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impossible

In March 2009, I attended an administrative meeting and the
colleague sitting next to me was even more bored than I was.
Obviously Maxim Kontsevich had something else in his mind.
Suddenly, he passed me a Parisian métro ticket containing a
scribble and a single word: “impossible”. That was the new
theorem he wanted to share with me! It took me a few minutes
and some whispering before I could guess the statement of the
theorem and a few more minutes to find the proof. Here is the
statement.

. ©

Theorem. Four polynomials P1, P2, P3, P4 of a real variable x cannot
satisfy

• P1(x) < P2(x) < P3(x) < P4(x) for small x < 0,

• P2(x) < P4(x) < P1(x) < P3(x) for small x > 0.

The relative position of the graphs of four real polynomials is
subject to some constraints. I was fascinated: a new elementary
result on four polynomials in 2009!

Later on, I tried to put this in a more general context, to
study the situation when we have more than four polynomials
etc. The result was a pleasant journey, with a lot of detours, in
surprisingly different mathematical fields, in different periods of
the history of mathematics. As usual, this led to open problems
that I could only solve partially.

The purpose of this little book is to invite the reader on this
mathematical promenade. I didn’t choose the most efficient

http://www-history.mcs.st-and.ac.uk/Biographies/Kontsevich.html


2 a singular mathematical promenade

way to reach a specific goal and actually there is no goal to
this text. Almost all chapters are basically independent and
you are welcome to skip as many of them as you want. If you
find a section too arduous, or too flat, you can easily bypass
it. We pay a visit to Hipparchus, Newton and Gauss, but also
to many contemporary mathematicians. We play with a bit of
algebra, topology, geometry, complex analysis, combinatorics,
and computer science. A stroll in the mathematical world.

A smooth curve.

A cuspidal point.

A small circle intersects the
curve in two points.

A curve with three branches.

A AB

B

C
C

The associated cyclic word
ABACCB.

However, in order to reach some kind of goal and not to
transform this promenade into a completely random walk, let
me quote a result that will be proved in one of the last chapters.
This is probably the only new result in this work.

Let us consider a point p on a planar curve C.
If C is smooth, the local picture is not so interesting.
If C is singular at p, the picture might be more complicated,

like for instance a cuspidal point x2 = y3. Let us restrict our
study to algebraic curves defined by some equation F(x, y) = 0
where F is a polynomial in x, y with real coefficients. It turns out
that, in the neighborhood of one of its points, such a curve is
the union of a finite number of irreducible pieces, usually called
branches. The nature of these branches has been the subject of a
lot of debate in the past, and we discuss this topic in detail. The
main result is that topologically the branches are smooth! More
precisely for every branch, there is a local homeomorphism of the
plane sending it to a straight line. Every branch intersects a small
circle centered at p in exactly two points.

The relative position of the many branches of a curve is much
more subtle. In the neighborhood of a singular point, the topol-
ogy is described by an even number of points on a circle paired
two by two: the pairing is given by the branches. We get 2n
points on a circle grouped in n pairs, each pair having a color, or
a letter.

I can now state a theorem that will be more or less our final
destination, some kind of lighthouse showing some direction.

A AB

B

C

C
D

D E

E

Impossible five branches.

Theorem. There is no singularity of a real algebraic curve in the plane
consisting of five branches A, B, C, D, E intersecting a small circle as in
the picture in the margin.
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Actually, I will prove a much more precise theorem giving a
complete description of all possible topological configurations of
the branches of an analytic curve.

I wrote this “petit livre” with one specific reader in mind:
myself, when I was an undergraduate... To be very specific, I lim-
ited the prerequisites to my own background when I passed the
“agrégation” examination, exactly forty years ago ©! I vividly
remember that I had (and I still have) great difficulties reading
long mathematical treatises, full of technical details, and that I
preferred looking at pictures. I have now learned that precision
and details are frequently necessary in mathematics, but I am
still very fond of promenades. I did try to imagine what could
have been my own reactions faced with this book, as a beginner.
This “conversation” between the two “versions of myself” has
been interesting and reminded me of the short story “El Otro” by
Borges. Was it a dream? A reconstruction of the past?

©

A word of caution is in order: this is not a fully fledged text-
book with a definition-theorem-proof structure. You have to
be prepared to get lost from time to time, like in many prome-
nades. I know that you will grumble about me because of the
lack of precise definitions, and indeed you will have to accept
half baked definitions... Of course, textbooks are necessary and
I provide many references in the margins. However, I am con-
vinced that mathematical ideas and examples precede formal
proofs and definitions. As d’Alembert said once: “Just go on...
and faith will catch up with you!”. You may see every now and
then a beautiful panorama emerging from the mist, like the
one on the frontispiece of this essay, by Caspar David Friedrich
(Der Wanderer über dem Nebelmeer (1818)): a suggestion of the
mathematical world?

“Allez en avant, et la foi vous
viendra.”

I hope some motivated undergraduates of today will enjoy
some of these panoramas.

We can now embark for our voyage.



4 a singular mathematical promenade

A detail from “Essai d’une distribution généalogique des sciences et
des arts principaux” (Chrétien Fréderic Guillaume Roth, 1769). It was
included as a frontispiece of the famous Encyclopédie by Diderot and
D’Alembert. “Mathematics” are located in the lower left corner and the
“theory of curves” is in the right upper corner. Is human knowledge
organized as a tree? ©

https://encyclopedie.uchicago.edu


Road map

Since we will definitely not follow a direct route, and
since you should be prepared for some optional detours, a rough
outline of our itinerary might be useful, like in the promotional
presentation of a touristic package by a tour operator.

A permutation defined by 5

polynomials.

From Newton’s de methodis ©

The first four chapters discuss the relative positions of the graphs
of a family of real polynomials P1, ..., Pn, in the spirit of the theorem
of Kontsevich that I mentioned in the preface. Comparing the
values of Pi(x) for small negative and small positive values of
x yields a permutation of {1, ..., n} which describes the local
picture in the neighborhood of 0. I will give a fairly precise char-
acterization of these permutations. It turns out that they have
already been considered in a different disguise by combinatorists,
under the name “separable permutations”. We then examine
push and pop stacks, as presented by Donald Knuth in The art of
computer programming. We also count the number of separable
permutations, and this will be an opportunity to discover that
these numbers have already been considered by Hipparchus,
more than two millenniums ago.

We then try to generalize the problem from graphs of polyno-
mials to planar curves, implicitly defined by some real polynomial
equation F(x, y) = 0. This requires the understanding of the
topology of an algebraic (or analytic) curve in the neighbor-
hood of a singular point. The first important results are due to
Newton in 1669, in an extraordinary paper entitled Tractatus
de methodis serierum et fluxionum, that we study over two chap-
ters. This paper contains a detailed presentation of the famous
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Newton’s method for finding approximations of the roots of poly-
nomials. It also introduces the related idea of Newton’s polygons.
Strictly speaking, Newton did not provide proofs, but he did
understand that locally an analytic curve consists of a finite num-
ber of branches, which are “graphs” of formal power series with
rational exponents. An additional chapter — that I called formal
algebra — explains Newton’s results in modern terminology and
offers proofs.

From Gauss’s doctoral
dissertation. ©

A disc blown-up three times.
©

©

Up to this point, the discussion will be purely algebraic. We
then review Gauss’s first proof of the fundamental theorem of
algebra — his doctoral dissertation in 1799 — using arguments
of topological nature, which were revolutionary at that time.
This is based on the unproved claim that an algebraic curve entering
a disc has to get out. The proof of this claim is more subtle than
one could imagine and two mathematicians sharing the same
name could not prove it in the 19th century.

Euler, Cauchy and Poincaré were great masters in the manipu-
lation of series. Two chapters deal with their discoveries. At the
end of the second one, using the Calcul des limites de Cauchy,
we finally get the proof of the convergence of Newton’s series. This
enables us to show that a small circle around a singularity of a
plane real analytic curve intersects the curve in an even number
of points and defines a chord diagram, i.e. 2n points cyclically
ordered on a circle and grouped in pairs.

The three following chapters are concerned with the topology
of singularities of analytic planar curves. We explain the blowing
up method, which is a kind of microscope enabling us to look
deeply into the singularity. Topologically, this introduces a
Moebius band, or Moebius necklaces if the microscope is used
several times. The blowing up operation will turn out to be a
powerful tool in the resolution of singularities.

The local pictures for complex planar curves are beautiful and
worth a visit. Since C2 has real dimension 4, we intersect the
curve with small 3-dimensional spheres around the singularity.
From this viewpoint, even straight lines produce remarkable
objects, like the Hopf fibration.
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More complicated singularities, like for example the cusp
x3 − y2 = 0 are described by knots and links. In order to understand
the general case, we pay a visit to Victor Puiseux, who proposed
in 1850 a completely new approach to Newton’s series. In 1968,
Jack Milnor used these ideas to give a complete topological
picture, but still over the complex numbers.

The trefoil knot. ©

The associahedron. ©

Interestingly, we discover a link between separable permuta-
tions and the associahedron. This is a family of convex polytopes
introduced by Tamari and Stasheff in order to understand the
meaning of “associativity up to homotopy”. Using his polytopes,
Jim Stasheff was able to give a characterization of spaces having
the same homotopy type as topological groups. It turned out
that this was the starting point of operad theory, which plays
a fundamental role in modern homotopy theory and algebraic
topology. Operads are very general algebraic structures and
they are perfectly adapted to our situation. Typical examples are
given by trees, braids, configuration spaces etc. We will see that
the collection of all singularities, up to homeomorphisms, can
be seen as a singular operad and this helps understanding the
global picture.

Just for fun, we examine a short note of Gauss, concerning
closed loops in the plane, with ordinary double points. Going
around the loop, each double point is visited twice, so that this
defines some chord diagram. Can we characterize this kind of
diagrams?

We finally reach our loose goal: the complete characterization,
in two chapters, of the chord diagrams which are associated to
singularities of real analytic planar curves.

Two additional chapters conclude the book. One on Gauss’s
approach to linking numbers and a final one, with no proof, on
Kontsevich’s universal invariant for knots. The main purpose
of this final chapter is to encourage the reader to continue the
exploration.
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Colors (green, blue, red, and
black) give a very subjective
idea of the difficulty.
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Landscape of the Four
Seasons (Eight Views of the
Xiao and Xiang Rivers), by
Soami, early 16th century. ©

http://www.metmuseum.org/art/collection/search/42344
http://www.metmuseum.org/art/collection/search/42344


10 a singular mathematical promenade

From “A new view of the tree of life” Nature Microbiology 1, (2016).
Can these branches be made graphs of polynomials? ©

http://www.nature.com/articles/nmicrobiol201648


Intersecting polynomials
Maxim Kontsevich

x+x4

x3+x4

x2+x4

x4+x5

Polynomial interchanges 1

2
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Before I prove Kontsevich’s theorem, let me begin with a
much more elementary observation. Consider the position of the
graph of a single real nonzero polynomial P(x) with respect to
the x-axis, in the neighborhood of 0.

There are two possibilities. Either the graph of P crosses the
x-axis at 0, or it stays on the same side. To distinguish between
these two cases, I introduce the following definition.

Definition. Let P(x) = a0 + a1x + a2x2 +� be a polynomial (or
a formal series). The valuation v(P) of P (at 0) is the smallest
integer k such that ak ≠ 0. By convention, the valuation of the
zero polynomial is ∞.

Clearly, the graph of P crosses the x-axis at 0 if and only if the
valuation v(P) is an odd integer.

If we are given two distinct polynomials P1, P2, the sign of
P1(x)− P2(x) changes at 0 if and only if v(P1 − P2) is odd.

Suppose now that we have three polynomials P1, P2, P3 and
let us look at the possible pictures in the neighborhood of the
origin. The six figures in the margin show that all six permuta-
tions of {1, 2, 3} can be realized if we choose conveniently the
polynomials.
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For instance:

P1(x) = −x2 ; P2(x) = 0 ; P3(x) = x2

P1(x) = −x2 ; P2(x) = x2 ; P3(x) = −x
P1(x) = x ; P2(x) = −x2 ; P3(x) = x2

P1(x) = −x2 + x3 ; P2(x) = −x2 − x3 ; P3(x) = 0
P1(x) = x ; P2(x) = 0 ; P3(x) = −x
P1(x) = 0 ; P2(x) = x2 + x3 ; P3(x) = x2 − x3.

Hence Kontsevich’s phenomenon begins with four polynomials.
Note that all the previous pictures may have suggested that I

assumed Pi(0) = 0 but this is not necessary. This is only due to
the fact that this book mainly discusses local properties, in the
neighborhood of a single point (0, 0).

The polynomials
x2P1(x), . . . , x2Pn(x) are
ordered as P1(x), . . . , Pn(x)
and they all vanish at x = 0.

We can now prove the métro ticket theorem mentioned in the
preface.

By contradiction, we assume that there exist four polynomials
P1, P2, P3, P4 such that:

1. P1(x) < P2(x) < P3(x) < P4(x) for small x < 0,

2. P2(x) < P4(x) < P1(x) < P3(x) for small x > 0. 1

2

3

4

2

4

1

3

1 1
2

2

3
34

4

Replacing Pi by Pi − P1, we can assume that P1 = 0.
Since P2 and P4 change sign at the origin, their valuations

v(P2), v(P4) are odd.
Since P3 does not change sign, its valuation v(P3) is even.
From 0 < P2(x) < P3(x) < P4(x) for small negative x, we deduce

that v(P2) ≥ v(P3) ≥ v(P4).
Similarly, from �P4(x)� < �P2(x)� for small positive x, we deduce

that v(P4) ≥ v(P2).
That would force the three valuations to be equal, but two of

them are odd and the third is even!
Contradiction. �

I use the symbol � at the
end of a proof. Will my
astute reader guess why I
put a ⋅ in a �? Hint: think in
French.

Note that the same proof applies to real analytic functions but
does not apply to smooth functions. Indeed my reader will easily
find four C∞ functions Pi crossing at the origin according to the
“forbidden” permutation.

Why?
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Changing orientations along the x-axis, we see that the inverse
permutation is also forbidden. As an exercise, I recommend
showing that the remaining 22 permutations of {1, 2, 3, 4} occur
for suitable choices of the Pi’s (i = 1, 2, 3, 4).

Let us now try to analyze the situation with any number of
polynomials.

The forbidden permutations.

Definition. Let n ≥ 2 be some integer and p some permutation of{1, 2, . . . , n}. We say that p is a polynomial interchange if there exist
n polynomials P1, . . . , Pn such that:

• P1(x) < P2(x) < . . . < Pn(x) for small negative x.

• Pp(1)(x) < Pp(2)(x) < . . . < Pp(n)(x) for small positive x.

Our goal is to give a fairly precise description of polynomial
interchanges.

Separable permutations

Definition. Let n ≥ 2 be some integer and p some permu-
tation of {1, 2, . . . , n}. We say that p is separable if it does not
“contain” one of the two forbidden permutations, i.e. if there
do not exist four indices 1 ≤ i1 < i2 < i3 < i4 ≤ n such that
p(i2) < p(i4) < p(i1) < p(i3) or p(i3) < p(i1) < p(i4) < p(i2).

In other words, a permutation is separable if it does not
contain one of the two Kontsevich’s permutations on four letters.
It should be clear that a polynomial interchange is necessarily
separable. In this section, we prove the converse.

The reason for the terminol-
ogy “separable” will become
clear in the next chapter.

Let us begin with a lemma which seems to be “folklore” in the
combinatorics literature1.

1 P. Bose, J. F. Buss, and
A. Lubiw. Pattern matching
for permutations. Inform.
Process. Lett., 65(5):277–283,
1998.

Lemma. Let p be some separable permutation of {1, 2, . . . , n} (for
n ≥ 3). Then there is a proper interval I = {k, k + 1, . . . , k + l} (with
1 ≤ k ≤ k + l ≤ n) of length l + 1 ≥ 2 whose image by p is an interval. Observe that if p is a poly-

nomial interchange, so is p
(multiply all polynomials
by −x). Similarly, by the
very definition of separable
permutations, p and p are
simultaneously separable.

We can assume that p(1) < p(2) since otherwise we could
replace p by the “reverse” permutation p(k) = n + 1−p(k).

If p(2) = p(1)+ 1 we are done since the image of {1, 2} is the
interval {p(1), p(2)}. Hence we assume that p(2) > p(1) + 1.
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Consider the smallest integer k such that p({2, . . . , k}) contains
the interval J between p(1)+ 1 and p(2). Observe that p(k) is in
J so that p(1) < p(k) < p(2).

If the image p({2, . . . , k}) is exactly equal to the interval J, we
found a nontrivial interval whose image by p is an interval.

Otherwise, choose an element l between 2 and k whose image
by p is “outside” J. We have p(l) < p(1) or p(l) > p(2).

If p(l) < p(1), the four elements 1, 2, l, k satisfy 1 < 2 < l < k
and p(l) < p(1) < p(k) < p(2). Therefore they are ordered as a
“forbidden permutation” which is impossible, by definition of a
separable permutation.

J

1
2

l

k

π

We can therefore assume that all elements of p({2, . . . , k}) are
greater than or equal to p(1).

1
2

l

m
k J

π

We can also assume that p({2, . . . , k}) is not an interval since
otherwise we are done. Therefore there is at least one “gap” in
p({2, . . . , k}), which must be greater than p(2). So there exists
m such that k < m and l such that 2 < l < k and p(m) < p(l).
The four elements 2, l, k, m are such that 2 < l < k < m and
p(k) < p(2) < p(m) < p(l) so that they are ordered as the other
“forbidden permutation” which is impossible.

The lemma is proved. �
It is easy to improve the lemma:

Lemma. Let p be some separable permutation of {1, 2, . . . , n}. Then
there are two consecutive integers whose images are consecutive.

The proof is obvious by induction since any proper interval
whose image is an interval defines another separable permu-
tation with a smaller value of n, which therefore contains two
consecutive elements with consecutive images. �

We can now prove the main result of this chapter. The
Kontsevich counter-example is somehow the only one.

Theorem. A permutation is a polynomial interchange if and only if it is
separable.

We have already noticed that polynomial interchanges are
separable: this is Kontsevich’s observation.
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Again by induction on n, we show that every separable
permutation is a polynomial interchange. Let p be a separa-
ble permutation of {1, 2, . . . , n}. We know that there are two
consecutive integers i, i + 1 with consecutive images p(i), p(i + 1).

If {i, i + 1} and {p(i), p(i + 1)} are “collapsed” into single
points, we produce a permutation p′ on n − 1 objects which is
obviously separable, and therefore a polynomial interchange by
induction. It follows that there are n − 1 polynomials

P1, . . . , Pn−1

which intersect at the origin according to p′. The only thing that
remains to be done is to split the i-th polynomial Pi in order to
produce n polynomials

P1, . . . , Pi−1, P′i , P′′i , Pi+1, . . . , Pn−1

which intersect according to p. It suffices to set

P′i (x) = Pi(x) ; P′′i (x) = Pi(x)+ (−x)N
for a sufficiently large value of N, even or odd, according to
whether p(i + 1) > p(i) or p(i + 1) < p(i). �

Now that we have identified the polynomial interchanges,
our next duty is to understand the structure of those separable
permutations.
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Ernst Haeckel’s “tree of life” (1879). Man on top of the tree of life?

https://en.wikipedia.org/wiki/Tree_of_life_(biology)


Patterns and permutations
Donald Knuth

Permutations

Donald Knuth. ©

If they have been mathematically trained as I was,
many of my readers may have felt some discomfort in the
previous chapter. After all, permutations are usually defined
as bijections from a set to itself and their raison d’être is that they
constitute a group. Instead, we manipulated permutations in a
strange way when we used the expression “The permutation p

contains one of the two Kontsevich’s forbidden permutations” to
mean that there are four indices 1 ≤ i1 < i2 < i3 < i4 ≤ n such
that p(i2) < p(i4) < p(i1) < p(i3) or p(i3) < p(i1) < p(i4) < p(i2).
It certainly does not mean that the set {i1, i2, i3, i4} is invariant
under p. We are not taking the restriction to an invariant subset.

We are going to use the word “permutation” from a slightly
different perspective, closer to computer science. This approach
is in good part due to Donald Knuth in his great book The art of
computer programming2. The more recent book3 is a good source

2 D. E. Knuth. The art of
computer programming. Vol.
1: Fundamental algorithms.
Second printing. Addison-
Wesley Publishing Co.,
Reading, Mass.-London-Don
Mills, Ont, 1969.

3 S. Kitaev. Patterns in
permutations and words.
Monographs in Theoretical
Computer Science. An
EATCS Series. Springer,
Heidelberg, 2011. With
a foreword by Jeffrey B.
Remmel.

of information and shows that this area is currently blossoming.
Consider a finite set E equipped with two total orderings �

and�. Order its elements using the first ordering

x1 � x2 � . . .� xn.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Knuth.html
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Look now at the way they are ordered under�. This defines
a permutation p of {1, 2, . . . , n} such that

xp(1)� xp(2)� . . .� xp(n).
We will adopt this point of view: a permutation is a comparison
between two total orderings.

For instance, the set {1, 2, 3, 4} can be equipped with the
orderings 1� 2� 3� 4 and 2� 4� 1� 3; we will denote by(2, 4, 1, 3) the associated permutation.

11

3

2

3

1

4
2

4

Be careful. In this figure,
1 � 2 � 3 � 4 and
2 � 4 � 1 � 3 and(p(1), p(2), p(3), p(4)) =(2, 4, 1, 3), so that p is
actually the inverse of the
permutation that you see
following the edges, from
the dots on the left to the
dots on the right.

Any finite set of real polynomials {Pi(x)} can be ordered in
at least two ways: by comparing the values of Pi(x) for small
negative or for small positive values of x. This leads to polyno-
mial interchanges.

We can certainly restrict orderings to subsets and this defines
the concept of containment for permutations.

For instance, every permu-
tation different from the
identity contains (2, 1).

Definition. Let p be the permutation of {1, . . . , n} associated to
two total orderings � and� on a set E with n elements. Let
F ⊂ E be a subset with p elements. The restrictions of � and�
to F define a permutation s ∶ {1, . . . , p} → {1, . . . , p}. In such a
situation, we will say that s is contained in p and we will write
s � p.

Denote by Sn the set (not seen as a group) of permutations of{1, . . . , n} and S∞ the disjoint union of the Sn’s, for n ≥ 1. This
defines a partial ordering � on S∞. Understanding this ordering
is called pattern recognition, as one also says that s is a pattern in p

when s � p.
A subset C ⊂ S∞ is called a permutation class if p ∈ C and s � p

implies s ∈ C. For such a permutation class, we can consider its
basis B consisting of those permutations p which are not in C but
such that any s � p, different from p, is in C. So, a permutation
p is in C if and only if it does not contain an element of B. I will
write C = Av(B) and say that C consists of permutations avoidingB.

The website Database
of Permutation Pattern
Avoidance contains a huge
number of examples.

Av((1, 2, 3)) consists of
those permutations that can
be written as the union of
two decreasing sequences.

For instance the set Inter ⊂ S∞ of polynomial interchanges
is obviously a permutation class. We have seen that its basis
consists of two elements (2, 4, 1, 3), (3, 1, 4, 2).

Try and prove the Erdös-
Szekeres theorem: every
permutation p ∈ Sn
with n > (p − 1)(q − 1)
contains (1, 2, 3, . . . , p) or(q, q − 1, . . . , 2, 1).

http://math.depaul.edu/bridget/patterns.html
http://math.depaul.edu/bridget/patterns.html
http://math.depaul.edu/bridget/patterns.html
http://www.numdam.org/item?id=CM_1935__2__463_0
http://www.numdam.org/item?id=CM_1935__2__463_0
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The following are typical questions in the theory. Given a
permutation class C:

• Can we determine its basis? When is it finite?

• Can we count the number of elements in C ∩Sn? Or at least,
can we estimate this number?

• Can we decide algorithmically if a given permutation p is inC? What is the complexity of such an algorithm?

We will answer all these questions in due time for the class of
polynomial interchanges/separable permutations.

Find some example of a
permutation class with an
infinite basis.

Stack-sortable permutations

The theory of permutation patterns received a strong impetus
from one exercise in volume 1 of The art of computer programming.
Donald Knuth had the idea of attributing a degree of difficulty to
the exercises in his book.

A “0′′ means that the reader should be able to solve it instantly.
A “10′′ requires one minute.
A “20′′ may require several hours, etc.
The scale is indeed logarithmic and even seems to have some

pole in the neighborhood of 50. . .

The art of computer
programming. ©

The exercise that I want to discuss is labeled [M28]. The M
means that it is aimed at mathematically inclined readers and
the 28 is an indication of the time required to solve it (in the
previously explained logarithmic scale). Today, this is not so
hard but it turns out that this exercise had a lasting influence on
combinatorics.

I will describe a permutation class which is defined by a stack.
Imagine n objects labeled 1, 2, . . . , n lined on some horizontal

line, in this order from left to right: 1 � 2 � . . . � n. On the
right of n, there is a stack. This is some kind of well in which the
objects can be piled on top of each other.

Initially, the stack is empty. Then select the object n and push
it in the stack. Then, there are two options. Either we push the
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last element on the line onto the top of the stack. Or we pop the
top element of the stack to the right.

Look at the figure in the margin, and the evolution of the
objects under a sequence Push, Push, Pop, Push, Pop, Pop, Push,
Push, Push, Pop, Pop, Pop.

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 
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6
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51 2 3 4 
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1 2 3 
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1 2 3 
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6 4 5 
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3
2
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1 6 4 5 

3
2

2 1 6 4 5 

3

3 2 1 6 4 5 

Push

Push

Push

Push

Push

Push

Pop

Pop

Pop

Pop

Pop

Pop

At the end of the operation the sequence (1, 2, 3, 4, 5, 6) has
been transformed in (3, 2, 1, 6, 4, 5). This could be seen either as a
permutation or as two orderings: 1� 2� 3� 4� 5� 6 (on the
left) and 3� 2� 1� 6� 4� 5 (on the right).

Definition. A permutation p is stack-sortable if it is the result of a
sequence of Push and Pop’s applied to {1, 2, . . . , n}.

Exercise 5 from Knuth chapter 2, evaluated as [M28], is the
following:

Theorem. A permutation is stack-sortable if and only if it does not
contain (2, 3, 1).

Let us solve this exercise.
Start with a permutation, for example (3, 2, 1, 6, 4, 5). The

last element is 5. If we want to sort this permutation with a
stack, there is no choice: we have to push all elements in the list(1, 2, 3, 4, 5, 6) until 5 is available on top of the stack, so that we
can pop it and put it in its proper place, at the end of the output
list. Then we look for the second to last, that is to say 4, and we
continue pushing until 4 is on top of the stack etc. So, if we want
to sort a permutation, there is only one way to do it.

We only have to understand when the sorting might go wrong.
This will happen precisely when it would be time to pop some
object a which is unfortunately already in the stack but not on
top, below some object b� a. If b has been already pushed in the
stack, this is because we had previously to pop some other object
c� b� a.

We have a � c since c has already been popped and we are
trying to pop a. Similarly, we have b� a since we don’t want to
pop b but a. The subset {c, b, a} in {1, 2, . . . , n} therefore gives rise
to the containment (2, 3, 1) � p as we had to show. �

I strongly encourage the reader to do all exercises in Knuth’s
book.
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The train track in the margin produces the stack-sortable
permutations. A train consisting of cars (1, 2, . . . , n) arrives from
the left. Cars can then be disassembled and each one has to
follow the tracks in the direction given by the arrows. The train
is assembled again on the exit side, on the right of the picture.

input  output  

stack

This simple train track
produces stack-sortable
permutations.

Knuth also defines deques (a combination of deck and queue).
They are produced by the more complicated train track pictured
below.

input output
deque

to deque from deque
This is a deck-queue = a
deque.

What are the deque-sortable permutations?
Beware ! the difficulty of this
question might be around
60!

If the the red door is closed, we get an output-restricted deque.
The associated permutations are exactly those which do not
contain (4, 2, 3, 1), (4, 1, 3, 2). We are getting closer to the charac-
terization of polynomial interchanges, which avoid (2, 4, 1, 3) and(3, 1, 4, 2).

For much more about this fascinating field, I recommend the
above mentioned book by Kitaev.

Ubiquitous Catalan

Exercise 4 in the same chapter of Knuth’s book is rated [M34].
However, it is easier to solve after having solved exercise 5.

The problem is to count the number of stack-sortable permuta-
tions of length n.

This is the famous n-th Catalan number Cn, that appears almost
everywhere in mathematics.

Eugène Catalan was born
in 1814, in Bruges, then
belonging to the Napoleonic
French empire. ©

The first values are:
1,2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,

2674440, 9694845, 35357670, etc. (sequence A000108 in OEIS).

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Catalan.html
https://oeis.org/A000108
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Stack-sortable permutations are described uniquely by a
sequence of 2n Push’s and Pop’s. Conversely, a sequence of
Push’s and Pop’s defines a permutation under the only condition
that we are not forced to pop an empty stack. Said differently,
every initial segment of the sequence should contain at least as
many Push’s as Pop’s. This could also be described by looking at
the evolution of the number of elements in the stack. The stack
is empty at time 0 and 2n, changes by +1 or −1 steps for each
Push and Pop. This is called a Dyck word of length 2n. Here is

Walther von Dyck (1856–
1934) was “the first to define
a mathematical group, in
the modern sense”. This is
at least what can be found
in Wikipedia. The question
is much more subtle and
many more names should
be mentioned. However, he
was indeed one of the first to
manipulate presentations of
groups, with generators and
relations.

an example of a Dyck word of length 24.

The first appearance of
Catalan’s numbers in
Mingantu’s book “The
Quick Method for Obtaining
the Precise Ratio of Division
of a Circle” around 1730. ©

The number of these Dyck words is one of the many definitions
of the n-th Catalan number. Alternatively, we could think of
Push as an open parenthesis “(” and Pop as a closing one “)”.
The condition that we never pop an empty stack is now equiv-
alent to the fact that the sequence of parentheses is correctly
balanced. This means recursively that every open “(” is coupled
with a closed “)” which enclose together a correctly balanced
sequence of parenthesis. For instance, for n = 3, there are C3 = 5
sequences(())() ; ()(()) ; ((())) ; ()()() ; (()()).

There is also an interpretation in terms of rooted planar trees.
A picture is worth a thousand words. For some strange reason,
mathematicians and computer scientists tend to draw trees
upside down: the root is on top and the leaves are on the
bottom.

The picture in the margin is an example of such a tree. It
has one root, 3 internal nodes and 4 leaves. The tree is planar
because the children of its nodes are ordered from left to right.
Equivalently, we will say that a tree is planar if its leaves have
been totally ordered in such a way that the descendants of any
node define some interval.

http://www.math.ucla.edu/~pak/papers/cathist4.pdf
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Such a tree defines a Dyck word. Just start from the root and
follow the tree externally, going counter-clockwise. At each step
you get further or closer to the root: this gives the sequence of +1
and −1, or “Push” and “Pop”.

In this example, we get the sequence +++−−+−−+−++−−.
Conversely, a Dyck word can be transformed into a rooted planar
tree.

5 rooted planar trees with 3
edges.

All in all, there are bijections between:

• Stack-sortable permutations of n objects.

• Dyck words of length 2n.

• Balanced bracketings with 2n parentheses (n open and n
closed).

• Rooted planar trees with n edges.

The cardinality of any of these sets is the n-th Catalan number
Cn.

kn1
Given a stack-sortable permutation, look at the last element

n of the list of objects (on the left, in black in the picture) and at
its position k after the sorting process. The permutation maps
the (red) interval {k, . . . , n − 1} to {k + 1, . . . , n} and the yellow
one {1, 2, . . . , k − 1} to itself. Therefore, it induces a stack-sortable
permutation on these two intervals. Hence we get the recurrence
relation:

Cn = n�
k=1

Ck−1Cn−k.

This is Catalan’s characteristic signature: it is found in many
different contexts.

Look at this recurrence
relation in terms of Dyck
words, bracketings and
rooted planar trees.

5 rooted planar binary trees
with 4 leaves.

For instance, consider rooted planar binary trees. Their defi-
nition depends on the authors but let me define them as planar
rooted trees such that every node has no children or two chil-
dren, one being “to the left” and the other being “to the right”.
If such a tree has n internal nodes, it has n + 2 leaves, and 2n + 2
edges. If you remove its root, you get two rooted planar binary
trees. Conversely you can add a common root to two rooted
planar binary trees to produce a bigger rooted planar binary
tree. This shows, after a moment of reflection, that the number
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of rooted planar binary trees with n + 1 leaves satisfies Catalan’s
recurrence relation. One can check that there are 1, 1, 2, 5 rooted
planar binary trees with 1, 2, 3, 4 leaves, and we therefore get by
induction that Cn is also the number of rooted planar binary trees
with n + 1 leaves.

This suggests that there should be some correspondence
between rooted planar trees and rooted planar binary trees.
This is indeed the case. Let me present a slight variation on the
so-called Knuth transform or first child-next sibling representation.
Starting with some rooted planar tree T with n edges (first
picture), we construct a rooted planar binary tree Tbin with n + 1
leaves (last picture). I first construct an auxiliary tree T′ (second
and third pictures). The set of nodes of T′ is the same as the
set of nodes of T. The root is the same. Every node v of T′ has
at most two children. The first is the eldest child of v in T, if
it exists. The second is the next sibling of v in T, that is to say
the eldest among siblings younger than v, if it exists. Then I
transform T′ in a rooted planar binary tree Tbin in the following
way. First I delete the root and the edge going out of it. The new
root of Tbin is the eldest child of the root of T. For every node of
T′, I add a left child if this node has no children in T and a right
child if this node has no younger sibling. Thus, if the node is a
leaf of T′ (i.e. it has no children and no younger sibling in T), I
add two children in Tbin (see the green dots in the fourth picture).
Check that this gives a bijection between rooted planar trees with
n edges and rooted planar binary trees with n + 1 leaves ([M15]).
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As usual in combinatorics, this sequence Cn is encoded by its

formal generating series

C(t) = �
n≥0

Cntn

and the recurrence becomes:

C(t) = tC2(t)+ 1.

Remembering secondary school quadratic equations, we get Why did I choose the − sign
in front of the square root?

C(t) = 1−√1− 4t
2t

.
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It follows from this formula that the radius of convergence of
C(t) is 1�4. So, by the Cauchy-Hadamard theorem, the growth of
Cn can be estimated:

lim sup
n→∞

1
n

log Cn = log 4.

This formula can also be used to get a neat expression for Cn:
just use Newton’s binomial series.√

1− 4t = ∞�
n=0
�1�2

n
�(−4t)n.

Comparing the coefficients of tn:

Cn = −1
2
� 1�2

n + 1
�(−4)n+1.

We now clean a bit:
The second “. . . ” mean that
you are encouraged to do
the computation yourself!

Cn = − 1
2

1(n+1)! � 1
2� � 1

2 − 1�� � 1
2 − n� (−1)n+122(n+1) = . . .

= 1
n+1�2n

n �.
The bibles of the subject of Catalan numbers are the books by
Stanley4, 5. The Catalan website “Catalan Numbers”, maintained

4 R. P. Stanley. Enumer-
ative combinatorics. Vol.
I. The Wadsworth &
Brooks/Cole Mathemat-
ics Series. Wadsworth &
Brooks/Cole Advanced
Books & Software, Monterey,
CA, 1986. With a foreword
by Gian-Carlo Rota.

5 R. P. Stanley. Catalan
numbers. Cambridge
University Press, New York,
2015.

by Igor Pak, is a remarkable source of information. The book
by Flajolet and Sedgewick6 provides a wider perspective (see in

6 R. S. P. Flajolet. An intro-
duction to the analysis of
algorithms. Addison-Wesley,
2nd ed edition, 2013.

particular chapter 6 on trees).

There are C4 = 14 ways
to subdivide a hexagon in
triangles.

http://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm
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A planar tree in
Guadeloupe, commonly
known as traveller’s palm.



Separable permutations

From polynomials to trees

9 polynomials whose
associated tree is below. Can
you propose 9 equations?

Nested equivalence
relations.

Associated tree.

The ring of polynomials K[x] with coefficients in some

field K of characteristic 0 is equipped with a valuation v, given
by the degree of the first nonzero coefficient, and a natural
ultrametric distance, defined in terms of v:

dist(P, Q) = exp(−v(P −Q)).
In plain words, two polynomials are close if their first k deriva-
tives at 0 coincide, for a large value of k. The ultrametric property
for a distance means precisely that for every e > 0 the relation

dist(P, Q) < e

is an equivalence relation. As e decreases, these equivalence
relations get finer and their intersection is trivial.

Consider a finite set E of polynomials. Define a tree in the follow-
ing way. The root is labeled by the set E. The children of the root
are labeled by the equivalence classes of the relation v(P −Q) ≥ 1.
The grandchildren of the root are labeled by the equivalence
classes of the relation v(P − Q) ≥ 2. And in general, the k-th
generation corresponds to equivalence classes of the relation
v(P − Q) ≥ k. This tree is infinite but the equivalence classes
stabilize to singletons when k is large. We can therefore do some
pruning in order to get a finite tree whose leaves are labeled
by the elements of E. Conversely, the valuation structure can
be recovered from the tree. Given two elements P, Q of E, seen
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as leaves, we look in the tree for their closest common ancestor.
The valuation of P −Q is the level of this ancestor, defined as the
length of the path connecting it to the root.

Now suppose that K is the field of real numbers. As already
observed, any finite set of real polynomials is equipped with
two total orderings, comparing values for small negative and
small positive x. Both provide an ordering on the set of leaves
of the tree given by the valuation. Note that the descendants of
a node, i.e. an equivalence class at some level, define an interval
in each of these orderings. Our tree is therefore a planar tree in two
ways.

x

-x2

x2 x

-x2

x2

<<

<<

<<
<

<<
<

{-x2,x2,x}

{ -x2,x2,x}

{x}{x} {-x2,x2} {-x2,x2}

{x,-x2,x2}

{x,-x2,x2}

{-x2} {-x2}{x2} {x2}
x << -x2 << x2 -x2 <<< x2<<< x

The two planar trees asso-
ciated to the polynomials{x,−x2, x2}, looking at small
negative (left �) and small
positive (right�) values of
x.

If P(x) < R(x) < Q(x)
for small positive x (or
for small negative x), then
val(P −Q) ≥ val(R −Q). It
follows that all equivalence
classes val(P −Q) ≥ k are
intervals in both orderings:
our trees are indeed planar.

By convention, let us choose the first order (i.e. for small x < 0)
and let us associate to our set E of polynomials the corresponding
planar tree. The comparison between the two orderings defines a
permutation p that we called a polynomial interchange.

a b c a b c

a   b c

The set of leaves of any rooted planar tree is equipped with
two canonical orderings. The first, denoted �, is simply the
order given by the definition of planarity. The second, denoted�, is defined in the following way. Given two leaves a and b,
denote by a ∨ b their closest common ancestor. Then a � b and
a � b hold true simultaneously if and only if the level of a ∨ b
is even. One has to check that this defines indeed an ordering�, in other words that a� b� c� a is not possible. We can
assume that a � b � c or c � b � a and the second case reduces
to the first by symmetry. If we had a� b� c� a, the levels of
a ∨ b and b ∨ c should be even, and the level of c ∨ a should be odd.
The pictures in the margin show that this is not possible.

Let us sum up.● A finite set of real polynomials produces a rooted planar
tree.● A rooted planar tree defines two orderings in its set of
leaves, and therefore a permutation of the leaves.● The permutation associated to the planar tree which is asso-
ciated to a finite set of polynomials is simply the corresponding
polynomial interchange.

Our trees contain too much information and we will prune
their edges.



separable permutations 29

First, if an internal node has only one leaf among its descen-
dants, we can delete all its descendants without changing the
permutation (green path in the margin).

Suppose now that two internal nodes P, Q are connected in
the tree by some path such that all vertices between P and Q are
non-ramified, i.e. have only one child (red and blue paths). If the
number of edges in this path is even, just delete it and identify
the two endpoints as a single node. If the number of edges in
this path is odd, just delete it and connect the two endpoints
by a single edge. This produces a new tree. In this process, the
levels of some nodes have changed, but only by an even number.
Therefore, if we compute the valuation in the new tree, the
parity did not change and this parity is the only information that
matters in order to construct the polynomial interchange. Note
that the pruned tree has the property that all its internal nodes
have at least two children.

Tree before pruning.

Deleting edges.

Reconnecting.

In summary, given n polynomials, there is a rooted planar tree
such that:

• The root can have any number of children.

• Every internal node has at least two children.

• There are exactly n leaves, labeled by the n polynomials.

Say that a planar tree is pruned if it satisfies these properties. It
should be clear that for any pruned tree, one can find n polyno-
mials such that the associated pruned tree is the given one. We
have seen that for any finite set of polynomials, the associated
polynomial interchange can be read from the tree. In particular,
the number of polynomial interchanges is less than or equal to
the number of pruned trees.

From a permutation to a tree

We will now show that the number of polynomial interchanges
is equal to the number of pruned trees. The issue is to prove that
two different pruned trees produce different permutations.

Let T be a pruned tree with leaves 1 � 2 � . . . � n, from left
to right, and let p be the associated permutation (n ≥ 2).
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Lemma. The images by p of two consecutive integers i, i + 1 are
consecutive if and only if the corresponding leaves i, i + 1 are siblings, i.e.
have a common parent.

i i+1 j

i

i+1j

x
i v i+1

Indeed, if i and i+1 have a common parent, one has i ∨ j = (i + 1)∨ j
for every j ≠ i, i+ 1,. It follows that i� j� i+ 1 and i+ 1� j� i
are impossible. Said differently, i, i + 1 are also consecutive for�.

Conversely, suppose that i ∨ (i + 1) is not a parent. Then the
path connecting i and i + 1 in the tree has length at least 3 and
contains therefore some internal node x such that the levels of x
and i ∨ (i + 1) are different. Choose a leaf j which is a descendant
of x different from i, i + 1 (which exists since T is pruned). It
follows that j is between i and i + 1 for the order�. �

This gives another proof that any polynomial interchange
contains at least two consecutive integers with consecutive
images. It suffices to consider an internal node with the highest
level in T: it has at least two children which must be leaves, and
therefore siblings.

The 2 pruned trees with 2

leaves, defining the transpo-
sition and the identity.

i i+1

T''

i
i+1

T''

We can now prove, by induction on n ≥ 2, that there is at most
one pruned tree producing a given permutation p. This is of course
trivial for n = 2. If T1 and T2 have n leaves and define the same
permutation p, the previous lemma shows that there is some
pair or consecutive leaves i, i + 1 which are siblings, for both
T1 and T2. Delete the leaf i + 1 from T1 and T2, producing trees
T′1 and T′2 with n − 1 leaves. Clearly T′1 and T′2 define the same
permutation p′ on n − 1 leaves. We should be careful however
that T′1 or T′2 might not be pruned. This happens precisely when
i and i + 1 are the only children of some internal node in T1 or T2.
The induction hypothesis shows that the pruned trees T′′1 and T′′2
are equal to some T′′. Our trees T1 and T2 are obtained from T′′
under one of the following two operations: adding two children
to the i-th leaf of T′′, or adding a sibling to the i-th leaf of T′′. By
assumption T1 and T2 produce the same permutation so that the
parents of i and i + 1 in T1 and T2 have levels of the same parity.
It follows that T1 and T2 are obtained from T′′ by performing the
same operation. Hence T1 = T2, as desired. �

Therefore the number of polynomial interchanges of size n is equal to
the number of pruned trees with n leaves.
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From a pruned tree to a polynomial interchange and a separable
permutation

This leads us to the original definition of separable permutations.
Given two permutations p1 and p2 of n1 and n2 ordered objects,
we can think of two ways to produce a permutation of n1 + n2
objects. Number the first n1 objects {1, 2, . . . , n1} and the next n2
as {n1 + 1, n1 + 2, . . . , n1 + n2}. Denote by p1 ⊕p2 the permutation
defined by

p1 ⊕p2(k) = p1(k) if 1 ≤ k ≤ n1= n1 +p2(k − n1) if n1 + 1 ≤ k ≤ n1 + n2.

Then define

p1 ⊖p2(k) = p2(k)+ n1 if 1 ≤ k ≤ n2= p1(k − n2) if n2 + 1 ≤ k ≤ n1 + n2.

p1 ⊕p2.

p1 ⊖p2.

In the definition of 1998

7, a permutation is separable if it is

7 P. Bose, J. F. Buss, and
A. Lubiw. Pattern matching
for permutations. Inform.
Process. Lett., 65(5):277–283,
1998.

obtained from several copies of the trivial permutation on one
object by successive ⊕ and ⊖ operations. We indeed have a fairly

Note that if a permutation p
is separable, so is its reverse
p(k) = n + 1−p(k).

good understanding of these permutations8. 8 É. Ghys. Intersecting curves
(variation on an observation
of Maxim Kontsevich). Amer.
Math. Monthly, 120(3):232–
242, 2013.

Theorem. Let p be a permutation of {1, . . . , n}. The following condi-
tions are equivalent.

1. p is the polynomial interchange associated to n distinct polynomials
P1, . . . , Pn.

2. p does not contain (2, 4, 1, 3) or (3, 1, 4, 2).
3. p is the permutation defined by some pruned tree.

4. p is obtained from several copies of the trivial permutation on one
object by successive ⊕ and ⊖ operations.

These permutations have already been defined as separable.
A mobile, à la Alexander
Calder. Of course, these
mobiles are not meant to be
planar but any two of their
planar realizations differ by
a separable permutation of
their leaves. ©

We already proved everything except the equivalence between
3 and 4. Let us prove this equivalence by induction.

Let p be described by a pruned tree T. The root of this tree
might have a unique child. If this is the case, the descendants
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of this unique child define another pruned tree T in which the
new root has several children. The permutation associated to T is
the reverse p. Observe that p1 ⊖p2 = p1 ⊕p2. We can therefore
assume that the root has several children. These children define
pruned trees and polynomial interchanges p1, p2, . . . , pk whose⊕ sum is p. By induction, all permutations p1, p2, . . . , pk are
obtained from the trivial permutation by ⊕ and ⊖ operations so
that the same is true for p.

The converse is just as easy. We have to show that the ⊕ and⊖ sums of two permutations associated to pruned trees are also
associated to a pruned tree. Just join the two roots of two pruned
trees by a common parent, or add a grandparent, depending on
the sign. � Adding an extra parent or a

grandparent, to join several
trees.

A railway turntable. ©

Train tracks, stacks, floorplans and permutons

Imagine a (mathematical) train consisting of n cars. Insert a
mathematical turntable, one of these devices that one sees some-
times in railways, enabling 180 degrees rotations. The turntable
is mathematical since it can fit any number of consecutive cars.
We also assume that once a segment of cars has been reversed,
these cars are hooked in a permanent way: they cannot be dis-
connected in future. Allow the train to move several times in the
turntable. The final permutation of the cars is separable, almost
by definition.

The same idea can also been expressed using pop stacks in
series, as in the previous chapter. Imagine an indefinite sequence
of stacks aligned on the right of the sequence 1, 2, . . . , n. The
rules of the sorting game are different from the single stack case.
At each step, we are allowed to push an element of the list on top
of the first stack, or to pop the full content of some stack to the
next one.

Here is another occurrence of separable permutations. Start
with a rectangle and decompose it in several rectangular rooms by
successive vertical or horizontal slicing. This is a slicing floorplan,
as in the margin. Find a good definition for equivalent slicing
floorplans and find a bijection with separable permutations9.

9 E. Ackerman, G. Barequet,
and R. Y. Pinter. A bijection
between permutations
and floorplans, and its
applications. Discrete Appl.
Math., 154(12):1674–1684,
2006.

http://www.sciencedirect.com/science/article/pii/S0166218X0600117X
http://www.sciencedirect.com/science/article/pii/S0166218X0600117X
http://www.sciencedirect.com/science/article/pii/S0166218X0600117X
http://www.sciencedirect.com/science/article/pii/S0166218X0600117X
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To conclude this chapter let me mention a recent preprint10

10 F. Bassino, M. Bouvel,
V. Féray, L. Gerin, and
A. Pierrot. The Brownian
limit of separable permuta-
tions. 2016.

describing the probabilistic behavior of separable permutations
when n tends to infinity. Given a permutation p of {1, . . . , n},
consider its graph: this is the subset {(i, p(i))} ⊂ {1, . . . , n}2.
Rescale this picture to draw it in the unit square [0, 1]2. To each
permutation p, we associate the probability measure µp in the
square which is the sum of the n Dirac masses of weight 1�n
located at (i�n, p(i)�n). The space Prob([0, 1]2) of probability
measures on the square is compact (for the weak topology)
so that we can study the accumulation points of the µp’s in
Prob([0, 1]2). It is easy to see that any accumulation point µ is
a permuton: a probability measure on the square whose two
marginals (its two projections on the axes), are the Lebesgue mea-
sure on [0, 1]. The preprint by Bassino et al. describes the limits
of separable permutations. For each n, choose a separable per-
mutation at random (uniformly distributed among all separable
permutations). This produces a random probability distribution
on Prob([0, 1]2) for each n. The authors prove that this sequence
of probabilities converges to a well defined probability in the
space Prob([0, 1]2). This limit is a random probability on the
space of permutons: the separable random permuton. The two pic-
tures in the margin, extracted from this preprint show typical
graphs of separable permutations for large values of n. ©

For much more on the combinatorics of separable permuta-
tions, see11 or12. Let me however propose one exercise.

11 S. Kitaev. Patterns in
permutations and words.
Monographs in Theoretical
Computer Science. An
EATCS Series. Springer,
Heidelberg, 2011. With
a foreword by Jeffrey B.
Remmel.

12 M. Bóna. Combinatorics of
permutations. Discrete Math-
ematics and its Applications
(Boca Raton). CRC Press,
Boca Raton, FL, second edi-
tion, 2012. With a foreword
by Richard Stanley.

Show that there is an algorithm deciding whether or not a given
permutation of {1, 2, . . . , n} is separable in linear time (in n).

Note that there is an obvious algorithm in polynomial time: for
each 4-tuple 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤ n check whether their images
are ordered like one of the two forbidden permutation. Going
from polynomial time to linear time might be important since
log n! grows faster than a linear function in n, but slower than
a quadratic function, by Stirling’s formula. Therefore, if you
can find a linear time algorithm, you prove in particular that
the number of separable permutations is small when compared
with n!. As a hint for this exercise, read again the proof of the
bijection between separable permutations and pruned trees.

https://arxiv.org/abs/1602.04960
https://arxiv.org/abs/1602.04960
https://arxiv.org/abs/1602.04960
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Mississippi River Delta. ©

http://eoimages.gsfc.nasa.gov/images/imagerecords/4000/4526/aster_mississippi_artII_15m.jpg


Hipparchus and Schroeder

Let us count trees

The first values of a(n):
1 1

2 2

3 6

4 22

5 90

6 394

7 1806

8 8558

9 41586

10 206098

11 1037718

12 5293446

13 27297738

14 142078746

15 745387038

16 3937603038

17 20927156706

18 111818026018

19 600318853926

20 3236724317174

21 17518619320890

22 95149655201962

23 518431875418926

24 2832923350929742

25 15521467648875090

26 85249942588971314

27 469286147871837366

28 2588758890960637798

29 14308406109097843626

30 79228031819993134650

31 439442782615614361662

We are going to count the number a(n) of polynomial
interchanges (or separable permutations) on n objects.

Let b(n) be the number of pruned trees with n leaves which
are such that the root has at least two children if n ≥ 2 (and has
no children, if n = 1). For such a tree, we can create a new root
which has the original root as its unique child. It follows that
a(n) = 2b(n) for n ≥ 2. The first values of b are:

b(1) = 1: a tiny tree whose root is also its unique leaf.
b(2) = 1: a tiny tree with two branches and two leaves.
b(3) = 3.
It is very tempting to establish a recurrence relation for b(n).
Start with a pruned tree with n leaves such that the root has

at least two children. If we delete the root and the adjacent
branches, we get a certain number of trees, having a total of n
leaves. Conversely, starting with an ordered set of at least two
pruned trees having n leaves in total, we can add a new root and
connect it to the previous roots, in order to construct a pruned
tree with n leaves.

Therefore, the following relation holds:

b(n) = �
i1,i2,...,ik ;i1+�+ik=n

b(i1)b(i2)�b(ik).
We now use the classical method of generating series. Define the

https://oeis.org/A006318/b006318.txt
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formal power series H by:

H(t) = ∞�
n=1

b(n)tn = t + t2 + 3t3 +�.

Let us square H:

H(t)2 = t2 + 2t3 + 7t4 +�.

The coefficient of tn in this new series is ∑i1+i2=n b(i1)b(i2), which
is equal to the number of pruned trees with n leaves such that
the root has exactly two children. Using H(t)3, we would count
the number of trees whose root has three children, etc.

