goal of giving faster algorithms for pattern matching with mismatches.
The kangaroo jumping method of Landau and Vishkin [224] gives a data structure that
solves this last problem using O(n) preprocessing time and O(k) query time. In the case
of wildcards, we can use additional preprocessing to make queries faster, as shown by
Crochemore et al. [117] and trade-off given in Chapter 6. A natural question is whether
the same is true for LCE with mismatches.

Open Question 1. Can longest common extension with mismatches be solved in O(n · t)
preprocessing time and O(k/t) query time for t = Ω(kϵ) with ϵ > 0?

Note that for the edit distance, which can be computed in time O(k2) after O(n) time
preprocessing, such an improvement is ruled out by conditional lower bounds.

Property testing and variants for context-free languages

In Chapter 8, we give a complete characterization of the complexity of property testing
of regular languages, which includes an upper bound of O(log(ϵ−1)/ϵ) queries. A natural
question is: what is the complexity of property testing of other classes of languages, such
as context-free languages? Alon et al. [24, Theorem 2] showed that context-free languages
cannot be tested with a constant number of queries: they give an explicit context-free
language that requires Ω(

√
n) queries.

Two main research directions arise from this observation. The first focuses on un-
derstanding the complexity of property testing of context-free languages of interest. An
important family of context-free languages are the Dyck languages, the sets of well-
parenthesized expressions with one or more kinds of parentheses, as they capture the
ability of context-free languages to express hierarchical information (this idea is formal-
ized by the Chomsky-Schützenberger Representation Theorem [99]). Fischer et al. [136]
gave an algorithm that uses O(n2/5) queries for testing Dyck languages, and show a lower
bound of Ω(n1/5) queries for this problem.

Open Question 2. What is the complexity of property testing of Dyck languages?

The second line of research observes that context-free languages are also hard for the
streaming model, and proposes to study membership in the hybrid streaming property
testing model, a framework that combines the sequential access model of streaming with
the promise of property testing that the input is either in the language or far from it.
The goal is the same as in the streaming model: use as little space as possible. François
et al. [142] studied streaming property testing of visibly pushdown languages (VPLs),
a strict subclass of context-free languages that contains the Dyck languages, is hard
for streaming and has strong closure properties. The algorithm of François et al. [142]
reduces to property testing of the regular language of “folded” peak-shaped words. Their
reduction maps to weighted edit distance case, for which they design a property tester
that uses O(1/ϵ2) queries, and their algorithm for VPLs uses O(log6 n/ϵ4) bits of space.
In [48], we show that the property testing algorithm presented in Chapter 8 also works in
the case of the weighted edit distance. Using our improved tester, we give an improved
algorithm for streaming property testing of VPLs that uses O(log5 n log log n/ϵ3) bits of
space. We also give a lower bound of Ω(max(log n, 1/ϵ)) bits of space. There is still a
large gap between these upper and lower bounds.
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Open Question 3. What is the complexity of streaming property testing of Visibly
Pushdown Languages?

Furthermore, the context-free language used by Alon et al. [24] for the property testing
lower bound is not a VPL. This leads to the question of the complexity of property testing
of VPLs, and whether the Dyck languages are the hardest VPLs.

Open Question 4. What is the complexity of property testing of VPLs? Are there VPLs
that are harder to test than Dyck languages?

In Chapter 8, property testing of regular languages is reduced to finding occurrences of
blocking sequences, which are obstructions to membership in the language. Consequently,
I believe that an answer to all three of the above open questions requires insight on the
nature of obstructions for VPLs and Dyck languages.

Open Question 5. What is the nature of obstructions for VPLs and Dyck languages?
How can we find them efficiently with (streaming) sampling?

Practical aspects of approximate pattern matching

In general, this thesis studies algorithms and data structures from a rather theoretical
point of view, with an emphasis on minimizing asymptotic complexity and understanding
the underlying mathematical objects. However, our approach does not take into consider-
ation ease of implementation or practical performance. On the other hand, modern search
engines that allow approximate search, such as Meilisearch [239], are based on heuristic
approaches that are not efficient in theory but work well in practice. I believe that the
theoretical and practical approaches are not mutually exclusive, and that aspects of one
can be used to improve the other.

Open Question 6. How can we bridge the gap between theory and practice of approxi-
mate pattern matching?
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Appendix A

Unrelated Work

This section reviews some additional research work that I conducted during the three
years of Ph.D., but which is not directly relevant to the topic of my thesis.

Towards stronger depth lower bounds

This thesis puts a particular emphasis on giving lower bounds that are as close as possible
to matching the complexity of algorithms. However, it often seems much to prove a lower
bound than it is to give an algorithm. The field of lower bounds in complexity is still
vastly unexplored: for example, we know that there are functions of complexity Ω(nc) for
any c > 0 in P, however these results are obtained through diagonalization and are not
constructive. On the other hand, the best lower bound that we know against an explicit
function in P is Ω(n3−ϵ) for any ϵ > 0, due to Håstad [173].

