Dans sa carte blanche, le mathématicien Etienne Ghys revient sur les différentes manières, des plus aux moins équitables, d’élire un représentant parmi deux concurrents.
Carte blanche. Les mathématiques peuvent-elles jeter un peu de lumière sur le feuilleton à rebondissements des élections américaines ? Imaginons une population qui vote pour deux candidats et supposons que les électeurs choisissent l’un ou l’autre à pile ou face. A l’issue du scrutin, on compte les bulletins et le candidat qui a le plus de voix est élu. Supposons maintenant que, lors du dépouillement, les scrutateurs font quelques erreurs (ou fraudent), par exemple en se trompant une fois sur 10 000. Quelle est la probabilité que ces petites erreurs faussent le résultat global et que l’autre candidat soit élu ? Il se trouve que cette probabilité est de l’ordre de 6 sur 1000 (pour les curieux, il s’agit de 2/π fois la racine carrée de 1/10 000). Est-ce un risque acceptable dans une démocratie ?
Les élections américaines sont à deux niveaux. Chaque Etat élit ses représentants à la majorité et ceux-ci élisent à leur tour le président. En supposant encore une erreur de lecture une fois sur 10 000 (ce qui est raisonnable quand on voit les bulletins de vote américains), quelle est la probabilité de fausser le résultat final ? L’existence de ce deuxième niveau fait que la probabilité est bien pire : une élection sur 20 serait faussée ! C’est beaucoup trop.
La « sensibilité au bruit »
Bien entendu, tout cela dépend d’hypothèses bien peu réalistes et n’accrédite en rien les allégations de fraude de Donald Trump ! Supposer que les électeurs choisissent à pile ou face n’a évidemment aucun sens, même si on peut être stupéfait par la quasi-égalité des résultats en Géorgie par exemple. Cela illustre cependant un phénomène mis en évidence par les mathématiciens il y a une vingtaine d’années : la « sensibilité au bruit » de divers processus de décision, qui vont bien au-delà des élections. Cela concerne tout à la fois l’informatique, la combinatoire, la physique statistique, ou les sciences sociales. Lorsqu’un grand nombre « d’agents », qui peuvent être des êtres humains ou des neurones par exemple, ont des « opinions », quels sont les bons processus qui permettent de prendre une décision globale de manière stable ? Cette stabilité signifie que l’on souhaite que la décision soit aussi insensible que possible au bruit, c’est-à-dire aux petites erreurs que l’on ne contrôle pas.
On peut imaginer beaucoup de processus électoraux. Par exemple, chaque quartier pourrait élire son représentant qui élirait ensuite le représentant de la ville, qui élirait son représentant dans le canton, puis le département, etc. Il s’agirait en quelque sorte d’un tournoi sportif, par étapes successives, un peu comme les élections américaines mais avec beaucoup plus de niveaux. Il se trouve que cette méthode est extrêmement sensible au bruit, et il faut absolument l’éviter. La moindre proportion d’erreurs dans le dépouillement entraînerait une très grande probabilité de se tromper sur le résultat final. C’est inacceptable pour un vote mais cela fait partie du charme des tournois sportifs : ce n’est pas toujours le meilleur qui gagne et c’est tant mieux.
Quelle est alors la meilleure méthode, celle qui est la plus stable ? La réponse est un peu désolante et montre que la question est mal posée. Il suffit de demander à un dictateur de décider seul. Cette « méthode » est en effet très stable car, pour changer le résultat, il faut une erreur sur le seul bulletin qui compte, ce qui arrive une fois sur 10 000. Il faut donc reformuler la question en cherchant parmi les méthodes équitables qui donnent le même pouvoir à tous les électeurs. Il y a une dizaine d’années, trois mathématiciens ont démontré dans ce cadre un théorème difficile qui n’est au bout du compte que du bon sens. Pour départager deux candidats, le vote à la majorité simple est la méthode la plus stable de toutes, parmi celles qui sont équitables. Vive la majorité !
Quelques références :
http://www.mit.edu/~izadik/files/Essay.pdf
https://arxiv.org/pdf/math/0412377.pdf
https://gilkalai.files.wordpress.com/2018/01/18-kalaix-7.pdf
Your article helped me a lot, is there any more related content? Thanks!