The infinite series

H(t)2 +H(t)3 +�
counts therefore all trees, except the only one which has a single
leaf. Hence, this infinite sum is H(t)− t.

Friedrich Wilhelm Karl Ernst
Schroeder (1841-1902) had
many sporting hobbies:
cycling, hiking, swimming,
ice-skating, horseback riding,
and gardening. Because he
was always seen riding his
bicycle around Karlsruhe,
he was known locally as
the ’Bicycle-professor’
(see MacTutor History of
Mathematics archive). ©

Hipparchus
(c. 190 – c. 120 bc.) ©

Therefore
H(t)− t = H(t)2 +H(t)3 +�.

Summing the geometric series, we get:

H(t)− t = H(t)2
1−H(t)

or
2H(t)2 − (1+ t)H(t)+ t = 0,

which yields:

H(t) = ∞�
n=1

b(n)tn = (1+ t −�1− 6t + t2)�4.

As a function of a complex variable, (1+ t −√1− 6t + t2)�4 is well
defined and holomorphic in the disc of center 0 whose radius is
the smallest of the two roots of 1− 6t + t2 = 0, which is t = 3− 2

√
2.

The radius of convergence of H(t) is therefore 3 − 2
√

2. In other
words

lim sup
n→∞

1
n

log b(n) = log(3+ 2
√

2).
The reader will easily show that the lim sup can be replaced

by a lim. The a(n)’s are the large Schroeder numbers, and the

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Schroder.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hipparchus.html
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b(n)’s are the small Schroeder numbers. Do not forget that a(n) = 2b(n)
for n ≥ 2.

The amazing On-Line Encyclopedia of Integer Sequences has
several pages dedicated to these two sequences (among many
other pages) and contains probably too much information! For
instance, one finds the asymptotic estimate:

a(n) ∼ (3+ 2
√

2)n
2n
√

2pn
�

3
√

2− 4(1− 9
√

2+24
32n +�) .

Hipparchus and Schroeder

©

Arnold’s Principle asserts that

If a notion bears a personal name, then this is not the name of the
discoverer.

and its complement, Berry’s Principle:

The Arnold Principle is applicable to itself13. 13 V. I. Arnold. On teaching
mathematics.

This applies in particular to the discovery of Schroeder
numbers. Ernst Schroeder was an important German logician
who explained that his aim was14: 14 V. Peckhaus. 19th century

logic between philosophy
and mathematics. Bull.
Symbolic Logic, 5(4):433–450,
1999.

To design logic as a calculating discipline, especially to give access
to the exact handling of relative concepts, and, from then on, by
emancipation from the routine claims of natural language, to
withdraw any fertile soil from ‘cliché’ in the field of philosophy
as well. This should prepare the ground for a scientific universal
language that, widely differing from linguistic efforts like Volapük
[a universal language like Esperanto, very popular in Germany
at the time], looks more like a sign language than like a sound
language.

Given his viewpoint on logic, it was a very natural question
for him to count the number of correct bracketings on a word of
length n. This is the purpose of his 1870 paper15.

15 E. Schröder. Vier combi-
natorische probleme. Bull.
Symbolic Logic, 15:361–376,
1870.

For a word of length 2, there are two possibilities:

ab and (ab).

https://oeis.org/A006318
http://pauli.uni-muenster.de/~munsteg/arnold.html
http://pauli.uni-muenster.de/~munsteg/arnold.html
https://oeis.org/A000108/a000108_9.pdf
https://oeis.org/A000108/a000108_9.pdf
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Six possibilities for a word of length 3:

abc (ab)c a(bc)(abc) ((ab)c) (a(bc)).
The rules of the game are that a single letter cannot be enclosed
in parentheses like (a) and one should not duplicate parentheses
like ((ab)). The full word can be inside a single pair of parentheses
or not (and this is why large Schroeder numbers are even). Note
that a pair of parentheses can enclose more than two letters.
There are 22 possibilities for a word of length 4.

abcd (abcd)(ab)cd ((ab)cd)
a(bc)d (a(bc)d)(ab(cd) ((ab(cd))(ab)(cd) ((ab)(cd))(abc)d ((ab)cd)
a(bcd) (a(bcd))((ab)c)d (((ab)c)d)(a(bc))d ((a(bc))d)
a((bc)d (a((bc)d)(a(b(cd)) ((a(b(cd)))

It should be clear to the reader that these 22 expressions
are nothing more than the list of the 22 pruned trees with 4
leaves. Indeed, parenthesized words can be described by pruned
trees, as shown in the margin. Schroeder was simply counting
pruned trees, alias polynomial interchanges, alias separable
permutations. His paper contains the recurrence relation and the
generating function, described above. ((a          b)c        d)

In 1994, David Hough, a graduate student at George Washington
University (USA), was reading exercise 1.45 in Stanley’s book16:

16 R. P. Stanley. Enumer-
ative combinatorics. Vol.
I. The Wadsworth &
Brooks/Cole Mathemat-
ics Series. Wadsworth &
Brooks/Cole Advanced
Books & Software, Monterey,
CA, 1986. With a foreword
by Gian-Carlo Rota.

The following quotation is from Plutarch’s Table Talk VIII.9.732

‘Chrysippus says that the number of compound propositions
that can be made from only ten simple propositions exceeds a
million’. (Hipparchus, to be sure, refuted this by showing that on
the affirmative side there are 103,049 compound statements, and
on the negative side 310,952.

According to Y. Heath, A History of Greek Mathematics. vol 2,
p. 245; “it seems impossible to make anything of these figures.”
[Heath also notes that a variant reading of 103,049 is 101,049.]

Can in fact any sense be made of Plutarch’s statement?
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Hough noticed that 103,049 is the tenth small Schroeder number
b(10) and it could not be a coincidence.

Plutarch was a Greek historian and biographer, whose role
(in our story) is limited to the retranscription of a quotation by
Hipparchus two hundred years earlier. It is hard to imagine
that this number 103,049 could have been remembered during
such a long time without having been preserved in a book in the
possession of Plutarch.

Plutarch
(c. AD 46 – AD 120). ©

Hipparchus is probably the most important astronomer of
ancient times. He is well known for his discovery of the preces-
sion of equinoxes but above all for the construction of a coherent
scientific description of the motion of planets. His successor,
Ptolemy, three hundred years later, is famous for the Ptolemaic
geocentric system which became the astronomical dogma until
Copernicus introduced the heliocentric system, many centuries
later. Ptolemy owes a lot to Hipparchus and does not always
acknowledge his debt. But that is not related to our story.

So, according to Hough, Hipparchus, under the transmission
of Plutarch, was counting parenthesized words of length 10.
Several historical papers have been written about this discovery
of Schroeder numbers by Hipparchus17 18.

17 R. P. Stanley. Hipparchus,
Plutarch, Schröder, and
Hough. Amer. Math. Monthly,
104(4):344–350, 1997.

18 F. Acerbi. On the shoulders
of Hipparchus: a reappraisal
of ancient Greek combina-
torics. Arch. Hist. Exact Sci.,
57(6):465–502, 2003.

An article in MathPages provides a slightly more elaborate
explanation in terms of Stoic logic (some pre-Aristotelean
logic taught in particular by Chrysippus, and criticized by
Hipparchus).

Given a certain number of logical assertions a1, a2, . . . , ak
there are at least two ways to combine them by conjunction or
disjunction:

• a1 OR a2 OR � OR an, which is an n-ary function OR(a1, . . . , an),
• a1 AND a2 AND � AND an, which is an n-ary function

AND(a1, . . . , an).
In modern Boolean notation, we use + for OR and a dot, or just
concatenation, for AND. Now, consider a word of length n (for
example abcd for n = 4). For each of the n − 1 spaces between
letters, choose a “+′′ or a “.′′. There are 2n−1 possibilities (8 in
our example).

abcd abc + d
ab + cd ab + c + d
a + bcd a + bc + d
a + b + cd a + b + c + d

https://en.wikipedia.org/wiki/Plutarch
http://www-math.mit.edu/~rstan/papers/hip.ps
http://www-math.mit.edu/~rstan/papers/hip.ps
http://www-math.mit.edu/~rstan/papers/hip.ps
http://www.mathpages.com/home/kmath397/kmath397.htm
http://www.mathpages.com/home/index.htm
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We are used to give priority to multiplication above addi-
tion but if we want to specify an order to evaluate this logical
function, parentheses are necessary.

abcd abc + d
ab(c + d) a(bc + d)
ab + cd a(b + c)d
a(b + cd) (ab + c)d
ab + c + d a(b + c)+ d
a(b + c + d) a + bcd(a + b)cd (a + bc)d
a + bc + d (a + b)(c + d)(a + b)c + d a + b(c + d)
a + (b + c)d a + b + cd(a + b + c)d a + b + c + d

This can be described by a pruned tree. Associate the symbol
OR to a node of odd level and AND to a node of even level.
Each node acts accordingly on the set of its children, these
children being embraced in a pair of parentheses. If the root has
a single child, it is not necessary to label it with AND since it
acts on a singleton.

AND

OR

The reader is encouraged to show, as an exercise, that two
different expressions, i.e. two different pruned trees, define two
different Boolean functions {0, 1}n → {0, 1} when evaluated
at ai = 0 or 1 (false or true). So, Hipparchus was right: there
are a(10) = 2 × 103, 049 ways of combining 10 assertions, using
OR or AND, in the sense just described. One could ask why he
mentioned b(10) and not a(10). He may have noticed the natural
involution among compound propositions given by negation, which
basically permutes AND and OR?

1 2

6
5

4
3

A simplicial complex with
vertex set V = {1, . . . , 6}.
The function associating 0
to a subset X ⊂ V if X is a
simplex, and 1 otherwise,
is a monotone Boolean
function.

There is a related open question, called the Dedekind problem.
There are 22n

Boolean functions, that is to say functions from{0, 1}n to {0, 1}. It is easy to see that any such Boolean function
can be written by some formula using OR, AND and NOT.
Those functions that can be described by formulas which are
not involving NOT are called monotone Boolean functions (but
note that we do not impose that each variable appears once
in the formula, like in the case of Hipparchus). The question of
computing the number of monotone Boolean functions is open for n > 8.
This number has also a nice topological interpretation: it is the
number of simplicial complexes whose vertices are {1, 2, . . . , n}.

Most mathematicians, including myself, have a naive idea
about Greek mathematics. We believe that it only consists of
Geometry, in the spirit of Euclid. The example of the compu-
tation by Hipparchus of the tenth Schroeder number may be a
hint that the Ancient Greeks had developed a fairly elaborate
understanding of combinatorics: this is the theme of the article
by Acerbi quoted above.

https://en.wikipedia.org/wiki/Dedekind_number
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The book by Netz19 offers new perspectives on this his- 19 R. Netz. Ludic proof.
Cambridge University
Press, Cambridge, 2009.
Greek mathematics and the
Alexandrian aesthetic.

tory. The first chapter discusses Greek combinatorics and in
particular the number 103,049. It also contains a description of
another combinatorial puzzle, found in the famous Archimedes
palimpsest (the reader is urged to read20 like a detective story). 20 R. Netz and W. Noel. The

Archimedes codex. Phoenix,
London, 2008. Revealing
the secrets of the world’s
greatest palimpsest.

This is made out of 14 polygonal pieces and is similar to a
Tangram game.

Netz “asked his colleague at Stanford, Persi, a noted combinatorist,
to help him solve what he assumed to be a simple question: how many
ways are there to put together the square? [. . . ] It took Diaconis a
couple of months and collaborative work with three colleagues to come
up with the number of solutions: 17,142.”

Did Archimedes know the answer?

Archimedes’ Stomachion.
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©



De methodis serierum et fluxionum
Newton’s method

Algebraic curves

Since the introduction of coordinates by René Descartes,
the study of planar curves, especially planar algebraic curves
(defined by some polynomial equation P(x, y) = 0), has become a
central theme in mathematics and continues to be so. Of course,
equations of degree 1 and 2 (lines and conics) were very familiar.
When XVII-th century mathematicians looked at higher degree
curves, they found a jungle, consisting of many different shapes
that they tried to tame. For instance, Isaac Newton wrote a long
memoir on curves of degree 3, decomposing them in a great
number of “species”. See the discussion in21 or in22.

21 J. Stillwell. Mathematics and
its history. Undergraduate
Texts in Mathematics.
Springer, New York, third
edition, 2010.

22 W. W. R. Ball. On Newton’s
Classification of Cubic
Curves. Proc. London Math.
Soc., S1-22(1):104–143, 1890.

An algebraic curve with two
singular points.

Very quickly, it appeared clearly that singular points play
a central role in the understanding of the geometry of these
curves. A point (x0, y0) is singular if it lies on the curve, i.e. if
P(x0, y0) = 0, and the partial derivatives ∂P�∂x and ∂P�∂y vanish
at (x0, y0). In a neighborhood of a regular (i.e. non-singular)
point, a modern mathematician has no difficulty applying the
implicit function theorem: in suitable smooth coordinates around
such a point, the curve is a straight line.

Singular points might however be much more complicated
and deciphering their nature took a long time.
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In this chapter, I am going to describe one of the major steps
toward this understanding, following Newton’s book De methodis
serierum et fluxionum.

I do not want to go into any historical detail about the rivalry
between Newton and Leibniz concerning the invention of calcu-
lus. Let me recommend specifically for our purpose the excellent
Newton’s biography by Westfall23.

23 R. S. Westfall. Never at
rest. Cambridge University
Press, Cambridge, 1980. A
biography of Isaac Newton.

Here is the description by Newton himself of his Annus
mirabilis (see24): 24 R. S. Westfall. Newton’s

marvelous years of discovery
and their aftermath: myth
versus manuscript. Isis,
71(256):109–121, 1980.

In the beginning of the year 1665 I found the Method of approx-
imating series and the Rule for reducing any dignity of any
Binomial into such a series. The same year in May I found the
method of Tangents of Gregory and Slusius, and in November
had the direct method of fluxions and the next year in January
had the theory of Colours and in May following I had entrance
into ye inverse method of fluxions. And the same year I began
to think of gravity extending to ye orb of the Moon. All this was
in the two plague years of 1665–1666. For in those days I was in
the prime of my age for invention and minded Mathematicks and
Philosophy more then at any time since.

In July 1669, based on his 1665 ideas, Newton had written
De Analysi per aequationes numero terminorum infinitas.

In 1671, he wrote De methodis serierum et fluxionum but did not
publish it.

In 1676, he wrote two famous letters to Leibniz (through
Oldenburg, as an intermediary): espistola prior and epistola
posterior.

The English translation (by Colson) of De methodis appeared
in 1736 (therefore 9 years after Newton’s death). A French
translation of the English translation, by Buffon, appeared in
1740.

It seems that Colson did
not accept to show the latin
manuscript to Buffon.

All these papers contain a rather precise description of singu-
lar points of algebraic curves, in terms of what is called today
Puiseux series, following once again Arnold’s principle.

We want to study a curve P(x, y) = 0, where P is a polyno-
mial with complex coefficients. One should understand first that

Later, we will study the case
of real coefficients as well as
functions P which are only
assumed to be analytic.Newton is not thinking of this as a curve, but as a function: given

x, he wants to solve the equation P(x, y) = 0 and to find y as a

https://www.jstor.org/stable/pdf/230315.pdf
https://www.jstor.org/stable/pdf/230315.pdf
https://www.jstor.org/stable/pdf/230315.pdf
https://www.jstor.org/stable/pdf/230315.pdf
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/NATP00204
https://archive.org/details/methodoffluxions00newt
https://archive.org/details/lamethodedesflux00newt
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function y(x). His main result is that it is indeed possible, as
soon as one is willing to consider y(x) as an infinite series in
rational powers of x. Let me state a theorem that will be made
precise later on, and that Newton “almost” proved.

Theorem. Any polynomial equation P(x, y) = 0 (where P is not
divisible by x) such that P(0, 0) = 0 is equivalent, in the neighborhood
of (0, 0), to a finite number of equalities y = fi(x) (with i = 1, . . . , n)
where fi is a Puiseux series of the form:

fi(x) = ∞�
k=1

ai,kx
k
qi

for some complex coefficients ai,k and some positive integers qi.

In other words, {P = 0} is the union of a finite number of
graphs of series fi. We are in a position similar to Kontsevich’s
original question and it will be natural to ask ourselves what
is the topological nature of these graphs. However, before we
study this question, there are many details to be fixed, since in
particular these fi’s are not really functions. Think for instance of
the “graph” of the square root.

Newton in 1689, by Godfrey
Kneller. ©

We will look closely at the first part of De methodis serierum et
fluxionum. The frontispiece of this important book is on the first
page of this chapter. In order to simplify my readers’ task, I shall
follow the English translation.

Newton’s method

Let us start reading Newton.

A page from De methodis. ©

Since there is a great conformity between the Operations in
Species, and the same Operations in common Numbers; nor
do they seem to differ, except in the Characters by which they
are represented, the first being general and indefinite, and the
other definite and particular: I cannot but wonder that no body
has thought of accommodating the lately discover’d Doctrine of
Decimal Fractions in like manner to Species [. . . ] especially since
it might have open’d a way to more abstruse Discoveries.
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Explanation: By common number, Newton means. . . a common
number, that is to say what we call today a complex number. Note
that very few mathematicians at that time would consider these
numbers as “common”. By species, he means a polynomial in
x, or an entire series, or what is called today a Laurent series, or
maybe a Puiseux series, i.e. a series in rational powers of x. In any
case, in Newton’s words a species is some kind of function.

But since this Doctrine of Species, has the same relation to Alge-
bra, as the Doctrine of Decimal Numbers has to common Arith-
metick; the Operations of Addition, Subtraction, Multiplication,
Division, and Extraction of Roots, may easily be learned from
thence, if the Learner be but skill’d in Decimal Arithmetick, and
the Vulgar Algebra, and observes the correspondence that obtains
between Decimal Fractions and Algebraick Terms infinitely contin-
ued.

Cover page of the French
translation by Buffon. ©

Explanation: Newton observes that series can be manipulated just
in the same way as numbers, for which we have four operations
(+,−,×, �). In modern terminology, he observes that common
numbers and Laurent series are both fields.

For as in Numbers, the Places towards the right-hand continually
decrease in a Decimal or Subdecuple Proportion; so it is in Species
respectively, when the Terms are disposed, (as is often enjoin’d in
what follows) in an uniform Progression on infinitely continued,
according to the Order of the Dimensions of any Numerator or
Denominator.

Explanation: Again in modern anachronic terminology, Newton
tells us about the topology of these two fields. Two real numbers
are close if their decimal expansions agree until a large rank and,
analogously, two polynomials in x, or two series, are close in the
neighborhood of 0 if the valuation of their difference is large.

At this stage, we can guess Newton’s strategy. He will teach
us a way of solving polynomial equations P(y) = 0 where P is a
polynomial with coefficients in some field, which could consist
either of common numbers or of species. This will therefore apply
to equations of the form P(x, y) = 0 where P is a polynomial in
two variables, seen as a polynomial P(x)(y) in one variable y
with coefficients in the field of rational functions C(x), or the
field C((x)) of Laurent series.
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In a very pedagogical presentation, Newton gives several
examples showing the analogy between species and common
numbers. First he shows how to expand a2�(b − x) as a series in
x. Just as we would explain in primary school that dividing 1 by
0.9 = 1− 0.1 yields 1.11111111 . . .. This is easy and must have been
easy also for his readers.

©

Then he explains the meaning of rational exponents xp�q,
which must also have been familiar to most of his readers. He
can then present his famous binomial formula for a rational
power of (x + a), as an infinite series in x:

(a + x) p
q = a

p
q + (p�q)a p

q −1x + 1
2
(p�q)(p�q − 1)a p

q −2x2 +�.

We now come to the part which is the most interesting for us.
He would like to solve what he calls “affected equations"

which are polynomial equations whose coefficients are Species,
that is to say equations P(x, y) = P(x)(y) = 0. Again in a very
pedagogical way he declares that he will begin by solving ordi-
nary equations in common numbers of the form P(y) = 0, where
P is a polynomial in C[y].

©
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This is the famous Newton’s method which is one of the most
fundamental tools in analysis.

©

Look at the way he presents the computations. His example is
the cubic equation

y3 − 2y − 5 = 0.

He observes, by trial and error, that there is a root which is not
very different from 2. Therefore he looks for y as y = 2+ p with a
small p. Substituting in the original equation, he finds

p3 + 6p2 + 10p − 1 = 0.

He can now “reject p3 + 6p2 because of its smallness” to obtain

10p − 1 � 0

so that p is close to 1�10. He can then set p = 0.1+ q and substitute
in the equation to get

q3 + 6.3q2 + 11.23q + 0.061 = 0

and “since 11.23q + 0.061 = 0 is near the truth” he knows that q is
close to −0.061�11.23 � −0.0054.
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Writing q = −0.0054+ r, he can substitute as before and continue
the operation “as far as I please”. He finally gets the solution
close to 2.09455148.

©

Newton’s method can be
used for finding roots of
polynomials P(z) with
complex coefficients. Start-
ing with some zinit, we
hope that the iteration of
Newton’s algorithm will con-
verge to a root. The plane
(or at least the set of zinit for
which the method works)
can therefore be decom-
posed in several domains,
according to the limiting
root.

In 1880, Cayley asked
for a description of this
decomposition. He wrote
that the question is easy in
degree 2 (exercise for the
reader) and that for degree 3

it is “anything but obvious”.
Indeed, it is known today
that this decomposition
has a fractal nature. This is
known as Newton’s rabbit.

The next paragraph shows, if necessary, that Newton was
incredibly gifted for computations. “The work can be most
abbreviated” indeed. He explains what all undergraduate
students (should) know: that at every step the number of
correct decimals is essentially doubled and that it is therefore
not necessary to compute exactly the p, q, r, s, etc. This is why in
his table, some digits are barred: this is not a blunder, this is a
clever simplification.

In 1690, Raphson (1648–1715) (fellow of the Royal Society,
and therefore knowing very well Newton) published a method
for solving equations in Analysis aequationum universalis. Start
with an approximate solution y0 of P(y) = 0 and consider the
sequence defined by

yk+1 = yk − P(yk)
P′(yk)

which, if everything works fine, converges to a solution. Raphson
does not mention Newton. Some historians claim that the two
methods are very different. In the case of Raphson, one keeps
the same equation and computes the sequence yk. In the case
of Newton, at each step one computes a new equation. The two
methods give exactly the same result and are formally identical,
but clearly if one computes by hand, Newton’s presentation is
much more efficient. One could say that Raphson is using an
iteration and Newton a recursion25. Some mathematicians claim

25 C. Christensen. Newton’s
method for resolving
affected equations. College
Math. J., 27(5):330–340, 1996.

that Raphson understood the role of the derivative of P and that
Newton was only linearizing the equation. Well, who could say
that Newton, the inventor of derivative, could not have noticed
that the linear part is the derivative? As far as I am concerned,
I will continue speaking of Newton’s method and not of Newton-
Raphson’s method.

As a final comment, needless to say that Newton does not
discuss at all any question about the convergence. Note also that
his example only involves real roots of real polynomials.

http://www.maa.org/programs/maa-awards/writing-awards/newtons-method-for-resolving-affected-equations
http://www.maa.org/programs/maa-awards/writing-awards/newtons-method-for-resolving-affected-equations
http://www.maa.org/programs/maa-awards/writing-awards/newtons-method-for-resolving-affected-equations
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Newton’s apple tree in
Trinity college. A myth
is sometimes circulated
that this was the tree from
which the apple dropped
onto Isaac Newton. In fact,
he was not in Cambridge
during his Annus mirabilis.



De methodis serierum et fluxionum
Newton’s series

Affected equations

©

Newton can now solve “affected equations”, whose
coefficients are functions of x. His example is

y6 − 5xy5 + (x3�a)y4 − 7a2x2y2 + 6a3x3 + b2x4 = 0.

In this equation, a, b are some parameters. Note that Newton
takes great care to write homogeneous equations. For simplicity, Do not forget that Newton

was also a physicist.I will be less careful and choose a = b = 1. Newton looks first
for an approximate solution of the form y = uxa where u is some
unknown nonzero constant and a is some unknown rational
number. Substituting, he finds

u6x6a − 5u5x1+5a + u4x3+4a − 7u2x2+2a + 6x3 + x4 = 0.

This is an expression involving “monomials" in rational powers
of x. The exponents are 6a, 1+5a, 3+4a, 2+2a, 3, 4. If we study the
situation in the neighborhood of 0, the largest term corresponds
to the smallest of these exponents. For a generic choice of a, the
six exponents are different. In this is the case and if we wish to
express the fact that the dominant term vanishes, that forces
u = 0: this is certainly not what we want to do.

Therefore, we have to choose a such that at least two of the
six exponents are equal and moreover such that they are the
smallest. Newton expresses this condition using his famous



52 a singular mathematical promenade

polygon. He draws a kind of checker board subdivided into
squares (that he calls parallelograms). For each nonzero monomial
aijxjyi (i, j ≥ 0) in the original equation, he marks a star in the box(i, j). In his example there are six stars.

Choosing a and comparing the exponents j + ia can be inter-
preted in a geometric way, which is clearly explained by Newton.
Place a ruler on the checker board and move it until it touches
the marked stars.

Then, when any Equation is proposed, mark such of the Parallelo-
grams as correspond to all its Terms, and let a Ruler be apply’d to
two, or perhaps more, of the Parallelograms so mark’d, of which
let one be the lowest in the left-hand Column at AB, the other
touching the Ruler towards the right-hand; and let all the rest, not
touching the Ruler, lie above it. Then select: those Terms of the
Equation which are represented by the Parallelograms that touch
the Ruler. A

D

B

E
C

For some reason, Newton
marks the monomials xj on
the vertical axis and yi on
the horizontal. ©

So, in his case, the coefficient a is chosen to be equal to 1�2 (the
slope of the line DE) and the three dominant monomials x3, x2y2

and y6 are chosen. Indeed, for a = 1�2, the equation becomes,
ordering in increasing powers of x:

(u6 − 7u2 + 6)x3 − 5u5x7�2 + x4 + u4x5 = 0.

We are therefore led to choose u as a solution of the equation

u6 − 7u2 + 6 = 0
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which contains three monomials since the ruler touches three
stars. There are six solutions

u = ±1 ; ±√2 ; ±√−3.

Newton seems to ignore the last two imaginary solutions. He
may be only interested by the real solutions but even if this is the
case, this is a mistake, as will be seen later in this section.

He then chooses the first solution. He can write y = √x + p,
as in his method with common numbers. Then, it suffices to
“continue the process at pleasure”.

However, with no explanation, he abandons suddenly his first
example and switches to other numerical examples for which he
“exhibits the praxis of his resolution”.

Let me show how to continue Newton’s first example. For
simplicity, I slightly change his presentation. Instead of improv-

On October 24, 1676, New-
ton sent a letter to Leibniz,
“describing” his contribution
to calculus. At the end of
the letter, he writes “[. . . ]
inverse problems of tangents
are within our power, and
others more difficult than
those, and to solve them I
have used a twofold method
of which one part is neater,
the other more general. At
present, I thought fit to regis-
ter them both in transposed
letters. . . ”, and then he
conceals his method in an
anagram:

5accd10e f f h11i4l3m9n6oqq

r8s11t9y3x ∶ 11ab3cdd10eg1

0ill4m7n6o3p3q6r5s11t8vx, 3a
c4egh5i4l4m5n8oq4r3s6t4v,

aaddcecceiijmmnnooprrrss
sssttuu

Poor Leibniz! He must
have struggled to find the
meaning of the anagram.

Poor reader! Even if I give
the solution, (s)he will have
to translate from latin to his
own language, and (s)he will
then understand that the
content is not so clear!

“Una methodus consistit in
extractione fluentis quantitatis
ex aequatione simul involvente
fluxionem ejus: altera tantum
in assumptione seriei pro
quantitate qualibet incognita ex
qua caetera commode derivari
possunt, et in collatione
terminorum homologorum
aequationis resultantis, as
eruendos terminos assumptae
seriei”.

ing the first approximate solution y �√x by adding an unknown
p, let us set

x = x2
1 ; y = x1(1+ y1).

We substitute these values in the original equation and simplify
by x6

1. −5x1 + x2
1 + x4

1 − 8y1 − 25x1y1 + 4x4
1y1+8y2

1 − 50x1y2
1 + 6x4

1y2
1 + 20y3

1−50x1y3
1 + 4x4

1y3
1 + 15y4

1 − 25x1y4
1+x4

1y4
1 + 6y5

1 − 5x1y5
1 + y6

1 = 0.

In this new equation, the coefficients of x1 and y1 are not zero.
So the Newton’s ruler passes now through (0, 1) and (1, 0). This
is another way of saying that the new equation is not singular at
the origin. So the dominant terms are linear

−5x1 − 8y1

which yields

y1 � −5
8

x1.

Continuing the process we set:

x1 = x2 ; y1 = −5
8

x2(1+ y2)

http://sp.rpcs.org/faculty/MillerR/towson/Readings/Forms/AllItems.aspx
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and so on, we would find an expansion of y as the product of
√

x
and a series in integral powers of x.

With the help of Mathematica, my computer finds

y(x) = x1�2 − 5 ⋅ 2−3x + 79 ⋅ 2−5x3�2 − 14185 ⋅ 2−10x2+3118083 ⋅ 2−15x5�2 − 189696965 ⋅ 2−18x3+24625187405 ⋅ 2−22x7�2 − 1670815928565 ⋅ 2−25x4 +�
For the other solution u =√2, the same computer claims that

y(x) = √
2x1�2 + 2x − 13

√
2 ⋅ 2−25−4x3�2 + 3825−2x2−267229

√
2 ⋅ 2−55−3x5�2 + 903813 ⋅ 2−15−4x3−1661176381
√

2 ⋅ 2−75−5x7�2 + 777992628 ⋅ 5−6x4 +�
A final comment on the motivation of Newton. Since he

“proved” that any “function” y(x) defined by some implicit
relation P(x, y) = 0 can be expanded as power series of x (at the
cost of using rational exponents) and since he, of course, knows
very well the derivative and primitive of any power xa, he can
use his technique to compute derivatives and primitives of any
series. In other words, he is able to compute the derivative and
the primitive of “any” function. The rest of De methodis serierum
et fluxionum is devoted to many applications of this method.

A mistake of Newton?

Newton at the precise
moment of the mistake?
(Homage to Gotlib). ©

It is amazing to realize that Newton missed a root of the equation

u6 − 7u2 + 6 = 0.

One might believe that he thought that the imaginary roots±√−3 would lead to imaginary solutions for y(x). But this is not
so and I believe that this is indeed a mistake.

Discovering in 2016 a mistake in an important paper written
by Newton around 1669 is an interesting experience. Looking at
the original manuscript, we see that Newton had to fix a blunder
and to glue a piece of paper above the original page. I suspect
that the library of Trinity College would not agree to peel off
the precious manuscript to see what is beneath. One should use
X-rays.

https://fr.wikipedia.org/wiki/Gotlib


newton’s series 55

A mistake? ©

Actually, there could be another interpretation. In his com-
mentary of the Epistola posterior, Turnbull26 (note 68, page 159) 26 I. Newton. The correspon-

dence of Isaac Newton, Vol. II:
1676–1687. Published for the
Royal Society. Cambridge
University Press, New York,
1960.

mentions another “error”: according to him, the “roof” of the
square root sign is not long enough and Newton wrote mis-
takenly

√
2x instead of

√
2x. Then he comments that “Newton

rejects the imaginary cases given by v2 + 3 = 0”. It is indeed
possible that Newton made a mistake with

√
2x which led him

to think of
√−3x as imaginary, and then to reject it. If he had

written
√−3x he would have seen that this solution is not imagi-

nary at all when x < 0. We’ll never know.
Indeed, ±√−3 is imaginary but the approximate function

y � ±√−3
√

x is real if x is a negative real number so that it should
not have been discarded.

For the real root u = 1, we have set

x = x2
1 ; y = x1(1+ y1).

For the imaginary root
√−3, we set

x = −x2
1 ; y =√3x1(1+ y1)

and we proceed as before. We finally get a third real solution.
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y(x) = −31�2(−x)1�2 − 9 ⋅ 2−3(−x)− 721 ⋅ 2−65−13−1�2(−x)3�2 − 36543 ⋅ 2−105−2(−x)2
−27986569 ⋅ 2−153−3�25−3(−x)5�2 − 96025589 ⋅ 2−185−4(−x)3
+169264391911 ⋅ 2−223−5�25−5(−x)7�2 + 1398151100829 ⋅ 2−255−6(−x)4 +�

Newton’s monument in
Westminster Abbey.

Right hand on his four main
books.

Left hand pointing to
two angels showing. . .
the binomial series.

One may ask why we found three solutions and not six since
the equation u6 − 7u2 + 6 = 0 has indeed six solutions. This is
simply because opposite roots give rise to the same solution. Do
not forget that Newton considers

√
x as a 2-valued function, so

that for him
√

x and −√x are “the same”. I agree that writing√
x = −√x might lead to contradictions, but not under the

pen of Newton. We are wise to teach our students that
√

x is
the positive root for x real and positive, and to choose some
principal determination for x ∈ C �R−. In modern terminology,
the two parameterized curves (t2, t) and (t2,−t) are the same
curves, with different parameterizations.

What Newton did not prove

The definition of ”convergence” was not at Newton’s disposal.
However, his numerical computations suggest that his series are
indeed convergent and he even uses the terminology convergent.
To be honest, one could say that he only shows that his series
give asymptotic expansions. In practice, a series

a1xa1 + a2xa2 +�
(where a1 < a2 < . . . are rational exponents) is asymptotic to a
function f (x) if for every n ≥ 1:

f (x)− n�
k=1

akxak = o(xan).
This does not imply that fn converges to f , but is frequently as
useful, and sometimes even more useful, than a usual conver-
gence.

Another aspect that he does not discuss concerns the nature
of the rational exponents that appear in his series. At each
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step, a new rational number appears and it is not clear that this
sequence of exponents converges to infinity. Even less clear is
the fact that all the denominators are bounded. However, Newton
does observe that his method is not restricted to polynomial
equations P(x, y) = 0 but works perfectly for “aequationes
numero terminorum infinitas” of the form ∑i,i≥0 aijxiyj = 0 (with
a00 = 0), involving what are called today analytic functions.
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To conclude this chapter, let us look at Newton’s original
curve.

P(x, y) = y6 − 5xy5 + x3y4 − 7x2y2 + 6x3 + x4 = 0.

If I ask my computer to plot this curve in a [−50,+20]× [−50,+50]
box, I get the first plot in the margin. This may look surpris-
ing since we only see two branches in the neighborhood of the
origin. Let us zoom and look in a smaller box [−1, 1] × [−2, 2]
(second plot), we can guess another branch. Zooming more
in [−.1, .1]× [−.4, .4] (third plot), this is easier to see. The local
situation is completely clear in [−.01, .01] × [−.2, .2] (fourth plot).
Finally, in [−.001, .001] × [−.05, .05], we do see three branches
asymptotic to ±√x,±√2x,±√−3x as predicted by Newton
(except that he forgot the third, for x < 0).

The polynomial P(x, y) is prime: it does not split non-trivially
as a product of two polynomials. However, as a convergent
power series in x, y, in the neighborhood of the origin, it does
split as a product of three factors, corresponding to the three
branches.

When Newton asked Oldenbourg to forward his Epistola Posterior to Leibniz, he

added this P.S. Yes, he had indeed other things in his head.
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A plate from Cramer’s book
on curves. ©



Some formal algebra

The algebra in this chapter will be “formal” since we
will consider formal series.

Finding one solution

I repeat Newton’s arguments, expressing them in a more modern
algebraic terminology. Attributing all of this to Newton requires
infinite imagination and extrapolation. I will emphasize however
an important contribution of Cramer. Usually a good part of
what follows is attributed to Puiseux, but this would require at
least as much of extrapolation. I’ll describe Puiseux’s contribu-
tion in due course.

There are excellent books on this topic. I recommend in
particular Walker27, Brieskorn and Knörrer28, Wall29, and Casas-

27 R. J. Walker. Algebraic
curves. Springer-Verlag,
New York-Heidelberg, 1978.
Reprint of the 1950 edition.

28 E. Brieskorn and
H. Knörrer. Plane alge-
braic curves. Modern
Birkhäuser Classics.
Birkhäuser/Springer Basel
AG, Basel, 1986.

29 C. T. C. Wall. Singu-
lar points of plane curves,
volume 63 of London Mathe-
matical Society Student Texts.
Cambridge University Press,
Cambridge, 2004.

Alvero30.

30 E. Casas-Alvero. Singular-
ities of plane curves. London
Mathematical Society Lec-
ture Note Series. Cambridge
University Press, 1 edition,
2000.

Let K denote some algebraically closed field of characteristic zero.
The main example that I have in mind is the field C of complex
numbers.

Some notation:
– K[x] is the ring of polynomials in x with coefficients in K.
– K(x) is the field of rational functions in x with coefficients in

K: this is the quotient field of K[x].
– K[[x]] is the ring of formal series in x: expressions of the

form ∑∞i=0 aixi where the ai’s are in K, without any reference to
convergence matters.

https://archive.org/details/in.ernet.dli.2015.84243
https://archive.org/details/in.ernet.dli.2015.84243
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– In a similar way, in two variables, we define K[x, y] (polyno-
mials), K(x, y) (rational functions) and K[[x, y]] (formal series).

We can now state Newton’s theorem in a precise form.

Theorem (Newton-Cramer). Let F(x, y) be a formal series in K[[x, y]]
vanishing at the origin and not divisible by x. Then there is an integer
m ≥ 1 and a formal power series f (t) ∈ K[[t]] vanishing at 0 such
that F(tm, f (t)) vanishes identically. In other words, the equation
F(x, y) = 0 has at least one “solution” of the form y = f (x1�m).

We have already seen the general structure of the proof.
Let me write F0(x0, y0) instead of F(x, y) since I will describe

some iterative construction involving some xk, yk’s. So, let
F0(x0, y0) = ∑i,j aijxi

0yj
0 (with a00 = 0) be a formal series. For

each (i, j) such that aij ≠ 0, consider the quarter plane x ≥ i; y ≥ j.
The Newton polygon is the convex hull of the union of these
quarter planes. The picture in the margin shows the polygon for

F = y7
0 − x2

0y3
0 + x2

0y6
0 + x3

0y2
0+x4

0y0 + x4
0y6

0 + x5
0y4

0 + x7
0 + x7

0y0.

A Newton polygon. Terms
in the series with nonzero
aij are represented by dots.
There are three supporting
lines. Note that I do not
follow Newton’s strange
idea of writing the i’s on the
vertical axis. For the benefit
of the reader, I follow the
tradition and use x and y for
the horizontal and vertical
axes.

Example: Choose the
supporting line

2i + j = 7,

so that (a, b, g) = (2, 1, 7).
Fdom(x0, y0) = y7

0 − x2
0y3

0 and
the polynomial p is

p(u) = u7 − u3.

Choose u0 = 1 so that the
approximate solution is

x0 = t2; y0 = t.

We can always assume that F0 is not divisible by y0 or by x0 since
we could divide by some monomial yj

0 or xi
0 without changing

the problem. In other words, each of the axis intersects the
Newton polygon. The boundary of this polygon, away from
the axis, consists of a finite number of segments, included in
supporting lines whose equations have the form ai + bj = g where
a, b are positive integers that we can assume relatively prime.
Choose one of these lines a0i + b0 j = g0 and select the finite
number of coefficients aij such that (i, j) lies on this line. This
defines a “dominant polynomial”

Fdom(x0, y0) = �
a0i+b0 j=g0

aijxi
0yj

0.

Look for an approximate solution parameterized by t, of the
form

x0 = ta0 ; y0 = utb0 .

By “approximate”, I mean that it solves the dominant part of our
equation

Fdom(ta0 , utb0) = 0.
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We get a polynomial equation in u:

p(u) = �
a0i+b0 j=g0

aijuj = 0.

Since K is algebraically closed, there is at least one nonzero
solution u0. We then come back to the original equation F0(x0, y0) = 0
and substitute xa0

1 for x0 and u0xb0
1 (1+ y1) for y0. This produces a

new formal series in (x1, y1) which, by construction, is divisible
by xg0

1 . Dividing by xg0
1 , we get another equivalent equation

F1(x1, y1) = 0
. . . and the process can be continued “at pleasure”, produc-

ing a sequence of equations Fk(xk, yk) (k ≥ 1) and of integers
ak, bk, gk.

First step. In F0 substitute

x0 → x2
1; y0 → x1(1+ y1).

and divide by x7
1. We get

F1(x1, y1) = x1 + 4y1 +
2x2

1 + 2x1y1 + 18y2
1 + 6x2

1y1 +
x1y2

1 + 34y3
1 + 10x2

1y2
1 + 35y4

1 ++10x2
1y3

1 + 21y5
1 + +5x2

1y4
1 +

7y6
1 + 3x7

1 + x2
1y5

1 + y7
1 + x8

1 +
10x7

1y1 + x8
1y1 + 21x7

1y2
1 +

24x7
1y3

1 + 16x7
1y4

1 + 6x7
1y5

1 ++x7
1y6

1, which has a non-
trivial linear term in y1 so
that y1 can be expanded as a
power series in x1.

One important property is missing and was not discussed by
Newton. We have to show that after a finite number of steps,
the coefficients ak are always equal to 1, which means that the
slopes of all supporting lines are inverses of integers and not
only rational numbers. This is important since each step implies
the introduction of a root xk+1 = x1�ak

k and we would get into
trouble if we had to do that an infinite number of times.

This is analyzed in full detail in Chapter VII of Cramer’s excel-
lent book Introduction a l’analyse des lignes courbes algébriques31,

31 G. Cramer. Introduction à
l’Analyse des lignes courbes
algébriques. Frères Cramer et
Cl. Philibert, 1750.

published in 1750. The author gives a full credit to Newton but
explains that:

La vraye Méthode des Séries est fondée sur le Parallélogramme
de Mr. Newton, invention excellente, mais dont l’Auteur n’a pas
donné la Démonstration, dont il semble même n’avoir pas senti
tout le prix.

Definition. If F is a formal power series in K[[x, y]] not divisible
by x, the multiplicity, denoted mult(F), is the valuation of F(0, y)
as a series in y. This is also the smallest height of a point of the
Newton polygon of F on the vertical axis.

Note that by convexity any supporting line intersects the
j-axis below mult(F). In particular the degree of the polynomial
p(u) is at most mult(F).

Gabriel Cramer (1704-1752).
His book on curves contains,
besides a serious analysis
of Newton’s series, a the-
ory of linear equations in
n unknowns (the famous
Cramer’s rule) and the ele-
ments of elimination theory.
I like the title of appendix
1: “De l’évanouissement
des inconnues” which
looks more enticing than
"elimination”. ©

Lemma. mult(F1) ≤ mult(F).

https://archive.org/details/bub_gb_gtKvSzJPOOAC
https://archive.org/details/bub_gb_gtKvSzJPOOAC
https://archive.org/details/bub_gb_gtKvSzJPOOAC
https://archive.org/details/bub_gb_gtKvSzJPOOAC
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By definition

F1(x1, y1) = x−g
1 �

i,j
aijx

a0i+b0 j
1 uj

0(1+ y1)j.
In order to get mult(F1), we let x1 = 0 and look at the valuation
of p(u0(1+ y1)) as a polynomial in y1.

mult(F1) ≤ degree(p) ≤ mult(F).
�

So under the Newton algorithm, the sequence of multiplicities
mult(Fk) is non-increasing. This inequality is strict unless F0 has
a very special form.

©

One has equality if and only if p(u0(1+ y1)) contains only one
monomial of degree mult(F). This implies in particular that the
degree of p is equal to mult(F).

Said differently, the root y1 = 0 of p(u0(1 + y1)) = 0 should be
multiple of order mult(F). This means that p has the form

p(u) = C(u − u0)mult(F).
This polynomial has nonzero coefficients in each degree from 0
to mult(F). Hence, the segment of the boundary of the Newton
polygon that we have chosen contains dots for each value of j
from j = 0 to j = mult(F). This implies that the Newton polygon
has only one side (other from the axes segment) and that a0 = 1.

Let’s sum up.

Extract of the proof by
Cramer (page 200).

Along the algorithm, the multiplicities mult(Fk) are non-increasing
and therefore they have to be constant after some time. At this
stage, all Newton polygons have ak = 1 (and moreover have the
very special structure that was just described). We have

x0 = xa0
1 = xa0a1

2 = . . . = xa0a1�ak−1
k = . . .
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and
y0 = u0xb1

1 (1+ y1) = u0xb1
1 (1+ u1xb2

2 (1+ y2)) = . . .

Since the ak’s are equal to 1 for large values of k, we can set m to
be the product of all the ak’s and call t the value of xk for large k.
We have x0 = tm and more generally, each xk is a power of t with
some integral positive exponent.

©

Consider the algebraic
closure F2 of the field F2
with 2 elements. Try the
algorithm on the polynomial
F = y2 + x2y + x2 with
coefficients in F2 and show
that we get the solution

y = x �1+ x
1
2 +�+ x1−2−k +�� .

This is not a Puiseux series
since the exponents 1 − 2−k

do not have a common
denominator and don’t
even tend to infinity. What
happened ?

The inductive formula

yk = ukxbk+1
k+1 (1+ yk+1)

defines a sequence of polynomials yk(t) in the variable t. This
sequence “converges” to a limiting series f (t) ∈ K[[t]]. This
means that the valuation of f (t) − yk(t) goes to infinity when k
converges to infinity.

“Un spectacle dont on ne se
lasse jamais”.

To be complete, we should check that this is indeed a solution
to our problem, i.e. that F(tn, f (t)) does vanish identically. I
encourage the reader to check it. After all, the algorithm had
only one goal: to find a solution.

This is the proof of Newton’s theorem: every equation of the
form F(x, y) = 0 has some solution, in a properly defined sense.�
Algebraic closure

It is time to give a precise definition of series with rational
exponents.

Denote by K[[x]][x−1] the field of formal Laurent series, that is to
say formal expressions of the form ∑∞i≥i0 aixi (where i0 might be a
negative integer). This is the quotient field of the ring K[[x]].

More generally, if n is a non-zero integer, we denote by
K[[x1�n]][x−1�n] the field of formal Laurent series in the vari-
able x1�n: formal expressions of the form ∑∞i≥i0 aixi�n (where i0
might be a negative integer). The subfield consisting of series
for which ai = 0 whenever i is not divisible by n is canonically
isomorphic to K[[x]][x−1] so that we can see K[[x1�n]][x−1�n] as
a field extension of K[[x]][x−1]. The Galois group of this exten-
sion is easy to describe: it consists of the n-th roots of unity. The
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action of such a root w on

∞�
i≥i0

aixi�n

produces
∞�

i≥i0
wiaixi�n.

This is a Galois extension: the elements of K[[x1�n]][x−1�n] which
are invariant under the Galois group action are in K[[x]][x−1].

In the same way if n1 divides n2, the field K[[x1�n1]][x−1�n1]
is a subfield of K[[x1�n2]][x−1�n2]. The direct limit of all these
extensions of K[[x]][x−1] is denoted by K[[x�]][x�−1].

©

This is the field of Puiseux series: series with rational expo-
nents, having a common denominator. In down to earth terms, a
Puiseux series is a formal expression of the form ∑∞i≥i0 aixi�n for
some non-zero integer n. Puiseux series with i0 ≥ 0 constitute a
ring, that we denote by K[[x�]].
Theorem (Newton-Cramer). The field of Puiseux series K[[x�]][x�−1]
is algebraically closed. This is the algebraic closure of the field of
Laurent series K[[x]][x−1].

This theorem is nothing but a restatement of the main theo-
rem of this chapter.

The fact that K[[x�]][x�−1] is an algebraic extension of K[[x]][x−1]
is clear. Indeed any Puiseux series lies in some K[[x1�n]][x−1�n]
and is therefore algebraic over K[[x]][x−1].

Consider a (non-constant) polynomial equation with coef-
ficients in K[[x�]][x�−1] and variable y. Defining x = x1�n for
some highly divisible n and multiplying all coefficients by a high
power of x we can assume that the coefficients of our polynomial
are in K[[x]]. Our equation is therefore of the form F(x, y) = 0
where F is a formal power series. We know that such an equa-
tion has a solution as a series in x1�m for some m, which is in
particular in K[[x�]][x�−1]. So, for any non-constant polynomial
with coefficients in K[[x�]][x�−1] we found a root in K[[x�]][x�−1].�
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Finding all solutions

If we think of F(x, y) = 0 as an equation where the unknown is
a series y(x) ∈ K[[x�]][x�−1], we can try, as we would do with
a usual polynomial equation, to factor F as a product of linear
factors in the algebraic closure

F = A(x, y)(y − f1(x))(y − f2(x))�(y − fn(x))
where A(0, 0) ≠ 0 and the n solutions fi(x) are in K[[x�]][x�−1].
That would be obvious if F was a polynomial in the y variable,
but it is only a formal series. It is not even clear that our equa-
tion has a finite number of solutions.

©

As a matter of fact, Newton was right and our equations are
indeed very close to being “standard” polynomial equations, as I
explain now.

Let me begin with some elementary observations.

Lemma. Suppose a formal series y = f (x) ∈ K[[x]] is a solution to the
equation F(x, y) = 0 where F ∈ K[[x, y]]. Then F is divisible by y − f (x)
in K[[x, y]].

This is obvious if f (x) = 0. Now the formal transformation(x, y) � (x, y − f (x)) induces an automorphism of K[[x, y]]
sending y to y − f (x). �
Lemma. For f ∈ K[[x�]], define

f (x, y) = (y − f1(x))(y − f2(x))�(y − fn(x))
where f1, . . . , fn are the Galois conjugates of f . Then f (x, y) is in
K[[x, y]].

Clear, since f (x, y) is a polynomial in y whose coefficients are
invariant under the Galois group. Note that this polynomial is
the minimal polynomial of the element f of K[[x�]][x�−1] as an
algebraic extension of K[[x]][x−1]. �
Lemma. Suppose a formal Puiseux series y = f (x) ∈ K[[x�]] is a
solution to the equation F(x, y) = 0 where F ∈ K[[x, y]]. Then the
associated series f (x, y) ∈ K[[x, y]] divides F(x, y) in the ring K[[x, y]].
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Since f is a solution and the equation is invariant under the
Galois group, all the conjugates are also solutions. We then show,
using the first lemma n times that F is divisible by f (x, y) in
K[[x1�n, y]]. Now the quotient F� f is Galois invariant so that it is
actually in K[[x, y]]. �

We can now prove the so-called Weierstrass preparation theorem,
for formal series.

Theorem. Let F(x, y) ∈ K[[x, y]]. Assume that F is not divisible by
x and denote by mult(F) its multiplicity. Then F can be written as a
product A(x, y)P(x, y) where A, P are in K[[x, y]] and

• A(0, 0) ≠ 0 so that A is an invertible element.

• P(x, y) is a polynomial in y of degree mult(F).
The proof is by induction on mult(F). Note that the valuation

of a product is the sum of the valuations and that mult(F) = 0
means precisely that F(0, 0) ≠ 0. If mult(F) ≥ 1, we know that F
has at least one solution in y = f (x) ∈ K[[x�]] and that F is divis-
ible by f (x, y) ∈ K[[x, y]]. The quotient has a lower multiplicity.�

©

Now, we can harvest and state two corollaries that follow
easily from the previous theorem. The proofs are the same as in
the classical case of polynomial rings over fields.

Theorem. Any nonzero element F of K[[x, y]] can be split as

F = A(x, y)xr(y − f1(x))(y − f2(x))�(y − fk(x))
where A ∈ K[[x, y]] is such that A(0, 0) ≠ 0, the k solutions fi(x) are in
K[[x�]], and r ≥ 0.

Theorem. The ring K[[x, y]] is a unique factorization domain.

The irreducible factors are the fi ∈ K[[x, y]].
We conclude this chapter with two exercises.
Exercise. Newton’s algorithm produces solutions y(x). At

each step, we have to choose one of the supporting lines on
the boundary of the polygon, and a root of the corresponding
polynomial equation. Show that this algorithm produces all
solutions fi(x) of F(x, y) = 0.
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Exercise. Suppose we follow Newton’s algorithm using some
choices of segments, leading eventually to a solution y = f (x).
The process produces a sequence of formal series Fk(xk, yk). We
proved that the multiplicities mk of Fk are eventually constant,
equal to some integer m ≥ 1. Show that this “eventual multi-
plicity” m is just the multiplicity of the root, that is to say the
number of factors equal to (y − f (x)) in the above decomposition
F = A(x, y)xr(y − f1(x))(y − f2(x))�(y − fk(x)).

Enough algebra for the time being!

From Cramer’s preface.Il est fâcheux que Mr. Newton se soit contenté d’étaler ses décou-
vertes sans y joindre de démonstrations et qu’il ait préféré le
plaisir de se faire admirer à celui d’instruire.

