Le prix Abel récompense Dennis Sullivan, mathématicien charismatique

https://www.lemonde.fr/sciences/article/2022/03/23/le-prix-abel-recompense-dennis-sullivan-mathematicien-charismatique_6118837_1650684.html

Le prix Abel de mathématiques a été attribué, mercredi 23 mars, à l’Américain Dennis Sullivan, 81 ans, « pour ses contributions révolutionnaires à la topologie dans son sens le plus large, et en particulier dans ses aspects algébriques, géométriques et dynamiques », a annoncé l’Académie norvégienne des sciences et des lettres. Alors que la médaille Fields est attribuée à un mathématicien de moins de 40 ans, le prix Abel est plus proche du prix Nobel (inexistant en mathématiques) et récompense l’ensemble d’une carrière.

Vers la fin du XVIIe siècle, Leibniz rêvait de manipuler des formes, à la manière des symboles abstraits de l’algèbre. Il donna le nom d’analysis situs à cette théorie, qu’il ne pourra pas développer et qui ne sera solidement mise en place qu’à la fin du XIXe siècle, par Henri Poincaré. Dans cette théorie, qu’on appelle aujourd’hui topologie, on considère que la surface d’une sphère est équivalente à celle d’un cube, car on peut déformer l’une en l’autre, si on les imagine fabriqués en caoutchouc. En revanche, la sphère n’est pas équivalente à une chambre à air. On étudie des courbes, des surfaces et plus généralement des « variétés » bien plus compliquées, dans des dimensions quelconques. Parmi les contributions majeures de Sullivan, on peut citer sa théorie de l’homotopie rationnelle, qui permet de comprendre la structure topologique des variétés en leur associant des objets de nature algébrique, qu’on peut en principe calculer, réalisant en quelque sorte le rêve de Leibniz.

Passerelles insoupçonnées

Sullivan passe sans effort d’un chapitre des mathématiques à l’autre et découvre des passerelles insoupçonnées qui le conduisent à des points de vue entièrement nouveaux. Il établit par exemple un « dictionnaire » entre deux théories qu’on croyait indépendantes (les groupes kleiniens et la dynamique holomorphe). Il lui suffit alors de traduire un théorème de l’une pour obtenir la solution d’un problème important dans l’autre, qui résistait pourtant depuis près de soixante-dix ans (le théorème du domaine non errant). Il n’est ni géomètre, ni topologue, ni algébriste, ni analyste : il est un peu tout cela à la fois. Très peu de mathématiciens ont un sens aussi aigu de la profonde unité des mathématiques. Depuis quelques années, il essaye d’exporter ses idées topologiques dans un problème majeur de dynamique des fluides. Les experts ne sont pas (encore) convaincus, mais cela conduira peut-être à un succès retentissant.

C’est aussi par son charisme exceptionnel que Sullivan est remarquable. Il a été pendant de nombreuses années une plaque tournante dans la communauté mathématique. Toujours entouré de chercheurs très divers, en particulier très jeunes, il a une incroyable capacité d’écoute, de partage, de motivation et d’encouragement. Il est à l’opposé de l’image d’Epinal du mathématicien solitaire. Lorsqu’il était professeur à l’IHES, à Bures-sur-Yvette (Essonne), il fallait le voir à l’heure du thé mettre en contact des mathématiciens de tous bords et de tous âges qui ne se connaissaient pas, en toute simplicité. Son séminaire à New York est très fréquenté et n’a rien à voir avec un exposé traditionnel : les questions fusent de toutes parts et le conférencier doit être préparé à parler pendant de nombreuses heures, jusqu’à l’épuisement général. Il est l’un des premiers à avoir enregistré ces séminaires sur des cassettes vidéo VHS, dès le début des années 1980. Ce sont aujourd’hui des collectors.

Un jour, j’étais assis à côté de lui pendant une conférence où je ne comprenais pas un traître mot de ce que disait le conférencier. Alors que je lui demandais si c’était son cas, il me répondit : « Je ne comprends pas les paroles, mais j’écoute la musique mathématique ! »