A l’été 1654, Blaise Pascal posait les bases des lois du hasard

https://www.lemonde.fr/sciences/article/2023/06/28/a-l-ete-1654-blaise-pascal-posait-les-bases-des-lois-du-hasard_6179573_1650684.html

Scientifique exceptionnel, Blaise Pascal a, en collaboration avec Pierre de Fermat, posé les bases de la théorie des probabilités pendant l’été 1654. Une géométrie du hasard dont les conséquences sur la science contemporaine, mais aussi sur la philosophie, sont considérables, explique le mathématicien Etienne Ghys, dans sa Carte blanche au « Monde ».

Blaise Pascal est né il y a quatre cents ans, le 19 juin 1623. Célèbre pour ses Pensées et ses Provinciales, il n’en est pas moins un scientifique exceptionnel. Je ne voudrais évoquer ici qu’un aspect de son œuvre : l’introduction des probabilités, en collaboration avec Pierre de Fermat, pendant l’été 1654.

Cette théorie « joignant la rigueur des démonstrations de la science à l’incertitude du hasard, et conciliant ces choses en apparence contraires peut, tirant son nom des deux, s’arroger à bon droit ce titre stupéfiant : la géométrie du hasard », comme il l’explique dans Adresse à l’académie parisienne. Les conséquences sur la science contemporaine, mais aussi sur la philosophie, sont considérables : le hasard a ses lois que nous comprenons de mieux en mieux.

Le point de départ consiste en deux questions, en apparence anodines, qu’un personnage mondain, le chevalier de Méré, avait posées à Pascal. La première est assez facile. Si on jette deux dés, il est clairement plus probable de ne pas obtenir un double six que d’en obtenir un. En revanche, si on s’autorise à renouveler l’expérience plusieurs fois, on comprend qu’à partir d’un certain nombre de lancers il devient plus probable d’obtenir au moins une fois un double six que de n’en obtenir aucun. La question est de déterminer ce nombre. Le problème pourrait être posé de nos jours au baccalauréat et la réponse est 25.

La deuxième question est beaucoup plus subtile et fut résolue dans un échange de lettres passionnantes entre Pascal et Fermat. Deux personnes jouent à pile ou face et il est convenu que celui qui remportera trois parties le premier recevra par exemple 100 pistoles. Après trois parties, le premier joueur a gagné deux fois et le second une fois. A cause d’un événement imprévu, il faut interrompre le jeu. Il est clair que le premier joueur a l’avantage mais le second pourrait encore se rattraper.

« L’esprit de géométrie »

Comment répartir les 100 pistoles pour que personne ne se sente floué ? Je laisserai aux lecteurs du Monde le plaisir de réfléchir à ce problème. Les approches de Pascal et de Fermat sont distinctes et complémentaires. Bien entendu, ils ne s’arrêtent pas en si bon chemin et discutent de situations dans lesquelles le nombre de joueurs et le nombre de parties sont quelconques.

En vérité, aucun des deux ne discute de probabilités au sens propre et on considère souvent que ce problème est tout autant à la source de la théorie des probabilités que de la théorie de la décision dans laquelle des agents doivent faire des choix « rationnels ». On reconnaît « le cœur et la raison » pascalien, et le fameux « esprit de finesse » en parallèle avec « l’esprit de géométrie ».

Quelque temps après cet échange de lettres, le 23 novembre 1654, « depuis environ dix heures et demie du soir jusqu’à environ minuit et demi », Pascal vécut sa seconde conversion et sa « nuit de feu ». Il se désintéresse alors de la science pour se consacrer entièrement à la religion. Il écrit à Fermat : « Car, pour vous parler franchement de la géométrie, je la trouve le plus haut exercice de l’esprit : mais en même temps je la connois pour si inutile que je fais peu de différence entre un homme qui n’est que géomètre et un habile artisan. »

Pascal trouvera cependant une utilité surprenante à la géométrie en 1657. Alors qu’il souffrait atrocement d’une rage de dents, il chercha à occuper son esprit avec une question qui détournerait sa pensée de la douleur. Il réfléchit à un problème de géométrie qui remontait au moins à Galilée à propos d’une courbe qu’on appelait à l’époque une « roulette ». Il y réfléchit si intensément que non seulement il trouva une solution mais il jetait les prémices du calcul intégral. Le lendemain, le mal de dents avait disparu. Je n’oserais pas conseiller à mon lecteur de préférer la roulette du géomètre à celle du dentiste !