This is one of the sextic
curves studied by Cramer,
whose equation is

y6 − (y − x2)(y − 4x2)2 = 0.

The singular point has 3

branches. Can you draw
these branches?
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Starting from 1796 (when he was 19 years old) Gauss recorded
his mathematical discoveries in his famous Tagebuch. An impres-
sive list of results. See Klein’s commentaries32 and 33 for an

32 F. Klein. Gauß’ wis-
senschaftliches Tagebuch
1796–1814. Math. Ann.,
57(1):1–34, 1903.

33 J. J. Gray. A commentary
on Gauss’s mathematical
diary, 1796–1814, with
an English translation.
Exposition. Math., 2(2):97–130,
1984.

English translation. This page concerns August to October 1797.
The last item “Aequationes habere radices imaginarias methodo gen-
uina demonstratum” announces his proof of the fundamental
theorem of algebra. Below this line, with a different ink, a later
addition mentions that this was the theme of his dissertation:

“Prom[ulgatum] in dissert[atione] pecul[iari] mense Aug. 1799” ©

http://webdoc.sub.gwdg.de/ebook/e/2005/gausscd/html/kapitel_tagebuch.htm
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002259079
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002259079
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002259079


Curuam algebraicam
neque alicubi subito abrumpi posse:
Gauss on algebraic curves

The fundamental theorem of Algebra

A stamp commemorating
Gauss’s complex plane. ©

Carl Friedrich Gauss was 22 years old when he defended

his thesis in 1799. This is a remarkable piece of work34

34 C. F. Gauß. Werke. Band
III. Georg Olms Verlag,
Hildesheim, 1973. Reprint of
the 1866 original.

containing what may possibly be considered as the first “proof”
of the fundamental theorem of algebra.

Any non-constant polynomial with complex coefficients has at least
one root.

In slightly different terminology, and not using the words
“complex” or “imaginary”, which were suspicious at that time,
he proved that any real polynomial is a product of factors of
degrees 1 or 2. In a different language, the title of his PhD is:

DEMONSTRATIO NOVA THEOREMATIS OMNEM FVNC-
TIONEM ALGEBRAICAM RATIONALEM INTEGRAM VNIVS
VARIABILIS IN FACTORES REALES PRIMI VEL SECUNDI
GRADVS RESOLVI POSSE

Gauss received his degree
from the university of
Helmstedt. His formal advi-
sor was Johann Friedrich
Pfaff who read carefully the
dissertation. However, this
doctorate was in absentia:
there was no oral presen-
tation. The manuscript
mentions that the main
result was obtained in
October 1797. An English
translation of the thesis by
Ernest Fandreyer is available
online.

This is not a proof by today’s standards, but I will present a
slight variation on the same theme which is perfectly acceptable
by 21st century mathematicians. It was not the first attempt
of a proof. Among Gauss’s predecessors, one might mention
d’Alembert, Euler and Lagrange. None of these previous

https://archive.org/stream/bub_gb_BDdbpjy3BnEC#page/n17/mode/2up
https://archive.org/details/werkecarlf03gausrich
http://www.quantresearch.info/gauss_phd_dissertation.pdf
http://www.quantresearch.info/gauss_phd_dissertation.pdf
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“proofs” were solid, even at that time, but I will try to recon-
struct d’Alembert’s proof since he used Newton’s polygon.

Gauss’s “unproved facts”
have nothing to do with
Trump’s “alternative facts”:
after all they are true.

The first half of Gauss’s thesis deals with a criticism of his pre-
decessors. He carefully explains why the proofs of d’Alembert,
Euler and Lagrange are flawed. It is hard to imagine a similar
situation today of a very young man defending his PhD and
beginning by a systematic destruction of great and respected
Masters who had passed away only fifteen years earlier, or even
were still alive (as in the case of Lagrange). Then, in a second
part, Gauss gives his proof. Beautiful proof, indeed, but not
totally exempt of “unproved facts”. At a crucial moment, to
be described later, he needs a fairly precise description of the
local structure of a real algebraic curve. He then asserts, with no
proof, that “Iam ex geometria sublimori

constat, quamuis curuam alge-
braicam, (siue singulas cuiusuis
curuae algebraicae partes, si
forte e pluribus composita
sit) aut in se redientem aut
vtrimque in infinitum excur-
rentem esse, adeoque si ramus
aliquis curuae algebraicae
in spatium definitum intret,
eundem necessario ex hoc spatio
rursus alicubi exire debere.”

But according to higher mathematics, any algebraic curve (or the
individual parts of such an algebraic curve if it perhaps consists
of several parts) either turns back into itself or extends to infinity.
Consequently, a branch of any algebraic curve which enters a
limited space, must necessarily exit from this space somewhere.

In other words, Gauss is claiming that an algebraic curve cannot
simply stop at some point. The “proof” is given in a footnote: it
is a typical example of a proof by intimidation:

It seems to have been proved with sufficient certainty that an
algebraic curve can neither be broken off suddenly anywhere (as
happens e.g. with the transcendental curve whose equation is
y = 1� log x) nor lose itself, so to say, in some point after infinitely
many coils (like the logarithmic spiral). As far as I know, nobody
has raised any doubts about this. However, should someone
demand it then I will undertake to give a proof that is not subject
to any doubt, on some other occasion.

“Satis bene certe demonstratum
esse videtur, curuam alge-
braicam neque alicubi subito
abrumpi posse (vti e. g. euenit
in curua transscendente, cuius
aequatio y = 1� log x), neque
post spiras infinitas in aliquo
puncto se quasi perdere (vt
spiralis logarithmica), quan-
tumque scio nemo dubium
contra rem mouit. Attamen si
quis postulat, demonstrationem
nullis dubiis obnoxiam alia
occasione tradere suscipiam.”

“Nobody has raised doubts and he will prove it on some other
occasion” © ! Actually, he never proved this fact (even though he
published later three other proofs of the fundamental theorem of
algebra, as if he was himself not convinced). What an arrogant
(and brilliant) young man!

Gauss gives two examples of curves. The first is the graph of
1� log(x) and the is the logarithmic spiral (r = exp(q) in polar
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coordinates). Both can be defined by some equation F(x, y) = 0
and both have some kind of stopping point. If we draw a small
disk around this point, the curve enters this disk but does not
exit. The (correct) claim of Gauss is that this is due to the tran-
scendental nature of these curves and that this does not happen
for algebraic curves for which P(x, y) is a polynomial. The curve x exp(−1�y) = 1

(i.e. y = 1� log x) has a “dead
end” at (0, 0).

The logarithmic spi-
ral with equation
y − x log tan(x2 + y2) = 0
(r = exp(−q) in polar coor-
dinates) has infinitely many
coils as it converges to the
origin.

A reconstruction of the proof by Gauss

My intention is certainly not to analyze this proof from a histor-
ical point of view. There would be much to be discussed: the
concept of continuity, of curve, the topological arguments, and
above all the geometrical use of complex numbers as points in
a plane. I recommend the books by Dhombres and Alvarez35

35 J. Dhombres and
C. Alvarez. Une histoire
de l’invention mathématique :
les démonstrations du théorème
fondamental de l’algèbre dans
le cadre de l’analyse réelle et de
l’analyse complexe de Gauss à
Liouville. Hermann, 2013.

and Van der Waerden36. Let me only mention a lucid point of

36 P. D. B. L. van der Waer-
den. A History of Algebra:
From al-Khwarizmi to Emmy
Noether. Springer-Verlag
Berlin Heidelberg, 1 edition,
1985.

view expressed by Gauss, more than twenty years before Abel
and Galois. In the following, what he calls a pure equation is an
equation of the form xn = a.

[. . . ] after so much labor of such great mathematicians there is
very little hope left ever to arrive at a general solution of algebraic
equations. It seems more and more probable that such a solution
is entirely impossible and contradictory. This must not at all be
considered paradoxical, as that which is commonly called the
solution of an equation is indeed nothing other than its reduction
to pure equations. For the solution of pure equations is here
not taught but presupposed; and if you express the roots of an
equation xm = H by m√H, you have in no way solved it, and you
have not done more than if you had devised some symbol to
denote the root of an equation xh + Axh−1 + etc. = 0 and set the root
equal to this.

My modest purpose is to propose a modern reconstruction
of the proof, showing why Gauss needed some understanding
of the local nature of algebraic curves. Let P(z) be a monic
polynomial of degree n ≥ 1 with complex coefficients. The main
idea is to think of z = x + iy as a point in the plane and of P(x + iy)
as p(x, y) + iq(x, y), defining two real polynomials in (x, y). Note that the “simple idea”

of thinking of a polynomial
as a map from a plane to
another plane was a new
idea in 1797.

Proving the existence of a complex root of P is equivalent to
showing that the two algebraic curves p(x, y) = 0 and q(x, y) = 0
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have a non empty intersection. We are going to analyze the
qualitative behavior of these two curves in the neighborhood of
infinity.

When the modulus of z is large, P(z) and zn are equivalent, so
that we consider as a first approximation the curves

R(x + iy)n = 0 ; I(x + iy)n = 0.

These equations are easy to solve: they define radial lines

arg z = (2k + 1)p
2n

(0 ≤ k ≤ 2n − 1); arg z = 2kp

2n
(0 ≤ k ≤ 2n − 1),

which intersect at the origin. These 2n lines intersect each circle�z� = R at 4n points. The first claim of Gauss is the following:

This is the only figure from
Gauss’s dissertation. ©

Lemma. When R is large enough, each of the two algebraic curves
p(x, y) = 0 and q(x, y) = 0 intersects the circle �z� = R at 2n points
which are close to the previous ones.

The real and imaginary parts of 1
Rn P(R exp(iq)) are trigono-

metric polynomials of degree n in the variable q which are close
to cos(nq) and sin(nq). Therefore each one vanishes at most 2n
times and they do vanish 2n times by the intermediate value
theorem. Elementary details are left to the reader. The proof of
this point by Gauss is perfect. �

Now comes the topological part of the proof.
Suppose first that the algebraic curves p(x, y) = 0 and q(x, y) = 0,

that will be called the blue and the red curves, are smooth.
Inside the disc �z� ≤ R they consist of a finite number of arcs, each
diffeomorphic to [0, 1] and a certain number of loops, diffeomor-
phic to a circle. This follows from the classification of compact
one dimensional manifolds (see for instance37 or 38). There are

37 J. W. Milnor. Topology from
the differentiable viewpoint.
Princeton Landmarks in
Mathematics. Princeton
University Press, Princeton,
NJ, 1997.

38 V. Guillemin and A. Pol-
lack. Differential topology.
AMS Chelsea Publishing,
Providence, RI, 2010. Reprint
of the 1974 original.

4n points on a circle, blue and red, with alternating colors. We
will say that two points (of the same color) are paired if they are
boundary points of one of these blue or red arcs, inside the disc.
So our set of 4n points consists of 2n pairs.

Linked and unlinked.

Consider four distinct points on the circle, two of them
colored in red and the other two in blue. From the topologi-
cal point of view, there are two possibilities. They could be linked
or unlinked. Going around the circle, we read alternate colors,
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like “blue, red, blue, red” in the linked case, and “blue, blue, red,
red” in the unlinked case. The crucial topological lemma, which
is intuitive is the following.

Lemma. Let b0, b1, r0, r1 be four points on the circle such that {b0, b1}
and {r0, r1} are linked. Let b (resp. r) be a smooth arc in the disc
connecting b0 and b1 (resp. r0 and r1). Then b and r intersect non-
trivially.

?

This follows from one of the very first theorems in algebraic
topology (therefore not formally at the disposal of Gauss). Two
closed curves in the plane which intersect transversally have an even
number of intersection points (see for instance Milnor’s book). If there
could exist disjoint arcs connecting the blue and the red points
inside the disc, we could construct two closed loops in the plane
intersecting in exactly one point (see the figure in the margin). �

The fact that two transversal
closed curves in the plane
intersect in an even number
of points is more or less
equivalent to Jordan’s
theorem: “the complement
of a closed embedded curve
in the plane has exactly two
connected components”.
Indeed, if c1, c2 are closed
and transversal, one can first
modify c1 slightly, without
changing its intersection
with c2, in such a way that c1
becomes an immersion with
transversal self-intersections.
Then one modifies c1 as in
the picture below, again
without changing the
intersection with c2, in order
to replace it by a disjoint
union of closed embedded
curves. Now by Jordan’s
theorem, each time c2 enters
a connected component
of the complement of
(the modified) c1, it has
to exit, so that there is
indeed an even number of
intersections. Try to prove
Jordan’s theorem from the
parity of intersection.

Lemma. Suppose 2k persons sit around a table and they shake their
hands two by two, without crossing arms! Then, at least two neighbors
shake their hands.

For k = 2, this is the previous lemma. Consider two persons
shaking hands. They decompose the boundary of the table in
two intervals. If one is empty, we are done. Otherwise, proceed
by induction. �

Prove that the number of
“non-crossing pairings” of an
even number of points on a
circle is a Catalan number.

Still assuming that the two curves p(x, y) = 0 and q(x, y) = 0,
blue and red, are smooth, we prove the fundamental theorem of
algebra, following Gauss. By contradiction, assume that the blue
and red arcs do not cross. By the previous lemma two neighbors
on the circle are paired. This is impossible since consecutive
points do not have the same color. �

Now, we understand the difficulty for which “Nobody has
raised doubts”. If there were an algebraic curve with a dead
end, an arc could penetrate inside the disc and stop there, without
exiting and that would be fatal for the proof.

Let us make Gauss’s claim precise.
Theorem. Let (x0, y0) be a point on some real algebraic curve C

defined by F(x, y) = 0 where F is a real polynomial in R[x, y]. Then
there is a homeomorphism of some small disc centered in (x0, y0)
sending C to the union of an even number of distinct radii.
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This claim is indeed true and “I will undertake to give a proof
that is not subject to any doubt, on some other occasion.”

You’ll have to wait until the
next chapter!

Assuming this is true, it is easy to finish the proof. If the blue
and red curves p(x, y) = 0; q(x, y) = 0 are singular and disjoint,
it suffices to modify them slightly, as in the margin, locally in
disjoint small neighborhoods of all singular points, connecting
the radii in pairs, so that they become disjoint non-singular arcs.
We have seen that this is not possible. �
Comments on this proof

Steve Smale presented this proof in a paper dealing with effec-
tive versions of the fundamental theorem of algebra39. He

39 S. Smale. The fundamental
theorem of algebra and
complexity theory. Bull.
Amer. Math. Soc. (N.S.),
4(1):1–36, 1981.

emphasized Gauss’s unproved claim:

But for the moment, I wish to point out what an immense gap
Gauss’s proof contained. It is a subtle point even today that a real
algebraic plane curve cannot enter a disk without leaving.

He also comments on the endless debate about who gave the
“first" accepted proof.

One can understand the historical situation better perhaps from
the point of view of Imre Lakatos40. Lakatos in the tradition of

40 I. Lakatos. Proofs and
refutations. Cambridge Phi-
losophy Classics. Cambridge
University Press, Cambridge,
paperback edition, 2015.
Originally published in 1976.

Hegel, on one hand, and Popper, on the other, sees mathematics
as a development which proceeds as a series of ‘proofs and
refutations’.

There are many ways to “fix” the proof and to fill the “immense
gap”. First I should mention the long detailed paper by Ostroswki,
dated 1920, fully dedicated to the proof of Gauss’s claim41. The

41 A. Ostrowski. Über
den ersten und vierten
Gauss’schen Beweis des
Fundamental satzes der
Algebra. Nachrichten der
Gesellschaft der Wissenschaften
Göttingen, 1920.

curves p(x, y) = 0 and q(x, y) = 0 used by Gauss are indeed
algebraic curves, but they are very special algebraic curves. In
modern terminology, these polynomials are real and imaginary
parts of a holomorphic function P(z) and are therefore harmonic
polynomials. The detailed proof by Ostrowski actually deals
with harmonic polynomials, which is sufficient for our present
problem. With elementary notions on complex analysis, it is
indeed easy to fill the details, as I show now.

http://www.math.lsa.umich.edu/~pboland/euclid.bams.1183547848.pdf
http://www.math.lsa.umich.edu/~pboland/euclid.bams.1183547848.pdf
http://www.math.lsa.umich.edu/~pboland/euclid.bams.1183547848.pdf
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002505827
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002505827
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002505827
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002505827
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002505827
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Think of P(z) = P(x + iy) = p(x, y) + iq(x, y) as a map from
C � R2 to another copy of itself. The differential of this map P
at a point z0 = x0 + iy0 can be seen either as a 2× 2 real matrix or
as the complex number P′(z0). Hence, critical points are simply
the finitely many zeroes of the derivative P′. The blue and red
curves are the inverse images of the two axes. Let us analyze the
inverse image by P of some line.

In case of emergency, the book42 can be helpful to understand

42 T. Needham. Visual complex
analysis. The Clarendon Press,
Oxford University Press,
New York, 1997.

these pictures.

Inverse image of the vertical
axis by 2z3 − 3z2 + 1 + i. The
critical points are z = 0, 1 and
the critical values are 1 + i
and i: one of them is on the
vertical axis.

Inverse image of the
horizontal axis by
2z3 − 3z2 + 1 + i. There
are no critical value on this
axis.

In the neighborhood of some point z0, we have

P(z)− P(z0) = ck(z − z0)k + ck+1(z − z0)k+1 +�+ cn(z − z0)n
for some k ≥ 1 (the valuation of P(z)− P(z0) at z0). Hence

P(z)− P(z0) = �(z − z0) k√ck
k

�
1+ ck+1

ck
(z − z0)+��k = f(z)k.

Here, k√ck is any choice of the k-th root and the second k-th root
is a convergent power series by Newton’s binomial theorem. The
differential at z0 of f is not zero, so that f is a local diffeomor-
phism. In short, P(z) is the local composition of a diffeomor-
phism and of the map z � P(z0)+ (z − z0)k. It is therefore obvious
that the inverse image by P of a smooth curve going through
P(z0) is the union of k smooth curves through z0. In particular,
locally there are 2k half lines, and this proves Gauss’s claim in
the special case that he needed. This special case is indeed very
special since these k smooth curves make equal angles. �

But do not forget that we still did not prove Gauss’s claim in its full
generality.

There is another way to fill Gauss’s ”immense gap”. Rotating
the axis by an angle q, we can replace P(z) by exp(iq)P(z). The
curve p(x, y) = 0 (resp. q(x, y) = 0) is singular if and only if one
of the critical values of P is on the real (resp. imaginary) axis.
Hence it suffices to rotate by a suitable q to avoid this, so that
Gauss could as well have started with the assumption that the
blue and red curves are smooth. This easy argument was not
easy in 1797.

Today, there are many proofs of the fundamental theorem of
algebra. I recommend Eisermann’s paper43 for a lucid overview.

43 M. Eisermann. The
fundamental theorem of
algebra made effective: an
elementary real-algebraic
proof via Sturm chains. Amer.
Math. Monthly, 119(9):715–
752, 2012.

https://arxiv.org/abs/0808.0097
https://arxiv.org/abs/0808.0097
https://arxiv.org/abs/0808.0097
https://arxiv.org/abs/0808.0097
https://arxiv.org/abs/0808.0097
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This proof by Gauss is certainly neither the most direct nor the
easiest. Cleaning it requires some subtle topological arguments
but on the way we get ample rewards, as we understand much
better complex polynomials as maps.

What do I mean by “sim-
plest”? Probably not the
shortest since this proof
contains a lot of implicit
facts that should be proven.
Simplicity is a subtle and
very personal concept in
mathematics. In this special
case, I would say that this
is simple because I think I
could not forget it.

Let me present my favorite proof, in the spirit of Gauss’s
topological proof, that can be found in Smale’s above mentioned
paper. For me, this is the simplest44 one. Choose a point z0

44 É. Ghys. Inner simplicity
vs. outer simplicity. In
J. Kennedy, R. Kossak,
and P. Ording, editors,
Simplicity: Ideals of Practice
in Mathematics and the Arts
Conferences (CUNY New York,
1995). Springer Verlag, 2016.
To appear.

in such a way that the segment g connecting 0 to P(z0) does
not contain one of the finitely many critical values of P. This
is possible if 0 is not a critical value but if this is the case 0 is
a value so that P has a root. Look at the inverse image of g by
P. This is a smooth compact manifold of dimension 1, with
boundary. The point z0 is a boundary point of one component.
The other boundary point of this component is clearly a root of
P. Voilà! �

-2 -1 0 1 2

-2

-1

0

1

2

The phase portrait of the
vector field −P(z)�P′(z) for
P(z) = z3 − 1. Trajectories are
mapped by P on radial lines.

This simple proof actually gives much more. Away from
the critical values, we can pull back the radial vector field−x∂�∂x − y∂�∂y by the differential of P. We get a vector field
in the plane, away from the critical points. The trajectories of
this vector field are precisely the inverse images of the radial
lines. Hence, starting from a point and solving this differen-
tial equation, we should arrive at the roots of P. One way to
approximate the solutions of an ODE is to use the standard Euler
method. It turns out that the Euler iterative scheme coincides
with Newton’s method. Newton, Gauss and Euler together!

A proof by d’Alembert

I also describe a proof by d’Alembert45 for two reasons. The

45 J. D’Alembert. Recherches
sur le calcul intégral. Histoire
de l’Acad. Royale Berlin, pages
182–224, 1748.

first is that in France the fundamental theorem of algebra is
often called d’Alembert’s theorem ©. The second is that this is
closely related to Newton’s polygons that we analyzed earlier.
See46 and 47 for much more on this proof. D’Alembert does not

46 C. Baltus. D’Alembert’s
proof of the fundamental
theorem of algebra. Historia
Math., 31(4):414–428, 2004.
47 C. Gilain. Sur l’histoire du
théorème fondamental de
l’algèbre: théorie des équa-
tions et calcul intégral. Arch.
Hist. Exact Sci., 42(2):91–136,
1991.

mention Newton. How could a Frenchman acknowledge the
contribution of an Englishman?

Let me present simplified version of his “proof”. Suppose we

http://gallica.bnf.fr/ark:/12148/bpt6k62550m/f5.item.r=d'alembert
http://gallica.bnf.fr/ark:/12148/bpt6k62550m/f5.item.r=d'alembert
http://www.sciencedirect.com/science/article/pii/S0315086003001083
http://www.sciencedirect.com/science/article/pii/S0315086003001083
http://www.sciencedirect.com/science/article/pii/S0315086003001083
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want to solve
zn + an−1zn−1 +�+ a0 = 0.

Set z = y�#. We get a strictly equivalent equation:

yn + an−1#yn−1 +�+ #na0 = 0.

Of course, y = 0 is a solution for # = 0 and we want a solution
for # ≠ 0. Consider the above equation as an equation of the
form F(#, y) = 0. By Newton and Cramer, there are non-trivial
solutions y(#), at least for small values of #, expressed as Puiseux
series in #. “Therefore”, we found a root of our equation. �

Jean Le Rond d’Alembert
(1717–1783). ©

The previous “therefore” is subject to a lot of discussion. One
of the main difficulties is that neither Newton, nor Cramer, nor
d’Alembert proved the convergence of the series. Even worse,
Newton’s algorithm constructing the Puiseux series uses the
fundamental theorem of algebra. A vicious circle.

Amazingly d’Alembert also published some version of this
proof in a memoir dealing with the cause of winds48. 48 J. D’Alembert. Réflexions

sur la cause genérale des vents.
David l’ainé, Paris, 1747.

Inverse image of the real and
imaginary axes by z3 − 3z + 2.
There are two critical values:
0 and 4.

Let me conclude this chapter by an exercise, suggested by
my former student Victor Kleptsyn. Look at the inverse images
of the real axis (say in red) and the imaginary axis (in blue) by
some complex polynomial P(z). This produces some graph in
a big disc. Each edge is colored in blue or red. Singular points
of the blue (resp. red) graph are critical points of P which are
mapped to the real (resp. imaginary) axis: they present an
even number of blue (resp. red) edges going out of a vertex.
Generically, there is no such singular point. The local picture
around the intersection of the two graphs has been described
above: 4k edges going out of the vertex, cyclically alternating
blue and red. These intersections do exist by the fundamental
theorem of algebra. On large circles, we have alternation between
red and blue.

The question concerns the converse. Suppose we have a
colored graph in a disc presenting all the previous qualitative
features. Under which conditions does there exist some polyno-
mial P(z) such that its associated colored graph is homeomor-
phic to the given graph, under some homeomorphism of the
disc?

http://gallica.bnf.fr/ark:/12148/bpt6k62565n
http://gallica.bnf.fr/ark:/12148/bpt6k62565n
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Joseph Alfred Serret
(1819–1885). ©

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Serret.html


Proof of Gauss’s claim on singularities
of algebraic curves: two papers by two Serret’s

It is time to prove Gauss’s assertion: “the neighborhood
of a point of a planar real algebraic curve is homeomorphic to an
even number of radii in a disc”.

Insufficient proofs

Joseph Alfred Serret (1819–1885) should not be confused with
Paul Joseph Serret (1827–1898).

Local picture of an algebraic
curve.

Joseph Alfred had a brilliant career. He signed his books as
“Membre de l’Institut et du bureau des longitudes, Professeur
au Collège de France et à la Faculté des sciences de Paris”. In
1849, he published a very influential Cours d’algèbre supérieure in
two volumes containing one of the first systematic expositions of
Galois theory. He is also at the origin of the Frenet-Serret frame
for curves in 3-space.

The younger Paul Joseph had a much more modest career.
He signed his books “Docteur ès sciences, membre de la société
philomatique”. He taught in collège Sainte-Barbe in Paris. I
could not find his portrait.

In 1847, Joseph Alfred wrote a paper49 in which he “proves”

49 J. A. Serret. Théorème
sur les courbes algébriques
asymptotiques. Nouvelles
annales de mathématiques,
journal des candidats aux
écoles polytechnique et normale,
6:217–218, 1847.

an assertion from Newton:

According to Joseph Alfred,
“Ce théorème est dû à Newton,
et est énoncé, si je ne me
trompe, dans son Enumeratio
Linearum tertio ordains”.
“This theorem is due to Newton
and is stated, if I am not
mistaken, in his Enumeratio
Linearum tertio ordains.”

If a straight line is asymptotic to a branch of an algebraic curve,
then it is also asymptotic to another branch.

http://www.numdam.org/item?id=NAM_1847_1_6__217_0
http://www.numdam.org/item?id=NAM_1847_1_6__217_0
http://www.numdam.org/item?id=NAM_1847_1_6__217_0
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Note that what Newton calls here a branch is one half of what
we call a branch. As a simple example, look at Descartes’s folium
x3 + y3 = 3xy. Its asymptote is approached by the curve as x tends
to +∞ and −∞. This corresponds to two branches in Newton’s
terminology and to one branch at infinity in ours.

The asymptote to Descartes’s
folium x3 + y3 − 3xy = 0.

Joseph Alfred Serret’s proof consists of the following. Let
F(x, y) = 0 be the equation of the curve in a coordinate system so
that y = 0 is the asymptote. Let us change x in 1�x. This produces
a second algebraic curve F1(x, y) = 0. Now if the original curve
had a single branch asymptotic to y = 0, then the algebraic curve
F1(x, y) = 0 would have a “point d’arrêt”, i.e. a dead end, which is
impossible. Amazingly, Joseph Alfred takes for granted that such
a stopping point is impossible. Clearly, this is not a proof in any
sense of the term.

“ce qui ne peut arriver pour une
courbe algébrique”.

Ironically, he criticizes Euler for his lack of rigor. At the end of
his short paper, he indeed quotes Euler’s Introductio in analysin
infinitorum (volume 2, chapter 7, section 174):

Quam ob rem Linea curva duos habebit ramos in infinitum
excurrentes inter se oppositos. . .

“For this reason, the curve
has two branches at infinity
which will be opposite to each
other. . . ”

The last sentence of Joseph Alfred’s papers is: “This quam ob
rem needed a proof”. Did he really believe that Euler, or Newton,
could not have thought of the change of variables x � 1�x?

Eighteen years later, Paul Joseph wrote another short paper50, 50 P. J. Serret. Note sur
les courbes algébriques.
Nouvelles annales de mathéma-
tiques, journal des candidats
aux écoles polytechnique et
normale, 4:311–313, 1865.

in the same journal, criticizing the earlier paper of his homony-
mous and prestigious colleague. He begins by asserting that
Joseph Alfred’s contribution is a reduction of the problem of
asymptotes to the problem of stopping points of algebraic curves,
but that this was “a priori obvious”. Now — Paul Joseph insists
— the main question remains open: one still has to prove that
an algebraic curve cannot have a stopping point. He finally
proposes the following proof.

Let (0, 0) be a point on an algebraic curve F(x, y) = 0. Let
us intersect the curve with a small circle centered at the origin
x2 + y2 = r2. We use the well-known parameterization.

(0,1)

(t,0)
(2t/(1+t2), (1-t2)/(1+t2))

x = 2rt
1+ t2 ; y = (1− t2)r

1+ t2 .

http://www.numdam.org/item?id=NAM_1865_2_4__311_1
http://www.numdam.org/item?id=NAM_1865_2_4__311_1
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By substitution in F(x, y) = 0 and multiplication by (1+ t2)d where
d is the degree of F , we get an equation f2d(t) = 0, where f2d is

By degree of F, I mean the
maximum i + j when xiyj

varies among the monomials
with a non-trivial coefficient.a polynomial of degree 2d. Now, if the point (0, 0) happened to
We will check later that Paul
Joseph was right and that
the degree is indeed exactly
2d and not just ≤ 2d.

be a stopping point, the curve would intersect a small circle in
a single point, so that an equation in t of even degree 2d would
have a single root, “ce qui serait absurde”.

Amazing. How could Paul Joseph not know that t2 is of
degree two and has a single root? This root is double but this is
exactly our problem. We could imagine an algebraic curve going
to some point and going back following the same path.

There is something to be proved.

Two important facts in commutative algebra

I collect here two basic theorems on polynomials which will
enable us to fix Paul Joseph’s proof. See for example51 or 52

51 S. Lang. Algebra, volume
211 of Graduate Texts in
Mathematics. Springer-Verlag,
New York, third edition,
2002.

52 M. Artin. Algebra. Prentice
Hall, Inc., Englewood Cliffs,
NJ, 1991.

for much more about algebra. All rings will be assumed to be
commutative. Some useful definitions are in the margins.

Theorem. Let R be a unique factorization domain. Then the polynomial
ring R[x] is also a unique factorization domain.

Say that a polynomial in R[x] is primitive if its coefficients are
relatively prime. The key point is the so-called. . . Gauss’s lemma.

Proved by Gauss in Article
42 of his Disquisitiones
Arithmeticae in 1801, three
years after his PhD.

An integral domain is a ring
in which the product of two
nonzero elements is nonzero.
A unit in a ring is an element
which admits an inverse.
Two elements a, b in a ring
are called associated, denoted
a ≡ b, if there is a unit u such
that b = ua.

Lemma. The product of two primitive polynomials in R[x] is primi-
tive.

The (modern) proof is easy (but somehow indirect). If p is
prime in R, the ring R�p is an integral domain. If P1(x) and
P2(x) are two polynomials whose product is not primitive, then
all coefficients of P1P2 are divisible by some prime p. We can
reduce all coefficients modulo p and get the following equality in(R�p)[x]:

P1(x)P2(x) = 0.

Since the polynomial ring over an integral domain is an integral
domain, we conclude that P1(x) or P2(x) is zero in (R�p)[x]. �
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Define the content cont(P) of a polynomial P(x) ∈ R[x] as
the greatest common divisor of its coefficients. Clearly, every
polynomial P(x) can be written as the product cont(P)P̃(x)
where P̃(x) is primitive. Gauss’s lemma simply means that the
content of a product is the product of the contents.

We can now prove the theorem. We are going to show that
prime elements in R[x] are:

1. Prime elements of R, seen as constant polynomials,

2. Primitive polynomials in R[x] which are prime when seen as
polynomials over the quotient field Quot(R) of R.

A prime element p in an
integral domain R is an
element such that the
quotient ring R�p is an
integral domain.
An element a in an integral
domain is irreducible if it
is not the product of two
non-units. Prime elements
are irreducible. The converse
does not hold in general.
A unique factorization domain
(sometimes called factorial
ring) is a ring in which every
element is a product of
prime elements, unique up
to the ordering and units.
Euclidean and principal
rings — for instance the ring
of polynomials over a field
— are unique factorization
domains. In this case, the
concepts of primes and
irreducible coincide and
greatest common divisors
are well defined.

The ring of polynomials over a field is Euclidean. This applies
to Quot(R)[x] so that any element P(x) of R[x] can be written
as a product of prime polynomials in Quot(R)[x]. Chasing
denominators, we can write P as a product of elements of the
types 1/ and 2/:

P(x) = u ⋅ r1�rk ⋅ P1(x)�Pl(x).
Here, u is a unit in R, the ri are primes in R and the Pi’s are
primitive and irreducible in Quot(R)[x]. By Gauss, the product
r1�rk is the content of P and is therefore uniquely defined by P.

Since R is a unique factorization domain, the ri are uniquely
defined by P (up to units and up to permutation).

Since Quot(R)[x] is also a unique factorization domain, the
factors Pi[x] are also uniquely defined up to permutation and
units, in Quot(R)[x]. Now, an equality Q(x) = aP(x) where
P(x), Q(x) are primitive in R[x] and a is in Quot(R) implies that
a is a unit in R. �

The immediate corollary is that for any field K, the polynomial
rings K[x1, . . . , xn] are unique factorization domains. In this special
case, the theorem means that any non-constant polynomial in
K[x1, . . . , xn] can be written as a product of irreducible factors, in
a unique way, up to permutation and multiplication by constant
factors (in K).

The second algebraic result concerns the resultant. Let P1(x), P2(x)
denote two polynomials in the polynomial ring R[x] over some
integral domain R, of degrees d1, d2 ≥ 1. Denote by Rd[x] the
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R-module of polynomials of degrees at most d, isomorphic toRd+1. Consider the map

F ∶ (A1, A2) ∈Rd2−1[x]×R[x]d1−1 � A1P1 − A2P2 ∈Rd1+d2−1[x].
This can be seen as a linear map from Rd1+d2 into itself. Its
determinant is called the resultant of P1 and P2, and denoted
Res(P1, P2). This element of R is a universal polynomial expres-
sion, with coefficients in Z, in the coefficients of P1 and P2.

Theorem. Suppose R is a unique factorization domain. The resultant
Res(P1, P2) is equal to zero if and only if P1 and P2 have a common
non-trivial divisor in R[x].

P(x)(y)=0

Q(x)(y)=0

Res(P(x),Q(x))=0

The projection of the inter-
section of two curves
P(x, y) = 0 and Q(x, y) = 0
on the x axis is given by the
zeros of the resultant.

Indeed, if P1 = QQ1 and P2 = QQ2, the element (Q2, Q1) is in
the kernel of F so that the resultant vanishes.

Conversely, if the resultant vanishes, the kernel of F is not
trivial so that there are non trivial elements A1, A2 in Rd1−1[x]
and Rd2−1[x] such that A1P1 = A2P2. The conclusion follows
from the fact that R[x] is a unique factorization domain: if
P1 and P2 were relatively prime, P1 would divide A2 which is
impossible since the degree of A2 is less than the degree of P1. �
Proof of Gauss’s claim

We can now prove that the neighborhood of a point on a real
algebraic curve consists in an even number of arcs only intersecting
at the origin.

Let F(x, y) = 0 be the equation of our real algebraic curve pass-
ing through the origin (0, 0). Write F as a product of irreducible
factors:

F(x, y) = F1(x, y)�Fn(x, y).
Without changing the zero locus of F in the neighborhood of(0, 0), we can delete some of the factors and assume that all the
Fi’s vanish at (0, 0) and are non-associated irreducible factors.

The polynomials Fi , Fj are
non-associated when Fi �≡ Fj
for i ≠ j: there is no constant
c such that Fj = cFi .

The zero locus of F in the neighborhood of (0, 0) is the union
of the zero loci of the Fi’s.

In order to prove Gauss’s claim, we prove two lemmas.
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Lemma (1). Let P(x, y) ∈ R[x, y] be an irreducible polynomial
and Q(x, y) ∈ R[x, y] some polynomial. Suppose that the curves
P(x, y) = 0 and Q(x, y) = 0 have an infinite number of intersection
points in some small neighborhood of the origin. Then P divides Q
in R[x, y]. In particular, if P and Q are both irreducible and not
associated, then the two corresponding curves can only intersect in
isolated points.

Lemma (2). If P(x, y) is irreducible, its zero locus in the neighborhood
of the origin consists of an even number of arcs converging to (0, 0).

©

Let us begin by the first lemma. If P(x, y) = 0 contains an
infinite number of points on the same vertical axis x = x0, the
polynomial P(x, y) must be divisible by (x − x0) and since we
assume that it is irreducible and vanishes at the origin, this
implies that P(x, y) is a constant multiple of x, for which the
lemma is obvious. Without loss of generality, we can therefore
assume that P(x, y) = 0 intersects every vertical line in a finite
number of points.

If P(x0, y0) = Q(x0, y0) = 0, the two polynomials P(x0, y), Q(x0, y),
seen as elements of R[y], have a common root y0 and therefore
their resultant vanishes, as an element of R.

Assume that the curves P(x, y) = 0 and Q(x, y) = 0 have an infi-
nite number of intersection points in some small neighborhood
of the origin. Let us look at the resultant of P, Q ∈ R[x][y] as an
element of R[x]. This resultant vanishes for an infinite number
of values x0 and therefore vanishes identically. We have seen that
this implies that P, Q have a common factor in R[x, y]. Since P is
irreducible, this shows that P divides Q. �

We now prove the second lemma following Paul Joseph’s idea.
Let us set

F(x, y) =�
i,j

aijxiyj.

Denote by d the degree of F (which is by definition the maxi-
mum value of i + j for which aij ≠ 0). Note that since F is irre-
ducible it is not divisible by x (unless it is a constant multiple of
x) so that one of the coefficients a0j is not 0. Fixing r, we get a

Observe that when
F(x, y) = x, the lemma
is obvious.
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parameterization by t of the circle of radius r (minus (0,−r)):
x = r

2t
1+ t2 ; y = r

1− t2

1+ t2 .

Substitute in F(x, y) and multiply the result by (1+ t2)d:

f2d,r(t) =�
i,j

aijri+j(2t)i(1− t2)j(1+ t2)d−i−j.

This is a polynomial in t whose highest monomial is

(�
j
(−1)ja0jrj)t2d

which is certainly not zero for small r ≠ 0. Hence, Paul Joseph is
right and the degree of f2d,r(t) is equal to 2d.

In order to complete the proof, we still have to show that the
roots of f2d,r(t) = 0 are simple for small r ≠ 0, so that there is
an even number of roots. At a double root t0, the polynomial
f2d,r(t) and its derivative vanish simultaneously. Geometrically,
this means that the tangent to the circle at this point is also
tangent to the curve F(x, y) = 0. Said differently, the double
points that we want to exclude correspond to the intersection of
F(x, y) = 0 and the curve y∂F�∂x − x∂F�∂y = 0. Since we assume
that F is irreducible, the first lemma implies that these two
curves intersect in a finite number of points, unless F divides
y∂F�∂x − x∂F�∂y . For degree reason, this can only happen if
y∂F�∂x − x∂F�∂y is a constant multiple of F, which means in turn
that F is constant on circles This implies that F is a polynomial in
x2 + y2 and since it vanishes at the origin, it should be divisible by
x2 + y2. It is therefore a constant multiple of x2 + y2, whose zero
locus reduces to the origin. �

©

The proof of Gauss’s claim is essentially finished. The restric-
tion of F to each circle x2 + y2 = r2 for small nonzero r has an even
number of zeroes which are simple. Using the implicit function
theorem in this very elementary situation, we conclude that these
zeroes define an even number of disjoint curves converging to
the origin. This does not say anything about the limiting direc-
tions of these curves: they might a priori converge to the origin
without having a limiting tangent. �

We will see that any branch
of an algebraic curve does
have a tangent.

Carl Friedrich Gauss and Paul Joseph Serret were right.
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A plate from a book by J. Lamouroux, dated 1821, representing Oculina Hirtella. This book was in the
library of HMS Beagle, which was also Darwin’s cabin for five years. Ramis sparsis divergentibus! ©



De seriebus divergentibus: Euler, Cauchy and
Poincaré

Euler’s seriebus divergentibus

Dead end. This chapter is
completely independent
from the rest of the book. ©

Leonhard Euler (1707-1783) ©

Newton did not limit the use of infinite series to

equations of the form F(x, y) = 0. He also used them in
a systematic way to solve differential equations. His approach
was essentially practical. He looks for a solution as a formal
series and computes inductively a large number of terms of the
series in order to get some “accuracy”. There was no systematic
understanding of the concept of convergence, but in all the cases
that he treated the series were indeed convergent.

Later, Euler became the great Master of series. It is a common
opinion among contemporary mathematicians that Euler was
careless with series and that he manipulated series which “make
no sense”. For instance, his formula53

53 L. Euler. Remarques sur un
beau rapport entre les séries
des puissances tant directes
que réciproques. Mémoires
de l’académie des sciences de
Berlin, 17:83–106, 1768. See
the Euler Archive for English
translations and comments.

1− 23 + 33 − 43 + 53 − 63 + etc . . . = −1
8

is shocking for undergraduate students, who have been taught
the definition of a convergent series very early and refuse to
consider these horrors. Not so! Euler knows what he does. He
discusses various procedures for attributing a sum to a series,
even if it is divergent, and tries to compare these procedures. His
series are not the most general: they are implicitly defined by
some kind of algorithm, to use an anachronism. He is convinced
that divergent series do represent “something” inherently linked

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Euler.html
https://math.dartmouth.edu/~euler/pages/E352.html
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with the nature of the series. His paper De seriebus divergentibus54

54 L. Euler. De seriebus
divergentibus. Novi Com-
mentarii academiae scientiarum
Petropolitanae, 5:205–237,
1760. See the Euler Archive
for English translations and
comments.

is a pure gem and I recommend it to any mathematician.

Be careful! I would certainly
not like to give to my young
reader the wrong feeling
that any divergent series
has a well defined sum.
Some divergent series are
indeed summable using
different methods and
produce different sums. As
an easy example, think of
1− 1+ 1− 1+�.

One of his examples is famous:

S = 1− 1! + 2! − 3! + 4! − 5! +�.

Using five different methods of summation, Euler gets values
which seem to indicate that S should be close to 0.5963473621237.
One of the most convincing methods uses the fact that the
formal series

f̂ (x) = x − 1!x2 + 2!x3 −�
is a solution of the linear differential equation

x2y′ + y = x.

This is a very elementary equation for which one finds an
explicit solution which is equal to 0 for x = 0:

f (x) = exp(1
x
)� x

0

1
t

exp(−1
t
) dt.

Somehow, we could say that f (x) represents the value of
the formal series f̂ (x). The numerical value found by Euler
0.596347362123 is the value f (1).

Just type the following in your computer

N[Exp[1] ∗ Integrate[Exp[−1�t]�t, t, 0, 1], 100]
and get immediately

0.5963473623231940743410784993692793760741778601525487815734849104823272191148744174

not in complete agreement though with Euler’s numerical result.
Then came the period of disgrâce for divergent series.
The new master was Augustin Cauchy who defined clearly

the concept of convergence and who is usually associated with
mathematical rigor. This is not completely wrong but this is
without any doubt an exaggerated simplification. On the one
hand, rigor did exist before Cauchy and on the other hand
Cauchy did not reject divergent series55. Unfortunately, even

55 A. Cauchy. Sur un
emploi légitime des séries
divergentes. Comptes
Rendus Académie des Sciences.,
XVII:18–25, 1843.

today, many students are still convinced that divergent series
come from the devil...

https://math.dartmouth.edu/~euler/pages/E247.html
http://gallica.bnf.fr/ark:/12148/bpt6k90188b/f24
http://gallica.bnf.fr/ark:/12148/bpt6k90188b/f24
http://gallica.bnf.fr/ark:/12148/bpt6k90188b/f24
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In 1821, in the preface to his Cours d’analyse, Cauchy wrote
that he was forced to abandon divergent series!

“J’ai été forcé d’admettre
diverses propositions qui
paraîtront peut-être un peu
dures. Par exemple qu’une série
divergente n’a pas de somme...”

I have been forced to admit some propositions which will seem,
perhaps, hard to accept. For instance, that a divergent series has
no sum.

In a famous letter to Holmboe, Abel wrote in 1826:

“Les séries divergentes sont
en général quelque chose de
bien fatal et c’est une honte
qu’on ose y fonder aucune
démonstration.” volume 2 of
Abel’s collected papers.

Divergent series are in general something fatal, and it is a disgrace
to base any proof on them.

Poincaré

The next great master was Poincaré who clearly understood
that divergent series are not only useful but also necessary
to solve natural questions from celestial mechanics. I refrain
from presenting these dynamical aspects, even though they are
fascinating and connected to current research activity.

Let me quote from the second volume of the Méthodes nouvelles
de mécanique céleste.

Henri Poincaré (1854-1912).
How many mathematicians
were so famous during
their life time that their
photograph was printed on
chocolate bars?

There is a kind of misunderstanding between the geometers and
the astronomers, concerning the meaning of the word conver-
gence. The geometers, concerned with absolute rigor and not
bothered by the length of the inextricable computations that they
conceive to be possible without trying to undertake them explic-
itly, would say that a series is convergent when the sum of the
terms tends to a definite limit, even if the first terms decrease
very slowly. On the contrary, the astronomers have the habit of
saying that a series converges when, for instance, the first 20 terms
decrease very rapidly, even if the remaining terms would grow
forever. Thus, let us take a simple example and consider the two
series which have as general term

1000n

n!
and

n!
1000n .

The geometers will say that the first series converges, and even
that it converges fast [...]; and they will say that the second series
diverges [...] On the contrary, the astronomers will consider the
first series as divergent, [...] , and the second series as conver-
gent. The two rules are legitimate: the first one in the theoretical
researches; the second one in the numerical applications.

https://archive.org/details/coursdanalysedel00cauc
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Il y a entre les géomètres et les astronomes une sorte de malen-
tendu au sujet de la signification du mot convergence. Les
géomètres, préoccupés de la parfaite rigueur et souvent trop indif-
férents à la longueur de calculs inextricables dont ils conçoivent
la possibilité, sans songer à les entreprendre effectivement, disent
qu’une série est convergente quand la somme des termes tend
vers une limite déterminée, quand même les premiers termes
diminueraient très lentement. Les astronomes, au contraire, ont
coutume de dire qu’une série converge quand les vingt premiers
termes, par exemple, diminuent très rapidement, quand même
les termes suivants devraient croître indéfiniment. Ainsi, pour
prendre un exemple simple, considérons les deux séries qui ont
pour terme général 1000n

n! et n!
1000n . Les géomètres diront que la

première série converge, et même qu’elle converge rapidement,
[...] mais ils regarderont la seconde comme divergente [...]. Les
astronomes, au contraire, regardéront la première série comme
divergente, [...] et la seconde comme convergente [...] Les deux
règles sont légitimes : la première, dans les recherches théoriques ;
la seconde, dans les applications numériques.

n!
10n for n = 1, ..., 20.

10n

n! for n = 1, ..., 20.The example of Poincaré is perfect: look at the values of
n!

1000n xn and 1000n

n! xn for x = 100 and .01 respectively and n =
1, ..., 20.

The saddle-node and Euler’s equation

Let us look at a very simple example showing that there are no
choices: in order to understand ordinary differential equations,
even with polynomial coefficients, we have to deal with divergent
series.

Consider the following simple system:

dx
dt
= x2 ;

dy
dt
= −y + x.

It is called a saddle-node because it looks like a saddle where x > 0
and a node when x < 0. This may look like a very degenerate
situation but it appears in codimension 1: at the origin the linear
part of the vector field has one vanishing eigenvalue. Therefore
similar saddle-nodes should appear in generic one parameter
families of vector fields in the plane.
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The picture in the margin shows the phase portrait of this
vector field. Clearly, we see a smooth invariant curve passing
through the origin (and different from the y axis). This is called
the central manifold.

Phase portrait of the saddle-
node.

Looking for this curve as a graph y(x), we get immediately
the Euler equation x2 dy

dx + y = x. So the equation of the central
manifold is the C∞ function defined by

y = f (x) = exp(1
x
)� x

0

1
t

exp(−1
t
) dt,

and we have to understand how this function is related to the
formal divergent series f̂ .

Euler function, Stokes phenomenon etc.
Caution: dangerous changes
of variables! ©I follow the presentation by Hardy56.

56 G. H. Hardy. Divergent
series. Éditions Jacques Gabay,
Sceaux, 1992. With a preface
by J. E. Littlewood and a
note by L. S. Bosanquet,
Reprint of the revised (1963)
edition.

“Young men should
prove theorems, old men
should write books”.
(Hardy 1877-1947) ©

Change variable and set t = x�(1+ xw) so that

f (x) = � ∞
0

exp(−w) x
1+ xw

dw.

This yields

f (x) = � ∞
0

exp(−w) �x − x2w + x3w2 −�+ (−1)n−1xnwn−1� dw

+(−1)nxn+1 � ∞
0

exp(−w)wn

1+ xw
dw

= x − 1!x2 + 2!x3 −�+ (−1)n−1(n − 1)!xn + Rn(x).
The term Rn is easy to majorize. If x, w > 0, we have 1+ xw > 1 so
that

� f (x)− (x − 1!x2 + 2!x3 −�+ (−1)n−1(n − 1)!xn)� ≤ n!xn+1.

In other words, the formal series f̂ is asymptotic to the C∞ function
f .

Recall that a series ∑k akxk

is asymptotic to a function
f (x) if for every n, we have
f (x)−∑n

k=1 akxk = o(xn).

Actually, much more can be said. Suppose now that x is a
complex number which is not a negative real number. Then the
formula defining f makes perfect sense, so that f is a holomorphic
function in C �R−. Suppose now that x belongs to a sector where

https://archive.org/details/DivergentSeries
https://archive.org/details/DivergentSeries
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hardy.html
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its argument is in [−p + d, p − d], for some d > 0. In this sector,�1+ xw� is minorized (w is still a positive real number) so that we
get some inequality

� f (x)− (x − 1!x2 + 2!x3 −�+ (−1)n−1(n − 1)!xn)� ≤ C(d)n!�x�n+1

for x in this sector. Said differently, the formal series f̂ is asymptotic
to the holomorphic function f in any sector not containing the negative
real line.

Pacman.

Still more can be said. Let us continue with the presentation
by Hardy of Euler’s manipulations.

f (x) = exp( 1
x )� x

0

exp(− 1
t )

t
dt = exp( 1

x )� ∞
1
x

exp(−u)
u

du

= − exp( 1
x )li(exp(− 1

x ))
where li is the integral logarithm defined for 0 < v < 1 by Note that li(x) = ∫ ∞0 dx

log x is
also defined for x > 1 as an
improper integral:

lim
#→0
�� 1−#

0
+� ∞

1+#
� dx

log x
.

It is famous in number
theory as it gives a very
accurate estimate for the
number p(x) of prime
numbers ≤ x when x tends
to infinity. In particular

�p(x)− li(x)� = o � x
(log x)N �

for every N ≥ 1.

Since this chapter is
about divergent series, it
might be a good idea to
mention the divergent
asymptotic expansion

li(x) = x
log x �∑∞k=0

k!(log x)k �,
that you should be able to
prove yourself, integrating
by parts.

li(v) = � v

0

dv
log v

= −� ∞
log 1

v

exp(−u)
u

du.

−li(exp(−y)) = � ∞
y

exp(−u)
u

du

= � ∞
1

exp(−u)
u

du −� 1

0

1− exp(−u)
u

du

−� y

1

du
u
+� y

0

1− exp(−u)
u

du

= −g − log y + y − 1
2⋅2! y

2 + 1
3⋅3! y

3 −�
where g is. . . the Euler constant. It follows that

f (x) = exp(1
x
) log x + S(1

x
)

where

S(y) = − exp(y)�g − y + 1
2 ⋅ 2!

y2 − 1
3 ⋅ 3!

y3 +�� .

Note that S(y) is an entire function, i.e. holomorphic and uni-
form in the full complex plane.

This provides some holomorphic extension of f on the uni-
versal cover of C � {0}. As we go one turn around the origin, the
function changes by 2ip exp( 1

x ).
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Let us sum up the properties of f .

• It is a multivalued holomorphic function which is defined in the
whole plane, or more precisely a holomorphic function on the
Riemann surface of the logarithm.

A “holomorphic function
on the Riemann surface of
the logarithm” is an old
fashioned way of speaking
of f(log z) where f is a
holomorphic function
defined on the complex
plane. This is multivalued
since log z is defined “up to
2ip”.

• In any sector of angle < 2p, the function f is asymptotic to the
formal series f̂ (x) = x − 1!x2 + 2!x3 −�.