With Ryan Williams, we explored two ways of giving better lower bounds against
explicit functions. One approach builds on the hypothesis that there exists algorithms
for SAT that are marginally faster than the current state of the hard, and explicitly build
a hard function from this assumption. The second approach give depth lower bounds
of 3.603 log n for uniform circuits computing SAT. This model is slightly weaker than
polynomial time algorithms, but improves what was known for depth lower bounds, as
an Ω(nc) time lower bound implies a depth lower bound of c log n + Ω(1). The resulting
paper [3] was published in ITCS’24.

An Approximation scheme for Ultrametric Embedding

Ultrametrics are a mathematical concept that provide a rigorous foundation for the study
of hierarchical clustering : the problem of computing the best hierarchical clustering of
a metric space (S, d) of n points is equivalent to that of computing the ultrametric ∆
that minimizes the distortion w.r.t. d. A case of particular interest is the Euclidean
case, i.e. when S is a subset of Rt and the distance d is the Euclidean metric ℓ2. In this
setting, Farach et al. [131] gave a quadratic-time algorithm that computes an ultramet-
ric minimizing the worst-case distortion, and proved that the problem cannot be solved
in sub-quadratic time. This quadratic runtime is prohibitive for modern applications
that need to handle very large datasets. To circumvent this lower bound, Cohen-Addad
et al. [109] and later Cohen-Addad et al. [110] gave approximation algorithms for the
problem that produce an ultrametric approximating the minimum distortion within a
factor of 5c and

√
2c for any c > 1, respectively, while running in time Õ(n1+O(1/c2)).
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However, the constant hidden in the O(·) in the exponent of the runtime is at least 12,
which makes the algorithm impractical.

Together with Guillaume Lagarde, we gave the first approximation algorithm with
an approximation ratio c arbitrarily close to 1, while running in sub-quadratic time
Õ(n1+1/c2). In our contribution, we give an improved algorithm for computing γ-Kruskal
trees in Euclidean graphs, a combinatorial object of independent interest, thereby remov-
ing the large constant in the exponent of the running time and making the algorithm truly
sub-quadratic for all values of c > 1. We also give an efficient dynamic data structure
for computing approximate farthest neighbors in Euclidean metric spaces. Finally, we
provide a Rust implementation that shows that when c ≃

√
2, the performance of our

algorithm is comparable to that of previous work, and that it scales to large datasets.
This work [1] was published at the AAAI 2025 conference.

Synthesis of LTLf formulas

Program synthesis is the task of finding a program P that maps a given set of inputs {Xi}
to their corresponding output {Yi} and minimizes a given cost function.

With Nathanaël Fijalkow, Théo Matricon, Baptiste Mouillon and Pierre Vandenhove,
we studied the case of synthesizing LTL formulas over finite words (in short, LTLf formulas)
when given a set of positive and a set of negative inputs, aiming for the smallest possible
formula. We use an enumerative approach, that lists all formulas in order of increasing
size, and stops when it finds one that satisfies the input. We filter out formulas equivalent
to previously seen formulas to speed up the search. When the number of enumerated
formulas becomes too large, our algorithm switches to enumerating boolean combinations
of LTLf formulas. This allows use to filter formulas that are dominated by others, and
greatly reduces the size of the search space. We provided a Rust implementation that
demonstrates the practical performance of our algorithm.

Constant-delay enumeration of regular languages under
the Hamming distance.

Amarilli and Monet [28] studied the task of enumerating a regular language L, that is,
producing the (usually infinite) sequence of its words, while bounding the delay between
two consecutive words, i.e. allowing only a constant number of operations when producing
one word from the previous. They give an effective characterization of languages that can
be enumerated with constant delay, and give an algorithm using edit operations, which
induces a total order on the words such that the edit distance between a word and the
next is bounded.

With Antoine Amarilli and Mikaël Monet, we studied the restriction of the problem
to the more constraining Hamming distance, where only substitutions are allowed. We
extend their results: we give an effective characterization of languages that can be enu-
merated with constant delay, and give a construction for a total order on the words where
the Hamming distance between a word and the next is bounded by a constant.
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Parameterized Algorithms and Computational Experi-
ments
(PACE) Challenges
The PACE Challenge1 is an annual programming contest that “aims to bridge the gap
between the theory and practice of algorithm design and engineering”. Each year, the
target is a different problem from the theory of algorithms, and teams of contestants must
implement the fastest possible solution for the problem. During my Ph.D., I participated
in two editions of the challenge.

• In 2022, the problem to solve was Directed Feedback Vertex Set. With Gaétan
Berthe, Yoann Coudert-Osmont, David Desobry, Amadeus Reinald and Mathis Roc-
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