• The monodromy, that is to say the change in the value of f (x) as x
goes around the origin, is 2ip exp( 1

x ), which is flat in any sector of
angle < 2p. This means that any two single-valued determinations
of f in a sector have the same asymptotic expansion f̂ .

The divergence of the formal series f̂ corresponds to the
“multivalued up to a flat function” property of the function f .
This is not the first time that a phenomenon in the real domain is
explained by another one in the complex domain. This is called
the Stokes phenomenon (discovered March 19th, 1857 at 3 a.m.).

Of course Euler’s example is just an example. The remarkable
fact is that this example is significant and that a beautiful theory
has been developed. Analytic or even algebraic differential
equations may have solutions which are divergent series, but
one can give a perfectly well-defined meaning to their sum, as
holomorphic multivalued functions.

I refrain from continuing in that direction since our prome-
nade would not go where I plan to go. Even in promenades it is
good to sail towards some kind of heading.

For a fascinating description of the historical development
of the theory, I strongly recommend57. For a more systematic

57 J.-P. Ramis. Poincaré et les
développements asympto-
tiques (première partie). Gaz.
Math., 133:33–72, 2012.; and
J.-P. Ramis. Les développe-
ments asymptotiques après
Poincaré: continuité et diver-
gences. Gaz. Math., 134:17–36,
2012.

description, at an accessible level, these lecture notes58 will be

58 M. Loday-Richaud. Diver-
gent series and differen-
tial equations. Part of a
book. Submitted. 2014,
hal-01011050.

useful.
This paper59 is a modern presentation of divergent series

59 V. S. Varadarajan. Euler
and his work on infinite
series. Bull. Amer. Math. Soc.
(N.S.), 44(4):515–539, 2007.

published for the 300th anniversary of Leonhard Euler’s birth.

http://smf4.emath.fr/Publications/Gazette/2012/133/smf_gazette_133_33-72.pdf
http://smf4.emath.fr/Publications/Gazette/2012/133/smf_gazette_133_33-72.pdf
http://smf4.emath.fr/Publications/Gazette/2012/133/smf_gazette_133_33-72.pdf
http://smf4.emath.fr/Publications/Gazette/2012/134/smf_gazette_134_17-36.pdf
http://smf4.emath.fr/Publications/Gazette/2012/134/smf_gazette_134_17-36.pdf
http://smf4.emath.fr/Publications/Gazette/2012/134/smf_gazette_134_17-36.pdf
http://smf4.emath.fr/Publications/Gazette/2012/134/smf_gazette_134_17-36.pdf
https://hal.archives-ouvertes.fr/hal-01011050
https://hal.archives-ouvertes.fr/hal-01011050
https://hal.archives-ouvertes.fr/hal-01011050
http://www.ams.org/journals/bull/2007-44-04/S0273-0979-07-01175-5/S0273-0979-07-01175-5.pdf
http://www.ams.org/journals/bull/2007-44-04/S0273-0979-07-01175-5/S0273-0979-07-01175-5.pdf
http://www.ams.org/journals/bull/2007-44-04/S0273-0979-07-01175-5/S0273-0979-07-01175-5.pdf
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Augustin Cauchy. ©

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Cauchy.html


Convergence
Le calcul des limites de Cauchy

I prove now the so-called Puiseux theorem giving a local
parameterization of a complex algebraic curve in a neighborhood
of a singular point, in terms of convergent power series. I don’t
follow Puiseux’s original approach. Instead, I am going to use a
method introduced by Cauchy under the name Calcul des limites.

The word limite should not
be understood as limit but as
bound.

The implicit function theorem

I begin with a proof à la Cauchy of the classical implicit function
theorem. This used to be the standard proof in old textbooks
but is frequently ignored today and replaced by more powerful
methods, based on fixed point theorems. It has nevertheless
some advantages: it is very elementary and almost entirely
combinatorial. I recommend this book60 for an interesting histori-

60 S. G. Krantz and H. R.
Parks. The implicit func-
tion theorem. Birkhäuser
Boston, Inc., Boston, MA,
2002. History, theory, and
applications.

cal approach.
I assume moreover that the
norm is not the trivial one
for which �x� = 1 for all
nonzero elements x.

Let us denote by K a field of characteristic 0, equipped with a
norm, which is a map x ∈ K � �x� ∈ R+ such that �xy� = �x��y� and�x + y� ≤ �x�+ �y�. Assume that �x� = 0 if and only if x = 0 and that K
equipped with � � is complete: Cauchy sequences converge.

I basically have in mind the case of C and R but there are
many other examples (p-adic fields in particular).

Let us denote by K{x} the ring of series

f (x) =�
k≥0

ukxk
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for which the uk are in K and satisfy some inequality of the form

�uk� ≤ Crk

for some C, r > 0. Since K is complete, this corresponds to series
which are absolutely convergent in some neighborhood of 0
(germs of analytic functions for C, R). For simplicity, we will say
that the elements of K{x} are convergent series.

Similarly, we denote by K{x, y} the ring of convergent series

F(x, y) = �
i,j≥0

aijxiyj

for which the aij are in K and for which there exist C, r > 0 such
that for all i, j: �aij� ≤ Cri+j.

Theorem (Implicit function theorem). Let F ∈ K{x, y} be such that
F(0, 0) = 0 and ∂F�∂y(0, 0) ≠ 0. Then there is a convergent series
f (x) ∈ K{x} such that f (0) = 0 and F(x, f (x)) = 0. The solutions(x, y) to the equation F(x, y) = 0 in the neighborhood of (0, 0) in K2

are precisely the pairs (x, f (x)).
The proof is the following. If we substitute a formal series

y = ∑k≥1 ukxk in the formal series ∑i,j≥0 aijxiyj (with a00 = 0), the
result is a formal series ∑l≥1 vl xl whose coefficients depend on
the uk’s and the aij’s. Let us compute the first terms in

�
i,j

aijxi(�
k≥1

ukxk)j =�
l≥1

vl xl .

We find

v1 = a10 + a01u1
v2 = a20 + a11u1 + a02u2

1 + a01u2
v3 = a30 + a21u1 + a12u2

1 + a03u3
1 + a11u2 + 2a02u1u2 + a01u3

v4 = a40 + a31u1 + a13u3
1 + a04u4

1 + a21u2 + 2a12u1u2 + 3a03u2
1u2 + a02u2

2 + a11u3 + 2a02u1u3 + a01u4
etc.

Even if this is complicated, we can prove immediately by induc-
tion that vl is written as

vl = Gl �(aij)i+j≤l , (uk)k≤l−1�+ a01ul
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where Gl is a polynomial expression with positive integral
coefficients involving the aij’s for i + j ≤ l and the uk’s for k ≤ l − 1.

Our problem is to show that given a convergent series F, there
is a unique convergent f (x) such that F(x, f (x)) = 0. In other
words, we are given the aij’s such that �aij� ≤ Cri+j and we want to
show that the equations vl = 0 with unknowns ul have a unique
convergent solution.

By our hypothesis, a01 ≠ 0, so that, multiplying F by −1�a01,
we can suppose that a01 = −1. In the same way, changing x, y by
constant multiples, we can assume that C = 1 and r = 1. In other
words, we assume that �aij� ≤ 1 for all i, j ≥ 0.

Since Gl only depends on the uk’s for k ≤ l − 1 (and the aij’s),
the previous formulae define by induction a unique series ul
(depending on the aij’s):

u1 = a10
u2 = a20 + a11u1 + a02u2

1 = a20 + a11a10 + a02a2
10

. . .
ul = Gl �(aij)i+j≤l , (uk)k≤l−1� .

Our task is to show that this series ∑l ul xl is convergent.
Now comes Cauchy’s simple and beautiful idea. We are going

to check the theorem in one specific example and then show that
this implies the general case.

For this example, let us choose F such that a01 = −1 and all
other aij = 1:

F(x, y) = −y + x + x2 + xy + y2 + x3 + x2y + xy2 + y3 +�.

Let ul be the corresponding sequence associated to this choice of Note that Gl does not
involve a01 which is the only
aij which is not equal to 1.

F defined by:

ul = Gl ((1), (uk)k≤l−1) (k = 1, 2, . . .).
It is easy to solve F(x, y) = 0 since the equation

1(1− x)(1− y) − 1− 2y = 0

is equivalent to y = 1
4 �1±� 1−9x

1−x � . In the neighborhood of 0, we
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have to choose the − sign and there is a unique analytic solution

y = f (x) = 1
4 �1−� 1−9x

1−x �= u1x + u2x2 +�= x + 3x2 + 13x3 + 71x4 + 441x5 + 2955x6 +�
The coefficients uk obviously satisfy some inequality uk ≤ crk

(with r < 1�9) since f is analytic in some neighborhood of 0.
Now let us study the case of a general F, for which we assumed�aij� ≤ 1. Since the polynomials Gl have positive integral coefficients,

it follows by induction that �ul � ≤ ul . Indeed:

�ul+1� = �Gl �(aij)i+j≤l+1, (uk)k≤l� �≤ �Gl ((1), (�uk�)k≤l) �≤ �Gl ((1), (uk)k≤l) �≤ ul+1

In particular, �uk� ≤ crk and the series f (x) = ∑k ukxk is conver-
gent.

The proof of the theorem is almost finished. We found a
convergent solution y = f (x) and we still have to show that all
solutions of F(x, y) = 0 in the neighborhood of the origin are of
the form (x, f (x)).

In the ring K{x, y} it is clear that an element F(x, y) is divisi-
ble by y if and only if it vanishes when 0 is substituted for y. The
transformation (x, y) � (x, y − f (x)) induces an automorphism
of K{x, y} mapping y to (y − f (x)). We know that y = f (x) is a
solution to F(x, y) = 0 so that the previous remark implies that F
is divisible by y − f (x) in K{x, y}. The quotient is nonzero at (0, 0)
since

F(x, y) = −y + a10x +� and f (x) = a10x +�.

Therefore
F(x, y) = U(x, y)(y − f (x))

where U ∈ K{x, y} is such that U(0, 0) ≠ 0. In particular in
the neighborhood of (0, 0), the equation F(x, y) = 0 is indeed
equivalent to y = f (x). The implicit function theorem is proved.�
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For a good description de la méthode des limites, I recommend
Hille’s book61.

61 E. Hille. Ordinary differential
equations in the complex
domain. Dover Publications,
Inc., Mineola, NY, 1997.
Reprint of the 1976 original.

Puiseux theorem

Recall that we have already solved implicit equations of the form
F(x, y) = 0 when F is a non-trivial formal series in K[[x, y]] where
K is an algebraically closed field of characteristic 0.

We showed (with the help of Newton and Cramer) that any
nonzero element F in K[[x, y]] can be split as a product:

F = A(x, y)xr(y − f1(x))(y − f2(x))�(y − fn(x))
where A(0, 0) ≠ 0 and the n solutions fi(x) are formal Puiseux
series in K[[x�]].

Our goal now is to show that if F is a convergent series, so are
the fi(x)’s.

We now assume that K is an algebraically closed field equipped with
a complete norm. Since every element f (x) in K[[x�]] lies in a ring The completion of the

algebraic closure of the field
of p-adic numbers is a good
example.

K[[x1�N]] for some N, i.e. is a series in the variable x1�N , there is
no difficulty in defining convergent Puiseux series.

Denote by K{x�} and K{x�, y�} the rings of convergent
Puiseux series in one and two variables. I hope that my reader has

guessed the definition of the
ring of convergent Puiseux
series in two variables: just
consider convergent power
series in (x, y) and replace
formally x and y by x1�m
and y1�n.

Even though series in K{x�} converge, we should be cautious:
they are not actual functions defined in the neighborhood of 0.
They are multivalued functions of x.

Theorem (“Puiseux theorem”). Any nonzero element F in K{x, y}
can be split as

F = A(x, y)xr(y − f1(x))(y − f2(x))�(y − fn(x))
where A(0, 0) ≠ 0 and the n solutions fi(x) are convergent Puiseux
series in K{x�}.

The proof might look a bit cumbersome but the reader should
keep in mind that this theorem is just a slight generalization of
the implicit function theorem.
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Recall the following facts.

1. If some formal Puiseux series y = f (x) is a root of F(x, y) = 0,
it is obtained by an application of Newton’s algorithm making
a choice of a side of the Newton polygon at each step.

2. At each step of the algorithm, we define xk = xak
k+1 and

yk = ukxbk
k (1+ yk+1) for some positive integers ak, bk, and

we replace Fk(xk, yk) by Fk+1(xk+1, yk+1) = x−gk
k+1 Fk(xk, yk) (for

some positive integer gk). Therefore the series f (x) can also
be described by series yk(xk) (k ≥ 1). Clearly, it is equivalent to
prove the convergence of f (x) or of anyone of the yk(xk)’s.

3. After a certain number of steps, the multiplicities of Fk(xk, yk)
(i.e. the valuations of Fk(0, yk)) remain equal to some “ulti-
mate multiplicity” m ≥ 1 (Cramer’s theorem).

4. This “ultimate constant” m associated to a root y = f (x) of
F(x, y) = 0 is also the multiplicity of the root, in other words
the number of equal factors (y − f (x)) appearing in the split-
ting of F.

We can finish the proof of Puiseux theorem.
Let F be in K{x, y} and let

F = A(x, y)xr(y − f1(x))(y − f2(x))�(y − fn(x))
be its decomposition as a product of (a priori formal) Puiseux
series. Choose N such that all the fi(x)’s belong to K[[x1�N]] and
set x = x1�N so that F can also be seen as an element of K{x, y}
and all the fi’s as elements of K[[x]].

We are reduced to the case of F in K{x, y} such that all the
fi(x)’s are formal series in K[[x]] and we have to prove that these
fi’s are actually convergent series, i.e. belong to K{x}.

If the “ultimate multiplicity” m of a root y = f (x) is equal
to 1, the path followed by Newton’s algorithm and leading to
the solution f (x) will eventually lead to some Fk(xk, yk) with
multiplicity 1. The implicit function theorem applied to the
convergent Fk shows that the solution f (x) is also convergent.

If a polynomial has a multiple root, this root is also a root of
its derivative. In our context, this means that if f (x) is a formal
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series in K[[x]] which is a solution of F(x, y) = 0 with multiplicity
m ≥ 2, then the same series is a solution of ∂F�∂y(x, y) = 0 with a
smaller multiplicity. Of course, if F(x, y) is convergent, so are its
partial derivatives with respect to y. A simple induction finishes
the proof. �
Corollaries

We have done most of the job. It is time for dessert.
First, we get the same corollaries that we had for formal series,

with the same proofs.
We continue to assume that K is algebraically closed, of characteris-

tic 0, and equipped with a complete norm.

Theorem (Weierstrass preparation theorem). Let F(x, y) be a
convergent series in the ring K{x, y} which is not divisible by x and
with multiplicity mult(F). Write F as a product A(x, y)P(x, y) where
A, P are in K{x, y} and

• A(0, 0) ≠ 0 so that A is an invertible element.

• P(x, y) is a polynomial in y of degree mult(F). �
Theorem. The ring K{x, y} is a unique factorization domain. �

A very useful formulation of Puiseux theorem is given in
terms of parameterization.

Theorem (Puiseux parameterization). Let F(x, y) be a nonzero
convergent series in the ring K{x, y}, vanishing at the origin and not
divisible by x. Then, there exist

1. integers ni ≥ 1,

2. open sets Ui ⊂ K containing 0 (for the topology defined by the
norm),

3. series gi ∈ K{x} converging on Ui,

such that the intersection of the curve F(x, y) = 0 with a small neigh-
borhood of (0, 0) ∈ K2 is the union of the images of the maps

fi ∶ t ∈ Ui � (tni , gi(t)) ∈ K2.
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Moreover these maps fi are injective and their images only intersect at
the origin.

If f (x) ∈ K{x�} is a solution of F(x, y) = 0, denote by n the
smallest integer such that f (x) ∈ K{x1�n}. This defines n distinct
Galois conjugates f1(x), . . . , fn(x) under the action of the n-th
roots of unity. None of these fi(x) is a “function” of x in the
usual sense. However, a choice of some n-th root of x defines
n values for fi(x). Changing the root of x simply permutes the
values for fi(x). Said differently, there is a convergent g(t) ∈ K{t}
such that these n values are the n values of g( n√x) for the n
possible choices of n√x. All these points are parameterized in
some neighborhood of 0 by:

f ∶ t ∈ U � (tn, g(t)) ∈ K2.

This defines a finite number of fi’s as in the theorem, whose
images cover the zero locus of F (always in a neighborhood of
the origin).

It remains to show that the fi’s are injective and that their
images only intersect at the origin.

Zeroes of an analytic function are isolated. The following
lemma simply states that the same is true in K{x} for a general
K. I leave the proof as an exercise for the reader.

Lemma. Let h be a convergent series K{x}. If there is a sequence(xn)n≥0 ∈ K � {0} converging to 0 such that h(xn) = 0, then h = 0. �
Suppose now that f is not injective in the neighborhood of 0.

That would imply that there is some n-th root of unity w such
that the solutions to g(wt) = g(t) accumulate to 0. According to
the lemma, g(wt) and g(t) would be equal, identically, and that
would contradict the fact that n is the smallest integer such that
f (x) ∈ K{x1�n}.

The same argument shows that the intersections of the images
of

f1 ∶ t ∈ U � (tn1 , g1(t)) ∈ K2 ; f2 ∶ t ∈ U2 � (tn2 , g2(t)) ∈ K2

is non trivial (i.e. accumulates to the origin) if and only if n1 =
n2 = n and g2, g1 are Galois conjugate, so that g2(t) = g1(wt),
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identically, for some n-th root of unity. In this case, the two
images actually coincide in the neighborhood of the origin. �

The images of the fi’s are usually called the branches of the
curve F(x, y) = 0. The Puiseux-type parameterization of a branch
is unique up to the Galois action.

In particular, a neighborhood of the origin in {F(x, y) = 0}
is homeomorphic to the union of a finite number of balls in K
intersecting in a single point. Note that “a ball” is an interval in
R, a disc in C, and a Cantor set for the p-adic numbers.

Real numbers

So far, we assumed that the field K is algebraically closed. Let us
study the case of real numbers which, after all, is at the origin of
our promenade.

Let F(x, y) ∈ R{x, y} be a nonzero convergent series van-
ishing at the origin. Look at its zero set {(x, y) � F(x, y) = 0}
either as a complex curve in C2 or as a real curve in R2, in the
neighborhood of (0, 0). Here, we are primarily interested in the
description of the real curve.

Over the complex numbers, this zero set is the union of some
branches parameterized by:

fi ∶ t ∈ Ui � (tni , gi(t)) ∈ C2.

Since F(x, y) has real coefficients, its zero locus in C2 is globally

For some F(x, y) ∈ R{x, y},
it might happen that the
real part of its zero set is
reduced to the origin. The
most obvious example is
x2 + y2 = 0. Over the complex
numbers this curve consists
of two imaginary branches
y = ix and y = −ix, which
only intersect at (0, 0). Of
course, since we are only
interested in the real part of
the zero set of F, we simply
discard all irreducible factors
of F whose zero sets reduce
to the origin (over the reals).

invariant under complex conjugation. Since branches are disjoint
away from the origin, a real point different from the origin has
to belong to a branch which coincides with its conjugate. The
complex conjugate of the image of fi is the image of

fi ∶ t ∈ Ui � (tni , gi(t)) ∈ C2.

Therefore, branches containing real points different from the
origin are such that

gi(t) = gi(wt)
for some ni-th root of unity w. Writing

gi(t) =�
k≥1

aktk,
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this condition means
ak = akwk.

Let µ be one of the two square roots of w and set t = µs. Then

tni = µni sni = ±sni

and
gi(t) =�

k≥1
aktk =�

k≥1
akµksk =�

k≥1
bksk.

Now, the coefficients bk are real since

bk = ak µk = akwkµ−k = akµk = bk.

Let us sum up this discussion.

Theorem. Let F(x, y) ∈ R{x, y} be a nonzero converging series
with real coefficients, vanishing at the origin and not divisible by x.
Assume that the zero locus of F in the neighborhood of (0, 0) ∈ R2 is
not reduced to the origin. Then this zero locus is the union of a finite
number of curves of the form

fi ∶ t ∈]− ei,+ei[� (±tni , gi(t)) ∈ R2.

where gi is a convergent series with real coefficients. The fi are injec-
tive and their images only intersect at the origin. �

It is easy to see that these curves fi are transverse to small
circles centered at the origin. Indeed, tangent points correspond
to the vanishing of

d
dt
(t2ni + g2

i (t)) = 2nitni−1 + 2gi(t)g′i(t)
whose zeroes are isolated. Note that this expression cannot be
identically 0 otherwise the curve would be a circle.

We proved more than Gauss’s claim: locally an analytic real
curve is made out of a finite number of branches.

• Each branch is homeomorphic to ]− e,+e[.
• Each branch is transverse to small circles centered at the

origin.
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• Each branch intersects small circles in two points (one for t > 0
and one for t < 0.

• Two different branches only intersect at the origin.

• Along a branch y�x converges when t tends to 0 to some limit
in R ∪ {∞}. This means that every branch has a well-defined
tangent at the origin.

In particular an algebraic
curve cannot reach the
origin as an infinite spiral.

Here is a simple corollary, analogous to the fact that every
odd degree real polynomial has a real root.

Let F(x, y) be a nonzero converging series with real coefficients,
vanishing at the origin, not divisible by x, and with odd multiplicity.
Then the real curve F(x, y) = 0 is not reduced to the origin. For small
real values of x, there is at least one real solution to F(x, y) = 0.

This simple fact has been transformed in a powerful tool by
Poincaré who used it in numerous situations, like for instance for
proving the existence of periodic orbits in the 3-body problem
(see62 page 70). This is his continuity method.

62 H. Poincaré. Les méthodes
nouvelles de la mécanique
céleste. Tome I. Les Grands
Classiques Gauthier-Villars.
Librairie Scientifique et
Technique Albert Blanchard,
Paris, 1987. Reprint of the
1892 original.

Chord diagrams

The local topology of an analytic curve in the neighborhood of
a singular point suggests the following definition, which will be
important in the rest of this book.

Definition. 1. A chord diagram is a set of 2n points on a circle
equipped with some involution with no fixed points. In other
words, a collection of 2n points paired two by two.

2. Two chord diagrams are equivalent if there is an orientation
preserving homeomorphism of the circle mapping the first
to the second, and commuting with the involution. In other
words, we consider a cyclic word on 2n letters where each let-
ter appears exactly twice. We can also draw chords connecting
pairs. This is sometimes called a Gauss word, or a matching, or
a pairing, depending on the context. I had to make a choice
and I chose chord diagram.

Two diagrams with three
chords.

3. The chord diagram associated to an analytic curve at some
(singular) point is the chord diagram obtained by intersecting

https://archive.org/details/lesmthodesnouv001poin
https://archive.org/details/lesmthodesnouv001poin
https://archive.org/details/lesmthodesnouv001poin
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the curve with a small circle around the point, where pairs of
points correspond to branches. Such a chord diagram is called
analytic.

We would like to understand analytic chord diagrams and the
topology of real analytic curves.

Be patient! We’ll get there.

A controversy concerning the shape of bird beaks?

In 1751, Euler wrote a very interesting paper (in French) about
the shape of analytic curves. In the introduction, he mentions
that

Even Geometry is not exempt from controversies and apparent
contradictions, although we quite often maintain the contrary.

“Même la géométrie n’est pas
exemte [sic] de controverses, &
des contradictions apparentes,
quoi qu’on soutienne souvent le
contraire.”

Should I give examples of
modern controversies?The controversy that Euler wanted to elucidate concerns the

shape of cuspidal points63. There was a disagreement between 63 L. Euler. Sur le point de
rebroussement de la seconde
espèce de M. le Marquis
de l’Hôpital. Mémoires de
l’académie des sciences de
Berlin, 5:203–221, 1751. See
the Euler archive for English
translations and comments.

Mr. le Marquis de l’Hôpital and Mr. Guà de Malves. Euler
acted as a judge and dissipated the apparent contradictions in a
brilliant way.

So far, our discussion only concerned the topology of branches
in the neighborhood of a singular point. We did not say much
about their geometry. We only mentioned that a branch has a
tangent at the singular point.

L’Hôpital’s book is entitled Analyse des infiniment petits pour
l’intelligence des lignes courbes and was published in 1696. It is the
first textbook on differential calculus. It contains a classification
of singular branches of analytic curves in four categories.

Let me express this in modern terminology. Choose coor-
dinates so that the tangent is y = 0. Locally, our branch is the
union of two half branches which are graphs of two functions
f1(x), f2(x), defined in small intervals of the form ]− e, 0] or [0, e[.
These functions are smooth, away from the origin. The four cases
are:

The frontier between geome-
try and topology is unclear.
Let me say that topology
deals with properties invari-
ant under homeomorphisms
and geometry invariants
under. . . smaller groups,
like for instance euclidean
isometries, projective auto-
morphisms, or simply diffeo-
morphisms. For instance, I
would consider the existence
of a tangent to a curve as a
geometric property.

1. f1 is defined on ] − e, 0] and f2 on [0, e[ and their second
derivatives have the same sign. In this case, the curve is
convex (or concave) and is on one side of its tangent.

http://eulerarchive.maa.org
http://gallica.bnf.fr/ark:/12148/bpt6k205444w
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2. An inflexion point. The same as before except that the second
derivatives have different signs.

3. A standard cuspidal point. Here, f1 and f2 are defined on the
same side of the origin and their second derivatives have
opposite signs. So both half-branches have opposite convexi-
ties.

4. A bird beak (“point de rebroussement à bec d’oiseau”) in
which the second derivatives have the same sign on the two
half branches.

-1 0 1 2 3

-1

1

2

3

The length of the thread plus
the curvilinear length along
the curve is constant.

It is very easy to find examples of the first three categories.
As for the fourth category, l’Hôpital gave the following exam-
ple. Wrap a thread on some curve with an inflection point, and
attach it at some other point on the curve. When you unwrap
it, keeping it tight, the end point will describe a curve (called
the involute) which will present such a bird beak. I simply
chose y = x3 as an inflection curve and I asked my computer
to draw l’Hôpital’s curve. The result is in the margin. Indeed,
the end point of the thread describes a red curve which presents
a bird beak when the thread is tangent at the inflection point,
as claimed. The half-branches have the same concavity. This is
“mechanically” obvious for l’Hôpital.

In 1740, Mr. Guà de Malves published an amazing book64

64 J.-P. Gua de Malves. Usages
de l’analyse de Descartes pour
découvrir, sans le secours du
Calcul Différentiel, les Propri-
etés, ou affectations principales
des lignes géométriques de tous
les ordres. Briasson, 1740.

whose purpose was to avoid Newton’s techniques and to use
only Descartes. I should recall the controversy between the
English and the French during the eighteenth century around
Descartes and Newton.

As an illustration of this Anglo-French war, I recommend the
lettres sur Descartes et Newton, by Voltaire.

https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/usagesdelanalys00malvgoog
https://archive.org/details/lettresphilosoph02volt
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A Frenchman who arrives in London, will find philosophy, like
everything else, very much changed there. He had left the world
a plenum, and he now finds it a vacuum. At Paris the universe
is seen composed of vortices of subtile matter; but nothing like
it is seen in London. In France, it is the pressure of the moon
that causes the tides; but in England it is the sea that gravitates
towards the moon; so that when you think that the moon should
make it high tide, those gentlemen fancy it should be low tide,
which very unluckily cannot be proved. For to be able to do this,
it is necessary the moon and the tides should have been inquired
into at the very instant of the creation.

“Un Français qui arrive à
Londres trouve les choses bien
changées en philosophie comme
dans tout le reste. Il a laissé
le monde plein ; il le trouve
vide. À Paris, on voit l’univers
composé de tourbillons de
matière subtile ; à Londres, on
ne voit rien de cela. Chez nous,
c’est la pression de la lune qui
cause le flux de la mer chez
les Anglais, c’est la mer qui
gravite vers la lune, de façon
que, quand vous croyez que la
lune devrait nous donner marée
haute, ces Messieurs croient
qu’on doit avoir marée basse ;
ce qui malheureusement ne peut
se vérifier, car il aurait fallu,
pour s’en éclaircir, examiner la
lune et les marées au premier
instant de la création.”

Anyway, Guà’s book is about a debate, still active today:
should algebraic geometry use transcendental tools from diffe-
rential geometry? Among the “theorems” in this book, one finds
the claim that l’Hôpital is wrong and that bird beaks don’t exist.

Guà is aware of l’Hôpital’s example but he criticizes it in the
following way. Suppose you look at two parabolas y = x2 and
y = 2x2 but only for x ≥ 0. You get two convex half parabolas
whose union looks like a bird beak. Therefore, according to
Guà, l’Hôpital’s example of a beak is artificial: the complete
analytic curve contains two smooth branches, as in the parabolas
example, and the mechanical construction using the thread is
missing one half of the curve. Convincing? Guà continues and
“proves” that bird beaks are impossible for an analytic curve.

The “proof” goes more or less along the following lines. A
branch has the form y = axp�q + o(xp�q) for some pair of relatively
prime integers p, q with p > q if y = 0 is the tangent at 0. If there
is a beak, q has to be even since otherwise y would be defined for
all x, positive or negative. The concavity is given by the sign of

the second derivative, which is of the order of a � p
q �� p

q − 1� x
p−2q

q .
Since p − 2q is odd and q is even, the two determinations of this
second derivative have different signs and the two half branches
have opposite convexity: this is not a bird beak.

Now comes the great Euler. His paper is very clear and
unquestionable. Initially, he was convinced by Guà’s argument
but he found a mistake in 1744. In a column entitled “Did Euler
prove Cramer’s rule”, Rob Bradley mentions a letter between
Euler and Cramer related to this topic.

http://eulerarchive.maa.org/hedi/HEDI-2009-11.pdf
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Euler, Guà, and l’Hôpital freely use Puiseux series and do
not raise any doubt concerning their convergence. What is
remarkable in Euler’s paper is the description of the role of
complex numbers to understand real algebraic curves (in 1751).
Here is one of Euler’s examples:

y = x1�2 ± x3�4.

The graph in the margin does look like an eagle beak. How
does one know that these two graphs, with ± signs, do belong
to the same branch and cannot be completed as in our example
with two parabolas? Euler gives a convincing argument using
complex numbers. I strongly encourage my reader to find the
mistake in Guà’s “proof”.

Eliminate the radicals. Euler finds

y4 − 2xy2 + x2 − x3 − 4yx2 = 0

and you should draw the Newton polygon and check that there
is indeed a single branch at the origin.

The shapes of finches beaks
from the Galapagos islands
were important in Darwin’s
discovery of evolution. ©

Today bird beaks are not mentioned anymore in math books.
These points are now called second order cusps, in a more neutral
way. Sometimes, one still sees the name ramphoid curve, from the
greek “rampho” associated to the crooked beaks belonging to
birds of prey.

To conclude this chapter, I have only one piece of advice: stop
reading this book and read (some of) Euler’s papers. Now!

https://en.wikipedia.org/wiki/Darwin's_finches
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A Moebius band in the main
hall of IMPA, where the
first draft of this book was
written.



Moebius and his band

August Ferdinand Möbius
(1825–1884). ©

This is the title of a book

65 dedicated to German mathe-

65 R. F. John Fauvel,
Robin Wilson. Moebius and
his Band: Mathematics and
Astronomy in Nineteenth-
Century Germany. OUP,
1993.

matics in the nineteenth century. In this chapter, we discuss the
topology associated to the process of desingularization of analytic
curves, leading to some beautiful necklaces made out of Moebius
bands.

Polar coordinates

Look at the following familiar map from a cylinder to a plane:

F ∶ (r, q) ∈ R ×R�2pZ � (r cos q, r sin q) ∈ R2.

It has the following properties:

1. F restricted to R�+ ×R�2pZ is a diffeomorphism onto the
punctured plane R2 � {(0, 0)}.

2. F “collapses” the circle {0}×R�2pZ to the origin.

3. The inverse image by F of a point which is different from the
origin contains precisely two points, of the form (r, q) and(−r, q +p).
Property 3. is not very convenient for a coordinate system

and this is the main reason why F will be slightly modified in
a moment. Sometimes, one restricts F to R+ ×R�2pZ but this
introduces some artificial boundary.

Property 2. is interesting in the context of desingularization.
In a small neighborhood of the origin, F−1 is behaving like a

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Mobius.html
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microscope: tiny circles x2 + y2 = e2, of perimeter 2pe, are mapped
by F−1 to two big circles {±e}×R�2pZ, of perimeter 2p.

As a first naive example, consider a straight line D passing
through the origin. Its inverse image F−1(D) consists of two
“lines” q = a and q = a + p plus the circle {0} ×R�2pZ. There-
fore, if two distinct lines D1 and D2 intersect at the origin, their
inverse images become somehow disjoint. The operation F−1 has
removed the intersection point. The “somehow” is due to the
fact that F−1(D) contains F−1(0, 0) so that the inverse images of
two intersecting lines cannot be disjoint.

©

A better procedure is the following. Given a subset X of the
plane, let me denote by �F−1(X) the closure in R ×R�2pZ of
F−1(X � {(0, 0)}). With this definition �F−1(D1) and �F−1(D2) are
indeed disjoint. I will say that �F−1 is the strict transform.

In order to visualize F, look at the surface S embedded in
R2 ×R�2pZ and defined by x sin q = y cos q. This is analogous to
a double spiral staircase. The picture in the margin represents a
simple staircase in R2 × [0, 2p[. Note that S is a smooth surface.
Our map F corresponds to the projection onto the horizontal
plane R2 and F−1(0, 0) is the vertical R�2pZ × {(0, 0)}.

Plate 27 of Instruction en
la science de perspective,
H. Hondius (1625). ©

As a second simple example, consider the planar curve x3 = y2,
having a cuspidal singular point at the origin. Its strict transform
has equation r = sin2 q� cos3 q (with two components, as it should
be) and is not singular anymore. It is now smooth and tangent to
the circle R�2pZ × {(0, 0)}.

©

The general idea is that the strict transform of a curve is “less
singular” than the original curve at the origin. Repeating the
operation a certain number of times, the singular curve will
hopefully be transformed in a smooth curve.

Before going on, we have to fix the problem that preimages
by F contain two points. Iterating the process n times, we get 2n

points and that is very difficult to handle.

The Moebius band

Note that the involution sending (r, q) to (−r, q +p) has no fixed
points. An easy way to get rid of the double preimages of F is to

https://archive.org/details/instrvctionenlas00hond
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identify the points (r, q) and (−r, q +p) in R×R�2pZ. The corres-
ponding quotient is a smooth surface. The involution reverses
orientation since its Jacobian determinant is −1. The quotient
surface is not orientable: this is the famous Moebius band66.

66 P. Popescu-Pampu. La
bande que tout le monde
connaît. Images des Mathéma-
tiques, 2010.

In his 1895 memoir Analysis
Situs, Henri Poincaré does
not mention the Moebius
band but “La surface uni-
latère que tout le monde
connaît” (the unilateral
surface that everybody
knows).

The same thing could be expressed in the following way. The
set of straight lines passing through the origin is a circle, can be
parameterized either

– by its slope t which is an element of the real projective line
P1

R � R ∪ {∞}.
– or by its angle q, now defined modulo p.

LetM be the space of pairs (p, D) where p is a point in the
plane and D a line passing through the origin, and through p. It
can be seen either as

M = {((x, y), t) ∈ R2 × (R ∪ {∞}) � y = tx}
or M = {((x, y), q)) ∈ R2 ×R�pZ � x sin q = y cos q}.
The first presentation has the advantage of having a very sim-
ple equation and the disadvantage of not showing immediately
thatM is a smooth surface in the neighborhood of t = ∞. How-
ever, on a second thought, replacing t by t′ = 1�t, the equation
becomes x = t′y and the disadvantage disappears. The second
presentation shows thatM is indeed the quotient of R ×R�2pZ

by the involution mentioned above.

(1,t)

cos

sin

The circle of angles modulo
p is a real projective line.

(1,t)

The circle of angles modulo
2p is also a real projective
line.

Note that x = y = 0 defines a circle E embedded inM: this is
called the exceptional divisor.

The terminology divisor
comes from algebraic geom-
etry and is confusing since
the exceptional divisor
is a circle embedded inM which does not divide
the surface in two compo-
nents, unlike the core of an
annulus.

Define the map

Y ∶ ((x, y), t) ∈M� (x, y) ∈ R2.

It has exactly the desired properties:

1. Y restricted to the complement of the exceptional divisor is
a diffeomorphism onto the complement of the origin in the
plane.

2. Y “collapses” the exceptional divisor to the origin.

http://images.math.cnrs.fr/La-bande-que-tout-le-monde-connait.html
http://images.math.cnrs.fr/La-bande-que-tout-le-monde-connait.html
http://images.math.cnrs.fr/La-bande-que-tout-le-monde-connait.html
http://analysis-situs.math.cnrs.fr
http://analysis-situs.math.cnrs.fr
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The terminology exceptional
also comes from algebraic
geometry and is more
difficult to explain.Two
transversal complex curves
in a complex surface have a
positive intersection number.
Blowing up a point in a
complex surface produces an
exceptional divisor which
is now a complex projective
line. To compute its self-
intersection number, we have
to use non-holomorphic
deformations. This self
intersection turns out to
be equal to −1, which was
considered surprising and
exceptional by the algebraic
geometers of the past.

For this reason, we will say thatM has been obtained from the
plane by blowing up the origin. Conversely, Y is a blowing down
map.

The website Impact Earth
enables you to blow up our
planet at any point. ©

Since we want to work locally, it is usually useful to restrict to
the compact surface with boundary

M = {((x, y), q))�x2 + y2 ≤ 1} ⊂M.

ClearlyM is obtained from [−1,+1]× [0, p], after gluing (t, 0)
and (−t, p). This is the familiar Moebius band: a rectangle where
two opposite sides are identified after a twist.

It should be clear that that the boundary ofM is connected
since it is mapped homeomorphically onto the boundary of a
disc by Y.

It should be equally clear that the complement of the excep-
tional divisor inM is connected. This is a complicated way to
say that if we cut open the band along the middle circle, the
result is a bona fide annulus. Indeed, the complement of E is
homeomorphic to a punctured disc.

Finally, the inverse image of a circle, say x2 + y2 = 1�2 is a circle
embedded inM which disconnects it into two parts. The first is
an untwisted annulus, mapped to x2 + y2 ≥ 1�2 by Y and the other
is a smaller Moebius band, mapped to x2 + y2 ≤ 1�2 by Y.

Some pictures

The Moebius band is undoubtedly one of the very few math-
ematical objects that are famous outside of the mathematical
world. In Science Fiction, in Art, Philosophy etc.

Just for the fun of it, let me quote a few sentences from
the famous psychoanalyst Jacques Lacan67 in his seminar 67 J. Lacan. L’Etourdit. Seuil,

1973.“l’Étourdit”, in 1972:

I am unable to translate
into English (or even in
understandable French).

Le non-enseignable, je l’ai fait mathème de l’assurer de la fixion
de l’opinion vraie, fixion écrite avec un x mais non sans ressource
d’équivoque. Ainsi un objet aussi facile à fabriquer que la bande
de Moebius en tant qu’elle s’imagine, met à portée de toutes
mains ce qui est inimaginable dès que son dire à s’oublier, fait
le dit s’endurer. D’où a procédé ma fixion de ce point doxa que

http://www.purdue.edu/impactearth/


moebius and his band 115

je n’ai pas dit, je ne le sais pas et ne peux donc - pas plus que
FREUD - en rendre compte de ce que j’enseigne, sinon à suivre ses
effets dans le discours analytique, effet de sa mathématisation qui
ne vient pas d’une machine, mais qui s’avère tenir du machin une
fois qu’il l’a produite.

“look at” is
more appropriate than
“read” in this case.

For great (and serious) comments on the Moebius band, I urge
the reader to look at J. Scott Carter’s book68.

68 J. S. Carter. How surfaces
intersect in space: an introduc-
tion to topology. K & E series
on knots and everything
2. World Scientific, 2nd ed
edition, 1993.

The band is named after Moebius, who published it in 1865,
but — as usual — he was not the first. Listing had described the
same object in 1862.

I could easily produce a book full of Moebius bands, of differ-
ent shapes, colors etc. Let me present here only a small sample.

Make a simple knot with a band of paper and tighten it. You
get something like in the figure below. When you close your
regular pentagon you produced a Moebius band.

©

Chapter 4 of the beautiful Topological picturebook69 is dedicated 69 G. K. Francis. A topological
picturebook. Springer-Verlag,
2006.

to the impossible tribar.

Do not confuse the real
projective plane, obtained
from the plane R2 by adding
a real projective line (i.e. a
circle) at infinity, with the
complex projective line,
obtained from C by adding a
point at infinity.

Consider a disc, or the interior of an ellipse in the plane. Its
exterior has the topology of an annulus. Now, think of this
ellipse in the real projective plane where we have to add the line
at infinity, which is topologically a circle: one point for each
direction. Every line in the projective plane intersects infinity in
exactly one point.

Show that this implies that the complement of a disc in the
projective plane is a Moebius band.
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This is a Moebius cartoon,
by Étienne Lecroart. You
can read the story and come
back to the beginning upside
down and the story starts
again! ©

This is a tribute by J. Leys to
J.S. Bach Bach crab cannon
on a Moebius strip (1747), by
Jos Leys. ©

This may look misleading.
Is it possible to realize it in
such a way that it is made
out of three planar trapeziums
as it looks on the picture? If
the three pieces are twisted,
this object describes a
Moebius band in space. Its
boundary is a circle, as it
should be, but this circle is
knotted in space: it is a trefoil
knot. This is different from
the usual picture in which
the boundary is unknotted.

http://e.lecroart.free.fr
https://www.youtube.com/watch?v=xUHQ2ybTejU
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An impossible object. ©

Starting from the usual
Moebius band, and
deforming until the
boundary becomes a round
circle, we get the Moebius
snail. ©

Have you noticed that
the recycling symbol is a
Moebius band? ©

https://en.wikipedia.org/wiki/Impossible_object
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Look carefully at the cauldron for the Rio 2016 Olympics. It
consists of a large circle formed of many rotating hinges.

Each hinge carries four arms. Hence, this is the union of many
segments. Check that this represents two Moebius bands inter-
secting along their common core, as in the margin.

A kinetic sculpture by
Anthony Howe. ©

The following drawings show the collapse of the exceptional
divisor in a Moebius band.

Reducing the “Möbius”,
crayons de couleur sur
ardoises, bois, métal, by
Sylvie Pic. ©

The final picture is a cone over some immersed closed loop in
the sphere with two double points. A cone over a circle is a disc,
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as was expected from a blowing down map. Slicing the cone
with a plane, we find a Descartes folium so that the equation
of the cone could be x3 + y3 − 3xyz = 0, as in the following wire
models.

A third order cone. ©

Testing our microscope

Let us test the efficiency of our microscope Y−1.
If X ⊂ R2 is any set, its strict transform as the closure of

Y−1(X � {(0, 0)}) inM.
Let us try first with two intersecting lines x2 − y2 = 0. So, let us

set y�x = t, which together with y = ±x gives tx = ±x. Since we
compute the strict transform, we work outside the origin and get
t = ±1. Note that t =∞ is not in the strict transform, as one easily
sees in the chart t′ = 1�t. Now, the closure of t = ±1 inM consists
of two disjoint curves. Hence the strict transform of two smooth
curves intersecting transversally at the origin produces disjoint
smooth curves.

What about a cuspidal point y2 − x3 = 0? This gives t2x2 − x3 = 0,
which may be simplified by x2 so that x = t2. Therefore, in the
coordinates (x, t) ofM, the strict transform is a smooth parabola,
tangent to the exceptional divisor (x = 0).

Now, let us consider y2 − x5 = 0. The strict transform is t2 = x3

and is therefore a cuspidal point.
It is clear that a single blowup will be insufficient and that we

have to blow up again. Just in the same way that the Newton’s
algorithm does not always terminate at the first step.
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Max Bill, “Unité tripartite”,
1948-49, sculpture,
MAC/USP, São Paulo,
Brasil. Does the “tripartite”
relate to the fact that this is
the connected sum of three
projective planes minus a
disc? ©

https://en.wikipedia.org/wiki/Max_Bill
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Blowing up several times

We have seen how to blow up a point in the plane. The
construction can be generalized. Given a point p on a smooth
surface S, one blows up S at p, producing another smooth surface
Sp and a blowing down map Yp ∶ Sp → S as before. The inverse
image of p is the exceptional divisor Ep: its elements are the
tangent lines at p and it is identified with the projective line
P1(Tp(S)) constructed from the tangent plane Tp(S) of S at p.
Outside the exceptional divisor, Yp is a diffeomorphism onto
S � {p}.

p
S

In order to blow up a point
on a surface, delete a disc
around that point, blow
up this disc, and glue the
boundary of the Moebius
band to the boundary of the
complement of the disc.

p
Epp1

S

In these pictures one should
glue the corresponding
arrows. This is a Moebius
band.

1

E

Sp,p

p1

Blowing-up twice.

Let us iterate the process. Choose some point p1 in the excep-
tional divisor Ep = Y−1

p (p) and blow up Sp at p1. The result is
a smooth surface Sp,p1 and a blowing down map Yp1 from Sp,p1

to Sp with an exceptional divisor Ep1 ⊂ Sp,p1 . The inverse image(Yp ○Yp1)−1(p) consists of the union of Ep1 and of the strict
transform of Ep under Yp1 . This union is called the exceptional
divisor of the composition Yp ○Yp1 ∶ Sp,p1 → S. Outside this
divisor, the map Yp ○Yp1 is a diffeomorphism onto S � {p}.

Choose a point p2 in (Yp ○Yp1)−1(p) and continue the process
any finite number of times, “at pleasure”.

The final result is:

• a smooth surface S,

• a smooth map Y ∶ S → S, which sends diffeomorphically
Y
−1(S � {p}) to S � {p}.
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Note in particular that the boundary of S is connected. The
inverse image Y

−1(p) is the exceptional divisor. It is a finite union
of smooth circles embedded in S. Any two of these circles are
either disjoint or intersect transversally in a single point. Three
different circles don’t intersect. The picture is reminiscent of the
Olympic games logo. The difference is that the olympic rings are
disjoint, unlike in our situation where some circles do intersect.

©

This composition of blowing ups is the multi-lens microscope
that we will use and that will enable us to analyze all singular
points.

The microscope

Before we use our microscope, let us examine it. If we start with
a disc S, the single step blowing up S is a Moebius band. We will
illustrate the topology of S in the general case of a finite number
of blowing ups.

Let us begin with the two step blowing up. We have to picture
the result of blowing up a point in a Moebius band. Start with
a Moebius bandM containing the exceptional divisor E as its
core. As before, pick a point p1 in E and blow upM at p1. The
result will be a surfaceM1 containing two circles E1 and E2
intersecting in one point. Here E1 is the strict transform of E and
E2 is the exceptional divisor of the second blow-up.

1

E

E

1

2

M
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Let g be a loop on some surface S. Start with some orientation
of the tangent space of S at g(0) and follow it along g. When the
loop comes back to its origin, the orientation is either the original
one or has been reversed. Accordingly, I will say that g is orient-
ing or disorienting. Formally, this defines a homomorphism from
the fundamental group of S (or its first homology) to Z�2Z.

Have a look at the logo of the Olympic games in Rio de
Janeiro and its orienting/disorienting loops.

©

Coming back to our blown up Moebius bandM1 we will see
that E1 is orienting and E2 is disorienting.

The fact that E2 is disorienting should be clear. When we blew
upM at p1, we introduced a Moebius band whose core is E2.
As for E1, it is the strict transform of the core E ofM. Clearly
E is disorienting inM but this does not imply that its strict
transform is disorienting as well. Quite the contrary, as we will
see.

To constructM1, we dig a hole in the originalM and glue
another Moebius band to its boundary. Since we are dealing with
topology, we can dig a “square hole”.

Deleting a small annular neighborhood of the boundary ofM, we can even imagine that the square hole crossesM “from
side to side” (not forgetting that a Moebius band has only one
boundary circle). In this case, the complement of the square inM is another square. So the construction ofM1 can be done
in another way. Start with a Moebius band, choose two disjoint
intervals on its boundary, and glue the two opposite sides of
a square to these two intervals. There remains a question. The
gluing of the two sides can be done in two ways: with or without
a twist.

The previous construction can be visualized in the following
manner. Consider a cross. Glue the top and bottom sides with
a twist, so that the vertical part of the cross becomes a Moebius
band. The vertical axis is the disorienting curve E2.

Now, we have to glue the left and right sides of the cross and
we have to decide whether they should be twisted or not.

Let us try first with a twist. The boundary of the resulting
surface is not connected: it cannot be our surfaceM1. Therefore,
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the two sides have to be glued without twisting: the curve E1 is
indeed orienting.

©

We have obtained a good picture forM1. A friend recom-
mended that I show the best picture ofM1 ©! I drew in red and
blue the exceptional divisor.

Interlaced hearts

I encourage the reader to practice the following topological
tricks.

Start with a cross, glue the opposite sides with no twist. Cut
open the resulting surface along the central cross, in other words
along the two circles. The result is a square frame. Would you
have guessed it? Imagine a torus in 3-space and dig a square
in it. Then cut it open along a meridian and a parallel. Clearly,
what is left is a square with a square hole: a square frame.

©

Amazingly, this example of a cross with identified opposite
sides has already been considered by Gauss under the name
Doppelring. In his remarkable paper Gauss als Geometer, Stäckel70

70 Stäckel. Literaturberichte:
Materialien für eine wis-
senschaftliche Biographie
von Gauß. Monatsh. Math.
Phys., 32(1):A5, 1922. Gesam-
melt von F. Klein, M. Bren-
del und L. Schlesinger. Heft
V: C. F. Gauß als Geometer.
In Kommission bei B. G.
Teubner in Leipzig, 1918.

relates a conversation between Gauss and Moebius. Gauss
observes that the Doppelring has a connected boundary. More
interestingly, he observes that there are two disjoint arcs connect-
ing two linked pairs of points on the boundary. I recall that the
impossibility of such a configuration in a disc was the crucial
point in his proof of the fundamental theorem of algebra.

https://archive.org/details/s2p4werkehrsgvon10gausuoft
https://archive.org/details/s2p4werkehrsgvon10gausuoft
https://archive.org/details/s2p4werkehrsgvon10gausuoft
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Take again the same cross and glue the opposite sides, now
with a twist. Cut open the resulting surface along the two circles.
The result is. . .

Well, it depends how you twisted it. As an abstract surface it
is well defined: it consists of two connected components, each
homeomorphic to an annulus. However, the way it is embedded
in space depends on the twisting. Experiment!

The most impressive result occurs when both opposite sides
of the cross are twisted, but in a different manner, left and right
so to speak. This produces two interlaced hearts.

On this topic, the reader
must look at Tadashi
Tokieda’s presentation
Unexpected shapes on
Youtube (in two parts). ©

Finally, gluing two of the opposite sides with a twist and
not the other two, we get our blown up Moebius band, with a
connected boundary. What happens when we cut it open along
the two exceptional circles? This is easy since the blowing up
is a homeomorphism outside the exceptional divisor. We get
something homeomorphic to a punctured disc. Indeed, we also
get a square frame. Also, the way this frame is embedded in
space depends on the twisting. Practice these topomagical tricks!

Blowing up more points

I now describe the situation when more points are blown up.
It is easy to describe the topology of the resulting surface.

Blowing up a point amounts to digging a hole in the surface and
to gluing a Moebius band on the boundary. Said differently, the

https://www.youtube.com/watch?v=wKV0GYvR2X8&feature=youtu.be
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operation of blowing up is equivalent to the connected sum with a
projective plane.

©

Given two connected surfaces M1 and M2, their connected
sum M1 ♯M2 is obtained by deleting a disc from each of them
and gluing them along the newly created boundary. Since we
already observed that when we delete a disc in a projective plane
we get a Moebius band, the topological effect of a blowing up is
the connected sum with a projective plane. There is a subtle orientation

question here. The two
punctured surfaces could be
glued in two different ways
since the boundary circle
has two orientations. How-
ever, orientable surfaces do
have orientation reversing
homeomorphisms. Check
that this implies that the
connected sum is indeed
well defined among con-
nected non-oriented surfaces,
orientable or not.

Therefore, if we blow up a disc k-times in a row, the resulting
surface is the connected sum of k projective planes, minus a disc.
Recall that any compact non orientable surface with a single
boundary component is homeomorphic to such a surface, and
that the number 1− k is known as the Euler-Poincaré characteristic
of the surface. See for instance the books71 and 72. However, this

71 S. Barr. Experiments in
topology. Dover Publications,
Inc., Mineola, NY, 1989.
Reprint of the 1964 original.

72 V. G. Boltyanskiı̆ and V. A.
Efremovich. Intuitive combina-
torial topology. Universitext.
Springer-Verlag, New York,
2001.

is only a partial description of the result since we still have to
describe the position and nature of the exceptional divisor. The
latter does not only depend on k but also on the choices of the k
successive points that have been blown up.

Look at Max Bill’s beautiful sculpture illustrating this chapter.
A paragraph of Ton Marar’s paper73 is dedicated to showing

73 T. Marar. Aspectos
topológicos na arte concreta,
2004. II Bienal da Sociedade
Brasileira de Matemática,
Salvador, Universidade
Federal da Bahia.

that this sculpture represents a connected sum of three projective
planes (minus a disc). This is explained in the following pictures,
extracted from this paper.

The same paper contains another version of the same surface,
inspired from the already mentioned book by Francis (page 101).

http://www.bienasbm.ufba.br/M39.pdf
http://www.bienasbm.ufba.br/M39.pdf
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©
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Necklaces of divisors

We still have to describe the topology of the exceptional divisor
inside the connected sum of projective planes.

At the first step, there is no surprise: the divisor is the core of
the Moebius band.

At the second step, we blow up a point of the Moebius band.
The case of interest is when we blow up a point on E1 as dis-
cussed earlier. Algebraic geometers think of the projective line as
a line. . . and draw it as a line, even though it is homeomorphic to
a circle. . .

To forgive them, I should
recall that the projective line
over the complex numbers is
homeomorphic to a 2-sphere,
and to a Cantor set for the
p-adic numbers.

When we come to the third blowing up, we may choose the
point either on E1, or on E2, or at the intersection of E1 and E2.
In all cases, the blown up surface is a connected sum of three
projective planes (minus a disc), that is to say Max Bill’s surface.
However, the location of the exceptional divisor on this surface is
not the same. As an exercise, the reader should try to (mentally)
draw the three possible exceptional divisors, directly on the
sculpture.

The general situation is now easy to describe. Combinatorially,
the many components of the exceptional divisor are organized as
a tree.

At each blowing up, one new Moebius band is attached on the
previous necklace.

However, this changes the orientability of the band on which
the new band is attached.

In order to prove that, consider a closed curve g on a surface
S. Deform slightly g to some g′, transversal to g, and count
the number of intersection points in g ∩ g′ modulo 2. This is
called the self intersection of g. It is equal to 0 or to 1 according to
whether g is orienting or disorienting.

Now, let us blow up some point p of g ⊂ S. Choose g′ which
also passes through p and let us blow up the picture at p. The
two strict transforms ḡ and ḡ′ have precisely one less intersec-
tion points than g and g′ since the tangents at p are different. It
follows that the self intersection of ḡ is equal to the self intersec-
tion of g minus (or plus since we count modulo 2!) one.
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Let us work out an example. The picture in the margin illus-
trates a succession of six blow ups. The thick points represent
the centers of the blowing ups. The lines represent the projective
lines (do not forget that they are actually circles). The dashed
lines represent the new divisors which appear at each step. So
the blow down maps, represented by downwards arrows, are
collapsing these dotted lines to points of the same color. Double
lines represent the components which are orienting. At the end
of the process, the exceptional divisor consists of six circles.

We can now draw the corresponding necklace, made of four
Moebius bands and two annuli. The opposite sides of the six
strips should be glued as suggested by the picture.

6 31 7

2
8

12
9

12
9

10
5

10
5

6 3 111 7

2
8

411

4

You should check that the boundary is indeed connected, as it
should be. Go around the boundary, following the numbers from
1 to 12 and then back to 1.
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Plumbing

Here is another view of the previous example.

A topologist would say that this surface is obtained by
plumbing several Moebius bands and annuli. This operation
is very simple. Suppose you have two surfaces S1, S2 with
non-empty boundary. Choose two embeddings i1, i2 of the
square [−1, 1]2 in S1 and S2 in such a way that the images
i1({±1} × [−1, 1]) and i2([−1, 1] × {±1}) lie in the boundary of
S1 and S2 respectively. Now, for each (x, y) ∈ [−1, 1]2, identify
i1(x, y) and i2(x, y). The result is the plumbing of S1 and S2
along i1, i2. This is a surface with boundary (and corners that can
be smoothed easily). See74 for a presentation of some variations

74 B. Ozbagci and P. Popescu-
Pampu. Generalized
plumbings and Murasugi
sums. Arnold Math. J.,
2(1):69–119, 2016.

around this construction.

Blue dots correspond to
Moebius bands and white
ones to annuli.

Let us start now with a rooted planar tree. For each node,
take an annulus or a Moebius band. Now, plumb all these bands
together according to the blueprint given by the tree. Each band
is plumbed to all the bands associated to its children in the
tree, as in the picture in the margin. Note that the annulus and
the Moebius band admit four homeomorphisms permuting
opposite sides of the square so that the operation of plumbing
such a band is well-defined. The final result of this plumbing is a
surface S with boundary.

https://arxiv.org/abs/1412.2229
https://arxiv.org/abs/1412.2229
https://arxiv.org/abs/1412.2229


moebius necklaces 131

Each band (annulus or Moebius band) contains a circle as its
core. The union of these circles defines a graph E ⊂ S that we can
call the divisor, even though our S has not necessarily been con-
structed by a sequence of blowing ups. There is a projection p of
S on E such that the inverse image p−1(x) consists of one arc if
x is a regular point of E and two intersecting arcs otherwise. Let
us denote by S�E the topological space obtained by collapsing E
to a single point. If S is the result of a sequence of blowing ups,
we know that S�E is a closed disc and the projection of S to S�E
is the blowing down map.

The fibers of the projection
p ∶ S → E.
Do not confuse p from S
to the divisor E with the
blowing down map Y from
S to S�E.

The cone on two circles.

Exercise: Show that the space S�E is homeomorphic to a cone
whose basis is the disjoint union of k circles, where k is the
number of connected components of the boundary of S.

In particular, the quotient space S�E is homeomorphic to a disc if
and only if the boundary of S is connected.

The following exercise gives a simple criterion enabling us
to check directly from the blueprint if the boundary of S is
connected. This is easier than drawing the picture on a sheet
of paper and following carefully the boundary. The solution of
this exercise requires some understanding of the homology of
surfaces. Suppose the tree has n nodes. Consider the symmetric
n × n matrix A, with coefficients in Z�2Z, defined in the following
way. Set aii = 0 if the node i is an annulus and aii = 1 if it is a
Moebius band. If i ≠ j, set aij = 1 if the nodes i, j are adjacent in
the tree and 0 otherwise.

Exercise: Show that the boundary of S is connected if and only
if the matrix A is invertible (over Z�2Z).

Hint: Check the following:

• The injection E ⊂ S and the projection p ∶ S → E induce inverse
isomorphisms between H1(S, Z�2Z) and H1(E, Z�2Z).

• A basis of H1(E, Z�2Z) is given by the cores of the n bands.

• The symmetric intersection form on H1(E, Z�2Z) is given by
the matrix A.

• The kernel of the intersection form is the image of H1(∂S, Z�2Z)
in H1(S, Z�2Z).
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An 1882 microscope. ©



Resolution of singularities

We now use our microscope to analyze the nature of

singularities. We prove a theorem which is essentially due to
Max Noether75.

75 M. Noether. Rationale
Ausführungen der Opera-
tionen in der Theorie der
algebraischen Funktionen.
Math. Ann., 23:311–358, 1883.

Blowing up a branch

Consider some singular point of a real analytic plane curve
defined by some equation F(x, y) = 0.

Max Noether (1844–1921). ©

Suppose we have found a real branch of this curve, that is to
say a solution of the form

x = ±tm ; y =�
k≥1

aktk.

Let us look at the set I ⊂ N ⊂ Z of integers k such that ak ≠ 0.
We can always assume that the greatest common divisor of the
elements of I together with m is 1. In other words, the subgroup
of Z generated by m and I is Z.

Let µ ≥ 1 be the smallest integer such that aµ ≠ 0.
If µ < m, the series y�x “tends to infinity” as t tends to 0,

which means geometrically that the vertical axis x = 0 is tangent
to the branch at the origin.

If µ > m, the series y�x “tends to 0” as t tends to 0, which
means geometrically that the horizontal axis y = 0 is tangent to
the branch at the origin.

If µ = m, the tangent at the origin is the line y = amx.
Until now, following Newton, we looked at y as a “function”

http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002247968
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002247968
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002247968
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002247968
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Noether_Max.html
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of x. We are now more interested by the curve F(x, y) = 0 so that
we can permute the roles of x and y.

©

Hence we can always assume that µ ≥ m. Indeed, we can
define t as some µ-th root of ±y = ±∑k≥µ aktk so that t is a power
series in t. Reverse the role of x and y so that we have now y = tµ

and x is a series in integral powers of t. This procedure might look
complicated. It is very
similar to Euclid’s algorithm.
Given two positive integers
0 < a ≤ b, one subtracts a to b
so that one has now a, b − a.
If 0 < a ≤ b − a, one continues:
a, b − 2a. Continue while the
first integer is smaller than
the second. This is nothing
more than the Euclidean
division of b by a. Then,
permute the two integers
and continue the process.
The algorithm finishes after
a finite number of steps,
when the second integer
is equal to 0. At this final
step, the first number is the
g.c.d of a and b. For example(6, 9) → (6, 3) → (3, 6) →(3, 3) → (3, 0). In our more
complicated situation, we
proceed in the same way,
blowing up as many times
as necessary until we can
permute the roles of x and y
and continue. . .

If our branch is singular, i.e. if m > 1, proceed as follows.

1. Let b1 be the smallest integer in I which is not a multiple of
m.

2. Let b2 be the smallest integer in I which is not in the group
generated by m and b1.

Continue in this way until you obtain a family of integers
in I generating Z. This defines a finite sequence of integers
m < b1 < b2 < . . . < bg. This list is the Puiseux characteristic
of the branch. Once again, Puiseux is not responsible for this
definition, which was introduced later by Halphen and Smith76.

76 E. García Barroso, P. D.
González Pérez, and
P. Popescu-Pampu. Vari-
ations on inversion theorems
for Newton-Puiseux series.
2016.

Poor Puiseux!
Let us look at the effect of a blowing up on our branch. Recall

that in practice this amounts to looking at the coordinates (x, y1)
where y1 = y�x is the slope of the line passing through the origin
and (x, y). In these coordinates (x, y1), we have:

x = ±tm ; y1 = �
k≥µ

aktk−m.

The Euclidean division of b1 by m gives

b1 = mq +m1 with (0 < m1 < m)
and we have

x = ±tm ; y1 = am + a2mtm +�+ aqmt(q−1)m + �
k≥b1

aktk−m.

Now, we translate in order to bring back the singularity to the
origin. Said differently, we set y2 = y1 − am

x = ±tm ; y2 = a2mtm +�+ aqmt(q−1)m + �
k≥b1

aktk−m.

https://arxiv.org/abs/1606.08029
https://arxiv.org/abs/1606.08029
https://arxiv.org/abs/1606.08029
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and we can blow up and translate again if q ≥ 2. After q steps,
this gives

x = ±tm ; y2q = �
k≥b1

aktk−qm.

Since b1 − qm = m1 < m, the vertical axis is tangent to this last
curve at the origin. As before, we permute the role of the two
coordinates so that

y2q = ±tm1 ; x =�
k≥1

bktk.

In other words, after a certain number of blowing ups, the new
curve has multiplicity m1 < m. Continuing in this way, after a
finite number of steps, the curve is smooth.

We have therefore proved the following.

Strictly speaking, we have
only defined blowing up
maps for real surfaces.
Similar maps could also be
defined over the complex
numbers. In this case, the
result of a succession of
blow ups is a holomorphic
surface (i.e. of complex
dimension 2), containing an
exceptional divisor which
is now a union of complex
projective lines intersecting
transversally. These blowing
up operations could even
be defined in the context of
algebraic surfaces over any
field. Most of this chapter
would adapt verbatim to this
general case.

In dimension 3 or more,
the desingularization is
much more subtle and
blowing up points is not
sufficient. Hironaka proved
in 1964 that any algebraic
variety over a field of
zero characteristic can be
desingularized. I have
always been told that this
proof is a tour de force
which is very hard to
digest. However, in his 2007

lectures on the resolution
of singularities (Princeton
University Press), J. Kollár
writes that “The lingering
perception that the proof
of resolution is very hard
gradually diverged from
reality. ... it is feasible to
prove resolution in the last
two weeks of a beginning
algebraic geometry course.”
So, why don’t you try to
read Kollár?

Theorem. Let C be a branch of some analytic curve F(x, y) = 0 in the
neighborhood of the origin. Then the strict transform of C by a suitable
succession of blowing ups is a smooth curve.

Blowing up all branches

In the neighborhood of the origin, a curve F(x, y) = 0 consists of
several branches. We learned how to desingularize each of these
branches, but the many smooth curves that we obtain may be
in a rather complicated relative situation. More blowing ups are
necessary to untangle the strings. Using the previous theorem,
we can desingularize all the branches, one by one. We have

– a blowing down map Y from some surface S to a neighbor-
hood of the origin,

– an exceptional divisor E ⊂ S mapped to the origin by Y,
so that the strict transform of our curve is the union of a certain
number of smooth curves. Each of these curves intersects the
exceptional divisor in a single point.

If all these points are distinct, our job is finished: our singular
curve F = 0 has been “desingularized” as a union of disjoint
smooth curves.

The only task that we still have to do is to deal with a certain
number of smooth curves passing through the same point p in
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the exceptional divisor. Note that some of these curves may be
tangent to the divisor.

The point p might belong to one or two components of E.
Add this or these components to the list of our smooth curves
passing through p. Choose local coordinates (x, y) in the neigh-
borhood of p such that the equations of the smooth curves are
y = fi(x) where the fi’s are distinct convergent power series.

Then, blow up again, introducing a new projective line. The
strict transforms of the curves will remain smooth and will inter-
sect the new component of the divisor in a point corresponding
to the derivatives of the fi’s at the origin. Two curves might be
tangent at the origin, i.e. two fi’s might have the same derivative
at 0, but we may blow up again. This process will separate the
fi’s by some of their Taylor polynomials. Eventually, the result is
a collection of smooth curves which are disjoint and transverse
to the exceptional divisor. We can even assume that the final
collection of curves only intersect the divisor in regular points,
i.e. not at the intersection of two circles.

The red, blue and green
curves are tangent to the
black divisor. Three blowing
ups make them transversal
to the (new) divisor.

This is Noether’s theorem.

Theorem. Let C be some analytic curve in the neighborhood of the
origin. Then the strict transform of C under a suitable succession of
blowing ups is a disjoint union of smooth curves transverse to the
exceptional divisor.

Quadratic transforms

This is a detour. ©

Max Noether was working in the global context of algebraic
curves and not of local singularities of analytic curves. His micro-
scope was slightly different and is called the quadratic transform.

Let me introduce the Cremona group of the projective plane
P2(K) over some field K77. It consists of K-automorphisms of

77 S. Cantat. The Cremona
group in two variables.
In European Congress of
Mathematics, pages 211–225.
Eur. Math. Soc., Zürich,
2013.

the field K(x, y) of rational functions in two variables. Such an
automorphism is completely defined by two rational functions
f (x, y), g(x, y) which are the images of x and y. Two functions
f , g define an element of the Cremona group if the transforma-
tion (x, y)⇢ ( f (x, y), g(x, y)) is birational.

Projective transformations defined by elements of PGL(3, K)

https://perso.univ-rennes1.fr/serge.cantat/Articles/ecm.pdf
https://perso.univ-rennes1.fr/serge.cantat/Articles/ecm.pdf
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are birational isomorphisms of the plane, but the Cremona group
is much bigger. A good example is the quadratic involution

s ∶ (x, y)⇢ (1�x, 1�y)
that can also be seen in homogeneous coordinates [x ∶ y ∶ z] as

s ∶ [x ∶ y ∶ z]⇢ [yz ∶ zx ∶ xy].
It collapses the line containing two of the three points [1 ∶ 0 ∶ 0],[0 ∶ 1 ∶ 0] and [0 ∶ 0 ∶ 1] to the third point. The involution is
not defined at these points. Away from the three lines, s is a
bijection, and even an involution. Note also that [1 ∶ 1 ∶ 1] is a
fixed point of s.

Luigi Cremona
(1830–1903). ©

If A, B, C, M is a projective basis in P2(K) (no three are
collinear), there is a projective transformation f sending them
to [1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0], [0 ∶ 0 ∶ 1] and [1 ∶ 1 ∶ 1]. The conjugate
f−1 ○ s ○ f is the quadratic transform associated to the triangle
A, B, C (and fixed point M).

Max Noether used these maps instead of the blowing ups.

The quadratic involution
maps the pencil of lines
through M to the pencil
of conics passing through
A, B, C, M.

The advantage is that all the process is done in the projective
plane without having to introduce a new surface. The drawback
is that s is blowing up and down at the same time. It collapses
lines and blows up points, so that while resolving some singular-
ities, it creates new ones.

Noether claimed that s and PGL(3, K) generate the full
Cremona group. This is indeed true but his proof was not cor-
rect.

Start with an algebraic curve defined by some polynomial
equation P(x, y) = 0. Choose a singular point A and select
two points B, C which are not in the curve and such that lines
AB, BC, CA intersect the algebraic curve transversally (except
in A of course). Then, consider the image of the curve by a
quadratic transform associated to A, B, C (and some fixed point
M which is not relevant). The point A is blown up. The other
intersections of the curve with AB, BC, CA produce smooth
branches intersecting transversally. So, we can blow up as many
times as necessary, at the cost of introducing multiple points
where smooth curves intersect transversally.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Cremona.html
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This is the way Noether expressed his theorem:

Theorem. Any algebraic curve can be transformed under a suitable
Cremona automorphism into another curve whose only singularities are
ordinary, that is to say, consist of some smooth branches intersecting
transversally.

There is another famous involution in the (real) plane: the
inversion. Sixty years ago, all secondary school students were
familiar with it. Textbooks were full of exercises of the following
style: take your favorite theorem in plane geometry, transform
it by inversion and produce a new theorem. The definition is
very simple. Choose a point P in the Euclidean plane, called the
pole of the inversion. Every point Q is sent by inversion to the
point Q′ such that P, Q, Q′ are on the same line and such that the
product PQ ⋅ PQ′ = 1. This involution is not defined at the pole
P, maps circles not containing P to circles, and circles containing
P to straight lines not containing P. If P is the origin of the
complex plane, this is just the transformation z ∈ C� � 1�z ∈ C�.

P
Q Q'

PQ ⋅ PQ′ = 1.

For instance, the theorem that all French kids call Chasles’
relation states that for 3 points Q′, R′, S′ on an oriented line, the
following holds true: Q′R′ + R′S′ = Q′S′. Transform this by
inversion and you discover Ptolemy’s theorem: “Let a convex
quadrilateral PQRS be inscribed in a circle. Then the sum of the
products of the two pairs of opposite sides equals the product of
its two diagonals.”

P

Q
S

S'

R

R'Q'

QR.SP + PQ.RS = PR.QS.
It turns out that the inversion is a special case of the quadratic

transform. For the first vertex A of our triangle, let us choose the
point [0 ∶ 0 ∶ 1] in P2(R), alias the origin of the plane R2, alias the
point 0 ∈ C. For the second and third vertex, B, C, let us choose
the so called cyclic points: those points which used to be famous
among students, which are at the same time at infinity and imag-
inary. More precisely, they are the points [1 ∶ i ∶ 0] and [1 ∶ −i ∶ 0]
(i is
√−1). They are called cyclic since all circles in the Euclidean

plane pass through these points. For the fixed point M, choose

I should speak of the com-
plexification of circles, but
this complexification was
always implicit in the past.
The three points [0 ∶ 0 ∶ 1],[1 ∶ i ∶ 0] and [1 ∶ −i ∶ 0] are
in P2(C) and not in P2(R),
but the quadratic involution
that they define in P2(C)
preserves P2(R) and induces
the inversion in the real
euclidean plane, seen as the
complement of the line at
infinity in P2(R). Check!

for instance the point [1 ∶ 0 ∶ 1], i.e. the point 1 ∈ C. I encourage
my reader to show that the quadratic transform in this case is
just the inversion. This can be checked by blind computation or
by using classical projective geometry. Note that the image of a
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(generic) straight line by a quadratic transformation is a conic
passing through the three vertices of the triangle. Note also that
any conic passing through the cyclic points is a circle. Enjoy the
proof!

Let us work out an example

Look at the curve with equation x4 + x2y2 − 2x2y − xy2 + y2 = 0.
This is an instance of Euler’s ramphoid curves, discussed earlier,
with a second order cusp.

Let us choose a (blue) triangle with one vertex at the singu-
lar point and transversal to the curve everywhere else. Let us
perform a quadratic transform. The result is shown on the right
picture above (in which I zoomed out). The singular point of the
ramphoid curve being located at a vertex, the transformation
behaves like a blowing up in the neighborhood of this point.
This vertex is blown up to the opposite side of the triangle. How-
ever, the singularity is too deep to be resolved at the first step.
The new curve still has a singular point at a (some other) vertex.
Each edge on the triangle is collapsed to the opposite vertex and
this creates a double point at the origin.

Choose some other (bigger green) triangle with a vertex on
the singular point, as shown next page. Apply once more the
corresponding quadratic transform. The result is shown on the
right. The new curve is still singular at the lower left corner
whereas the other vertices are ordinary double points.
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Choose some other (purple) triangle. One more quadratic
transform leads finally to a curve whose only singularities are
transversal intersections of smooth curves.

Noether’s theorem is indisputably beautiful, but these ordinary
singularities are not so simple after all. The following exercise
shows that n smooth curves intersecting transversally still con-
tain too much information.

Exercise (not so easy): Suppose you have a finite number n of
smooth analytic curves intersecting transversally at one point.
Show that for n = 1, 2, 3, 4 there is a local analytic diffeomorphism
of the plane sending them to n straight lines in the plane. Show
that this is not necessarily true when n ≥ 5. Can you describe
the moduli space of n transversal smooth curves, that is to say the
quotient space under local diffeomorphisms?
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A smooth projective alge-
braic variety of dimension k
can be, by definition, embed-
ded in some projective space
of some dimension. If we
project it generically on
some 2k + 1 dimensional
projective subspace, this
defines an embedding.

There is another approach. Consider the tangent space to the
projective space Pd(K) of dimension d over a field K. Projectivize
this tangent space in order to produce an algebraic variety of
dimension 2d − 1, which can therefore be embedded in some
higher dimensional projective space P2(2d−1)+1(K). Given an alge-
braic curve C in Pd(K), we can look at the (Zariski) closure of the
set of its tangent lines at regular points. This produces another
algebraic curve C1 in some other projective space of dimension
d1. Repeating the process, we finally get a smooth embedded
curve Cn in a projective space of some high dimension dn. Now
choose a generic projection to a curve in P2(K). The output is a
curve C which is smooth with a finite number of ordinary double
points.

Theorem. Any algebraic curve is birationally equivalent to another
curve whose only singularities are ordinary double points where two
smooth branches intersect transversally.

One could be optimistic and expect that any planar algebraic
curve is birationally equivalent to a smooth planar curve, but
this is far from being true. The genus of a planar smooth curve
of degree d is (d − 1)(d − 2)�2 so that if an algebraic curve has
a genus which is not an integer of this form, double points are
compulsory.

One could be less optimistic and hope that any algebraic
curve can be transformed to some curve whose singularities are
ordinary double points using some Cremona transformation.
Alas! This is not true either. The birational equivalence provided
by the previous theorem might not be induced by some Cremona
transformation (see78 page 42).

78 J. Kollár. Lectures on
resolution of singularities,
volume 166 of Annals
of Mathematics Studies.
Princeton University Press,
Princeton, NJ, 2007.

For a modern presentation of all these concepts, I recommend
Wall and Dolgachev’s books79,80 and, for a traditional version,

79 I. V. Dolgachev. Classical
algebraic geometry. A modern
view. Cambridge University
Press, Cambridge, 2012.

80 C. T. C. Wall. Singu-
lar points of plane curves,
volume 63 of London Mathe-
matical Society Student Texts.
Cambridge University Press,
Cambridge, 2004.

the book by Semple and Roth81.

81 J. G. Semple and L. Roth.
Introduction to algebraic
geometry. Oxford Science
Publications. The Clarendon
Press, Oxford University
Press, New York, 1985.
Reprint of the 1949 original.

https://arxiv.org/abs/math/0508332
https://arxiv.org/abs/math/0508332
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A Clifford torus filled with
the so-called Villarceau
circles. Each of these circles
is the intersection of some
line in C2 (passing through
the origin) with the unit
sphere S3 (and projected
stereographically in 3-space).
©



The 3-sphere and the Hopf fibration

A complex world?

It took a long time before complex numbers could be

accepted by mathematicians as genuine numbers.

With the rise of algebra, the complex roots of real equations
clamoured more and more insistently for recognition.

These are Coolidge’s words in his wonderful book82 describ- 82 J. L. Coolidge. Geome-
try of the complex domain.
Clarendon Press, Oxford,
1924.

ing the slow emergence of complex geometry in mathematics.
As we have seen, Gauss was one of the most important pioneers,
thinking of a complex number as a point in the plane. Visualiz-
ing C2 was much harder since it is 4-dimensional over the real
numbers and only visionaries could imagine the fourth dimen-
sion during the nineteenth century. Many unsuccessful attempts
are explained in Coolidge’s book.

A model à la Riemann from
the Göttingen Collection of
Mathematical Models and
Instruments. ©

Even Riemann, with his revolutionary concept now called
“Riemann surface”, had to “see” them as some surfaces in the real
3 dimensional space, spread over C exhibiting some strange cut
lines where the surface intersected itself, in some kind of virtual

https://archive.org/details/geometryofcomple00cool
https://archive.org/details/geometryofcomple00cool
http://modellsammlung.uni-goettingen.de/index.php?lang=en&s=1
http://modellsammlung.uni-goettingen.de/index.php?lang=en&s=1
http://modellsammlung.uni-goettingen.de/index.php?lang=en&s=1
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way. The least one can say is that the geometry over the complex
numbers carried some air of mystery.

Nevertheless, it became progressively clear that complex
geometry is not complex at all, and that it is of great help for
understanding the real domain. The following quote by Paul
Painlevé, in 1900

83, is a good example.

83 P. Painlevé. Oeuvres de Paul
Painlevé. Tome I. Éditions
du Centre National de la
Recherche Scientifique, Paris,
1973. Analyse des travaux
scientifiques, pages 72–73.

It came to appear that, between two truths of the real domain, the
easiest and shortest path quite often passes through the complex
domain.

“Il apparut que, entre deux
vérités du domaine réel, le
chemin le plus facile et le plus
court passe bien souvent par le
domaine complexe.”

Nowadays, complex geometry is better understood. Roughly
speaking, there are two kinds of approaches.

The first consists in using complex numbers formally, as ele-
ments of some algebraically closed field, without any attempt
to visualize them. This has been very efficient in modern alge-
braic geometry and indeed, the algebraic properties of C are
amazingly powerful. The drawback is that the original questions,
coming from real numbers, are usually forgotten. A famous
algebraic geometer was once lecturing on (complex) Abelian
varieties. At the end of his lecture, a question came about real
Abelian varieties. The speaker was surprised and took some time
before he answered, earnestly:

Sorry, I never thought about reality!

The second approach consists in drawing pictures, projections,
sections etc. More importantly, one tries to develop some intu-
ition of high dimensional spaces, based on analogy. Modern
topologists and geometers are no longer afraid by objects in C2

and they even consider them as very concrete. In this chapter, we
try to develop some of this intuition.

According to a hoax circulating on the internet, Sophus Lie
would have said:

Life is complex because it has a real part and an imaginary part.

It is hard to believe that such a stern mathematician could have
said such a thing.
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The round 3-sphere

Most of the time geometers draw a line on the blackboard when
they mean P1(C) in P2(C), even if they know that P1(C) is
a 2-dimensional (Riemann) sphere and that P2(C) is a non-
contractible 4-dimensional manifold which does not have much
in common with a blackboard.

They frequently draw a circle in the plane when they mean a
3-sphere in C2. They draw a real branch of a curve P(x, y) = 0
even though they do know that the actual topology over the
complex numbers is much richer.

We use these “wrong pictures” since they are often the only
possible approximation of the “reality” in the complex world.

Our goal is to give a description, as visual as possible, of the
neighborhood of a point in an analytic curve F(x, y) = 0 in C2.
Here, x and y are a complex numbers x1 + ix2 and y1 + iy2 and
x1, x2, y1, y2 are real numbers. The curve is actually given by two
equations

R(F(x1 + ix2, y1 + iy2)) = I(F(x1 + ix2, y1 + iy2)) = 0

in R4, so that from the point of view of real numbers, our
curve is a surface. The very natural idea is to intersect our
curve/surface with a small 3-dimensional sphere of radius e

and we hope to see something 1-dimensional (over the reals).
We therefore start with a description of the 3-sphere. The

intersection of our curve with the sphere will be pictured later.
There are several ways to visualize the unit 3-sphere

S3 = {(x, y) ∈ C2 � �x�2 + �y�2 = 1}= {(x1, x2, y1, y2) ∈ R4 � x2
1 + x2

2 + y2
1 + y2

2 = 1}.
We could first use the stereographic projection.
Choose for instance the point N = (0, 0, 1, 0) ∈ R4 as the north

pole of S3 and project from N to the tangent plane at the south
pole (0, 0,−1, 0) ∈ R4. The point (x1, x2, y1, y2) ∈ S3 is mapped to(u, v,−1, w) such that the points N, (x1, x2, y1, y2) and (u, v,−1, w)
are aligned. In formula,

P ∶ (x1, x2, y1, y2) ∈ S3 � {N}� � 2x1
1− y1

,
2x2

1− y1
,

2y2

1− y1
� ∈ R3.
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Projecting Bernhard
Riemann stereographically. ©

The sphere minus one point can therefore be represented as the
ordinary 3-space. Some symmetries are lost however since the
north pole is completely arbitrary. This is a good opportunity to
recommend the famous book84 on imagination in geometry. I

84 D. Hilbert and S. Cohn-
Vossen. Geometry and
the imagination. Chelsea
Publishing Company, New
York, N. Y., 1952. Translated
by P. Neményi.

also recommend the movie Dimensions.

According to some
historians, these
properties were established
(in the two dimensional case)
by Hipparchus, whom we
already met in this book.

The following properties of the stereographic projection are
well known.

• the projection is conformal: its differential at any point is a
similarity.

• the image of a circle on the 3-sphere is a circle in 3-space (or
a straight line if the original circle passes through the north
pole).

The group SO(4) of positive rotations of the sphere S3 can
therefore be seen as a group of conformal diffeomorphisms of
R3 ∪ {∞}.

The group of conformal diffeomorphisms of the n-sphere
is actually much bigger than SO(n + 1) as it is non-compact.
For instance, Rn+2 can be equipped with the quadratic form of
signature (n + 1, 1) given by q = x2

1 +�+ x2
n+1 − x2

n+2, so that the n-
sphere can be interpreted as the intersection of the isotropic cone
q = 0 with the hyperplane xn+2 = 1. Equivalently, the n-sphere

http://www.dimensions-math.org
http://www.dimensions-math.org
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can be thought as the space of isotropic lines. The non-compact
group SO(n + 1, 1) induces a conformal action on the n-sphere.

The conformal geometry of spheres is very rich.

A conformal view of Paris. ©

Let me mention only two properties. Any conformal dif-
feomorphism between two connected open sets in a sphere of
dimension at least 3 turns out to be the restriction of a global
conformal diffeomorphism (Liouville’s theorem). This is in
strong contrast with the dimension 2 case where conformal dif-
feomorphisms coincide with holomorphic or anti-holomorphic
diffeomorphisms, and the mathematical landscape would be
much less beautiful if holomorphic maps would reduce to
Moebius automorphisms (az + b)�(cz + d) of the Riemann sphere.

If the conformal group of a Riemannian manifold is non-
compact, this manifold is conformal to the sphere or to Euclidean
space. This is the Obata and Lelong-Ferrand theorem.

I refrain from continuing in this direction since we could
easily get lost and never come back from our mathematical
promenade. I recommend the textbook by Berger85 as well as

85 M. Berger. Geometry
I. Universitext. Springer-
Verlag, Berlin, 2009.

his vast panorama86. For the reader interested in old fashioned

86 M. Berger. Geometry
revealed. A Jacob’s ladder
to modern higher geometry.
Springer, Heidelberg, 2010.

presentations, the book by Coolidge87 is beautiful.

87 J. L. Coolidge. A treatise
on the circle and the sphere.
Clarendon Press, Oxford,
1916.

The “square” 3-sphere
Squaring the circle?

Since �x�2 + �y�2 = 1 on the 3-sphere, we can split it into two parts
T1, T2 defined by

T1 = {(x, y) ∈ S3� �x�2 ≤ 1�2} , T2 = {(x, y) ∈ S3� �y�2 ≤ 1�2}.
The intersection of T1 and T2 is a Clifford torus parameterized by

(q, f) ∈ (R�2pZ)2 � �√2
2

exp(iq), √2
2

exp(if)� ∈ S3.

As for T1 and T2, they are solid tori, parameterized by a product
of a unit disc D2 in C and a circle.

(z, f) ∈ D2 × (R�2pZ)� ��
√

2
2

z,

�
1− �z�2

2
exp(if)�� ∈ T1 ⊂ S3

(q, z) ∈ (R�2pZ)×D2 � ��
�

1− �z�2
2

exp(iq), √2
2

z
�� ∈ T2 ⊂ S3.

https://commons.wikimedia.org/wiki/File:Stereographic_projection_of_Paris.jpg
https://archive.org/details/treatiseonthecir033247mbp
https://archive.org/details/treatiseonthecir033247mbp
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The 3-sphere is therefore the union of two solid tori, glued along
their boundaries. The meridians of ∂T1, that is to say the circles
which bound a disc in T1, are glued to parallels of ∂T2, which do
not bound a disc in T2, and conversely.

We could also use the “square sphere”

D2 ×D2 = {(x, y) ∈ C2 � �x� ≤ 1 and �y� ≤ 1}.
Its boundary consists of two solid tori T′1 = {�x� ≤ 1 and �y� = 1}
and T′2 = {�x� = 1 and �y� ≤ 1}. Using radial projection, the two
solid tori T1, T2 are identified with T′1, T′2. It is frequently more
convenient to use the square sphere, since we can draw pictures
in the solid torus without having to use stereographic projection.
This simple but very useful idea is due to Kähler88.

88 E. Kähler. über die verzwei-
gung einer algebraischen
funktion zweier veränder-
lichen in der umgebung
einer singulären stelle. Math.
Z., 30(1):188–204, 1929.

The 3-sphere is very round

William Thurston89, one of the masters of the visual aspect of

89 W. P. Thurston. How to
see 3-manifolds. Classical
Quantum Gravity, 15(9):2545–
2571, 1998. Topology of
the Universe Conference
(Cleveland, OH, 1997).

mathematics, used to say that the 3-sphere is “rounder” than the
other spheres. He had in mind the important fact that the group
SO(n + 1) is not a simple group if and only if n = 3 (and of course
n = 0, 1). This is related to what was called in the old literature
Clifford’s parallelism.

A screenshot from Knots to
Narnia. William Thurston
(1946—2012) shows that
when he goes around a knot,
he arrives “somewhere else”.
This vintage YouTube video
is a must. ©

Recall that quaternions are formal expressions of the form
q = x1 + ix2 + jy1 + ky2 where x1, x2, y1, y2 are real numbers and the
formal symbols i, j, k satisfy ij = −ji = k; jk = −kj = i; ki = −ik = j
and i2 = j2 = k2 = −1. This defines a non-commutative division
algebra H. The conjugate q of q is defined to be x1 − ix2 − jy1 − ky2
and the norm N(q) is the product qq = x2

1 + x2
2 + y2

1 + y2
2. This norm

is multiplicative, i.e. N(q1q2) = N(q1)N(q2) and the inverse of a
nonzero quaternion is q−1 = q�N(q).

It follows that the 3-sphere is identified with the group of unit
quaternions {q ∈ H �N(q) = 1}. It is one of the great successes
of the mathematical twentieth century to prove that the only
spheres which can be equipped with the structure of a topolog-
ical group are S0 � Z�2Z, S1 � SO(2) and S3. A good starting
point for this topic is Numbers90.

90 H.-D. Ebbinghaus,
H. Hermes, F. Hirzebruch,
M. Koecher, K. Mainzer,
J. Neukirch, A. Prestel, and
R. Remmert. Numbers, vol-
ume 123 of Graduate Texts in
Mathematics. Springer-Verlag,
New York, 1990.But this is not the only reason why the 3-sphere is rounder.

http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002371154
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002371154
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002371154
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002371154
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002371154
https://www.youtube.com/watch?v=IKSrBt2kFD4
https://www.youtube.com/watch?v=IKSrBt2kFD4
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Just as any group, it can be seen as homogeneous in two com-
muting ways, using the right and left actions. Given two unit
quaternions q1, q2, the map q ∈ H � q1qq−1

2 ∈ H is an isometry,
and defines an element of SO(4). It turns out that this homo-
morphism from S3 × S3 to SO(4) is onto and its kernel only
contains ±(1, 1). In other words, every rotation of the 3-sphere
is the composition of a left rotation and a right rotation which
commute. This situation is unique to dimension 3 as all other
rotation groups are simple (with the obvious exception of SO(2)).

A group is simple if it does
not contain a proper normal
subgroup. It is usual to say
that a Lie group is simple if
every normal Lie subgroup
is either discrete or open.
This is equivalent to say that
its Lie algebra is simple, i.e.
does not contain a proper
ideal. The only non proper
normal subgroup of SO(n)
(for n ≠ 1) is {±Id} for n
even, so that SO(n) is not
simple as a group for n even,
but is simple as a Lie group.

The Hopf fibration

We can now begin our description of the topology of algebraic
curves in C2 and start with the simplest possible curve: a straight
line.

Let us look at the intersection of the lines x = 0 and y = 0 with
the unit sphere.

Under the stereographic projection, since the line x = 0 passes
through the north pole, its image is simply a vertical straight line.
The other line y = 0 is projected onto a circle which “goes around
the vertical line x = 0”.

Heinz Hopf (1894–1971)
should not be confused with
Eberhard Hopf (1902–1983)
(the only mathematician
who moved from the US to
Germany in 1936?) ©

In our decomposition in two solid tori, x = 0 becomes the
circle {0} × (R�2pZ) which is the core of T1. Conversely, y = 0
becomes the circle (R�2pZ) × {0} which is the core of T2. Note
that these two circles are linked.

The line y = x intersects the sphere on a circle which is in T1
and T2: it is neither a meridian nor a parallel but its homotopy
class is (1, 1) in both T1 and T2.

A meridian, a parallel, and a(1, 1)-circle on a torus. ©

All this structure is globally described by the so-called Hopf
fibration. Every point (x, y) of the punctured plane C2 � {(0, 0)}
belongs to a unique complex line passing through the origin,
that is to say defines an element of P1(C). In other words, a
line through the origin has an equation y = lx where l belongs
to C ∪ {∞}, identified with the Riemann sphere, or with a 2-
dimensional sphere S2. This defines a map

p ∶ S3 → S2

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hopf.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hopf_Eberhard.html
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whose fibers are circles, intersections of complex lines with the
sphere. Any two fibers are linked.

Of course, this map was
not invented by Hopf! His
contribution was to show
that it is not homotopic to
a constant map, but that is
another story.

Here are some pictures of the Hopf fibration, under the stereo-
graphic projection, extracted from Dimensions.

The Hopf fibration: each
circle is a fiber of p. The
inverse image of a circle by
p is a Clifford torus, which
is a union of fibers (of the
same color on the picture). ©

What is the real version of the Hopf fibration? It does exist
but it is a little bit disappointing. Every point (x, y) of R2 � {(0, 0)}
belongs to a unique line passing through the origin, and defines
an element of P1(R). Such a line has the form y = lx where l

belongs to R ∪ {∞} which is a 1-dimensional sphere, i.e. a circle
S1. This defines a map

p ∶ S1 → S1

whose fibers are S0, intersections of real lines with the unit circle.
This is just the multiplication by 2 in R�Z. Do not forget that a
zero dimensional sphere is a pair of points.

Hopf links

A Hopf fiber is just a round circle in the sphere, so there is not
much to say about it. (This is not quite true: the geometry of
the space of circles in 3-space is wonderful. Look at the modern
book by Cecil91 or Blaschke’s classical Vorlesungen92).

91 T. E. Cecil. Lie sphere
geometry. With applications to
submanifolds. Universitext.
Springer-Verlag, New York,
1992.

92 W. Blaschke. Vorlesungen
über Differentialgeometrie und
geometrische Grundlagen von
Einsteins Relativitätstheorie.
Band I. Elementare Differential-
geometrie. Dover Publications,
New York, N. Y., 1945. 3d ed.

http://www.dimensions-math.org
https://archive.org/details/vorlesungenberdi00blas
https://archive.org/details/vorlesungenberdi00blas
https://archive.org/details/vorlesungenberdi00blas
https://archive.org/details/vorlesungenberdi00blas
https://archive.org/details/vorlesungenberdi00blas
https://archive.org/details/vorlesungenberdi00blas
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The same picture as above,
after a rotation of the 3-
sphere, which corresponds
to a conformal map on
R3 ∪ {∞}. ©

Hopf circles in the neigh-
borhood of one of them,
projected as a line in space
(in red) . One of my readers
told me that he sees this
figure as “frightening”. Do
you agree with him ? ©

http://dimensions-math.org
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Two Hopf circles are more interesting since they define the
simplest non-trivial link. Notice that even though they are linked,
the two circles bound an annulus. Indeed, look at the pre-image
by the Hopf fibration of some arc connecting two points: it is an
annulus.

Two Hopf circles, bounding
an annulus. ©

Three Hopf circles (or more) give a Hopf link. Each component
is a circle and any two components are linked once. It is easy
to find an orientable surface having such a link as boundary.
Indeed, let us consider n complex numbers l1, . . . , ln and the
polynomial

F(x, y) = (y − l1 x)(y − l2 x)�(y − ln x).
The intersection of the 3-sphere with the set of (x, y) such that
F(x, y) is a positive real number is a surface whose boundary
consists of n Hopf circles. All this will be greatly generalized in
the following chapters.
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Three Hopf circles, bounding
a surface. ©

Four Hopf circles, bounding
a surface. ©
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Dante, La Divina Commedia and the 3-sphere This section is, of course, not
necessary for the rest of the
book.

It has been argued by Mark Peterson93 that Dante’s universe, as
93 M. A. Peterson. Dante
and the 3-sphere. American
Journal of Physics, 47:1031–
1035, 1979.

described in the Divine Comedy, is homeomorphic to a 3-sphere.
Even though I am not fully convinced that “it is clear that Dante
invents the notion of manifold94", I like this cosmological vision.

94 M. A. Peterson. The
geometry of paradise. Math.
Intelligencer, 30(4):14–19,
2008.

At least it answers a question that all of us asked our parents
when we were children: what happens when we reach the
boundary of the universe ? Well, Dante’s universe is a compact
3-manifold without boundary!

Flammarion engraving (1888). © Aristotle Ptolemy geocentric system. ©

Let me recall that the world inherited from the ancient Greeks
is finite95. Basically, in the Aristotle-Ptolemy system, the Earth

95 A. Koyré. From the Closed
World to the Infinite Universe.
Johns Hopkins University
Press, 1957.is fixed at the center of the universe and is surrounded by seven

celestial spheres, each one carrying a “planet”: the Moon, Mer-
cury, Venus, Sun, Mars, Jupiter and Saturn. An eighth sphere car-
ries the fixed stars. Finally, a ninth sphere, called Primum Mobile,
serves as a container for the full system and generates the
motion of the other spheres. The sensible world is therefore
a 3-dimensional ball, whose boundary is the Primum Mobile.
Beyond this boundary begins the realm of the so-called Empyrean
whose nature is not very clear. According to Aristotle96 “it is

96 Aristotle. On the Heavens,
volume I, 9, 278b–279a. transl.
by J. L. Stocks.clear that [it countains] neither space, nor void, nor time”.

Of course the Moon and the
Sun are not planets but they
turn around the Earth... in
the geocentric system.

https://www.researchgate.net/publication/252338100_Dante_and_the_3-sphere
https://www.researchgate.net/publication/252338100_Dante_and_the_3-sphere
https://en.wikipedia.org/wiki/Flammarion_engraving
https://en.wikipedia.org/wiki/Geocentric_model
http://sacred-texts.com/astro/cwiu/index.htm
http://sacred-texts.com/astro/cwiu/index.htm
https://en.wikisource.org/wiki/On_the_Heavens/Book_I
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The Divine Comedy is a long poem written in 1320 which offers
a fascinating description of the christian world in the 14th cen-
tury. Dante tells us about his journey through Hell, Purgatory
and Paradise, as an allegory to the salvation of souls. In the
final part, Paradiso, his muse Beatrice helps him to visit succes-
sively the nine celestial spheres. When he arrives on the Primum
Mobile, he can contemplate the world from its boundary, with
the tiny Earth at the center. Suddenly, he turns back and dis-
covers that the Empyrean has exactly the same structure as the
sensible world. It consists of the same number of spheres which
are now centered at God. These angelic spheres, symmetric
to the celestial spheres, have the following names (going from
God to the Primum Mobile): Seraphim, Cherubim, Thrones,
Dominations, Virtues, Powers, Principalities, Archangels, Angels.

Dante’s universe is therefore the union of two 3-balls, glued along
the Primum Mobile. Therefore, it is a 3-sphere! �

See97 for a much deeper discussion on the medieval vision of

97 J. Grzybowski. Cosmological
and Philosophical World of
Dante Alighieri: “The Divine
Comedy”. Peter Lang GmbH,
1st new edition, 2015.

the universe and 98 for more about poetry and mathematics.

98 R. Osserman. Poetry of
the universe, From the Divine
Comedy to Riemann and
Einstein. Anchor, 1995.

The last verses of the
Comedy:

“All’alta fantasia qui mancò
possa ; ma già volgeva il mio
disiro e il velle, l’amor che move
il sole e l’altre stelle.”

“To the high fantasy here
power failed; but already my
desire and will were rolled —
even as a wheel that moveth
equally — by the Love that
moves the sun and the other
stars.”

Rosa Celeste: Dante and
Beatrice gaze upon the
highest Heaven, The
Empyrean (engraving by
Gustave Doré). ©

https://upload.wikimedia.org/wikipedia/commons/d/d2/Paradiso_Canto_31.jpg
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A page of the Milnor open
book associated to the curve
y2 − x3 = 0. ©



The cusp and the trefoil

The loose purpose of our promenade is to describe the
topology of singularities of real analytic curves. As explained
earlier, a shortcut through the complex domain might possibly
shed some light on our “real” discussion. In any case, in this
book we are more keen on detours than shortcuts.

For a full description of the topology of singularities of
complex algebraic curves, I strongly recommend the excellent
721 page book99 by Brieskorn and Knörrer. However:

99 E. Brieskorn and
H. Knörrer. Plane alge-
braic curves. Modern
Birkhäuser Classics.
Birkhäuser/Springer Basel
AG, Basel, 1986.

Un petit livre est rassurant.

as Jules Tannery wrote in the preface of a very concise and
beautiful introduction100 to Galois theory. Following this advice,

100 H. Vogt. Leçons sur la
résolution algébrique des
équations. Librairie Nony,
1895.

I will limit myself to the basic features of the theory.
My only goal in this chapter is to convince the reader that

the local topology of a singularity in the complex domain is
incredibly rich.

The link of a singularity

The idea of intersecting a complex analytic curve F(x, y) = 0 by
a small sphere S3

# = {(x, y) ∈ C2 � �x�2 + �y�2 = #2} is probably
very old. The first paper explaining this construction is due to
Brauner101, published in 1928, following an idea of his PhD

101 K. Brauner. Zur Geometrie
der Funktionen zweier kom-
plexer Veränderliche. Abh.
Math. Sem. Univ. Hamburg,
6(1):1–55, 1928.

advisor Wirtinger in 1905. See102 for an inspiring presentation of

102 M. Epple. Branch points
of algebraic functions and
the beginnings of modern
knot theory. Historia Math.,
22(4):371–401, 1995.

the historical development of these ideas.

It is important to recall that
a curve over the complex
numbers has dimension 1

over C and hence dimension
2 over R, so that a complex
curve is a real surface. This
constant balance between
curves and surfaces is one of
the charms of the theory.

https://archive.org/details/leonssurlarsolu00vogtgoog
https://archive.org/details/leonssurlarsolu00vogtgoog
https://archive.org/details/leonssurlarsolu00vogtgoog
http://www.sciencedirect.com/science/article/pii/S0315086085710312
http://www.sciencedirect.com/science/article/pii/S0315086085710312
http://www.sciencedirect.com/science/article/pii/S0315086085710312
http://www.sciencedirect.com/science/article/pii/S0315086085710312
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We already looked at the simplest case F(x, y) = y − lx, leading
to the Hopf fibration. We now look at the second significant
example: the cuspidal singularity, defined by F(x, y) = y2 − x3.

x3=y2

x=0

y=0

How should we choose the small radius #? Could we use
some other hypersurface, like for example an ellipsoid? The
answer is that under very mild assumptions, all these intersec-
tions define the same topological object, up to homeomorphisms.
The case of y2 − x3 = 0 is particularly simple. Consider the follow-
ing linear flow on C2:

ft(x, y) = �e2tx, e3ty� (t ∈ R).
The space O of orbits of ft in C2 � {(0, 0)} is homeomorphic to
S3. Indeed, along such an orbit, the norm �x�2 + �y�2 is strictly
increasing and each orbit intersects the sphere exactly once. The
same argument could be used with an ellipsoid centered at the
origin, or with our “square sphere” max(�x�, �y�) = #, or with
many other hypersurfaces.

Now observe that the flow ft preserves our curve, whose
equation is y2 − x3 = 0, so that the curve defines canonically a sub-
set K of O. Identifying O with S3

# , we realize that, up to homeo-
morphisms, the intersection of the curve with S3

e is indeed inde-
pendent of # and that we could as well use the square sphere.

So, let us intersect y2 − x3 = 0 with max(�x�, �y�) = #. If # < 1, this
is a parameterized by q ∈ R�2pZ

x = # exp(2iq) ; y = #3�2 exp(3iq)
in the solid torus (where �x� = # and �y� ≤ #). This is the trefoil knot,
seen as the (3, 2) torus knot: it is drawn on a standard torus of
revolution in 3-space and goes three times around the meridian
as it goes twice along the parallel. The trefoil knot. ©

There are many excellent books on the topology of knots. I
recommend the “petit livre” by Sossinsky103 and the very visual

103 A. Sossinsky. Knots.
Mathematics with a twist.
Harvard University Press,
Cambridge, MA, 2002.book by Kauffman104.

104 L. H. Kauffman. On
knots, volume 115 of Annals
of Mathematics Studies.
Princeton University Press,
Princeton, NJ, 1987.

In order to understand the topology of the cuspidal curve
y2 − x3 = 0 in a small ball �x�2 + �y�2 ≤ #2, it suffices to note that all
concentric spheres intersect the curve on such a trefoil. If follows
that in a small ball, our curve is homeomorphic to the topolog-
ical cone over the trefoil knot. The trefoil is a circle (embedded
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in a knotted way). So the cone is a disc embedded in a tricky
way into 4-space. Over the complex numbers the curve is topo-
logically smooth, that is to say locally homeomorphic to a disc,
but the embedding of this disc in C2 is knotted. This is a typical
phenomenon that can be detected over the complex numbers and
which is invisible over the reals, since the real curve y2 − x3 = 0,
and indeed every branch of a real analytic curve, is locally homeomor-
phic to a line in the plane: this is what we called earlier Gauss’s
claim. A local picture of a branch

(projected in 3-space where
the branch is not embedded).
©Milnor’s fibration

5

Let us describe the cuspidal curve in more detail and show a
very special case of a general theorem of Milnor that will be
presented later.

Consider the map

µ ∶ (x, y) ∈ S3 � y2 − x3 ∈ C.

The inverse image of 0 is the trefoil knot. We want to look at the
inverse image Sq of a half line emanating from the origin, whose
equation is arg(z) = q ∈ R�2pZ. In other words, we look at the
fibers of the map arg ○µ defined on the complement of the trefoil
knot with values in the circle R�2pZ.

It is easy to see that arg ○µ is a submersion. Indeed, the flow

ys(x, y) = �e2isx, e3isy�
preserves the spheres and satisfies arg(µ ○ ys) = arg(µ) + 6s. It
follows that the vector field associated to ys is not in the kernel
of the differential of arg ○µ. Observe that ys permutes the fibers
Sq .

In the neighborhood of the trefoil knot, the situation is very
easy to analyze. Our square sphere can still be used since arg ○µ
is invariant under ft and we are in fact working in the orbit
space O. Parameterize a neighborhood of the trefoil by pairs(a, z) with a ∈ R�2pZ and z a small complex number:

x = # exp(2ia) ; y = #3�2 (exp(3ia)+ exp(−3ia)z) .
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In these coordinates, arg ○µ is equal to arg(z) to the first order. It
follows that in the neighborhood of the trefoil, the Sq’s are sur-
faces which behave like the pages of a book around its binding.

A strange book in which the
pages are cyclically ordered
and with no first page. A
dream book that you read
forever. At least the pages
are orientable.

©

I will say that the trefoil knot is fibered or that its complement
fibers over the circle. The fibers are disjoint pages whose closures
in the 3-sphere all have the knot as their common boundary.
Note that one page goes through the north pole in the 3-sphere,
which is the center of the stereographic projection. This page,
when projected in the Euclidean 3-space, is not compact.
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Some pages. ©

Monodromy

The flow ys(x, y) = �e2isx, e3isy� permutes the pages of our book.
More precisely, ys maps the page Sq to the page Sq+6s. Note that
y2p is the identity and that yp�3 fixes globally each page, hence
inducing on each page a homeomorphism of order 6, which is
called the monodromy of the cusp.

10Our goal now is to describe the topology of the pages and the
action of the monodromy.

By definition, a page S is the set of (x, y) in S3 such that the
complex number y2 − x3 is in some half line, for instance the
positive real axis R∗+ ⊂ C. Let C be the algebraic curve defined by
y2 − x3 = 1 in C2. Think of the 3-sphere as the orbit space of the
flow ft(x, y) = �e2tx, e3ty� acting on C2 � {(0, 0)}. The two real
surfaces S and C define the same object in this orbit space, so we
work with C. The action of the monodromy corresponds to

(x, y) ∈ C � (w2x, w3y) ∈ C
where w = exp(2ip�6) is a primitive 6-th root of unity.

The topology of C is easy to describe. . . if you know something
about the genus of Riemann surfaces/algebraic curves. In P2(C),
the homogenized cubic curve y2z − x3 = z3 is a smooth elliptic
curve intersecting triply the line at infinity in the point [0 ∶ 1 ∶ 0].
“Hence” the affine curve C is homeomorphic to a once punctured
torus.
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In a more down to earth way, one can proceed in the follow-
ing manner. Set Y = y2 = 1 + x3, so that the map (x, y) ∈ C � Y is
a six fold branched cover of C, branched at 0 and 1, with order 2
and 3.

The points (−1, 0),(exp(2ip�6), 0) and(− exp(2ip�6), 0) are
mapped to 0 and the
points (0, 1) and (0,−1)
are mapped to 1.

Draw an arc in the complex plane connecting Y = 0 and Y = 1.
It lifts to six arcs in C.

Above Y = 0, there are 3 points, where the 6 arcs merge in 3
groups of 2. Above a small disc centered at 0, there are 3 double
plates, as on the left part of the following picture. Above Y = 1, as
in the second figure, there are 2 points, where the arcs merge in
2 groups of 3.

©

Since it is impossible to draw in the 4-dimensional C2, these
pictures represent the graph of some appropriate combination of
the real and imaginary parts of

√
Y + 3√1−Y.

The combinatorics of the six arcs is represented in the right
margin.

0 1

©

Cutting C along 3 arcs, from −∞ to 0, from 0 to 1, and from
1 to ∞, we decompose C in two triangles where the imaginary
part is positive or negative (yellow and green on the picture).
These are indeed triangles with vertices at 0, 1 and ∞. In C, this
produces in total 18 arcs, and 12 = 6× 2 triangles.
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Another way of seeing the same picture is the following.
Identify opposite sides of a regular hexagon by translations. This
produces get a torus. Deleting the center, we get a punctured
torus. 1

0

The more economical
presentation of a torus from
a square is more usual
but this presentation with
a hexagon is even more
beautiful. Observe that the
six sides define three arcs in
the torus and the six vertices
define two points in this
torus.

From the center of the hexagon, draw the 6 segments going to
the vertices and the 6 heights to the sides. Our torus is decom-
posed in 12 triangles, having in total 18 sides. The six roots of
unity act by rotations on the (punctured) hexagon, permuting the
triangles exactly as in the case of C.

In summary, each page of the book associated to the cusp is a
punctured torus as above, and the monodromy is simply a rotation by
1/6th of a full turn.

Torus knots

Most of what has been seen for the cusp y2 = x3 extends to a
general curve F(x, y) = 0. This will require some work, but there
is at least one family of examples where there is no extra work.
Let p, q be two relatively prime positive integers and let us look
at the curve yp − xq = 0. We can assume q > p.

Just as before, let us look at the intersection with the square
sphere.

x = # exp(ipq) ; y = #q�p exp(iqq).
This is a (p, q) torus knot Kp,q, drawn on a standard torus in
3-space, going around p times the parallel and q times the
meridian.

A (3, 4) torus knot. ©

Exactly for the same reason, there is an open book decomposi-
tion and a fibration over the circle. Any page is homeomorphic
to the affine algebraic curve yp − xq = 1, whose topology can be
described in the same way. Set Y = yp and look at this curve as
spread over Y, branched over 0 and 1. Over a point Y different
from 0, 1, there are pq points. Over 0 (resp. 1), there are only q
(resp. p) points, but each with multiplicity p (resp. q). Replace
the hexagon by a pq-gon and the situation is the same. There
are 2pq triangles (pq of each color) and 3pq edges. There are p
vertices above 0, q above 1 and one above infinity.
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This gives an Euler-Poincaré number equal to

p + q + 1− 3pq + 2pq = 2− 2
(p − 1)(q − 1)

2
.

Each page is now a punctured surface of genus (p − 1)(q − 1)�2.
I sketch now a proof of a fundamental fact: topology recovers

a good part of the algebraic curve yp = xq.

I claimed in the preface that
I tried to write a book that
I could have understood
myself as an undergraduate.
I fear that this might not be
the case for the end of this
chapter. If this is too sketchy,
just skip it!

15

Theorem. If some homeomorphism of the 3-sphere sends the torus knot(p1, q1) to (p2, q2), then the sets {p1, q1} and {p2, q2} are equal.

The proof will require some basic algebraic topology. From
the topology of torus knots, we construct an algebraic gadget
that will enable us to reconstruct p, q.

Beginners are strongly
encouraged to look at the
remarkable website by
Henri Paul de Saint Gervais
dedicated to Analysis Situs.

The complement of the torus knot (p, q) in the 3-sphere is an
open 3-manifold. Its most primitive invariant is its fundamental
group, denoted by Gp,q. The key point is to extract algebraically p
and q from this group. We will prove that Gp1,q1 is isomorphic to
Gp2,q2 only if {p1, q1} = {p2, q2}.

Observe first that the map arg µ = arg(yp − xq) from the
complement of the torus knot (p, q) in the 3-sphere to R�2pZ

induces a surjective homomorphism

l ∶ Gp,q → p1(S1) � Z

between fundamental groups. Indeed, consider the following
loop in the unit sphere defined for t ∈ [0, 1] by

x(t) = √2(1+ z(t))
2�(1+ z(t)�) exp(2ippt) ; y = √2

2
exp(2iqpt).

For small values of z, this is a small loop going around the (p, q)
knot. The argument of µ on this loop is close to

p + arg z(t)+ 2ppqt

so that we can choose z(t) = # exp(i(1− 2pqt)p) to make sure that
the image of this loop by l is 1.

In the first step, we show that this homomorphism, up to sign,
is the only surjection of Gp,q onto Z. It follows that the kernel of
l only depends on the topology of the knot.

http://analysis-situs.math.cnrs.fr
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In the second step, we analyze the abelianization of the kernel
of l, show that it is a finitely generated free abelian group, find
its rank. This will enable us to recover {p, q} from the group Gp,q

as required.
The first step could be explained in a variety of ways, more or

less sophisticated, most of them based on the so-called Lefschetz
duality. Suppose some closed orientable manifold X, for example
a circle, is embedded in some sphere, for example of dimension
3. Then the homology of the complement of X does not depend
on the way X is embedded in the sphere. In particular, the
homology of the complement of a knot in the 3-sphere is the
same as in the case of a trivial knot, so this homology is simply
isomorphic to Z in degree 1.

Note that the complement
of an unknotted circle in the
3-sphere is homeomorphic
to R2 × S1.

I could present the same fact in the following way. Let g be a
smooth loop in S3 � Kp,q. Since the sphere is simply connected,
g is the boundary of some smooth map D → S3 which may not
be an embedding. Put this disk in general position with Kp,q,

Any map from S1 to S3

extends to the unit disk
D2. If this extension is an
embedding, then g is a
trivial knot. However, any
knot is the boundary of an
embedded oriented surface
(of higher genus): this is
called a Seifert surface.

so that the intersections between Kp,q and D are transversal.
Count the number of intersections between the disk D and Kp,q,
the counting being algebraic, taking orientations into account.
This number is the linking number lk(g). It turns out that it only

More precisely this is the
linking number of g and
Kp,q. This will be discussed
later in this book.

depends on the homology class of g in S3 � Kp,q. This follows
from the fact that a surface with no boundary in S3 has a trivial
algebraic intersection with any closed curve.

Linking number.

Removing two intersection
points. ©

Therefore it defines a homomorphism

lk ∶ H1 �S3 �K(p, q), Z�→ Z

which is onto. Now, if g is in the kernel of lk, this means that +
and − signs in the intersection can be coupled. Dig holes in D,
around the intersection points, and connect their boundaries in
pairs with tubes, in order to construct a surface whose boundary
is still g and which does not intersect K(p, q) anymore. Therefore
the elements of the kernel of lk are homologous to zero. In
other words, lk is an isomorphism. Finally recall that the first
homology group is the abelianization of the fundamental group,
so that any homomorphism p1 �S3 �K� → Z factors through
lk. It follows in particular that lk coincides (up to sign) with the
previously defined l. This is the first step.
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We now proceed to the second step. Denote the kernel of lk by
G(p, q). It is therefore the fundamental group of some Galois
covering of S3 �K(p, q) whose group of automorphisms is infinite
cyclic Z = Gp,q�ker lk. This covering is clearly the product S ×R of
a page with R and the group of deck transformations is simply
generated by

(p, t) ∈ S ×R → (M(p), t + 2p) ∈ S ×R

where M denotes the monodromy map. It follows that G(p, q)
is the fundamental group of a page S. We already described the
topology of a page. Since G(p, q) is not abelian, it might be easier
to make it abelian. Denote by H(p, q) this abelianization, which
is nothing more than the first homology of a page.

20

I recall that p and q are
relatively prime.Let us describe this abelian group H(p, q) and the action

of M. In S there is a graph containing pq arcs, obtained by
lifting the arc connecting 0 and 1. It contains q vertices over 0
and p vertices over 1. Recall that S is obtained from a closed
triangulated surface by deleting a vertex which is common to all
triangles. Therefore, the punctured surface S can be deformed
to the union of all the edges opposite to this vertex which is
our graph with pq edges. This graph is usually called a complete
bipartite graph. This produces a very simple 1-complex which
computes H(p, q).

The abelian group of 1-chains is freely generated by arcs ci,j
where i ∈ Z�pZ and j ∈ Z�qZ. The abelian group of 0 chains
is generated by p points ai and q points bj with i ∈ Z�pZ and
j ∈ Z�qZ. The boundary operator ∂ sends ci,j to bj − ai. Finally the
monodromy Z�pqZ � Z�pZ ×Z�qZ acts in an obvious way on
the indices i, j.

The homology H(p, q) fits into an exact sequence

0�→ H(p, q)�→ Zp ⊗Zq ∂�→ Zp ⊕Zq �→ Z �→ 0

which is equivariant with respect to actions of Z�pZ ×Z�qZ

at each level. The generator M of monodromy is associated to
the action of (1, 1). Tensoring by R to get vector spaces and
linear maps, it follows that the dimension of H(p, q) ⊗R is
pq − (p + q)+ 1, i.e. (p − 1)(q − 1). The characteristic polynomial of
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the action M� of M on H(p, q) can even be computed using the
exact sequence:

P(X) = (Xpq − 1)(X − 1)(Xp − 1)(Xq − 1) .

Observe that the roots of P, eigenvalues of M�, are the pq-th
roots of unity, minus the p-th and q-th root, plus 1. From this
spectrum, the values of p, q can be extracted.

The proof of the theorem is finished. From the fundamental
group G of the (complement of the) knot K(p, q), construct its
first derived group G1 = [G, G], which is also, as we have seen,
the kernel of lk. Then, make G1 abelian and define the group
G1�[G1, G1]. Now consider some element g in G with lk(g) = ±1
and the conjugation by g on (G1�[G1, G1])⊗R. The values of p, q
can be obtained from the eigenvalues of this linear map. �

This algebraic trick is actually a very general and powerful
technique and is not restricted to knots. Given any group G,
look at the action of the abelianization Gab = G�G1 = G�[G, G] by
conjugation on the abelianization (G1�[G1, G1])⊗R. This defines
a family of commuting automorphisms whose conjugacy classes
are invariants of the group G. One speaks of the Alexander module
of G. This is one of the most primitive invariants of a group.

On André Nachbin’s website.
©

http://w3.impa.br/~nachbin/AndreNachbin/Art.html
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Pointe Puiseux. ©

https://en.wikipedia.org/wiki/Mont_Pelvoux


Victor Puiseux, at last!

The name of Puiseux already appeared several times in

this book. The reader may be anxious to know what he actually
did. Unfortunately, the “well known Puiseux theorem” is not
due to him but, as we have seen, to Newton, with some posterior
help from Cramer. One could argue that neither Newton nor
Cramer proved the convergence of the associated series but this
convergence can be easily proved, for example using the calcul
des limites of Cauchy.

Victor Puiseux (1820–1883) ©

However, Puiseux approached the problem of the local struc-
ture of singularities in a totally different way and his contribu-
tion is fundamental. In this chapter, I would like to explain his
point of view. Unfortunately, it would be useless to stick to his
original presentation.

Strange fate for a mathematician: he is “famous” for a theo-
rem that was known long before him, and that we understand
today much better than he did, using techniques that came long
after him.

Fortunately, Puiseux is even more famous among alpinists
since the highest peak of the Mount Pelvoux (3,946 m), in the
Massif des Écrins, is called pointe Puiseux. He reached this peak
on August 9, 1848. Unfortunately, it is not even sure that this
was “a first” since Captain Durand claimed that he reached the
summit 18 years earlier. Eternal second?

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Puiseux.html


170 a singular mathematical promenade

Puiseux’s topological approach

Let us recall what is usually called Puiseux’s theorem.

Theorem. Let F(x, y) be a nonzero holomorphic function defined in the
neighborhood of the origin in C2 and such that F(0, 0) = 0. Then, there
exists a finite number of holomorphic functions g1, . . . , gk defined in
the neighborhood of 0 ∈ C and positive integers n1, . . . , nk such that the
curve F(x, y) = 0, again in the neighborhood of (0, 0), is the union of
k branches t � (tni , gi(t)) (for i = 1, . . . , k) (plus, possibly, the y-axis).
Moreover these branches are injective and they only intersect at the
origin.

Two branches can be linked
©

Two models from the
Göttingen Collection of
Mathematical Models and
Instruments that the reader
should definitely visit. ©

We have already discussed a pre-Puiseux proof, very algebraic
in spirit, where one finds first the formal series gi and then
proves that they converge. Puiseux proposed a topological
approach105 in 1850, just before the great papers by Riemann

105 V. Puiseux. Recherches
sur les fonctions algébriques.
Journal de Mathémagiques
Pures et Appliquées, 15:365–
480, 1850.

introducing topological ideas in algebraic geometry. We should
therefore “forgive” him since, of course, he could not express
himself in terms of Riemann surfaces.

Let me sketch such a topological proof. Consider first F(0, y).
If this is identically zero, F can be divided by some power of x
without changing the problem. We can therefore assume that
the valuation of F(0, y) (also called the multiplicity) is some
positive integer m > 0. In particular F(0, y) has an isolated zero
at the origin (of multiplicity m). Choose some # > 0 such that 0
is the only root of F(0, y) = 0 in �y� ≤ #. By a simple continuity
argument, there is some h > 0 such that there is no root of
F(x, y) = 0 on the solid torus {(x, y) � �x� ≤ h ; �y� = #}. Dividing x
and y by # and h, we assume that # = h = 1.

Let us now make some assumption that will be analyzed in
detail later on.

Assume that the partial derivative ∂F�∂y does not vanish on the
curve F(x, y) = 0, except at the origin.

Do not forget that all this
discussion is local so when
I write ”does not vanish”, I
mean “does not vanish in
some neighborhood of the
origin”.

Denote by C� the punctured curve

{(x, y) ∈ C2 � (x, y) ≠ (0, 0) ; F(x, y) = 0 ; �x� ≤ 1 ; �y� ≤ 1}.
The main assertion is that the projection of C� onto the punctured
disc D� = {x � �x� ≤ 1}� {0} is a covering map.

Again, do not miss Analysis
Situs, by Henri Paul de Saint
Gervais, available online.

http://modellsammlung.uni-goettingen.de/index.php?lang=en&s=1
http://modellsammlung.uni-goettingen.de/index.php?lang=en&s=1
http://modellsammlung.uni-goettingen.de/index.php?lang=en&s=1
http://sites.mathdoc.fr/JMPA/PDF/JMPA_1850_1_15_A24_0.pdf
http://sites.mathdoc.fr/JMPA/PDF/JMPA_1850_1_15_A24_0.pdf
http://analysis-situs.math.cnrs.fr
http://analysis-situs.math.cnrs.fr
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Let me recall quickly the definition of covering maps and how
they differ from a local homeomorphisms.

A continuous map p ∶ X → Y is a local homeomorphism (some-
times called an étale map) if every point in X has an open neigh-
borhood U such that p(U) is open and the restriction of p to U is
a homeomorphism onto p(U).

A continuous map p ∶ X → Y is a covering map if every point
in Y has an open neighborhood V such that p−1(V) is a disjoint
union of open sets Ui such that the restriction of p to each Ui is a
homeomorphism onto V.

Clearly, a covering map is a local homeomorphism, but simple
examples show that the converse is not true. One shows easily
that a local homeomorphism is a covering space if it is proper.

The word étale was intro-
duced by French algebraic
geometers. It means “station-
ary” and is frequently used
to describe the surface of the
sea, when at rest.

An étale map which is not a
covering.

A map is proper if the inverse
image of a compact set is
compact. Of course the
converse is not true and
a covering map might be
non-proper (like for instance
t ∈ R � exp(it) ∈ S1).

Let us now show our assertion that C� is a covering of the
punctured disc. The fact that the projection is a local homeomor-
phism follows immediately from our assumption that ∂F�∂y does
not vanish on C� and from the implicit function theorem. The
properness of the projection is clear as well since a sequence of
points on C� escapes from a compact if and only if it converges
to the origin.

The main theorem of covering space theory is that the con-
nected covering spaces of a (locally simply connected) connected
space are described, up to isomorphisms, by the subgroups of
the fundamental group. For instance, connected covering spaces
of D� are isomorphic to some power map x ∈ D� � xn ∈ D�, for
some integer n ≥ 1, or to the complex exponential map restricted
to the half plane R(x) ≤ 0. Actually Puiseux used

implicitly coverings when
he described some loops
followed by x around the
origin and the associated
permutation of the values of
y satisfying F(x, y) = 0.

Choose some connected component C�0 of C�. Since the cover-
ing C�0 → D� has finite fibers, it is isomorphic to some covering
x ∈ D� � xn ∈ D�. Said differently, there is some homeomorphism

f ∶ x ∈ D� � (xn, g(x)) ∈ C�0 .

This f is clearly holomorphic on the punctured disc and we
still have to show that it extends as a holomorphic function in
the disc. This follows from the Riemann extension theorem: a
bounded holomorphic function on a punctured disc is holomor-
phic in the full disc.

One more anachronism!
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The theorem is proved, under the assumption that the partial
derivative ∂F�∂y does not vanish on the punctured curve F(x, y) = 0,
that will be discussed in the next paragraph.

Simple roots

A holomorphic function of one complex variable y and its deriva-
tive vanish simultaneously at some y0 if and only if this zero is
multiple. We therefore have to show that in Puiseux’s theorem,
one can always assume that F has the property that, for x0 small
and nonzero, there are no small multiple roots of F(x0, y) = 0.

It turns out that Puiseux did not consider general holomor-
phic functions F(x, y) but polynomials in x, y. In this case, it is
easy to deal with multiple roots and actually Puiseux dismisses
the problem in one sentence (in a 135 page paper). Let us be just
a little more careful than him.

Consider the polynomial F as an element of C[x][y]. This F can
be seen as a polynomial in one variable y with coefficient in a
factorial ring. Write F as a product of irreducible factors so that
the curve F(x, y) = 0 is the union of the curves associated to these
irreducible factors. We can assume that F is irreducible.

Suppose now that there is a sequence (xk, yk) converging
to (0, 0) with xk ≠ 0 and such that yk is a multiple root of
F(xk, y) = 0. Then the discriminant of the polynomial F(xk, y)
is equal to 0. Therefore the discriminant of F, as an element of The discriminant of a

polynomial is the
resultant of this
polynomial and its
derivative.

C[x], vanishes identically since it has an infinite number of roots.
If the discriminant of some polynomial P vanishes, the polyno-
mial and its derivative have a common factor. This is impossible
if P is irreducible.

Hence, if F is irreducible in C[x][y], and if x small and
nonzero, then F(x, y) = 0 has no small multiple root as an equa-
tion in y. This is the ingredient that was missing for the proof of
Puiseux theorem, for a polynomial equation F(x, y) = 0.

For a general holomorphic function F(x, y) = 0 (that, once
again, Puiseux did not consider) there is still some work to be
done.
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Weierstrass’s preparation theorem

Karl Weierstrass
(1815–1897). ©

We already met Weierstrass’s preparation theorem that we
proved first in the context of formal series before establishing the
convergence. The goal now is to prove the same theorem using
complex analysis.

Let us recall the statement.

Theorem. Let F(x, y) be a nonzero holomorphic function defined in
some neighborhood of the origin in C2. Then there exist m holomorphic
functions a0(x), . . . , am−1(x) defined in some neighborhood of 0 ∈ C, a
holomorphic function U(x, y) which is not vanishing at the origin, and
an integer r ≥ 0, such that

F(x, y) = xrU(x, y) �ym + am−1(x)ym−1 +�+ a1(x)y + a0(x)� .

This theorem is exactly what is needed. It states that up to
non-vanishing functions, we can always assume that the function
F under study is a polynomial in the variable y, with coefficients
in the ring C{x} of convergent series in x. The previous proof by
Puiseux, that one can always assume that ∂F�∂y does not vanish
identically on the curve (except at the origin), can therefore be
reproduced word by word (replacing the ring of polynomials in
x by the ring of convergent series). Therefore, Puiseux’s theorem
is proved, using Weierstrass theorem.

I now present the standard analytical proof of Weierstrass.
Assume, after dividing F by some xr, that F(x, y) does not

vanish for �x� ≤ 1 and �y� = 1. Fixing x with �x� ≤ 1, the function
y � F(x, y) has a finite number of zeros y1(x), y2(x), . . . , ym(x)
in the unit disc, counted with multiplicity. The main difficulty is
that it is impossible to choose these functions yi(x) as holomor-
phic functions of x, or even continuous, precisely because of the
multivaluedness of the implicit y(x) in F(x, y) = 0. However, we
will show that all symmetric functions of the yi(x) are indeed
holomorphic functions of x.

The simplest proof uses Cauchy formula. Let us evaluate

sk(x) = 1
2ip��y�=1

ykF′y(x, y)
F(x, y) dy.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Weierstrass.html
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The residue of ykF′y(x, y)�F(x, y) as a function of y, at one of the s0 is the number of roots.
Being an integer and a
holomorphic function of x,
it is constant. It was used
implicitly a few lines above!

roots yi(x), is the k-th power yi(x)k, so that sk(x) is the sum of
the k-th powers of the roots. The integral shows clearly that sk(x)
is a holomorphic function of x.

Since the sk’s generate the symmetric functions, all symmetric Another well known theo-
rem of Newton.functions of the yi(x) are holomorphic functions of x, in particu-

lar the elementary symmetric functions ai(x). By Viète’s theorem,
the polynomial

ym − am−1(x)ym−1 +�+ (−1)m−1a1(x)y + (−1)ma0(x)
vanishes exactly at the same points as F with the same multiplici-
ties, so that the quotient U(x, y) does not vanish.

The Weierstrass preparation theorem, and Puiseux’s theorem
are proved. �
Who proved Weierstrass’s preparation theorem?

My reader should have already guessed that the simple answer
to this question is certainly not Weierstrass. Historians of math-
ematics know very well that questions like “who proved this
first?" are far too naive, and frequently miss the point. It is never-
theless interesting to notice that two important mathematicians
of the twentieth century, Henri Cartan106 and Carl Siegel107,

106 H. Cartan. Sur le théorème
de préparation de Weier-
strass. In Festschr. Gedächt-
nisfeier K. Weierstrass, pages
155–168. Westdeutscher
Verlag, Cologne, 1966.

107 C. L. Siegel. Zu den
Beweisen des Vorbere-
itungssatzes von Weierstrass.
In Number Theory and Anal-
ysis (Papers in Honor of
Edmund Landau), pages
297–306. Plenum, New York,
1969.

wrote detailed papers trying to unfold the development of ideas
around this theorem. Their papers are however not completely
convergent. Let me only mention some steps.

– The fact that the symmetric functions of the roots of some
holomorphic equation F(x, y) = 0, where y is the unknown and
x a parameter, depend holomorphically on x was known to
Cauchy in 1831, with the proof that I presented.

– Weierstrass published his proof in 1886 but mentions in
a footnote that he has been lecturing on this theorem since
1860. Not surprisingly, he avoids as much as possible the use of
Cauchy residues, but not completely, and works with series. His
proof is only partially algebraic.

– The theorem is proved by Poincaré in his thesis, in 1879,
with no mention to Cauchy. As usual, the word “proof” has
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to be taken with great care in Poincaré’s writing, and this is
especially true in this early paper. Much later, for instance in his
Méthodes Nouvelles, he referred to his thesis, without providing a
better proof and without mentioning Weierstrass. Interestingly,
Henri Cartan, one of the founding fathers of Bourbaki, does not
mention Poincaré in his paper.

– In 1905, Lasker108 provided a fully algebraic proof and

108 E. Lasker. Zur Theorie der
Moduln und Ideale. Math.
Ann., 60(1):20–116, 1905.

deduced algebraic consequences for the rings of formal and
convergent series.

– Siegel also emphasizes that according to him the shortest
proof is due to Stickelberger109 in 1887.

109 L. Stickelberger. Ueber
einen Satz des Herrn
Noether. Math. Ann.,
30(3):401–409, 1887.

For a modern and elementary presentation of the theorem, see
Ebeling’s book110. For a careful description of the many variants

110 W. Ebeling. Functions of
several complex variables and
their singularities. GSM083.
AMS, 2007.

of the theorem and additional historical comments, see Grauert
and Remmert111.

111 R. R. H. Grauert. Ana-
lytische Stellenalgebren. Die
Grundlehren der mathe-
matischen Wissenschaften
176. Springer-Verlag Berlin
Heidelberg, 1971.

I cannot end this chapter without mentioning that there is a
version of this theorem for C∞ functions, conjectured by Thom
and proved by Malgrange112. But, that’s another story113. . .

112 B. Malgrange. Ideals of
differentiable functions. Tata
Institute of Fundamental
Research Studies in Mathe-
matics, No. 3. Tata Institute
of Fundamental Research,
Bombay; Oxford University
Press, London, 1967.

113 V. I. Arnold, S. M. Gusein-
Zade, and A. N. Varchenko.
Singularities of differen-
tiable maps. Classification
of critical points, caustics
and wave fronts. Mod-
ern Birkhäuser Classics.
Birkhäuser/Springer, New
York, 2012. , Reprint of the
1985 edition.

From a letter of Victor Puiseux describing his expedition to Mount
Pelvoux: “Contemplating the magnificent panorama around
me”. Victor Puiseux could have been a model for Caspar David
Friedrich when he painted the Wanderer above the sea of fog, but the
Pelvoux expedition happened 30 years later! ©

http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002260093
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002260093
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002250470
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002250470
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002250470
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Milnor fibers of x3 − y2. ©



Jack Milnor and his fibration

John Milnor. ©

French-speaking people are
often surprised to learn that
Jack is a nickname for John.
The English translation of
Jacques is James.

When I enter a mathematical library, or when I navigate
through the Mathematical Reviews, or simply when I google, I am
frequently overwhelmed by the vastness of the mathematical
world. Even topics that may look microscopic to the layman, like
for instance the topology of algebraic curves, are actually huge
territories whose exploration could easily require several lives.
This feeling can be either depressing or intoxicating, depending
on my mood ß. In this petit livre, the best I can do is to describe
one significant example, to mention some of the main results,
and to refer to some of the (long) books proposing a complete
discussion of the state of the art.

In any case, one single book should be emphasized as a gem
and has to be read by all students interested by this topic: Singular
points of complex hypersurfaces114 by Milnor, a great master in the

114 J. Milnor. Singular points
of complex hypersurfaces.
Annals of Mathematics
Studies, No. 61. Princeton
University Press, Princeton,
N.J.; University of Tokyo
Press, Tokyo, 1968.

art of writing mathematics.

An example

Look at the curve

F(x, y) = −x10 + x9 + 6x8y − 3x6y2 + 2x5y3 + 3x3y4 − y6 = 0.

This F has not been chosen at random. Any equation F = 0 can
be solved using Puiseux series. In this example, I cheated and I
started from the solution

y = x3�2 + x5�3.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Milnor.html
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and I looked for the equation! We have

(y − x3�2)3 = x5.

The Newton polygon of F.

Expanding and raising to a suitable power in order to eliminate
rational exponents, we find indeed F(x, y) = 0. Actually, setting
x = x2

1 and y = x3
1(1 + y1), as one should do using Newton’s

algorithm, the result factorizes, as it should:

F �x2
1, x3

1(1+ y1)� = −x18
1 �x1 − y3

1� �−8+ x1 − 12y1 − 6y2
1 − y3

1� .

It follows that the zero locus of F in the neighborhood of the
origin contains exactly one branch x1 = y3

1 or

x = t6 ; y = t9 + t10

so that y = x3�2 + x5�3 as expected. For a general F, and even for
a polynomial, we should expect an infinite Puiseux series but we
will first look at this specific example.

Let us examine the link of the singularity, intersection of the
curve F = 0 with a small sphere S3

e. The transversality of the inter-
section of the curve with small spheres is easy to see. Indeed the
square of the norm

f ∶ t ∈ C � �t6�2 + �t9 + t10�2 ∈ R+
is equivalent to �t�12 for t small, and the equation f(t) = e2

defines a closed loop in C, close to �t� = e1�6, transversal to the
radial lines. In other words, the intersection of F = 0 with a small
sphere S3

e is an embedded circle, i.e. a knot, which is the image
by f of this loop.

A knot is an embedding of
the circle in the 3-sphere. A
link is the disjoint union of
finitely many knots. Two
knots or links are considered
equivalent if there is an
orientation preserving
homeomorphism of the
sphere sending the first to
the second.

This non-proof is hiding
a fundamental fact in
differential topology. If we
have a family of embeddings
il ∶ X → Y (for 0 ≤ l ≤ 1)
of some compact manifold
X in some other manifold
Y, then there is an isotopy,
that is to say a family of
diffeomorphisms Fl, of Y
such that il = Fl ○ i0.

Up to homeomorphisms of the sphere, this knot is indepen-
dent of e. We could even use ellipsoids instead of spheres, or
even our square sphere max(�x�, �y�) = e. The detailed proof is
technical and boring but the key idea is quite simple. Given
two Euclidean norms N0, N1 in R4, we can intersect the curve
F(x, y) = 0 with small spheres N0 = e and N1 = e. This gives two
knots in two manifolds homeomorphic to a sphere. We now con-
struct a path of norms lN1 + (1 − l)N0 (for 0 ≤ l ≤ 1) so that we
actually have a continuous family of embedded circles in spheres
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which therefore define “the same knot”. A similar argument
could be used for the “square sphere”. See115 for an illustration

115 F. Deloup. The funda-
mental group of the circle is
trivial. Amer. Math. Monthly,
112(5):417–425, 2005.of possible mistakes that a naive beginner could make.

Take your time! Look at the
pictures in this chapter with
great care. This is not easy. ©

Denote this knot by KF. We will use the convenient square
sphere max(�x�, �y�) = e. The intersection with the curve is located
in the solid torus �x� = e and �y� ≤ e, so that �t� = e1�6. Let us rescale
and set X = x�e and Y = y�e. In particular, X is in the unit circle
and Y in the unit disc. If t = e1�6t we get

X = t6 ; Y = e1�2t9 + e2�3t10

where t describes the unit circle.
In all the following pictures, the solid torus S1 ×D2 is drawn as the

cylinder [0, 2p[×D2 and the two faces {0}×D2 and {2p}×D2 should
be glued.

For every X on the unit circle, there are exactly six values of Y,
differing by multiplication of t by some sixth root of unity. We
say that the knot KF is in braid form: it intersects transversally all
the discs {�} ×D2. Going around the circle, these six points are
permuted in a way that will now be described.

©

Observe that e2�3 is small compared to e1�2 for small e.
Observe also that e1�2t9 takes only two values when one multi-
plies t by a sixth root of unity. The knot associated to

X = t6 ; Y0 = e1�2t9

http://www.maths.ed.ac.uk/~aar/papers/deloup3.pdf
http://www.maths.ed.ac.uk/~aar/papers/deloup3.pdf
http://www.maths.ed.ac.uk/~aar/papers/deloup3.pdf
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is simply our trefoil friend x3 = y2. When X goes around the
circle, the corresponding two points in {X}×D2 rotate by three
half turns, producing the trefoil knot.

©

©

Consider Y = e1�2t9 + e2�3t10 = Y0 +Y1 as a small perturbation
of Y0. Notice that

X = t6 ; Y1 = e2�3t10

gives three (very small) values of Y1 for each value of X on the
unit circle. Hence the six points Y on each disc {�}×D2, come in
two groups of three points. In other words, the knot KF lies in a
thin tubular neighborhood of the trefoil knot and intersects small
discs transversal to the trefoil in three points.

©

The coefficient 2 in front of
e2�3µ−3 is not important: its
only role is to give enough
thickness to the tube to
contain our knot.

This tubular neighborhood of the trefoil can be parameterized
in the following way.

(µ, z) ∈ S1 ×D2 � �X = µ2, Y = e1�2µ3 − 2e2�3µ−3z� .

The circle S1 × {0}, core of this solid torus, is mapped to the
trefoil knot. One may ask why I chose e1�2µ3 − 2e2�3µ−3z and not
simply e1�2µ3 + 2e2�3z which would also be a parametrization.
The point is that, with this choice of coordinates, in this tubular
neighborhood, x3 − y2 is equal to

e3(µ2)3 − e2(e1�2µ3 − 2e2�3µ−3z)2
which is of the order of 4e19�6z for small z, so that the argument
of x3 − y2 is close to the argument of z. Therefore the Milnor
fibers of x3 − y2 = 0 in the tubular neighborhood are close to the pages
arg z = constant.
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In these coordinates, we can relate the expressions e1�2µ3 − 2e2�3µ−3

and e1�2t9 + e2�3t10 for Y. Using µ = t3, our knot KF is the image
of

t ∈ S1 � (µ, z) = (t3,−1
2

t19) ∈ S1 ×D2.

This is a (19, 3) torus knot.

©

This 19 might look strange. Note that there is a homeomor-
phism of the solid torus S1 ×D2 which maps the (19, 3) torus knot
to the (19 − 3k, 3)-torus knot for any k (for example to the (1, 3)-
knot, which is much simpler) but such a homeomorphism cannot
be (homotopic to) the identity on the boundary and cannot be
extended to the full sphere. Indeed the map(t, z)� (t, tkz)

is a homeomorphism which
is twisting the solid torus.

It follows that KF is obtained by inserting a (19, 3) torus
knot in a neighborhood of a (3, 2) torus knot. This is a typical
example of an iterated torus knot. They are sometimes called
cable knots since it resembles the construction of cables made of
twisted strands that are braided together, or satellites turning
around planets that rotate around the Sun.

Milnor’s fibration

In the case of the trefoil, the level surfaces of arg(x3 − y2) fill
the complement of the knot as the pages of a book whose bind-
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ing is the trefoil. We described the topology of those pages as
punctured tori.

In his 1968 seminal book, Milnor showed that this is a general
fact. He actually proved a theorem in all dimensions, but we
limit ourselves to the (complex) dimension 2 case.

A series F(x, y) is reduced
if it has no multiple factors
in its decomposition in
irreducible factors.

Theorem. Let F(x, y) be a nonzero reduced holomorphic function
defined in the neighborhood of the origin of C2 such that F(0, 0) = 0. If
# > 0 is small enough, then

– the curve F(x, y) = 0 intersects transversally small spheres S3
e

along some link Le ⊂ S3
e whose topology is independent of e.

– the map

(x, y) ∈ S3
e � Le � arg(F(x, y)) = F(x, y)�F(x, y)� ∈ S1

is a locally trivial fibration. âĂă The closures of the fibers are compact
surfaces whose boundaries all coincide with Le. In a tubular neighbor-
hood of the link, they look like ÃŠan open book: the fibers are locally
products of a radial segment in D2 and a segment.

©

This theorem is the fundamental tool in the local study of
singularities. However, I have to confess that for a long time,
I had not looked at its proof and I was somehow convinced
that it had to be elementary and straightforward. We have a
very natural map to the circle; why shouldn’t it be a fibration?
I was wrong and the proof is indeed rather subtle. Amazingly,
books dealing with this question are of two sorts. The first sort,
arriving at the key point of the proof, in a very discreet way, just
write “See Milnor, chapter 2”. The second sort, arriving at the
same key point, just copy almost word by word the content of
“Milnor, chapter 2”. Indeed, they are both right and it is difficult
to do a better writing than “Milnor, chapter 2”. My purpose here
is not to innovate but to give some intuition on this theorem.

First observe that the theorem is true and elementary in
dimension 1. Let f (x) be some nonzero holomorphic function
defined in the neighborhood of the origin of C and such that
f (0) = 0. Write f (x) = axn +� with a ≠ 0 and look at the map

x ∈ S1
e � arg( f (x)) = f (x)� f (x)� ∈ S1.
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This is obviously a covering map for e small enough. Indeed, this
is close in the C1 topology to the covering map x � arg(a)arg(x)n.

After this trivial case, let us consider a curve F(x, y) = 0.
Assume that F is reduced so that ∂F�∂y does not vanish on F = 0
(except at the origin). Instead of using the round sphere, we will
use our square sphere max(�x�, �y�) = e. For simplicity, assume
that our curve only intersects the solid torus T1 defined by �x� = e,�y� < e.

We want to show first that the argument of F(x, y), restricted
to this solid torus is a submersion (outside F = 0). In other words,
given a point (x, y) in T1, we look for some tangent direction
in T1 along which the derivative of arg F is not zero. As a first
attempt, we can try some vertical direction, fixing x. Then F(x, y)
changes according to the partial derivative ∂F�∂y so that arg F is
indeed a submersion, at least outside the zero locus of ∂F�∂y. The argument of a nonzero

complex number z can be
defined in several ways.
It could be an element of[0, 2p[, or of R�2pZ, or z��z�,
in the unit circle. In what
follows, I always choose
the most convenient way. I
believe this will not create
difficulties.

Now this zero locus ∂F�∂y(x, y) = 0 is some other curve,
only intersecting F = 0 at the origin. This new curve can be
parameterized à la Puiseux, by x = tn and y = f (t). By our trivial
1-dimensional case, the map

t ∈ S1
e1�n � arg F(tn, f (t)) ∈ S1

is a covering map. Therefore, for points where ∂F�∂y(x, y) = 0,
we found some other direction in which the derivative of the
argument does not vanish.

This argument is definitely not a complete proof of Milnor’s
theorem for several reasons.

The first is that we used a square sphere instead of a round
one: this is not so serious and the argument could easily be
adapted to the round sphere.

The second is that a submersion need not be a fibration, with-
out some compactness assumption on the fibers. We have to
study the local structure of our submersion close to the link
Le ⊂ S3

e. This is not difficult. The key point is that if F(x, y) = 0
and if we take some complex line in C2 passing through (x, y)
and transversal to the curve, then we can apply the trivial 1-
dimensional case to analyze the argument arg F in the neighbor-
hood of (x, y) to get the local picture around the link.
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Note that our simple presentation is limited to the dimension
2 case, and that Milnor’s theorem holds in any dimension.

For an excellent presentation, I refer to Milnor, chapter 2 ©.

Milnor’s fibers in our example

The end of this
chapter requires a great
attention, even
though it is not
necessary for the rest of
the book. ©

Let us come back to our example

F(x, y) = x9 − x10 + 6x8y − 3x6y2 + 2x5y3 + 3x3y4 − y6 = 0.

The curve F(x, y) = 0 intersects a small sphere along a knot
which is a satellite of the trefoil knot. We wish to describe the
topology of the Milnor fibers arg F(x, y) = const. If I ask my
computer to draw one of these fibers, the resulting picture is the
following.

©

This is complicated and requires a careful analysis. Notice at
least that this surface intersects the boundary of the solid torus
along 6 curves (in red). The knot, represented in yellow, is also a
boundary component. The colors blue and green of the two faces
show that this surface is orientable. Keep in mind that there are
7 boundary components in the solid torus.

In order to understand this picture, let us look first at the
Milnor fibers of a p, q curve xp − yq = 0, where p and q are relatively
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prime (with p > q). We know that they are surfaces of genus(p − 1)(q − 1)�2 with a disc removed. Let us look at their position
relative to our square sphere max(�x�, �y�) = e. Since p > q, the
intersection with xp − yq = 0 lies in the solid torus T1 defined by�x� = e. On the boundary torus �x� = e and �y� = e, the value of
xp − yq is very close to yq and the argument of xp − yq is almost
equal to q times the argument of y. It follows that a Milnor fiber
of xp − yq intersects the boundary of T1 along q curves which are
very close to q parallels.

A Milnor fiber of trefoil
knot, seen as a (3, 2)-torus
knot. The boundary of the
surface is the knot and
its intersection with the
boundary of the cylinder
consists of two parallels. ©

For the same reason, on the other torus T2 defined by �y� = e, a
Milnor fiber almost coincides with q discs where the argument
of y takes q values and x describes the disc of radius e. In other
words, the intersection of some Milnor fiber of xp − yq with T1 is
a surface of genus (p − 1)(q − 1)�2 where 1 + q discs have been
removed. The boundary of the first removed disc is the torus
knot, sitting inside T1 and the q other discs have boundaries q
circles on the boundary of T1.

Let us now come back to our more complicated example defined
by F(x, y) = 0.

Extracting the dominant terms in Newton’s polygon, we get

F(x, y) = (x3 − y2)3 − x10 + 6x8y + 2x5y3.

Recall that we constructed a tubular neighborhood Te of the
trefoil knot, parameterized by (µ, z) ∈ S1 × D2 and in which
x3 − y2 is of the order of 4e19�6z. On the boundary of this solid



186 a singular mathematical promenade

A Milnor fiber of a (19, 3)-
torus knot. The boundary
of the surface is the knot (in
yellow) and its intersection
with the boundary of
the cylinder consists of 3

parallels (in red). ©

Here is a small slice to
understand better the
previous picture. The blue
and green colors show
that the surface is indeed
orientable. ©
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torus, where �z� = 1, we have �(x3 − y2)3� � 64e57�6 and �x�, �y� ≤ e,
so that F(x, y)�(x3 − y2)3 is very close to 1, and the argument
of F(x, y) is close to arg(z)3. In particular each Milnor fiber
of F on the boundary of Te is very close to three parallels with
arg z = constant.

This also holds outside Te: each Milnor fiber of F outside of Te

is very close to three Milnor fibers of x3 − y2 = 0. Do not forget
that the Milnor fibers of x3 − y2 = 0 are punctured tori. Their
intersections with T2 consist of two discs. Their intersection with
T1 have three boundary components, two being on the boundary
of T1 and the third being the knot itself. This is indeed what can
be seen if we hide what is inside Te.

This represents the Milnor
fiber of F, outside a tubular
neighborhood of the trefoil.
This surface almost coincides
with 3 Milnor fibers of
x3 − y2. ©

The interior of Te is the realm of the (19, 3) knot that is
inserted in the tube. Let us evaluate F(x, y) = F(eX, eY) inside
the tube, in the coordinates (µ, z):

F �eµ2, e3�2µ3 − 2e5�3µ−3z� .

This vanishes exactly on z = − 1
2 µ19, to the first order. There-
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fore a Milnor fiber of F, inside Te, is close to a Milnor fiber of
y3 = x19. It is a surface of genus (3− 1)(19− 1)�2 = 18 with 4 discs
removed. One of the boundaries is the boundary of our knot,
as it should be, and the three others are three parallels on the
boundary of Te.

In summary, a Milnor fiber of F(x, y) = 0 is homeomorphic to
a closed orientable surface of genus 18 on which one performs three
connected sums with a torus, and for which one finally deletes a disc. It
is a surface of genus 21. Quite complicated.

The rest of this chapter will be very vague: I cannot give more
than a glimpse of the theory.

Splitting the complement of KF along one Milnor fiber S, we
get a product S × [0, 1]. In order to reconstruct the complement of Indeed, Milnor’s fibration

in the complement of one
fiber is a fibration onto [0, 1],
hence a trivial fibration since[0, 1] is contractible.

the knot, one should glue S × {0} to S × {1} using some diffeomor-
phism of S. This diffeomorphism, well-defined up to isotopy, is
called the monodromy of the knot. The action of the monodromy
on the first homology has a characteristic polynomial which is
the Alexander polynomial of the knot. In our example, everything
can be described in a rather concrete way.

Let me just give the result. Our surface S contains three
closed curves gi (i = 1, 2, 3) along which we performed the
connected sum. Cutting along the gi’s, we get four components:
S, Si, where S is a surface of genus 18 minus 4 discs and each
Si is a punctured torus. Some monodromy map y preserves
the curves gi and is a Dehn twist in some annulus around these
curves. This means that y in the neighborhood of these curves
looks like the picture in the margin. This shows that the action of
the monodromy on homology is periodic, but this would not be
true in homotopy. The curves gi are homologous to zero but not
homotopic to zero.

A Dehn twist. This homeo-
morphism is the identity on
the boundary of the annulus,
preserves the concentric
circles, and twists them as
shown.

If we cut open S along the gi, we find the monodromies
of x3 − y2, three times, and of x19 − y3 once. It follows that the
Alexander polynomial is the product of the cube of the polyno-
mial for x3 − y2 and of the polynomial for x19 − y3. Therefore, we
get:

(X6 − 1)3(X − 1)3(X57 − 1)(X − 1)(X2 − 1)3(X3 − 1)3(X19 − 1)(X3 − 1)
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which is equal to

(1−X +X2)3(1−X +X3 −X4 +X6 −X7 +X9 −X10 +X12−X13 +X15 −X16 +X18 −X20 +X21 −X23 +X24 −X26+X27 −X29 +X30 −X32 +X33 −X35 +X36).
The general case

Let me only mention the most salient results.
The knots associated to a branch of a curve are always iterated

torus knots.
The knots associated to two irreducible curves F1(x, y) = 0 and

F2(x, y) = 0 are topologically equivalent through a homeomor-
phism of the 3-sphere if and only if the two associated branches
have the same Puiseux characteristic invariant. Actually, one
distinguishes these knots using the Alexander polynomials. This
was proved a long time ago for the case of knots and even for the
case of curves with two branches. The analogous fact, for non-
irreducible curves, producing links consisting of several disjoint
knots, was established much more recently.

The monodromy associated to general curves has been beauti-
fully described by A’Campo116.

116 N. A’Campo. Sur la
monodromie des singularités
isolées d’hypersurfaces
complexes. Invent. Math.,
20:147–169, 1973.

I would say that the situation is now very well understood.
It is wise to stop our excursion here if we want to continue

our promenade: there are other sites to visit. However, I would
perfectly understand some frustration from the reader obliged to
turn back on a path which seems to be (and which is) beautiful.

For much much much more on the topic, with a historical
perspective, the reader should take a look at the wonderful
survey by Weber117 and at the already mentioned118.

117 C. Weber. On the topol-
ogy of singularities. In
Singularities II, volume 475

of Contemp. Math., pages
217–251. Amer. Math. Soc.,
Providence, RI, 2008.

118 E. Brieskorn and
H. Knörrer. Plane alge-
braic curves. Modern
Birkhäuser Classics.
Birkhäuser/Springer Basel
AG, Basel, 1986.

http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002090465
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002090465
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002090465
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002090465


190 a singular mathematical promenade

The famous engraving
Melencolia by Dürer (1514).
The polytope is not K5 ! I
recommend Günter Ziegler’s
article in The Guardian
Dürer’s polyhedron: five
theories that explain Melen-
colia’s crazy cube. ©

https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/dec/03/durers-polyhedron-5-theories-that-explain-melencolias-crazy-cube
https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/dec/03/durers-polyhedron-5-theories-that-explain-melencolias-crazy-cube
https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/dec/03/durers-polyhedron-5-theories-that-explain-melencolias-crazy-cube


The Hipparchus-Schroeder-Tamari-Stasheff
associahedron

A model of K5. ©

We will forget analytic curves for a while and come back
to trees, words, and combinatorics. There is a natural dictionary
between the following three kinds of objects.

• Binary rooted planar trees with n leaves.

• Binary bracketings on a word of length n.

• Partitions of a convex polygon with (n + 1) edges (one of them
being called the root) into n triangles.

This is illustrated by the pictures in the margin. a

b c

d

a((bc)d)

a

b c

d

We have also been concerned with planar rooted trees with n
leaves and such that every internal node has at least two children.
These trees are associated with Schroeder bracketings on a
word of length n which are not necessarily binary. In terms of
diagonals on a (n + 1)-sided convex polygon, they correspond to
collections of k non-intersecting diagonals, with 0 ≤ k ≤ n. The
number of these objects is the n-th (small) Hipparchus-Schroeder
number.

An abstract polytope

We are going to construct a sequence of polytopes Kn, of dimen-
sion n − 2, called the associahedra.
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Draw an interval and label it with the unique rooted tree
with one root having 3 children and no other node. Label its
endpoints with the two rooted planar binary trees with 3 leaves.
We get the following figure. This is K3: just an interval.

It is very tempting to connect two binary trees by an edge if
one goes from one to the other by a local transition, as suggested
in the previous picture. If you detect in some binary tree some
sub-tree with 3 leaves, you delete it and you replace it by the
other tree with 3 leaves: you defined an edge in the associahe-
dron.

Let us draw a picture for n = 4. There are 5 binary trees with 4
leaves. We place them at the vertices of a pentagon. The 5 edges
are labeled by the 5 planar trees with 4 leaves and exactly one
3-children node. There is one more planar tree with one root
with 4 children. Place it in the center of the pentagon, as a label
for the 2-dimensional face of the pentagon. This is K4.

This suggests that one could define some polytope of dimen-
sion n − 2 whose vertices are labeled by binary trees with n
leaves, whose edges are labeled by trees with a single 3-children
node, etc. and whose unique top-dimensional face (of dimension
n − 2) is labeled by the single tree with one root with n children
(usually called a corolla).

Going to n = 5, we can still draw a picture.
It turns out that it is indeed possible to construct such a

polytope for all values of n. The first problem is to give a precise
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©
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definition of the word polytope in a combinatorial context. One
would like a definition inspired by our geometrical intuition
of a polytope in Euclidean space, but which should not take into
account an embedding in some space.

There is a well defined concept of combinatorial polyhedron,
whose faces are segments, triangles, and simplices in general.
Start with a set V of points called vertices and select some subsets
of V which are called faces with only one condition: a subset
of a face should be a face. If a face contains k + 1 elements, one
says that it is a k-dimensional simplex. This is a fairly easy
definition but this is not suitable in our situation. For instance
the 3-dimensional polytope K5 above has 2-dimensional faces
which are squares or pentagons, not triangles.

There are indeed several combinatorial (non-equivalent)
definitions of abstract polytopes but we will not use them since
our polytope will eventually be realized as a geometric object
in Euclidean space. Nevertheless, an abstract polytope should at
least be made of faces having some dimension, and there should
be some partial ordering between faces, corresponding to the
intuitive idea of adjacency. So, we will content ourselves with the
definition of a partially ordered set Kn of height n − 2. This is Let me define the height

of a partially ordered
set is the cardinality of a
maximal totally ordered
subset minus 1.

very easy.
For simplicity, let us choose some convex polygon in the plane

Pn+1 with (n + 1) vertices, but the following construction is
independent of the choice of this polygon. Let us also choose one
side of the polygon, called the root.

A face of dimension d of Kn is by definition a set F of n − 2− d
non-intersecting diagonals in Pn+1. The adjacency relation is
defined using the reverse inclusion: say that a face associated to
a subset F1 is a sub-face of F2 if F2 ⊂ F1. For instance, vertices of
Kn, of dimension 0, correspond to partitions of Pn+1 in (n − 1)
triangles by n − 2 diagonals. Using the root, these vertices are
associated to planar binary trees, as desired.

A face of codimension q of Kn is associated with a rooted pla-
nar tree with n leaves having exactly q internal nodes (different
from the root and the leaves), or, equivalently, having q internal
edges. Seen from the “tree point of view”, one could say that the



associahedron 195

face associated to some tree T1 is a subface of the one associated
to T2 if one obtains T2 from T1 by collapsing some edges.

For the time being, I only defined some partially ordered set.
It would not be difficult to check that this does satisfy the axioms
that define abstract polytopes. . . that I chose not to make explicit.

This is the Hipparchus-Schroeder-Tamari-Stasheff associahedron.

Dov Tamari (1911-2006).

Some history

As usual, giving a single name to a mathematical object is almost
impossible

As we know, Catalan counted the number of vertices of Kn

and Hipparchus and Schroeder counted their faces.
Dov Tamari (formerly Bernhard Teitler) defined the combina-

torial object in 1951 in his dissertation.

A figure from Tamari’s
dissertation.

I suggest reading the first chapter of the Tamari Memorial
Festschrift119 for a description of his motivation and biography

119 F. Müller-Hoissen, J. M.
Pallo, and J. Stasheff, edi-
tors. Associahedra, Tamari
lattices and related structures.
Tamari memorial Festschrift,
volume 299 of Progress
in Mathematical Physics.
Birkhäuser/Springer, Basel,
2012.

(a “promenade” in Germany, Palestine, France, Israel, the USA,
Brazil and the Netherlands, and across the twentieth century).
One learns for instance that

At least after 1948 Tamari opposed the injustices the Israelis did to
the Palestinians, as well as discrimination directed against Jewish
immigrants from Middle-Eastern countries, and these views were
not at all widely accepted in those days.

In 1963, J. Stasheff defined the same object, also in his disser-
tation, but in a very different topological context that will be
discussed in some detail in the next chapter. He was not aware
of the previous work of Tamari. The picture in the margin shows
the curved polytope from his original paper.

A figure from Stasheff.

The construction of a convex polytope in some Euclidean space
was a very natural question. According to an anecdote, Milnor
came to attend Stasheff’s PhD defense with a cardboard model
of K5.

The name associahedron was coined by Kalai who asked
Haiman if there is a geometric (non-abstract) convex polytope
in Rn which realizes Kn−2. Haiman provided some construction
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in 1984 but did not publish it. A construction was published by
Lee in 1989. Several authors provided other constructions. See
the corresponding chapter by Ceballos and Ziegler in Tamari’s
Festschrift.

Loday’s construction

I now describe a beautiful construction due to Jean-Louis
Loday120 in 2004, of a convex polytope in Euclidean space whose

120 J.-L. Loday. Realization of
the Stasheff polytope. Arch.
Math. (Basel), 83(3):267–278,
2004.

faces (in the geometrical sense) realize precisely the combina-
torics of the Hipparchus et al. associahedron.

Consider a rooted planar binary tree T with n leaves, thought
as a vertex of Kn. Label the leaves from 1 to n, from left to right.
For every pair of leaves i, j, denote by i ∨ j the node of T which
is the least common ancestor of i and j. For every integer i such
that 1 ≤ i ≤ n − 1 consider the node i ∨ (i + 1) and denote by nl(i)
(resp. nr(i)) the number of its descendant leaves along its left
(resp. right) branch. We associate to the tree T the point

M(T) = (nl(1)nr(1), nl(2)nr(2), . . . , nl(n − 1)nr(n − 1)) ∈ Rn−1.

1

2 3

4

l(3)=2 r(3)=1 
M(T)=(3,1,2)

©

Theorem. The convex hull of the set of points M(T) ∈ Rn−1 where
T describes all planar rooted binary trees is a convex polytope whose
combinatorics is precisely the one of the Hipparchus-Schroeder-Tamari-
Stasheff associahedron.

Let us show first that all the points M(T) lie on the hyper-
plane of Rn−1 whose equation is

x1 + x2 +�+ xn−1 = n(n − 1)
2

.

One way of proving this is to count the number of triples (a, b, v)
where a < b are two leaves with v = a ∨ b. Since v is determined
by a, b this number is equal to the number of pairs a < b, equal to
n(n − 1)�2. Counting the same number according to the node v,
we get the sum of the nl(i)nr(i) from i = 1 to n − 1. This proves the
claim. �
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In order to prove Loday’s theorem, we first identify the codi-
mension 1 faces F of Kn. They are labeled by (non-binary) trees
having a single interior node. They are defined by two integers
1 ≤ p < p + q − 1 ≤ n and are obtained by grafting a q-corolla at the
p-th vertex of the n − q + 1-corolla. The set Fp,q of vertices of this
face is the set of (rooted planar) binary trees which are obtained
by grafting any rooted planar binary tree with q leaves to the leaf
numbered p in any (planar rooted binary) tree with (n − q + 1)
leaves.

One could express the same thing in still a different way. A
binary tree T belongs to Fp,q if and only the leaves {p, . . . , p+q−1}
are the descendants of a single node.

Define a linear function lp,q on Rn−1 by:

lp,q(x1, x2, . . . , xn−1) = xp + xp+1 +�+ xp+q−1.

Let us evaluate lp,q(M(T)) when T is a vertex of the codimension
1 face Fp,q. We know that T is a grafting of some rooted planar
binary tree T1 with q leaves on the leaf numbered p on some
(planar rooted binary) tree T0 with n − q + 1 leaves. Clearly the i-th
coordinate of M(T) for p ≤ i ≤ p + q − 1, is the (i − p)-th coordinate
of M(T1) ∈ Rq−1 so that lp,q(T) = q(q − 1)�2 as seen earlier.

Suppose now that T is not in Fp,q, so there is at least some
leaf i in the interval {p, . . . , p + q − 1} such that i ∨ (i + 1) has
some descendant outside it. While computing lp,q(M(T)), one
gets q(q − 1)�2 if one counts only the descendants of i ∨ (i + 1)
which are inside the interval {p, p + q − 1}. Any descendant falling
outside the interval p, p + q − 1 yields a greater sum.

The proof of the theorem is finished. Indeed for each codimen-
sion 1 face Fp,q of Kn, the affine function lp,q − q(q − 1)�2 is zero
on all M(T) for all vertices T of Fp,q and positive on all M(T)
for vertices T of Kn which are not in Fp,q. In other words, we
found supporting affine functions which show explicitly that the
convex hull of the points M(T) has indeed the combinatorics of
our abstract polytope.

This is the CIRM season
greeting card for 2005,
representing K5. They even
produced a T-shirt. ©

Jean-Louis Loday (1946-
2012) lecturing on the
associahedron. ©

Jean-Louis Loday explained the discovery of this embedding
in a nice online paper121. He frequently used Guillaume William 121 J.-L. Loday. Comment j’ai

trouvé l’associaèdre.Zinbiel as a pseudonym, due to his admiration for Leibniz.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Loday.html
http://www-irma.u-strasbg.fr/~loday/associaedreHistoire.pdf
http://www-irma.u-strasbg.fr/~loday/associaedreHistoire.pdf
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“Cherry Tree”
from Cherry and Maple,
Color Painting of Gold-Foil
Paper (1592). ©



Jim Stasheff and loop spaces

Jim Stasheff. ©

There is no need to recall the importance of groups in
mathematics in general, and in topology in particular. One of the
problems is that this concept is rather subtle in homotopy theory as
explained in this chapter.

Detour! Strictly speaking,
this chapter is not necessary
for the rest of the book. It
will serve as a motivation
for the concept of operad,
which is also not necessary,
but sheds some light on
the global picture. This is
probably the most strenuous
part of our promenade. ©

Recall that two continuous maps f0, f1 ∶ X → Y are homotopic
if there is a continuous map F ∶ X × [0, 1] → Y (called homotopy)
such that F(x, 0) = f0(x) and F(x, 1) = f1(x). Two topological
spaces X, Y have the same homotopy type, if there are homotopy
equivalences f ∶ X → Y and g ∶ Y → X, i.e. maps such that f ○ g
and g ○ f are homotopic to the identity. Homotopy theory studies
the homotopy category whose objects are topological spaces and
whose arrows are homotopy classes of maps.

As a trivial example, a closed interval cannot be homeomor-
phic to a topological group since the set of its two end points is
invariant under any homeomorphism while any group acts tran-
sitively onto itself by translations. Nevertheless, the interval is
contractible: it has the same homotopy type as a point, which is
a (trivial) group. In his 1961 dissertation (published in 1963

122),

122 J. D. Stasheff. Homotopy
associativity of H-spaces. I,
II. Trans. Amer. Math. Soc.
108 (1963), 275-292; ibid.,
108:293–312, 1963.

Jim Stasheff addressed the question of determining which spaces
have the homotopy type of a topological group.

Topological groups, principal bundles

In this section, I give a very short overview of the role of topo-
logical groups in homotopy theory. My only purpose is to intro-
duce enough terminology and basic facts to be able to explain

http://www.ams.org/journals/tran/1963-108-02/S0002-9947-1963-99939-9/S0002-9947-1963-99939-9.pdf
http://www.ams.org/journals/tran/1963-108-02/S0002-9947-1963-99939-9/S0002-9947-1963-99939-9.pdf
http://www.ams.org/journals/tran/1963-108-02/S0002-9947-1963-99939-9/S0002-9947-1963-99939-9.pdf
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Stasheff’s contribution. Once again, this is a huge territory
and I have to refer to excellent books, like for instance, the one
by. . . Milnor and Stasheff123 dealing with the so-called character-

123 J. W. Milnor and J. D.
Stasheff. Characteristic classes.
Princeton University Press,
Princeton, N. J.; University
of Tokyo Press, Tokyo, 1974.
Annals of Mathematics
Studies, No. 76.

istic classes.
Let G be topological group, i.e. a group equipped with a topol-

ogy in such a way that the composition and inverse maps are
continuous. A principal G-bundle is a free action of G on some

Traditionally, in the context
of principal bundles, groups
act on the right.

space X with a “good quotient” B. Every point in X should have
a G-invariant neighborhood homeomorphic to a product U ×G in
which the G-action is just the action by translations in the second
factor. Frequently, it is more convenient to think of the bundle
as the projection map p ∶ X → B on the space B of G-orbits. A
G-bundle p′ ∶ X′ → B is isomorphic to p if there is a G-equivariant
homeomorphism between X and X′ inducing the identity on B.
We will say that the total space X is over the base B and that the
inverse image of a point by p, which is a G-orbit, is a fiber.

Take one point, two inter-
vals and a disc. Glue the
endpoints of the intervals
to the point. This produces
a figure eight. Glue the
boundary of the disc to one
component of the eight. You
get a very simple exam-
ple of a CW-complex. Of
course, in general, the gluing
maps might be much more
complicated.

At this point, we should be very cautious about the kind of
topological spaces that will be used. They should be Hausdorff
and should not be too pathological. Usually, one restricts the
study to CW-complexes. It is not my intention to give a precise
description of these spaces. I will only mention that such a space
X is by definition an increasing union of subspaces Skn(X),
called their n-th skeletons. The (n + 1)-st skeleton Skn+1(X) is
obtained from Skn(X) by gluing some (n + 1)-dimensional balls
Bn+1 along some ”attaching maps” u ∶ ∂Bn+1 → Skn(X). Hatcher’s
book124 (freely available on the Internet) is an excellent reference.

124 A. Hatcher. Algebraic topol-
ogy. Cambridge University
Press, Cambridge, 2002.

Principal bundles are fundamental objects in (differential)
topology. For instance, given a smooth manifold M of dimension
m, look at the space Fr(M) of pairs (x, f ) where x is a point of
M and f is a frame at x, in other words a basis of the tangent
space Tx(M). There is an obvious free action of the linear group
GL(m, R) on Fr(M) and the map p sending (x, f ) ∈ Fr(M) to
x ∈ M is a principal bundle.

Given a G-principal bundle p ∶ X → B and a map i ∶ B1 → B,
one can pull-back p to produce a principal bundle p1 ∶ X1 → B1.
Formally, X1 is the subspace of B1 ×X consisting of couples (b1, x)
such that i(b1) = p(x) and p1(b1, x) = b1. For instance, if i is an

https://www.math.cornell.edu/~hatcher/AT/AT.pdf
https://www.math.cornell.edu/~hatcher/AT/ATpage.html
https://www.math.cornell.edu/~hatcher/AT/ATpage.html
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inclusion, p1 is the restriction to “what is above i(B1) in X”.
Here is an important example. Let Grk,n be the space of linear

subspaces of dimension k in Rn. This is a compact manifold,
called a Grassmanian manifold. There is a tautological GL(k, R)
bundle over Grk,n whose fiber over some subspace consists of
the bases of that subspace. If a k dimensional manifold M is
immersed in Rn, then the differential of this immersion gives a
map from M to Grk,n. The pullback of the GL(k, R) tautological
bundle over Grk,n is isomorphic to the frame bundle of M.

Let me mention two important facts concerning principal
bundles.

– Any bundle with a contractible basis B is trivial(izable), i.e.
isomorphic to B ×G. See125 for the history of this theorem. 125 M. Audin. Publier sous

l’Occupation. I. Autour du
cas de Jacques Feldbau et de
l’Académie des sciences. Rev.
Histoire Math., 15(1):7–57,
2009.

– If i, i′ ∶ B1 → B are homotopic, then the pull-back principal
bundles p1, p′1 of p by i, i′ are isomorphic.
These two properties show that the set of isomorphism classes
of G-principal bundles over some space B only depends on the
homotopy type of B, and defines some contravariant functor on
the homotopy category.

Classifying spaces

Spectral sequences and
orbits of the action of
groups, by A. Fomenko. ©

A G-principal bundle pG ∶ E(G) → B(G) is called universal if
every principal G-bundle p ∶ X → B is isomorphic to the pull-
back of pG by some map i ∶ B → B(G) which is unique, up to
homotopy. Later, we will sketch a proof of the following.

Theorem. For every topological group G, there exists a universal fiber
bundle pG ∶ E(G)→ B(G).

In other words, there is a natural bijection between:
– (isomorphism classes of) G-principal bundles over some

space B.
– Homotopy classes [B, B(G)] of maps from B to B(G).

We will say that B(G) is the classifying space of G.
Let me describe two important examples. Suppose first that

G is a discrete group. In such a situation, a G-principal bundle is
nothing more than a Galois covering map with Galois group G.

http://www.numdam.org/item/RHM_2009__15_1_7_0
http://www.numdam.org/item/RHM_2009__15_1_7_0
http://www.numdam.org/item/RHM_2009__15_1_7_0
http://www.numdam.org/item/RHM_2009__15_1_7_0
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Covering spaces of a space B are described by subgroups of its For the theory of covering
spaces, see Hatcher’s book,
or Analysis Situs.

fundamental group. In this case B(G) is an Eilenberg-MacLane
space K(G, 1): its fundamental group is G and its universal cover
E(G) is contractible (equivalently all higher homotopy groups
of K(G, 1) are trivial). A G-Galois covering of some space B is
equivalent to a homotopy class of maps B → K(G, 1).

An important remark. In order to define the fundamental group of
some space X, we need a base point x ∈ X. A notation like f ∶ (X, x)→ (Y, y)
means that f (x) = y. When discussing homotopy of maps, I should
mention explicitly if this homotopy preserves base points or not. I
should. . . but I will not! This would imply long and technical
sentences and, as the reader has already noticed, this book is not
a complete encyclopedia. I hope my reader will forgive this lack
of precision.

Polyhedra and simplicial
chains 1973, by A. Fomenko.
©

As a second example, consider the group U(1) of complex
numbers of modulus 1. For every n, there is an action of U(1) on
the unit sphere S2n−1 in Cn. The element w acts on (z1, . . . , zn) to
produce (wz1, . . . , wzn). This defines a principal U(1)-bundle

pn ∶ S2n−1 → CPn

over the complex projective space. All these spheres and pro-
jective spaces are naturally nested, embedding (z1, . . . , zn)
to (z1, . . . , zn, 0, . . . , 0), so that we can define a principal U(1)-
bundle whose total space is the infinite dimensional sphere and
whose basis is the infinite dimensional projective space

p∞ ∶ S∞ → CP∞.

We will see that this is the universal bundle for G = U(1). The
key point is the following.

Proposition. A G-bundle is universal if and only if its total space is
contractible.

The proof of this fundamental fact is a typical example of
obstruction theory. Start with some G-bundle pG ∶ E(G)→ B(G)
such that E(G) is contractible and let us show that it is universal.
Consider some other G-bundle p ∶ E → B and we want to
show that it is the pullback of pG by some map i ∶ B → B(G).

http://analysis-situs.math.cnrs.fr
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We construct i on the skeletons of B (which is, as always, a
CW-complex), by induction on their dimensions. At each step,
some continuous map has to be extended and the contractibility
of E(G) is precisely what is needed for this construction. See
Milnor and Stasheff’s book for the details and for the proof of
the converse.

In the example of U(1) the classifying space B(U(1)) is CP∞
since the infinite dimensional sphere is indeed contractible.

Check everything yourself,
without opening too much
the recommended books!
Why is the sphere S∞
contractible?

Milnor’s join construction

Cellular spaces, by
A. Fomenko. ©

Milnor’s construction of B(G) is beautiful and easy126. Any

126 J. Milnor. Construction of
universal bundles. II. Ann. of
Math. (2), 63:430–436, 1956.

topological group G acts freely on itself but of course the group
needs not be contractible. Therefore, we have to force the con-
tractibility, preserving a free group action. Let E(G) be the
simplex over G. An element of E(G) is by definition some finite
formal barycentric combination of elements of G, that is to say a
formal sum

l0g0 + l1g1 +�+ lkgk

where li ≥ 0 and ∑i li = 1. This space is convex, hence con-
tractible, and is equipped with a free action of G. The projection
of E(G) on its quotient B(G) is therefore a classifying space. Et
voilà !

We should be more careful in the definition of E(G). Start
with the disjoint union of products Gn+1 ×Dn where

Dn = {(l0, . . . , ln) � li ≥ 0 and �
i

li = 1}
is the standard simplex. Then, introduce an “obvious” equiva-
lence relation generated by

((g0, . . . , gi, gi+1, gi+2, . . . , gn), (l0, . . . , li, 0, li+2, . . . , ln)) ∈ Gn+1 ×Dn≡ ((g0, . . . , gi, gi+2, . . . , gn), (l0, . . . , li, li+2, . . . , ln)) ∈ Gn ×Dn−1

and we define E(G) as the quotient space. This is Milnor’s join
construction. The name comes from the fact that “virtual connec-
tions” have been created, joining points in G.

http://www.jstor.org/stable/pdf/1969609.pdf
http://www.jstor.org/stable/pdf/1969609.pdf
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Loops and their composition

Simplicial complexes 1973,
by A. Fomenko. ©

Given a space B with a base point � ∈ B, the based loop space
W(B,�) is the space of. . . based loops ©, i.e. of continuous maps
g ∶ [0, 1] → B such that g(0) = g(1) = �, equipped with the
compact open topology. Given two based loops g1, g2, they
can be concatenated. One possible definition is to set g1 ● g2(t)
as g1(2t) for 0 ≤ t ≤ 1�2 and g2(2t − 1) for 1�2 ≤ t ≤ 1. This
composition map

W(B,�)×W(B,�)→ W(B,�)
is certainly not associative. In the composition (g1 ● g2) ● g3 we
go along g1 when t ∈ [0, 1�4], then along g2 when t ∈ [1�4, 1�2]
and finally along g3 when t ∈ [1�2, 1]. This is not the same path
as g1 ● (g2 ● g3), even though these two loops are homotopic.

Changing a little bit the definitions, we get a loop space which
is strictly associative, not only up to homotopy. Let us use the
so-called Moore loops. Such a loop consists of some number l ≥ 0
(thought as some length) and some continuous map g ∶ R+ → B
such that g(0) = � and g(t) = � for t ≥ l. There is a natural
topology on the space of these fancy loops, denoted WM(B,�),
which has the same homotopy type as W(B,�). Given (l1, g1)
and (l2, g2), their composition is defined as (l1 + l2, g̃) where
g̃(t) = g1(t) for t ≤ l1 and g2(t − l1) for t ≥ l1. This is clearly
associative. A simplicial complex is a

combinatorial concept. It
consists of a set V whose
elements are called vertices,
and a family of finite subsets
of V whose elements are
called faces. The only axiom
is that a non-empty subset
of a face is a face. Given a
simplicial complex, there is
an associated topological
space called its geometric
realization. It consists of
functions t ∶ V → [0, 1] such
that ∑x∈V t(x) = 1 and such
that {x�t(x) ≠ 0} is a face.

There is another trick, less well known, to get another space,
still with the same homotopy type as W(B,�), which is now
a topological group. This is due to Milnor (encore lui!) and
described in a book127 of Stasheff. We make a very mild assump-

127 J. Stasheff. H-spaces
from a homotopy point of
view. Lecture Notes in
Mathematics, Vol. 161.
Springer-Verlag, Berlin-New
York, 1970.

tion: B is the geometric realization of a simplicial complex with a
countable number of faces. Define a group G(B) in the following
manner. Start with the disjoint union of the Bn’s for n ≥ 0. Think
of an element of Bn as a discrete path b1, . . . , bn with n steps,
where a point, instead of following a continuous path, hops from
point to point. Consider the equivalence relation where

(b1, . . . , bi−1, bi, bi+1, . . . , bn) ≡ (b1, . . . , bi−1, bi+1, . . . , bn)
if bi = bi+1 or bi−1 = bi.
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In the quotient space, define G(B) as the subspace of classes
which have a representative (b1, . . . , bn) such that b1 = bn = � and
such that any two consecutive elements bi, bi+1 are in the same
simplex (so that, mentally, we can connect them by a segment).
The group structure is just concatenation. It is a simple exercise
to check that this is indeed a topological group, with the same
homotopy type as the loop space W(B,�).

Well, this construction is not so complicated, but to keep in
mind that the group that was produced is rather huge even if B
is very simple. This group is very seldom used “in practice”.

Anyway, we should remember that a space (B,�) defines a
useful W(B,�) equipped with some concatenation map, which
is not associative but that can be turned into an associative law
or even into a topological group, at the cost of some topological
contortions.

A final remark in this section:

Proposition. Any topological group G has the same homotopy type as
the loop space of its classifying space.

A fiber space, by
A. Fomenko. ©

I only list the keywords in the proof in order to illustrate the
kind of gymnastics required in this part of topology. If (X, x) is
a pointed space, its suspension S(X, x) is obtained from X × [0, 1]
by collapsing X × {0}, X × {1} and {x} × [0, 1], to a single point.
A map from S(X, x) to some other space (Y, y) is equivalent to
a map from (X, x) to the loop space W(Y, y). The following are
equivalent:

– a homotopy class of maps from (X, x) to W(B(G), e) (e is the
unit in G),

– a homotopy class of maps from S(X, x) to (B(G), e),
– an isomorphism class of a G-bundle over X × [0, 1] trivialized

over X × {0}, X × {1}, and {x}× [0, 1],
– a path of G-bundles pt over X and isomorphisms between

p0 and p1 with the trivial bundle X ×G.
Observe that given a trivialized bundle X ×G → X, the other

trivializations are simply given by maps X → G. Indeed an
isomorphism from X ×G → X to itself sends (b, g) to (b, u(g)g)
for some u ∶ B → G. Therefore the homotopy classes of maps
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from (X, x) to W(B(G), e) are in canonical bijections with the
homotopy classes of maps from (X, x) to (G, e). � Note that the fact that

right and left translations
commute is nothing more
than associativity.Stasheff’s theorem on H-spaces

A space (X,�) is called a H-space if it is equipped with a “multi-
plication” H is in honor of Heinz Hopf,

and not of Homotopy.m2 ∶ X ×X → X

such that m2(x,�) = m2(�, x) = x.
The question studied by Stasheff is called the recognition

problem. Is it possible to decide from X and m2 if there is some
space Y and some homotopy equivalence from (X, x) to the loop
space W(Y, y) that transforms m2 in the concatenation of loops
in W(Y, y)? This is equivalent to the recognition of topological
groups among H-spaces, up to homotopy.

This is indeed a fundamental question:
What is the right concept of group in the homotopy category?
As the reader has certainly guessed, the answer given by

Stasheff will involve the associahedron introduced in the previ-
ous chapter.

Anti-Durer - From the cycle
- Dialogue with authors of
the 16th century 1975, by
A. Fomenko. ©

Suppose that (X, x) has indeed the homotopy type of some
loop space W(Y, y) and that m2 is homotopic to concatenation.
It is convenient to use the Moore loop space WM(Y, y) with its
associative concatenation µ. The two maps

(x1, x2, x3) ∈ X3 � m2(m2(x1, x2), x3) ∈ X� m2(x1, m2(x2, x3)) ∈ X

should be homotopic since µ is associative. This condition does
not necessarily hold. If this happens, the H-space is associative
up to homotopy and we say that the H-space (X, m2) is an A1-space.
The homotopy in this case is a map from X3 × [0, 1] to X and the
factor [0, 1] should be seen as the associahedron K3.

Four terms define five maps X4 → X associated to the five
planar rooted binary trees with four leaves. These five trees can
be seen as the vertices of a pentagon K4. In the previous step, we
have considered five maps [0, 1]×X4 → X. These maps agree on
their boundaries and define a map ∂K4 ×X4 → X. If X has the



loop spaces 207

homotopy type of a loop space WM(Y), with strictly associative
multiplication µ, this map has to extend to the full pentagon
K4 ×X4 → X. If this happens, we say that X is an A2-space.

It should be clear that this picture continues in all dimensions.
We can at last state Stasheff’s theorem:

Theorem. A H-space m2 ∶ X × X → X is homotopically equivalent
to some loop space if and only if it is an A∞-space, i.e. if there exist
coherent maps mn ∶ Kn × Xn → X compatible with the faces of the
associahedron Kn (n ≥ 1).

The necessary condition is clear by now. The most interesting
part of the theorem is of course the sufficient condition, that I
will not prove in the next section.

The method of killing spaces
in homotopic topology, by
A. Fomenko. ©

Start with some A∞-space X, with compatible maps mn ∶
Kn ×Xn → X, and our purpose is to produce a space Y whose loop
space has the same homotopy type as X. We know that W(Y, y)
has the same homotopy type as some topological group G,
which in turn, has the homotopy type of W(B(G),�). Therefore,
it is tempting to choose Y = B(G), but we don’t know G.

We only know the collection of maps mn ∶ Kn ×Xn → X which
are some kind of a substitute for a group structure. Therefore,
our strategy is clear. We have to adapt Milnor’s join construction
of B(G) to these more general A∞-structures. This project has
been carried out by Stasheff.

Instead of starting with the disjoint union of Gn+1 × Dn and
identifying points according to some “obvious” equivalence
relation, start with the disjoint union of Kn × Xn and define
some “obvious” equivalence relation in this disjoint union. This
will produce a space B(X) which is the classifying space of the
A∞-space X.

The “only thing that we still has to show” is that, as expected,
the loop space of B(X) is a solution to our problem: that is to
say a delooping of X. This is not easy and Stasheff proved it with
some additional (minor) hypothesis on the topology of X.
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Cherry trees

In order to get some intuition behind this B(X), let me describe
briefly the cherry trees introduced by Boardman and Vogt128.

128 J. M. Boardman and
R. M. Vogt. Homotopy
invariant algebraic structures
on topological spaces. Lecture
Notes in Mathematics,
Vol. 347. Springer-Verlag,
Berlin-New York, 1973.Consider a rooted planar binary tree with n leaves. If the n − 2

internal edges are equipped with some length in [0, 1], we get a
metric tree. This space of metric trees defines a cube [0, 1]n−2 for
each binary tree.

If one, or more, internal edges have length 0, these edges
can be collapsed and the result is a rooted planar tree, which
is not binary anymore, but whose internal edges still have a
length. This produces some identifications along the boundary
of those cubes. The set of these metric trees defines a cubical
decomposition of Kn. Therefore Kn can be viewed as a space
of metric trees. For example the pentagon is decomposed in
five squares. This presentation of Kn as a space of metric trees
enables us to define grafting maps ik1,...,kn :

Kn × �Kk1 ×Kk2 ×�×Kkn�→ Kk1+�+kn .

Simply attach metric trees at the leaves of a metric tree.
Now, we want to picture Kn ×Xn. Simply imagine that each

leaf of our metric trees carries some element of X, thought as
a cherry. This is a cherry tree: a metric tree with cherries on the
leaves.

The classifying space B(X) can be described using this termi-
nology. Suppose that a cherry tree T contains an edge e which is
fully grown of length 1. Cutting along e, the tree T is decomposed
in two metric trees. Let us denote by T1 the part consisting of
descendants of the endpoint of e: this is a cherry tree with k ≤ n
leaves. The other tree, T0, containing the root of T, is not quite a
cherry tree since the newly created leaf, at the origin of e, is not
equipped with a cherry. We can now evaluate mk on the cherry
tree T1 and deposit the result as a new cherry on the leaf of T0
which was waiting for its cherry. This produces a new cherry
tree.

By definition, the classifying space B(X) is the quotient of the
space of cherry trees by this operation of cutting fully grown
edges and applying mk as explained.
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I will not show that the loop space of B(X) has the homotopy
type of X. I have to admit that the references that I gave do
contain proofs but are definitely not easy to read ß.

The most readable reference that I know is129. 129 E. Hoefel, M. Livernet,
and J. Stasheff. A∞-actions
and recognition of relative
loop spaces. 2013.

©

https://arxiv.org/abs/1312.7155
https://arxiv.org/abs/1312.7155
https://arxiv.org/abs/1312.7155
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A braided tree,
illustrating an operad?



Operads

Let me begin this chapter with a quote from Peter May130. 130 J. P. May. Operads,
algebras and modules.
In Operads: Proceedings of
Renaissance Conferences
(Hartford, CT/Luminy, 1995),
volume 202 of Contemp.
Math., pages 15–31. Amer.
Math. Soc., Providence, RI,
1997.

The name ‘operad’ is a word that I coined myself, spending a
week thinking about nothing else. Besides having a nice ring
to it, the name is meant to bring to mind both operations and
monads. [. . . ] What I did not foresee was just how flexible the
notion would be, how many essentially different mathematical
contexts there are in which it would play a natural role, how
many philosophically different ways it could be exploited.

According to Wikipedia, another reason for this name is that
May’s mother was an opera singer. As almost all the concepts
that we have met so far, operads “existed” much before their
birth131, or better to say, before they were baptized. May’s defi-

131 J. Stasheff. The pre-
history of operads. In
Operads: Proceedings of
Renaissance Conferences
(Hartford, CT/Luminy, 1995),
volume 202 of Contemp.
Math., pages 9–14. Amer.
Math. Soc., Providence, RI,
1997.

nition is aimed at encapsulating many kinds of operations, most
of them reminiscent of the grafting of trees that we already
encountered.

In his talk On teaching
mathematics, V. Arnold
strongly criticizes the
axiomatic approach to group
theory, as it is usually taught
in France. I fully agree with
him.

A group is much more than a set equipped with some multi-
plication map satisfying some axioms. Groups only exist through
their representations as automorphisms of “something”. In the
same way, operads only exist through their representations and
we will not spend too much time on the abstract definitions.

An operad consists of

• sets On for n ≥ 0 (thought as n-ary operations).

• some element 1 in O1 called the unit,

• for every n, k1, . . . , kn, an operad operation, i.e. a mapOn × �Ok1 ×Ok2 ×�×Okn�→ Ok1+�+kn

https://en.wikipedia.org/wiki/Operad_theory
http://pauli.uni-muenster.de/~munsteg/arnold.html
http://pauli.uni-muenster.de/~munsteg/arnold.html
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satisfying. . . some axioms. I don’t want to write down the formu-
las expressing these axioms since I would be unable myself to
read the formulas that I wrote. I prefer to give first an example

Computer scientists taught
us that some computable
bijections N →N are easy to
evaluate and have very com-
plicated inverses. Writing a
formula is usually easy and
understanding it might be
terribly complicated.

(that the reader has probably already guessed) before describing
the axioms in words.

The example is given by planar binary rooted trees. Denote
by On the set of planar binary rooted trees with n leaves, and let
1 the tree with one leaf which is at the same time the root. The
grafting operation that we used several times defines the easiest
example of an operad.

O3

O2 O1 O3 O6

Now, what are the axioms for a general operad? Grafting 1
on some tree does not change the tree. If we graft some B on
some tree A and then graft C on the result, we could as well
have grafted C on B and grafted the result on A. The operad
axioms are nothing more than that, replacing the word grafting
by the operad operation. Some unit condition and some sort of
associativity.

Of course, we could also graft rooted planar trees which are
not necessarily binary. For instance, we could use pruned trees, i.e.
rooted planar trees such that every interior node has at least two
children. This produces the Hipparchus-Schroeder-Tamari-Stasheff
operad.
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For a two page introduction to operads, see132. For a 27 page 132 J. Stasheff. What is . . . an
operad? Notices Amer. Math.
Soc., 51(6):630–631, 2004.

presentation, see133. For a more recent 634 page book on the

133 F. Chapoton. Operads and
algebraic combinatorics of
trees, journal = Sém. Lothar.
Combin. 58:Art. B58c, 27,
2007/08.

same topic, see134.

134 J.-L. Loday and B. Vallette.
Algebraic operads, volume
346 of Grundlehren der Math-
ematischen Wissenschaften
[Fundamental Principles
of Mathematical Sciences].
Springer, Heidelberg, 2012.

Here is another example of a naive operad. Choose some set
E and define On as the set of maps En → E. In this example, 1
is the identity, and the operad operations are simply given by
substitution. If you have a map f ∶ En → E and n maps fi ∶ Eki → E,
just replace xi by fi in f (x1, . . . , xn) to get a map Ek1+�+kn → E.
This satisfies the axioms that we did not write down. . . This
operad is denoted by End(E).

An algebra over some operad O (also called a representation)
is a set E and some operad map from O to End(E). In other
words, each element of On is incarnated as an n-ary operation
En → E in a compatible way.

We could work in many different categories. Instead of sets,
we could use topological spaces, homotopy types, vector spaces
etc.

I now describe more interesting examples of operads. More
will come in the following chapters.

Permutations

Recall from the beginning of this book that we studied some
combinatorial questions concerning pattern recognition. This fits
very well with the following operad.On is the set of permutations of {1, . . . , n}. I wrote “set” and
not “group” because we are not going to compose these permu-
tations. Instead, we think of a permutation as a total order on{1, . . . , n}.

Suppose that we have total orderings s, s1, . . . , sn on {1, . . . , n}
and {1, . . . , k1}, . . . ,{1, . . . , kn}. Write {1, . . . , k1 +� + kn} as a
disjoint union of n consecutive intervals of sizes k1, k2, . . . , kn.
Order these intervals according to s and inside the i-th interval,
order the elements according to the order si. This produces a
natural total ordering on {1, . . . , k1 +�+ kn}. Clearly these grafting
operations on orderings satisfy the axioms of an operad.

http://www.ams.org/notices/200406/what-is.pdf
http://www.ams.org/notices/200406/what-is.pdf
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/SLC/wpapers/s58chapoton.pdf
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/SLC/wpapers/s58chapoton.pdf
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/SLC/wpapers/s58chapoton.pdf
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In the chapter dealing with separable permutations we
noticed that any pruned planar rooted tree defines a permu-
tation of the leaves.

In other words, this defines an operad map from the Hipparchus-
Schroeder-Tamari-Stasheff operad to the Permutation operad.
We also proved that this is an embedding, as the tree can be
reconstructed from the permutation.

The free operad: Hipparchus-Schroeder again

Consider a sequence of sets (En)n≥1 and let us define the free
operad generated by the En’s. We have to create sets On’s whose
elements are produced under the operad operations starting
from elements of the En’s. Since we want a free operad, all these
new elements should be assumed to be different, unless some
use of the axioms implies that they are equal. It is not difficult to

I am conscious of the fact
that this is not a precise
definition but I am reluctant
to define this using initial
objects in categories.

construct this free operad.
An element of On is a rooted planar tree with n leaves, such

that each node with i children is equipped with some label
belonging to Ei. The operad operations are again defined by
grafting.

As an example, consider the case where all En’s are empty
except E2 containing one element. Then the free operad on one
element “of degree 2” is the operad of rooted binary trees. An
algebra over this operad is just a set with a binary operation.

As another example, let us consider the case where each En

contains a single element for n ≥ 2. We get rooted planar trees,
not necessarily binary, so that we are back to the Hipparchus-
Schroeder bracketing. An algebra over this operad is just a set
with an n-ary operation for each n.

Symmetric and non symmetric

Strictly speaking, we have dealt so far with the so-called non-
symmetric operads. In many cases, there are actions of the sym-
metric groups Sn on On which are compatible with the operad



operads 215

operations

On × �Ok1 ×Ok2 ×�×Okn�→ Ok1+�+kn .

In this case, the operad is called symmetric. Frequently, the adjec-
tive “symmetric” is omitted. I invite the reader to determine
which of the previous examples are symmetric.

Find yourself the correct
definition!

Small cubes and Stasheff again

Recall the interpretation of the associahedra Kn as spaces of
metric trees, where each interior edge has some length in [0, 1].
Grafting these trees produces maps

Kn × �Kk1 ×Kk2 ×�×Kkn�→ Kk1+�+kn .

In other words, the real nature of the sequence of polytopes Kn is
that of an operad: Stasheff’s operad. This is a topological operad
since On is now seen as a topological space.

An algebra over Kn is by definition a family of maps from
Kn ×Xn to X which defines an operad homomorphism. Clearly,
all definitions have been prepared in such a way that the operad
homomorphism condition coincides with the definition of an
A∞-space. Stasheff’s theorem can therefore be restated.

Theorem. A H-space m2 ∶ X ×X → X is homotopy equivalent to a loop
space if and only if it extends as an algebra over the Stasheff operad.

Boardman and Vogt transformed this statement still in another
way and introduced the little cubes operad. Choose some dimen-
sion d ≥ 1 and define a topological operad Cubd in the following
manner.

• Cubd(n) is the space of n-tuples (c1, c2, . . . , cn) of embeddings[0, 1]d → [0, 1]d such that the interiors of the images are
disjoint. The ci should be affine and more precisely of the
form ci(x1, . . . , xd) = (a1ix1 + b1i, . . . , adixd + bdi) (aij > 0).

• The operad operations

Cubd(n)× (Cubd(k1)×�×Cubd(kn))→ Cubd(k1 +�+ kn)
are “obvious”. Simply insert the cubes as in the figure.
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If (Y,�) is a topological space (in fact, as usual, a CW-complex)
the d-loop space Wd(Y,�) is the space of continuous (pointed)
maps from the d sphere to Y. We can also define Wd(Y,�) as the
space of maps [0, 1]d → Y which send the boundary of the cube
to the base point.

The d-loop space of Y appears naturally as an algebra over the
little cubes operad. The operad operations

Cubd(n)×Wd(Y,�)n → Wd(Y,�)
are “obvious”. Given n little cubes (c1, c2, . . . , cn) and n elements
gi ∶ [0, 1]d → Y of Wd(Y,�), we define a map from [0, 1]d to
Y. Inside the image of ci, use the composition of ci and gi and
outside use the constant function sending everything to the base
point.

In his review on the book by Markl, Shinder and Stasheff
on operads135, John Baez explains one of the motivations for

135 M. Markl, S. Shnider,
and J. Stasheff. Operads in
algebra, topology and physics,
volume 96 of Mathematical
Surveys and Monographs.
American Mathematical
Society, Providence, RI, 2002.

operads.

Most homotopy theorists would gladly sell their souls for the
ability to compute the homotopy groups of an arbitrary space.

Indeed, Boardman, Vogt136 and May137 generalized Stasheff 136 J. M. Boardman and R. M.
Vogt. Homotopy-everything
H-spaces. Bull. Amer. Math.
Soc., 74:1117–1122, 1968.

137 J. P. May. The geometry of
iterated loop spaces. Springer-
Verlag, Berlin-New York,
1972. Lectures Notes in
Mathematics, Vol. 271.

recognition theorem:

Theorem. If a connected space X is an algebra over the little cubes
operad Cubd, then it is homotopy equivalent to the d-loop space Wd(Y)
of some space Y.

More operads

I believe my young reader has understood that operads occur
almost everywhere in mathematics, at a foundational level.
Maybe this great generality makes the theory a little bit too
abstract?

Some mathematicians complain that the free group is too
abstract to be a group and that it is just a bunch of words!

http://math.ucr.edu/home/baez/operad.pdf
https://projecteuclid.org/euclid.bams/1183530111
https://projecteuclid.org/euclid.bams/1183530111
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To finish this conceptual chapter, let me give a few more
examples. Enter a formula in a mathematical program, for
instance the following one in Mathematica.

If you want to know how your computer “understands” this
formula, just type the following.

You get. . . a tree.

The nodes are labeled by operators, which could be n-ary
for every n. The leaves are "atoms". Therefore the language of a
software like Mathematica is actually some operad.

Note however that this operad is not free. For instance, the
TreeForm of sin(x + y) is the tree in the margin.
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If I substitute a for x and p − a for y and if I ask again for the
corresponding tree:

I get the trivial tree with only one node labeled with 0. Mathematica
“knows” that sin(p) = 0 so that the tree has collapsed. In other
words, the Mathematica operad is defined by generators and rela-
tions, which are built in. The user is allowed to add local rules
and works in the corresponding quotient operad.

Riemann surfaces provide another good source of operads. Sup-
pose that you have two Riemann surfaces S1, S2 with boundary.
Note that a Riemann surface is canonically oriented and that
this induces an orientation on the boundary. Suppose you have
some orientation reversing diffeomorphism f between some circle
S1 contained in the boundary ∂S1 and some circle S2 contained
in ∂S2. Glue the two surfaces along f and you produced a new
(oriented!) surface.

Gluing Riemann surfaces. ©

It turns out that this new surface is canonically a Riemann
surface, i.e. is equipped with a structure of a 1-dimensional holo-
morphic manifold. This is easy to see if f is real analytic since
in this case it can be extended to a holomorphic diffeomorphism
between small annuli, which can be used to define a holomor-
phic structure on the glued surface. You can also glue Riemann
surfaces along non-analytic diffeomorphisms, but this is not
important in our context.

Using this gluing operation defines an operad. An element ofOn is an isomorphism class of a compact Riemann surface with(n + 1) labeled boundary components, one being called entering
and the n others being exiting. Moreover, each boundary compo-
nent is equipped with a diffeomorphism with the circle. Gluing
surfaces along their boundaries, like in a Lego game, gives an
example of an operad.

Several functors can be applied to operads in order to produce
more operads. For instance, look at the operad Cub2 of little
squares. Cub2(n) has the homotopy type of the space of n dis-
tinct points in a square. Its fundamental group PBn is called the
pure braid group.
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An element of PBn consists of n little squares, numbered
1, 2, . . . , n in a square (or a disc) which move along n loops with-
out intersecting each other. At the end of the loops, the squares
came back to their initial positions and this last property is what
is meant by pure.

Using fundamental groups, we get maps

PBn × �PBk1 ×�× PBkn�→ PBk1+�+kn

and we get a group operad. This is not very complicated. An
element of PBn gives rise to n tubes in a cylinder [0, 1]2 × [0, 1].
The operad structure consists in inserting tubes into tubes.

The definition of the fun-
damental group requires
a base point. Therefore,
to define PBn, one should
choose some n-tuple of
distinct points in the square,
as “starting point" for our
braids. I suggest that the
reader finds himself these
base points in order to
define properly the operad
maps.

Three small squares follow a
loop. ©

There is no reason to limit ourselves to the 2-dimensional
case and to the fundamental group. Given a topological space
X and an integer n, the so-called configuration space X[n] is
defined as the space of n-tuples of distinct points in X. If X is
a 2-dimensional disc, it turns out that the universal cover of
this space is contractible so that, from the homotopy point of
view, only its fundamental group is interesting: this is the pure
braid group that we just introduced. However, if X is a higher
dimensional ball, X[n] is simply connected and we are tempted
to describe its topology.

For instance if X = R3 and n = 2, the answer is easy: two
distinct points x, y in space are completely defined by their mid-
point (x + y)�2 and the nonzero vector x − y. Therefore (R3)[2] has
the same homotopy type as a 2-sphere. The situation is already
more complicated for n = 3: three bodies in space. . .

A good approach is to study the homology or cohomology of
these spaces not individually, for each value of n, but globally:
the cohomology of the little cube operad.

I urge my reader to read the very accessible paper138 which

138 D. P. Sinha. The (non-
equivariant) homology of
the little disks operad. In
OPERADS 2009, volume 26

of Sémin. Congr., pages 253–
279. Soc. Math. France, Paris,
2013.

can serve as an entrance gate to operad theory. You will learn for
instance that “The homology of the little d-cubes operad is the
degree d Poisson operad” (whatever that means). The Poisson operad.

©

https://arxiv.org/abs/math/0610236
https://arxiv.org/abs/math/0610236
https://arxiv.org/abs/math/0610236
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This is a local view, centered
on Gauss, of the “tree of
mathematicians” where one
connects two mathemati-
cians if one was the advisor
of the other. ©



Singular operads

We come back to our initial discussion on the relative
position of the graphs of a family of polynomials.

The real polynomials operad

Roots or branches?
(Rio Preguiças, Brasil)

Roots and branches.
(Hong Kong)

Let (P1, P2, . . . , Pn) and (Q1, Q2, . . . , Qn) be two n-tuples of dis-
tinct polynomials in R[x] vanishing at the origin. I will say
that they are topologically equivalent if for small nonzero values
of x, the two n-tuples of real numbers (P1(x), . . . , Pn(x)) and(Q1(x), . . . , Qn(x)) are ordered in the same way. Let PolR(n)
be the (finite) set of equivalence classes of such n-tuples. Let us
construct a very simple operad structure on PolR(n).

Suppose that we are given

• (P1, P2, . . . , Pn) (a representative of) an element of PolR(n),
• for each i = 1, . . . , n, an element of PolR(ki) given by (the class

of) (Pi;1, . . . , Pi,ki).
We want to graft the Pi;j’s on the Pi’s. Just consider the k1 +�+ kn

polynomials

Pi(x)+ x2N Pi;j(x) (1 ≤ i ≤ n and 1 ≤ j ≤ ki)
in the lexicographical order of (i, j), where N is some large
integer.

Some explanations may be useful. The role of x2N is to make
sure that the terms which are added to the Pi’s are much smaller
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than the differences Pi − Pj (i ≠ j). To ensure this property, it
suffices to choose 2N bigger than all v(Pi − Pj) (i ≠ j). Fixing i, the
graphs of the ki polynomials Pi(x) + x2N Pi;j(x) are very close to
the graph of Pi. The even exponent 2N implies that, fixing i, the
order between the Pi(x) + x2N Pi;j(x)’s is the same as the order
between the Pi;j(x)’s. Topologically, the graphs of the Pi’s have
been transformed into some thin wedges in which the Pi;j’s have
been inserted.

Recall that v(P) denotes the
valuation of P.

It should be clear that this is well defined and gives an operad
structure on the PolR(n)’s. This is a symmetric operad as the
polynomials (P1, P2, . . . , Pn) can be permuted.

It should be equally clear, from the earliest chapters of this
book, that this operad is very close to the (non-symmetric)
operad of separable permutations.

Can you find an explicit
relationship between the two
operads?

The complex polynomials operad

Let us play a similar game with complex polynomials. If (P1, P2, . . . , Pn)
is some n-tuple of distinct polynomials in C[x], vanishing at the
origin, we look at the following loops in C (for 1 ≤ i ≤ n):

gi ∶ q ∈ R�2pZ � Pi(# exp(√−1q)) ∈ C.

Choose # very small. Then for every q the n points g1(q), g2(q), . . .
are distinct. This defines a loop in the space of n-tuples of dis-
tinct points in the plane, that is to say an element of the pure
braid group PBn. To be precise, I should speak of a conjugacy
class of a pure braid, since the initial points gi(0) could be any-
where and the definition of the pure braid group requires some
base point. This conjugacy class is independent of the choice of
the small #.

An unpublished manuscript
of Gauss in which he starts
the topological study of
braids.

Say that (P1, P2, . . . , Pn) and (Q1, Q2, . . . , Qn) are topologically
equivalent if the corresponding braids are conjugate in PBn.
Denote by PolC(n) the set of equivalence classes.

Is this equivalent to the
existence of a local home-
omorphism of C2 in the
neighborhood of the origin
sending each complex curve
Pi = 0 to the complex curve
Qi = 0?

Recall that the pure braid groups define one of our examples
of operads, where the operations consist in inserting braids in
tubular neighborhoods of the strands of a given braid. This
suggests that PolC(n) could be a sub-operad of the PBn. This is
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indeed the case as I show now.
We know that exp(−v(Pi − Pj)) defines an ultrametric distance

on {P1, . . . , Pn} which can be encoded by a rooted tree. The root
corresponds to the full set {P1, P2, . . . , Pn}. Its children are the
equivalence classes of the relation v(Pi − Pj) ≥ 2 etc. Until we reach
the singletons {Pi} which are the leaves, labeled by 1, 2, . . . , n.

There are two main differences with the case of real polynomi-
als.

– There is no natural order structure on the nodes, so that our
tree is not planar (after all, most trees in nature are not planar).

– In the real case, we did some pruning on the tree. We did
that since for instance the pairs (0, x) and (0, x3) are topologi-
cally equivalent over the reals: x and x3 have the same signs. But
this is not true anymore in the complex domain: the braid asso-
ciated to (0, x3) rotates 3 times unlike (0, x) which rotates only
once as x describes the boundary of a small disc centered on 0.

A non-planar tree in the
Jardim Botânico, Rio de
Janeiro.

The following (elementary) result gives a precise description
of PolC(n).
Theorem. Two n-tuples of complex polynomials (P1, P2, . . . , Pn) and(Q1, Q2, . . . , Qn) are topologically equivalent if and only if they define
the same rooted tree, or equivalently if v(Pi − Pj) = v(Qi −Qj) for all
i, j.

A 1858 England-Holland
submarine telegraphic cable
and its cross-section. ©

Let us first show that the tree determines the braid. Start from
the root and descend p edges until you reach the first node with
q ≥ 2 children. This means that the p-th Taylor polynomials of all
Pi’s are all equal and that there are q different (p + 1)-st Taylor
polynomials.

If tp denotes this common p-th Taylor polynomial, we subtract
tp from all Pi’s without changing the corresponding braid. There-
fore, (P1, P2, . . . , Pn) comes in q groups, where we place in the
same group two Pi’s with the same Taylor polynomial of order(p + 1), of the form anxp+1, for n = 1, . . . , q, where all the an’s are
distinct complex numbers. When x describes the circle of radius
# these q points anxp+1 describe small circles under the same
rigid rotation and they rotate by p + 1 full turns. This (conjugacy
class of this) braid in PBq only depends on q and p and not of



224 a singular mathematical promenade

the position of the an’s: we have q points which simply rotate in
block and describe p + 1 full turns.

Around each an#p+1 exp(√−1(p + 1)q) draw a small disc which
contains all the Pi(# exp(√−1q)) with (p + 1)-st Taylor polynomial
anxp+1. Continue the process inside each of these discs, splitting
again each group according to higher order Taylor polynomials.

The conclusion is that the braid is like a Solar system, moving
along epicycles, à la Hipparchus. It consists of a group of q small Encore lui!

discs rigidly rotating by p + 1 turns. Inside each disc, the picture
is similar. And so on, until we arrive at the gi(q)’s. All these
numbers p, q, for all these discs, are given by the combinatorics
of the tree, so that the braid (always up to conjugacy) is indeed
determined by the tree, in a very concrete way.

The apparent motion of the
Sun, Mercury, and Venus
from the Earth. ©

I explain now how to construct the tree from the braid.
Choose two integers 1 ≤ i < j ≤ n. A pure braid in PBn is a

homotopy class of a loop of n-disctinct points (x1, . . . , xn) in the
plane. Forget about all points except xi and xj: this defines some
homomorphism from PBn to PB2, for each i, j. The structure of
PB2 is very simple: it is isomorphic to Z. When two distinct
points move and come back to their original position, the vector
xi − xj is a loop in the punctured plane and has an index relative
to 0. This is the isomorphism between PB2 and Z. This defines
n(n − 1)�2 homomorphisms lki,j ∶ PBn → Z, which simply express
the number of turns of xi − xj. Two conjugate braids have the
same images by lki,j.

Let us come back to our braid defined by the gi’s. Evaluat-
ing lki,j on this braid, we are counting the number of turns of
Pi(x)− Pj(x) when x goes around the boundary of a small disc
centered at the origin. This is obviously the valuation v(Pi − Pj).
Hence, the valuations v(Pi −Pj) can be read off from the conjugacy
class of the braid, as desired. �

A pure braid with 3 strands.
©

Conversely, given a rooted tree with n leaves, it is easy to
construct n polynomials whose associated tree is the given one.

Our trees are non-planar. However, rooted non-planar trees
can be grafted as soon as their their leaves are labeled from 1
to n. Given a rooted tree T with n leaves, labeled 1, . . . , n, and n
trees T1, . . . , Tn, we can graft Ti on the leaf numbered i of T. This
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defines the operad of labeled rooted non-planar trees.
Therefore, this grafting operation defines a natural operad

structure on PolC(n). Moreover, the previous discussion shows
that PolC(n) is a sub-operad of the pure braids operad.

This is a symmetric operad,
since the polynomials can be
permuted.

We can describe this structure in formulas, directly in terms of
polynomials. Given some n-tuple (P1, . . . , Pn), define

di is the level at which the
leaf Pi is attached to the tree.

di =max
j≠i

v(Pi − Pj).
The operad action of (P1, . . . , Pn) on a family (Pi;j) (1 ≤ i ≤ n and
1 ≤ j ≤ ki) is defined as the (k1 +�+ kn)-tuple of polynomials (in
lexicographic order)

Check that this definition
does realize the grafting of
the associated labeled trees,
as desired.

Pi(x)+ xdi Pi;j(x) (1 ≤ i ≤ n and 1 ≤ j ≤ ki).
In summary PolC(n) is isomorphic to the operad of labeled rooted

non-planar trees and appears as a sub-operad of the pure-braid operad
PBn.

An operad associated to complex singular curves

For two complex polynomials Pi(x) and Pj(x) vanishing at 0, the
valuation v(Pi − Pj) is also called the multiplicity of intersection
of the two smooth curves y = Pi(x) and y = Pj(x) at the origin.
There is no surprise in this terminology since this is indeed
the multiplicity, in the usual sense of the word, of the root 0 of(Pj − Pi)(x) = 0. The previous paragraph can also be re-interpreted
in the following way.

The curves y − Pi(x) = 0 are smooth in C2. They intersect
transversally a small sphere S3

# on a trivial knot. We looked at
these knots in the square sphere max(�x�, �y�) = # and we denoted
them by gi. It turns out that the linking number of gi and gj is
nothing more than their multiplicity of intersection. This is a
topological interpretation of the multiplicity.

The last two chapters of this
book deal with the linking
number in more detail.

Linking number = 1− 1 = 0.

The linking number of two oriented knots k1, k2 in S3 is
defined in the following manner. Choose an embedded oriented
surface whose oriented boundary is k1 and count the (algebraic)
intersection number of this surface with k2.
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In our simple case, consider the link of the smooth curve
y − Pi(x) = 0 in the 3-sphere as the boundary of one of its Milnor
fibers, where y−Pi(x) is real and positive. In order to compute the
linking number of the two curves y − Pi(x) = 0 and y − Pj(x) = 0
in the 3-sphere, we have to count the (algebraic) intersection of
the knot y − Pj(x) = 0 with the Milnor fiber y − Pi(x) ∈ R+. Now(Pj − Pi)(x) = axv(Pi−Pj) +�, so that the second knot intersects
the Milnor fiber exactly v(Pi − Pj) times (one should check that
the intersections are positive). It follows that the linking number
between gi and gj is indeed the multiplicity v(Pi − Pj).

Linking number = 1+ 1 = 2.

Linking number = 4.

It turns out that most of what has been said is true for
branches of non-smooth curves. Let F(x, y) = 0 be a singular
complex analytic curve, assumed reduced, admitting n branches.
Write F = F1�Fn, a decomposition in irreducible factors. Each
branch Fi = 0 admits a Puiseux parameterization:

t ∈ C � (tmi , gi(t)).
The integer mi is the order of the branch. The intersection of each
branch with a small sphere is a knot ki, which is not trivial if the
branch is not smooth. The linking number mij of ki and kj is the

Can you prove that a branch
defines a trivial knot if and
only if the branch is smooth?

multiplicity of intersection of the two branches. The reader can view
this as a definition, if his mind is topologically oriented. If she
prefers algebra, she could proceed in the following way. Insert
the parameterization of a branch in the equation of the another
one and look at the multiplicity of the zero t = 0 of

t ∈ C � Fj(tmi , gi(t)).
Note the analogy of the two definitions: “algebraic multiplicity
of intersection of two branches” and “linking number” of two
knots. Both look asymmetric but are in fact symmetric.

It turns out that the multiplicities of intersection mij between
the branches always have the important properties that we
noticed for smooth curves.

• mij is a positive integer. This is easy.

• The mij�mimj’s satisfy some sort of ultrametric inequality. In
other words, for every # > 0, the relation mij�mimj ≥ # is an
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equivalence relation in {1, . . . , n} so that we can construct a
tree, as before (except that the length of the edges are not
integers but rational numbers).

The second item is due to Płoski139 in 1985. See140 for a 139 A. Płoski. Remarque sur
la multiplicité d’intersection
des branches planes. Bull.
Polish Acad. Sci. Math., 33(11-
12):601–605 (1985), 1985.

140 I. Abío, M. Alberich-
Carramiñana, and
V. González-Alonso. The
ultrametric space of plane
branches. Comm. Algebra,
39(11):4206–4220, 2011.

modern presentation and application and 141 for an ample

141 E. García Barroso,
P. González Pérez, and
P. Popescu-Pampu. Ultra-
metric spaces of branches
on arborescent singularities.
2016.

generalization.
We can now construct an operad of complex singular curves.

Actually, as before, we need a labeling of the branches of our
curve y = P1(x), . . . , y = Pn(x) (where the Pi’s are now the Puiseux

series gi(x 1
mi )). In other words, we consider the set of n-tuples

of distinct Puiseux series, denoted Curvn, as complex curves
with labeled branches. We now define an operad structure on the
Curvn’s exactly as we did with polynomials. Define positive
rational numbers d1, . . . , dn, associated to (P1, . . . , Pn) ∈ Curvn by

di =max
j≠i

v(Pi − Pj)
where v is now the lowest rational exponent of a non-trivial term
of a Puiseux series.

Given elements of Curvk1 , . . . , Curvkn , defined by the Puiseux
series Pi;j for 1 ≤ i ≤ n and 1 ≤ j ≤ ki, we can construct the element
of Curvk1+�+kn as the (k1 +�+ kn)-tuple

Pi(x)+ xdi Pi;j(x) (1 ≤ i ≤ n and 1 ≤ j ≤ ki)
in lexicographic order. This defines a (symmetric) operad.

Exercise:
The intersection of F(x, y) = 0 with �x� = # defines a braid,

which is not a pure braid anymore. Indeed each branch inter-
sects x = # a number of times equal to its own order mi. Unlike
the previous case, the knot defined by each branch is not trivial.

Find a topological version of the previous operad. In other
words, find a natural equivalence relation between curves
F(x, y) = 0 (with labeled branches) in terms of the associated
braids that they define. This equivalence relation should be such
that the operad actually acts on equivalence classes.

An “unpure” braid with 3
strands. ©

http://www.iri.upc.edu/files/scidoc/1313-The-ultrametric-space-of-plane-branches.pdf
http://www.iri.upc.edu/files/scidoc/1313-The-ultrametric-space-of-plane-branches.pdf
http://www.iri.upc.edu/files/scidoc/1313-The-ultrametric-space-of-plane-branches.pdf
https://arxiv.org/abs/1605.02229v1
https://arxiv.org/abs/1605.02229v1
https://arxiv.org/abs/1605.02229v1
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Gauss in 1828. ©

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Gauss.html


Gauss is back: curves in the plane

Detour! I like this
chapter, but it is
completely independent
from the rest of the book.

Many great mathematicians, past or present, have

enjoyed, or enjoy, drawing curves. As a quizz, I enclose
some pictures and my reader should guess their authors.

1 2

3 4

5 6

Solution: next page.
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Picture1wasdrawnbyGaussinhisNachlass,aroundtheprob-
lemwhichisdiscussedinthischapter.

Picture2isacubiccurvedrawnbyNewtoninhisEnumaratioLin-
earumtertiiOrdinis(1667).Inmodernterminology,Newtontries
toclassifythesealgebraiccurvesuptoprojectivetransformations.
Hespeaksofthe“generationofcurvesbyshadows”,whichisa
wonderfuldefinitionofprojectivegeometry.

Picture3isadrawingbyThurstoninhisNotesonthetopologyand
geometryof3-manifolds(1980)whichhasbeenveryinfluential.
Thispicturerepresentsatrain-track,animportantconceptwhich
isusefulinthedescriptionoftheboundaryofTeichmüllerspace.

Picture4isaknotprojectionbyTait(1884)inaseriesofpapers
whichrepresentthefirstseriousattempttoclassifyknots.

Picture5isfromaSwissbanknoteinhonorofEuler.InhisLet-
tresàuneprincessed’Allemagne,heexplainedBooleanlogictoa
Germanyoungprincess,usingdiagramsboundedbyellipses.
Hefiguredoutallthepossibleconfigurationsofintersectionsof
fourellipsesandthemanypossiblecasesareinthebackground
ofthebanknote.

Picture6isbyPoincaréinanattempttoprove“hislasttheorem”,
onthenumberoffixedpointsofanareapreservingdiffeomor-
phismoftheannulus.Actually,hedidnotproveitashepassed
awayafewmonthslater.Thetheoremwasprovedsoonafter
Poincaré’sdeathbyBirkhoff.

Gauss’s signature in 1794

(he was 17). ©
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Gauss words

In this chapter, we will review a beautiful question raised by
Gauss about curves in the plane. Recall that his first proof of
the fundamental theorem of algebra is based on the qualitative
behavior of curves inside a disc.

Volume 8 of Gauss’s Werke contains a few pages142 (page 272

142 C. F. Gauß. Werke. Band
VIII. Georg Olms Verlag,
Hildesheim, 1973. Reprint of
the 1900 original.

and 282-286) on immersed curves in the plane. We should be
careful: these are the so-called Nachlasse, notes which remained
unpublished during Gauss’s life. Do not forget his motto Pauca
sed matura (Few, but ripe). These pages should not be considered
as an actual publication but more like a private draft.

a

c

g

b

e
h

d

f

abcdefbcgehadgfh

Draw a closed generic oriented immersed curve i ∶ S1 → R2 in
the plane. Generic means that multiple points are only double
points with two different tangents. Label the double points by n
symbols a1, . . . , an (that Gauss called the Knoten). Going around
the curve, we pass twice in each of these ai’s and this defines a
cyclic word of length 2n in which each of the ai’s appears twice.
The closed curve therefore defines a chord diagram with one chord for
each ai.

a
c

e

b
g

h

d

f
h

g

a

ec

f

d

b

The question raised by Gauss is to recognize which chord
diagrams arise from some planar curve. He first lists all possi-
bilities for n ≤ 8, by hand! Then he finds a necessary condition.
Writing the word on a circle, between two occurrences of some
ai, there should be an even number of letters. In the example in
the margin, the chord d decomposes the circle in two intervals
containing respectively 6 and 8 letters.

Some modern authors claim that this was a conjecture of
Gauss and that he could not prove it. What a lack of respect! It
seems clear to me that Gauss could prove it and did not take
time to write it down in his private notebook.

One of the first theorems in topology, known to Gauss in
his PhD, as we have already noticed, is that two closed curves
in the plane intersecting transversally have an even number of
intersection points. One of the possible proofs is to move the
first curve by a generic path of translations so that at the end
of the motion, there is no more intersection point. We then
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examine how intersection points appear or disappear in generic
situations. It is not difficult to see that generically, points appear
or disappear in pairs.

A closely related fact has been noticed by all pupils drawing
doodles, during boring math classes. If you draw a generic
closed curve in the plane, the connected components of the
complement can be colored in black and white like in a checker
board. Just use white for the component at infinity and for some
other component connect it to infinity by some generic arc and
color white if this arc intersects the closed curve in an even
number of points, and black otherwise. This is coherent because
of the previous observation.

a

c
g

b

e

h

d

f

Now, Gauss’s necessary condition is an easy corollary. Any
chord decomposes the circle into two intervals I1, I2 which define
two closed curves in the plane, say g1 and g2, starting from
the same point. Slightly move these two curves to make them
transverse. The number of letters in I1 is equal to the number of
intersection points between g1 and g2 plus twice the number of
self-intersection of g1. Therefore it is even. On the picture in the
margin, one of the two loops from b to b is slightly shifted and
shown as a dotted blue loop.

This necessary condition is not sufficient as Gauss knew very
well.

Signed Gauss words

Gauss’s problem has been solved many times, in many different
ways, in different mathematical communities, basically topologi-
cal or combinatorial. This is in tune with Poincaré’s quote:

[. . . ] il n’y a plus des problèmes résolus et d’autres qui ne le sont
pas, il y a seulement des problèmes plus ou moins résolus.

I will only describe two solutions.
Let me present first a solution of a simpler problem, using

a topological argument, mixing 143, 144 and 145. If the plane is

143 N. Chaves and C. Weber.
Plombages de rubans et
problème des mots de Gauss.
Exposition. Math., 12(1):53–77,
1994.

144 G. Cairns and D. M. Elton.
The planarity problem for
signed Gauss words. J.
Knot Theory Ramifications,
2(4):359–367, 1993.

145 G. Cairns and D. M. Elton.
The planarity problem. II.
J. Knot Theory Ramifications,
5(2):137–144, 1996.

oriented, each double point of our generic curve defines two
tangent vectors, so that one of them is “the first” and the other
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is “the second”. Going around the curve, as we meet a double
point, we mark a + sign if we pass through the first branch and a− sign otherwise. Hence, the cyclic word is now decorated with
signs, or exponents, ±1. Each letter occurs twice, with different
signs. Equivalently, we could think of an oriented chord diagram
where each chord goes, say, from its + end to its − end. The
signed Gauss’s problem (that Gauss did not study) is the following.
Given such a signed word, can one decide whether it is associated
to some generic curve in the plane?

a

c

g

b

e
h

d

f

a+b+c-d-e+f+b-c+g-e-h+a-d+g+f-h-

+
-

For each symbol a1, a2, . . . , an, draw a cross, as in the margin.
Each cross has two entering sides and two exiting sides. Each
cross has two arms, labeled + and −.

A signed cyclic word w defines uniquely a way of glueing
each exit side of each cross to some entrance side of some other
cross. The result of this gluing operation is some oriented sur-
face S with boundary containing an immersed oriented curve
g. Going around this curve, we read precisely the signed word
w. If S is planar so that it can be embedded in the plane, our
problem is solved since we constructed a curve in the plane.
Conversely, if the word comes from some immersed curve in
the plane, some neighborhood of its image is clearly a union of
crosses, assembled as in S.

Therefore w is realizable by some immersed planar curve if and only
if S is planar.

For the rest of this chapter, some familiarity with the basic
theory of the homology of surfaces is necessary. This is a good
opportunity to recommend the visual book by Fomenko146. 146 A. Fomenko. Visual

geometry and topology.
Springer-Verlag, Berlin,
1994. Translated from the
Russian by Marianna V.
Tsaplina.

Opening this book, my reader will immediately understand why
I like it. A more standard book by Massey is very accessible147.

147 W. S. Massey. A basic
course in algebraic topology,
volume 127 of Graduate Texts
in Mathematics. Springer-
Verlag, New York, 1991.

Let k be the number of boundary components of S. Let Ŝ
be the surface obtained from S by gluing a disc to each of its
boundary components. The surface S has the homotopy type of
a graph with n vertices and 2n edges. Hence, the Euler-Poincaré
characteristic of Ŝ is n − 2n + k. Compact oriented surfaces without
boundary are classified by their Euler-Poincaré characteristic. As
a corollary, S is planar if and only if k − n = 2.
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This gives a very simple algorithm to decide if w is realizable.
Start with w, glue the crosses, and count the number of compo-
nents of the boundary: it should be n + 2. This is essentially due
to Carter148.

148 J. S. Carter. Classifying
immersed curves. Proc. Amer.
Math. Soc., 111(1):281–287,
1991.

I now present another point of view. It follows from the
classification of compact oriented surfaces with boundary that
such a surface is planar if and only if any two closed transverse
curves intersect in an even number of points. Indeed, as soon as
the genus of a surface is ≥ 1, it contains a punctured torus which
contains two curves intersecting exactly in one point. Hence,
to check whether the genus of S is 0, it suffices to find a basis
of its homology H1(S; Z�2Z) modulo 2, and to compute the
intersection.

σ

γ

γ

σi

γi
ai

σi

γj
ai

σi

γj
ai

σi

γj
ai

There is an easy way to find a basis of H1(S; Z�2Z). As a
preliminary observation, note that an ordered pair of points(a+, a−) on the oriented circle defines an open interval, as we
travel in the positive direction from a+ to a−. I will say that
the elements of this interval are between a+ and a−. Be careful
however: this interval is changed into its complement if the two
points are switched.

The original curve g is drawn on S and therefore defines a
homology class [g]. Moreover, for each i = 1, . . . , n, the interval
from a+i to a−i on the circle defines a loop gi on S and a homol-
ogy class [gi] in H1(S; Z�2Z). Note that when gi enters a cross,
it does not change direction with the exception of the cross
labeled ai, where it turns right. Said differently, the intersec-
tion of gi with a cross different from the one labeled ai is either
empty, or a straight segment, or two perpendicular segments.

Lemma. The classes [g], [gi]1≤i≤n define a basis of H1(S; Z�2Z).
The surface S has the homotopy type of a connected graph

with n vertices and 2n edges. The Euler-Poincaré characteristic
is −n and is equal to 1 minus the rank of H1(S; Z�2Z). Therefore
this rank is (n + 1). In order to prove the lemma we just have
to show that the [g], [gi]1≤i≤n’s are linearly independent in
H1(S; Z�2Z).

Any arc s in S with endpoints in the boundary of S defines a
linear form in H1(S; Z�2Z): just count intersection points with

http://www.ams.org/journals/proc/1991-111-01/S0002-9939-1991-1043406-7/
http://www.ams.org/journals/proc/1991-111-01/S0002-9939-1991-1043406-7/
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s (always modulo 2). For instance, choose s in some cross, as
in the margin, in the previous page. Clearly g intersects s in
only one point so that [g] is not trivial. In the cross associated
to the letter ai, let si be the sum of the two curves shown in
the margin. The intersection of si with gj is 0 if i ≠ j and 1 if
i = j. The intersection of g and si is 0. Therefore one can use the
n + 1 linear forms si and s to show that [g], [gi]1≤i≤n are linearly
independent and the lemma is proved. �

Now, the surface S has genus zero if and only if the intersec-
tion numbers of the loops g, gi are all 0, modulo 2.

Observe that the self intersection of any closed curve on any
orientable surface is 0 (over Z and hence over Z�2Z). Why ?

aj-
ai+

ai-

aj+

I

J

ai+
aj-

aj+

ai-

Let us compute the intersection number of g and gi, denoted
by g ⋅ gi. To make them transverse, move g slightly to its right in
order to get a curve g′ which is transversal to gi. Do not forget
that the surface S and the loops gi are oriented. It follows that
the intersection number of g and gi is the number of letters
between a+i and a−i . We recover Gauss’s necessary condition.

Assume from now on that it is satisfied.
Let us compute the intersection number modulo 2 of gi and

gj, denoted by gi ⋅ gj.
If the letters a±i , a±j are not linked, there are two disjoint intervals

I, J in the circle (or in the cyclic word) whose endpoints are a+i , a−i
and a+j , a−j respectively. Since gi can be replaced by gi − g in the
computation of the intersection number, it follows that, in this
unlinked case, gi.gj is the number of letters in the word with one
occurrence in I and the second in J. This is therefore a second
parity condition, necessary for the realizability of w.

If the letters a±i , a±j are linked, the loops gi and gj are not
transversal since they coincide on some non-trivial interval.
Move gi slightly to the right, to produce some g′i , and move gj to
the left, to get some g′j. The curves g′i andg′j are now parallel on
this common part. We now count the intersection number of g′i
and g′j. Look at the picture.

There is one intersection in the cross aj and none in the cross
ai. The other intersections correspond to letters between a+i and
a−i whose second occurrence is between a+j and a−j .
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Hence, when a±i , a±j are linked, the intersection number gi.gj is
equal to 1 plus the number letters between a+i and a−i whose other
occurrence is between a+j and a−j .

We therefore get a very simple answer to the signed Gauss’s
problem.

Equivalently, the first two
necessary conditions can be
expressed in terms of the
chord diagram.

1/ Every chord is
intersected by an even
number of chords.

2/ Given two non-

intersecting chords, the
number of chords intersect-
ing both of them is even.

Theorem. A signed Gauss word is realizable by a planar immersed
curve if and only if the following conditions are satisfied.

1. For every letter ai, there is an even number of letters between a+i
and a−i (Gauss’s parity condition).

2. For every i, j such that the letters a±i and a±j are not linked, let
I, J be the disjoint intervals whose endpoints are a+i , a−i and a+j , a−j
(excluding these points). The number of letters in the word with one
occurrence in I and the other in J is even.

3. For every i, j such that the letters a±i and a±j are linked, the number
of letters between a+i and a−i whose other occurrence is between a+j
and a−j is odd.

Gauss’s problem

Let us come back to the original problem: non-signed words. Of
course, we could cheat and try all the 2n ways of choosing signs
on the word. That might take a terribly long time. Even Gauss’s
computational force could have been beaten by 2n. Moreover this
would not be very enlightening.

Note that Gauss’s parity criterion is independent of the signs.
The second condition, in the case where a±i and a±j are not linked,
is also independent of the signs.

We therefore assume that they are both satisfied for a non-signed
word w.

Let me introduce the so-called interlace graph G(w). Its vertices
are the integers 1, . . . , n, or the chords ai, and there is an edge
between two chords if they intersect.

a1

a5

a6

a2

a2

a5

a4

a6

a4

a3

a3

a1

Here is an example from Cairns and Elton’s paper:

w = a1a2a3a4a5a1a6a3a2a5a4a6.
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One checks easily that Gauss’s parity condition is satisfied as
well as the second condition in the non-linked case.

The interlace graph is represented in the margin.

1
0

a1

a2

a3
a6

a4

a5

0

0

1
11

1

1

00 0

Choose some signed word w whose unsigned associated word
is w, for instance

w = a+1 a+2 a+3 a+4 a+5 a−1 a+6 a−3 a−2 a−5 a−4 a−6 .

Since we are back to signed words, we know how to compute the
intersection numbers gi.gj of the associated loops. This defines
an element f (e) ∈ Z�2Z for each edge e of G(w). For instance,
the two chords 1 and 3 intersect. On the margin picture, there
is no letter in the interval from a+1 to a−1 (in dotted green) whose
other occurrence is between a+3 and a−3 (in dotted blue). Therefore
g1 ⋅ g3 is equal to 0 + 1 modulo 2 and we write a 1 on the edge
connecting a1 and a3 in the graph. Since we see 1 on some edges
in our example, this signed word is not realizable by an immersed
curve in the plane.

We now have to decide if there could exist a clever change in
the signs in the letters so that all edges could be labeled by 0.

a1-
a5+

a6+

a2+

a2-

a5-

a4-

a6-

a4+

a3+

a3-

a1+

This labeling f (e) can be thought as a 1-cochain f (with
values in Z�2Z) in the graph, hence a 1-cocycle (since there are
no 2-faces in a graph). Let us examine how this cocycle changes
when the signs on w are modified. A change of signs is defined
by some function u from {1, . . . , n} → Z�2Z, that we can think
of as a 0-cochain in our graph. I claim that the new 1-cocycle f ′
on G(w), after the sign change associated to u, is simply equal
to f + du, where du is the coboundary of u. This du, evaluated on
some edge e is by definition the difference (or sum since we work
modulo 2) of the values of u at the two endpoints of e.

Let us begin by changing only the sign of one letter, say ak.
For every i, j such that the letters a±i and a±j are linked, in other
words for each edge of the graph G(w), we have to compare
two intersection numbers, for the two signed words w, w′ whose
signs only differ on the letter k. Clearly, these intersection num-
bers are equal if k is different from i and j. It turns out that they
differ by 1 (modulo 2), when k = i or k = j. For instance, if k = i,
we have to compare:
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1/ the number of letters between a+i and a−i whose other
occurrence is between a+j and a−j , and

2/ the number of letters between a−i and a+i whose other
occurrence is between a+j and a−j .

Modulo 2, this difference is the number of letters between a+j
and a−j , different from ai. This number is odd since we assumed
that Gauss parity condition and a±i and a±j are linked. Hence, the
effect of changing signs on a single letter ak is to change by 1 the
labels on the edges of G(w) with ak as an endpoint, and not to
modify the other labels. So the formula f ′ = f + du holds in this
simple case. The general case follows since we can change signs
one by one.

As a consequence, the object which is well defined, indepen-
dently of the signs, is the cohomology class of f in H1(G(w); Z�2Z).
This class is zero if and only if the cocycle is zero for some choice
of the signs, i.e. if and only if the unsigned word w is realizable
by an immersed generic curve in the plane.

Finally, a cohomology class in a graph is trivial if and only if
it is zero when evaluated on cycles. This gives a very efficient
algorithm. Choose any signed word w, compute the 1-cocycle,
and sum its values on cycles in the interlace graph.

In our example, the cycle a1 → a3 → a5 → a1 in G(w) gives a
total sum 1 so that the unsigned word w is not realizable by an
immersed curve in the plane.

See149 for a history of the problem until 1972 and150 for a

149 B. Grünbaum. Arrange-
ments and spreads. American
Mathematical Society Provi-
dence, R.I., 1972. Conference
Board of the Mathematical
Sciences Regional Confer-
ence Series in Mathematics,
No. 10.
150 C. Godsil and G. Royle.
Algebraic graph theory,
volume 207 of Graduate
Texts in Mathematics. Springer-
Verlag, New York, 2001.

more recent book.

The genus of a chord diagram

Detour in the detour.

Let w be a diagram with n chords. Take an annulus and glue n
bands on its boundary according to w, as in the figure next page.
You get a surface S(w) with boundary, which has some genus
(which is by definition the genus of the closed surface obtained
after gluing discs on each boundary component): this is the genus
g(w) of the chord diagram.

There is a nice way to compute this genus, due to Moran151.

151 G. Moran. Chords in a
circle and linear algebra over
GF(2). J. Combin. Theory Ser.
A, 37(3):239–247, 1984.Consider the n × n matrix whose coefficients aij ∈ Z�2Z are

http://www.sciencedirect.com/science/article/pii/0097316584900487
http://www.sciencedirect.com/science/article/pii/0097316584900487
http://www.sciencedirect.com/science/article/pii/0097316584900487
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equal to 1 if the two occurrences of ai are linked with the two
occurrences of aj and 0 otherwise. This is the incidence matrix of
the interlace graph, modulo 2.

Theorem. The genus of a chord diagram is half the rank of the incidence
matrix modulo 2 of the interlace graph.

The proof given by Moran is rather involved but can be pre-
sented in a simpler way.

The chords can be seen as arcs in S(w).
We can also see these chords as arcs in the 2-dimensional disc.
Glue the disc and S(w) along the outer circle to get a surface

S′(w). The two copies of each chord define loops b1, . . . , bn

generating the homology of S′(w). In this basis the intersection
of bi and bj is 0 if i, j don’t link and 1 if they link.

We now glue k discs along the boundary components of S′(w)
in order to produce a closed oriented surface Ŝ(w). The embed-
ding of S′(w) in Ŝ(w) induces a surjection in the first homology
modulo 2. Indeed any loop in Ŝ(w) can be homotoped away
from the discs that have been added. However, this embedding
does not induce an injection in homology. Indeed, when we glue
discs along the boundary, boundary components die in homol-
ogy since they are now. . . boundaries of discs. Nevertheless, any
element in the kernel is in the kernel of the intersection form
of S(w) since it is homologous to a collection of curves parallel
to the boundary. It follows that the intersection form on S′(w),
modulo its kernel, is isomorphic to the intersection form of Ŝ(w).
For a closed oriented surface of genus g the intersection form is
non-degenerate of rank 2g. �
A theorem by Lovász and Marx

There is a different solution to Gauss’s problem. It fits very well
with our description of separable permutations as those avoiding
the two patterns 3142 and 2413. Interestingly, this theorem is
published with no proof152. I hope the reader will enjoy finding

152 L. Lovász and M. L. Marx.
A forbidden substructure
characterization of Gauss
codes. Acta Sci. Math.
(Szeged), 38(1–2):115–119,
1976.

the proof her(him)self.

https://projecteuclid.org/euclid.bams/1183537624
https://projecteuclid.org/euclid.bams/1183537624
https://projecteuclid.org/euclid.bams/1183537624
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Given a generic immersed planar curve there are two ways to
delete a given double point, illustrated in the margin. In the first,
the curve is split into two components, so that we can choose one
of them.

From the combinatorial point of view, these two operations
can be expressed in the following way.

– Starting from a word w = aUaV, delete a and consider the
word UV−1 (all words are written cyclically).

– Starting from a word w = aUaV, delete a and all the letters
that appear in V.

Therefore, each word w produces some other words with less
letters. The pictures in the margin show that the new words are
realizable if the first was. Continue and produce new shorter
words. These shorter words are said to be contained in the initial
word w.

Theorem. A Gauss word is realizable if and only if it does not contain
the word a1a2�ana1a2�an for n even.

Note that the interlace graph of a1a2�ana1a2�an is the com-
plete graph on n vertices.

A Gaussian operad

I define an operad structure on the set of Gauss words. More
precisely, I will deal with generic marked oriented immersed
curves in the plane R2 � C. Generic means as before that mul-
tiple points are only double points with two different tangents.
Marked means that we have chosen one of the double points as
the “starting” point and that the remaining double points are
labeled from 1 to n.

Since the plane and our curve are oriented, any double point
defines a compass rose: the four intersection points with a small
circle around the point can be labeled by the cardinal directions.

If the marked starting point is sent at infinity by inver-
sion, we get a picture composed of two oriented long curves,
gb, gr ∶ R → R2 (blue and red) with the following properties.
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• The blue (resp. red) curve gb (resp. gr) goes from South to
East (resp. from West to North). More precisely gb(t) is equal
to it for large negative values of t and to t for large positive
values of t (resp. t and it).

• gb and gr are immersed and the only multiple points of their
union are transversal double points labeled 1, . . . , n.

Denote by Gn the set of pairs of curves satisfying these proper-
ties and having n double points, up to orientation preserving
diffeomorphisms of the plane.

1

2

3

4 56

An element of G6.

There is a natural operad structure on the union of the Gn’s.
Take a pair (gb, gr) of blue-red curves as above having n

labeled double points.
1

2

3

4 5
6

Choose n pairs of blue-red curves (gb,i, gr,i) (for i = 1, . . . , n),
having k1, k2, . . . , kn double points. Dig small discs around the
double points of (gb, gr). We would like to insert the (gb,i, gr,i)’s
into the disc with label i, respecting the cardinal directions.
However, this is not possible. When we dig a hole, blue curves
go from South to North and red curves go from West to East,
so that this is not coherent with the South-East and West-North
behavior of the blue and red curves (gb,i, gr,i) that we want
to insert. It is easy to bypass this problem. Before inserting
in the (gb,i, gr,i)’s, it suffices to insert first a standard annulus
containing oriented arcs switching North and East.

N

S

EW

The result of this cut and paste operation is a pair of curves
with k1 +�+ kn double points.

This is the Gaussian (symmetric) operad. Can you find a generat-
ing system? relations among generators?

To conclude this chapter on some wide opening, I recommend
the book153 which is a remarkable and understandable introduc-

153 S. Chmutov, S. Duzhin,
and J. Mostovoy. Introduction
to Vassiliev knot invariants.
Cambridge University Press,
Cambridge, 2012.tion to Vassiliev knot invariants, where chord diagrams play a

crucial role.

https://arxiv.org/abs/1103.5628
https://arxiv.org/abs/1103.5628
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The Kanji character for
“tree”. ©



Analytic chord diagrams:
an algorithm

In this chapter, we reach one of our goals: the algo-
rithmic description of the chord diagrams that occur in the
neighborhood of a singular point of a planar real analytic curve.

Recall that such a curve intersects a small circle around the
singular point at an even number of points which come in pairs,
each pair being associated to some real branch.

A curve with three branches.

a a
b

bc

c

abaccb

One can think of this structure as a cyclic word of length 2n
in which every letter occurs exactly twice (where the names of
the letters are irrelevant). To be more pedantic (and precise),
we are discussing fixed point free involutions on Z�2nZ up to
conjugacies by cyclic permutations. We can also draw n chords
in a circle.

Sometimes I skip the word
“chord” in “chord diagram”.

The total number of these chord diagrams of length 2n has
been studied in many papers. See for instance154 with strong

154 A. Stoimenow. On the
number of chord diagrams.
Discrete Math., 218(1-3):209–
233, 2000.

motivations from knot theory. The problem would be easy
if, instead of a cyclic word, we look for standard (non-cyclic)
words of length 2n in which every letter occurs exactly twice
and in which the names of the letters are irrelevant. Indeed,
write the first letter of the word and then choose any of the
remaining 2n − 1 locations for the other letter which is identical
to the first, then write the second letter in the first available free
place and choose the other identical letter in any of the 2n − 3
remaining locations etc. Therefore the total number of these
words is (2n − 1) ⋅ (2n − 3)�3 ⋅ 1. These numbers are sometimes

http://www.sciencedirect.com/science/article/pii/S0012365X99003477
http://www.sciencedirect.com/science/article/pii/S0012365X99003477
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called double factorials and denoted by (2n − 1)!!. See155 for a 155 D. Callan. A combinatorial
survey of identities for the
double factorial. 2009.

presentation of their combinatorial properties.

Caution! The double facto-
rial (2n − 1)!! is neither the
factorial of the factorial nor
an exclamation point!

It would be tempting to divide (2n − 1)!! by 2n to take into
account the cyclic permutations, but some words do admit
symmetries and this is why the combinatorics is more subtle. In
any case, it follows from these considerations that the number of
chord diagrams of length 2n grows super-exponentially in n.

Use Stirling’s formula to
show that (2n − 1)!! is
equivalent to

√
2 � 2

e �n en log n

when n tends to infinity. So(2n − 1)!! is indeed growing
super-exponentially, but not
much faster. For instance
it is small when compared
with Cln1+#

for any # > 0 and
l > 1.

We will see that a very tiny proportion of chord diagrams are
analytic, in the sense that they are associated to some singularity
of a planar analytic curve.

A necessary condition

Recall that in the first chapter of this book we showed that for
any separable permutation, there are two consecutive integers
with consecutive images. This was the key point which enabled
us to produce an algorithm deciding if a permutation is separa-
ble. I now prove a similar property for analytic chord diagrams.

I will say that a chord in a diagram is solitary if it connects
two consecutive points of the diagram as in the picture on the
left below. Two chords are parallel (resp. antiparallel) if they are
as in the second (resp. third) picture, i.e. if the corresponding
letters a, b occur in the cyclic word as �ab�ba� (resp. �ab�ab�).
Finally, two chords as in the fourth picture constitute a pitchfork
(�a�bab�).

Fundamental lemma ©. Any analytic chord diagram contains a
solitary chord, a pair of parallel or an antiparallel chords, or a pitchfork.

© Some theorems or lemmas
are so famous that it seems
to be forbidden to use
words like “Theorem A, B”
(Cartan), or “Fundamental
lemma” (Ngo).

arXiv:0906.1317
arXiv:0906.1317
arXiv:0906.1317


analytic chord diagrams 245

Let us observe that this implies immediately the theorem that
was stated in the preface.

Theorem. There is no singular analytic curve in the plane consisting
of five branches intersecting a small circle as in the picture in the
margin. �

A AB

B

C

C
D

D E

E

Impossible five branches.

Let us blow up

A beautiful Quipu: a knotted-
string device that was used
by the Incas for recording
statistical information.
Like a blown up projective
line? (Centro Mallqui,
Leymebamba, Peru)

©

Start with some singular point of some analytic curve in the
(real) plane. Blow it up a first time. The result is a curve in some
Moebius band, whose singular points are on the exceptional divi-
sor, core of the band. If things go well, the singular point splits
into several singular points, presumably simpler. Let us blow
up all of them. It could happen that after one blow up, there is
still a unique singular point on the divisor. Then, blow it up a
second time. Let us continue the blowing up process as many
times as necessary. We know that after some time, the singularity
will be resolved. This means that the strict transform of the initial
curve is now a collection of n disjoint smooth analytic curves
intersecting transversally the exceptional divisor.
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This exceptional divisor is a union of real projective lines
which are circles intersecting transversally. Consider the graph
whose vertices are these projective lines and where an edge con-
nects two vertices if the projective lines intersect. This graph is a
tree as can be easily seen by induction. Indeed, in the inductive
process of desingularization, at each step we blow up a point
which can be either a smooth point of the exceptional divisor, or
an intersection of two projective lines. In the first case, a new leaf
is grafted to a tree and in the second case, an edge is split into
two edges. The first projective line, coming from the first blow
up, can be chosen as the root of this tree.

It will be convenient to blow up once more each of the n
points on the exceptional divisor, if necessary, introducing new
projective lines, in order to make sure that at the end of the
process each projective line contains at most one point of the
strict transform. We can even suppose that those components
of the divisor which meet the strict transform are leaves of
desingularization tree.

β1

β2

Let us sum up. Given some analytic curve C defined in a
neighborhood of (0, 0) in R2 by some equation F(x, y) = 0, we
can construct the following objects.

• A surface S with connected oriented boundary.

• An exceptional divisor E ⊂ S, consisting of a certain number
of circles intersecting transversally, each pair meeting at most
once. The associated intersection graph is a rooted tree. The
embedding E ⊂ S is a homotopy equivalence.

• A finite disjoint union Ĉ of smooth analytic arcs b1, . . . , bn in
S intersecting transversally E. The intersection of Ĉ with of
a component of E is empty if this component is not a leaf of
the tree, and contains at most one point if it is a leaf. We can
assume moreover that Ĉ is transversal to the boundary of S
and that each arc bi intersects the boundary in two points.

• A blowing down analytic map Y ∶ S → R2, collapsing E to the
origin, which is a diffeomorphism from S� E onto some small
punctured disc, and which collapses Ĉ to our singular curve C.



analytic chord diagrams 247

Recall that each loop in S can be orienting or disorienting.
Let g be a closed immersed curve in a surface, passing once
through a point x. When the surface is blown up at x, the self-
intersection modulo 2 of the strict transform of g (in the blown
up surface) is equal to the self-intersection of g (in the original
surface) plus 1. In the inductive construction, when a projective
line appears for the first time in the exceptional divisor, it is the
core of a Moebius band, of self-intersection 1. Later on, some of
its points may be blown up. Each of these blowing ups permutes
the orienting/disorienting status of a component of the divisor.
The previous pictures in the margin (six lines, a tree with six
vertices, and six circles) correspond to the same example that
was analyzed in the chapter on necklaces: it is obtained after
six blowing ups. I indicated in blue the components which
correspond to Moebius bands.

Some of the components of E intersect the desingularized
curve Ĉ: they define some of the leaves in the desingularization
tree. Call those leaves colored. Observe that some leaves might be
non-colored.

Note that if we choose some orientation of each component
of E, the corresponding tree is planar so that the children of any
node are linearly ordered. Changing the orientation reverses this
order.

An example

Look at the necklace in the margin. This is still the same object
that was already discussed in the chapter on Moebius necklaces.
Six blow ups produced six bands, two orientable and four non-
orientable. The exceptional divisor consists of the six cores of
the six bands. The desingularized curve consists of three red
arcs, labeled a, b, c, each intersecting the boundary of S in two
points. On top, we see in black the strict transform of the y axis.
Going around the boundary of S we can read the corresponding
analytic chord diagram. Just follow the arrow and read abacbc. I
must admit that it is not so easy to follow the arrows!
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Proof of the fundamental lemma

A first trivial observation is that the operation of deleting a chord
in an analytic diagram transforms it into some other analytic
diagram. It corresponds to deleting a branch.

The fibers of p. Do not
confuse p (from S to the
divisor E) with Y (from S
to a disc) which is blowing
down E to a point.

to the 
root

L

to the 
root

Start with some chord diagram w associated to some singu-
larity of a planar analytic curve. Consider a desingularization
tree as before. There is a projection p of the surface S onto the
exceptional divisor E which is a homotopy equivalence. For
every point x ∈ E, the fiber p−1(x) is an arc connecting two
points of the boundary if x is a regular point, and a cross if x is
the intersection of two circles.

Let L be some node of the tree, i.e. one of the projective lines
that constitute the exceptional divisor E. There is a unique chain
of nodes going from L to the root. Cut two disjoint arcs in S as in
the figure, in order to disconnect L from the root in S. The four
endpoints of these arcs decompose the circle boundary of S in
four intervals. Two of them (colored red) correspond to “what
is in L or below L” in the tree. Going around the boundary
of S and reading the chord diagram, we therefore find two
disjoint intervals of letters, below L, whose union is stable under
the involution sending each occurrence of a letter to the other
occurrence. Note that these intervals could be empty if there is
no colored leaf below L. If there is a colored leaf below L, at least
one of the two intervals is non-empty, but it could be the case
that only one is not empty.

In summary, every node L in the tree defines a chord diagram
w(L) which is a sub-diagram of the original diagram w and which is

“connected" in the sense that its letters form one or two intervals in w.

L

L1 L2

Colored leaves are green!

Think of a rooted tree as a genealogy tree, the root being
the founding member of the family. Each node has a certain
number of descendants, some of them being colored leaves.
Let L be one of the youngest members of the family having at
least two colored leaves as descendants. Among the children of
L, let L1, . . . , Lk be the list of those having at least one colored
descendant (ordered in this way along L). We have k ≥ 2 since
otherwise one of the children of L would have at least two
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colored descendants. For the same reason, each Li has a unique
colored descendant.

L

L1L1

L2 L2

Now cut the surface S as in the margin figure, disconnecting
L1 and L2 from the root and from all other colored leaves. As
before, this defines two (green) intervals on the boundary of S
whose union contains exactly four points of our initial diagram,
associated to two chords. Two chords in two intervals can be
organized in the following twelve ways.

In each case, there is a solitary chord, a pitchfork, or a pair of
parallel or antiparallel chords.

This is the end of the proof of the fundamental lemma. �
More non-analytic diagrams

We have observed that the deletion of some letters in an ana-
lytic chord diagram produces another analytic diagram. Let us
say that a diagram is basic non-analytic if it is non-analytic but
becomes analytic as soon as a single chord is deleted. Clearly a
chord diagram is analytic if and only if it does not contain a basic
non-analytic chord diagram. Recall that a permutation is separa-
ble if and only if it does not contain the Kontsevich permutation(2, 4, 1, 3) or its reverse permutation (3, 1, 4, 2), so that in this
case there are only two basic non-separable permutations. The
situation is more complicated in the case of chord diagrams.

Theorem. There is an infinite number of basic non-analytic chord
diagrams.
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Here is an example that will be denoted by Cn (n ≥ 5). Con-
sider the 2n points of Z�2nZ ordered in a natural way on the
circle. The chord diagram pairs 2k and 2k + 3 for k = 1, . . . , n. For
n = 5, this is our previous example of non-analytic diagram with
five chords. This diagram Cn (n ≥ 5) is not analytic for the same
reason as in the case n = 5. We still have to show that if one letter
is deleted, the remaining diagram is analytic. For this, we need
a sufficient analyticity condition. This will be provided by a very
simple algorithm deciding if a chord diagram is analytic.

Theorem. The following algorithm decides if a chord diagram is
analytic:

1. If there is no solitary chord, no pitchfork, and no pair of parallel or
antiparallel chords, the diagram is not analytic.

2. If there is a solitary chord, delete it and continue. If there is a
pitchfork, delete the “small chord” and keep the handle. If there
is a pair of parallel or antiparallel chords, delete one of them and
continue.

3. If you end up with the empty diagram, the original one was ana-
lytic.

11

4

3

2

The proof is easy. We have to show that if w is a diagram
and if w is the new diagram with one less chord obtained after
one step of the algorithm, then w is analytic if w is analytic.
The converse is easy: if w is analytic, w is also analytic since
it corresponds to deleting a branch. We now have to add an
additional branch.

Choose some desingularization of some singular point on
some surface S. A chord corresponds to some smooth arc g

(in blue in the margin) connecting two points on the boundary,
transverse to the divisor at some point x. Add a new analytic
smooth (red) curve g′ in S, also transverse to the divisor, very
close to g and transverse to g, as in 1/. The implosion of S pro-
duces a new singular point with one more branch. Clearly, the
new diagram has one more chord which is parallel or antipar-
allel to the initial chord, depending on the orientations on the
boundary. Choose now g′ as in 2/ with a quadratic tangency
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with g at x and you get the other parallel or antiparallel situa-
tion.

In case you want to create a pitchfork with a given handle,
just add a smooth curve g′ close to g with a quadratic tangency
with the divisor as in 3/.

Finally, if you want to add a solitary chord right after some
given letter, proceed as in 4/. � u

u
v

v

Let us test our algorithm on the previous diagram on Cn

(n ≥ 5). Deleting one chord, we get a non cyclic chain of n − 1
chords. The first two chords u, v define a pitchfork, so we may
delete the first chord and continue until there is only one chord
left. This diagram is therefore analytic. There is indeed an infi-
nite number of basic non-analytic diagrams.

With a computer

In order to count analytic chord diagrams, let us use a computer
to test for small values of n. This is easy. We first list all possible
words of length 2n in which each letter occurs twice. The only
subtlety is to take into account the cyclic character of the word
under consideration. Here is the result for n ≤ 7.

In the following table:

n 2 3 4 5 6 7

Words 3 15 105 945 10395 135135

Chord diagrams 2 5 18 105 902 9749

Up to symmetry 2 5 17 79 554 5283

– Words means “words of length 2n in which each letter
occurs twice”. The number of these words is the double factorial
of 2n − 1.

– Chord diagrams, as we have defined them, are words up to
cyclic permutations.

– The image of a chord diagram by a symmetry with respect
to some line is another diagram, which may be the same dia-
gram or not. The item “up to symmetry” counts the number of
words up to these dihedral symmetries.
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We then count the number of analytic diagrams. This is in
principle not difficult, using the algorithm that was described
earlier.

The On-Line Encyclopedia of
Integer Sequences, A007769,
A054499, A279207, A279208.
Neil Sloane added the last
two sequences based on a
preliminary version of this
book.

The result is:

n 2 3 4 5 6 7

Analytic diagrams 2 5 18 102 817 7641

Up to symmetry 2 5 17 76 499 4132

It follows that for n ≤ 4, all diagrams are analytic.
Among the 105 diagrams with 5 chords, only the 3 examples in the

margin are not analytic.
C5

The 3 basic non-analytic
chord diagrams with 5
chords.

The first diagram is already familiar, under the name C5. Let
me denote the others by and . It was not difficult for me to
guess the first but I must admit that I did not find the two others
by hand but with a computer.

Among the 902 diagrams with 6 chords, 85 are not analytic. How-
ever, the non-analyticity of most of them is due to the fact that
one of their sub-diagrams is not analytic. There are only two
diagrams with 6 chords which are basic: they are non-analytic
and all their sub-diagrams are analytic.

C6

The 2 basic non-analytic
chord diagrams with 6
chords.

Observe that the first one is the member C6 of the infinite
family of basic diagrams Cn. It corresponds to Z�12Z where
every even number k (mod 12) is connected to k + 3 (mod 12). The
second will be denoted by .

Among the 9749 diagrams with 7 chords, 2108 are not analytic. The
only basic non-analytic example is C7.

In the next chapter, I will show that my computer did find all
basic non-analytic diagrams.

Marked chord diagrams

To conclude this chapter and to place it on a more general
context, I would like to describe an operad structure which
is behind the curtain. It will be convenient to introduce first a
slight strengthening of the notion of analytic chord diagrams.

When we proved that our algorithm does decide if a diagram
is analytic, the key point was the possibility of inserting a new

https://oeis.org/A007769
https://oeis.org/A054499
https://oeis.org/A279207
https://oeis.org/A279208
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branch. It turns out that more complicated singularities can also
be inserted, as I explain now. Consider a desingularization of
some curve C as before, so that we have a surface S, a divisor
E, and a collection of smooth curves b1, . . . , bn intersecting E
transversally in a finite number of points, p1, . . . , pn, where n is
the number of real branches. Choose one of these points, say p1.
Choose now some other singular curve C1, with n1 real branches,
and assume that it does not contain the y axis. Delete b1 and
replace it by a copy of C1 in the surface S, in such a way that
the y axis for C1 is mapped into the divisor E and the singular
point of C1 is mapped to p1. We can now blow down the union
of this copy of C1 and b2, . . . , bn. The result is a new singular
point, with n + n1 − 1 branches: one of the branches of C has been
replaced by a copy of C1.

β2

β1

β2

a1

a1

a2a2

a3

a3

Right = a1a2, Le f t = a1a2a3a3

Note that Le f t or Right
might be empty.

Let us examine the effect of this kind of operations on the
associated chord diagrams. Looking at the diagram associated
to C1, we see that the y axis decomposes the word of length 2n1
in two components, Le f t and Right. In the new chord diagram
with 2(n + n1 − 1) letters, one pair of identical letters from the
old diagram with 2n letters has been replaced by two intervals,
which are Le f t and Right. We should be careful however, that
in this process, the orders of the letters in Le f t and Right might
have been reversed. Indeed, the two intersections of the oriented
boundary of S with b1 might be of different signs. Moreover,
the insertion of C1 in S can be done in four ways since S is not
orientable and E is not oriented.

In an equation F(x, y) = 0,
we can replace (x, y) by(−x, y) or (x,−y) or (x, xy).
The transformation

(x, y)� (x, xy)
preserves each vertical line,
collapses the axis x = 0
to the origin, and reverses
the orientation for x < 0.
This is not a surprise: this
is a blow down map. The
square of this transformation
preserves the orientation on
each vertical line (for x ≠ 0).

Of course, we can proceed in the same way with all other
branches of C, using other singular curves C2, . . . ,Cn.

All these remarks suggest the following definition.

Definition. A marked chord diagram is a collection of 2n distinct
points a±1

1 , . . . , a±1
n in the union of two opposite sides of a square{−1, 1}× [−1, 1] (up to orientation preserving homeomorphisms of

each side).

Note the additional features if one compares with standard
diagrams. Marked diagrams have a right and a left part. More-
over, each chord ai is now labeled with a number i from 1 to n
and is oriented from a−1

i to a+1
i .
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Let me denote by AMC the set of those marked chord dia-
grams which are analytic, i.e. which arise from some analytic
curve F(x, y) = 0 which does not contain the y-axis. Note that
the analyticity of a marked diagram depends neither on the
orientation of the chords nor on the labeling.

The role of the labelings and
orientations is simply to
give the relevant informa-
tion about which marked
diagram is inserted in each
chord, and in which way.

a1+1

a1-1

a2+1
a2-1

a3+1

a3-1

Now, I hope that the reader has guessed the operad structure
on AMC. Let w be some analytic marked chord diagram with
n chords. Given n analytic marked chord diagrams w1, . . . , wn,
with k1, . . . , kn chords, define the action of w on (w1, . . . , wn)
in the following way. Draw w and thicken each chord ai of w,
creating rectangles. Use the a−1

i ’s and the a+1
i ’s as the left and

right sides of these new rectangles. Now, insert w1, .., wn in these
rectangles respecting the labels and the orientations. Rename the
chords, from 1 to k1 + k2 + . . . + kn using the lexicographic ordering.
The result is another marked analytic chord diagram since this
operation corresponds to the previously described insertion of
analytic curves.

Hence, AMC has indeed a natural operad structure. For com-
pleteness, let us observe that the natural action of the symmetric
groups, permuting the chord labels, shows that this is actually a
symmetric operad.

Let us bound the number of chord diagrams

It would be great to have some precise information on the num-
ber an of analytic diagrams with n chords. For instance, an
explicit formula for the generating series ∑ antn would give the
exact exponential growth rate of an. Unfortunately, I was not
able to compute this series ß. In this section, I show that the
fundamental lemma provides at least a reasonable bound.

1

2

1

1

1

1

1

2

2

2

2

2

Consider a finite planar rooted binary tree. Equip each of its
interior nodes (including the root) with one of the six examples
of marked diagrams with two chords represented in the margin.
By recursive insertions of the diagrams of the siblings in the
diagram of their parent, this produces a marked analytic dia-
gram, and hence an analytic diagram, forgetting the labels, the
orientations, and the two sides of the square.
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I claim that all analytic diagrams with n chords are produced
with this recipe. This is true for n = 2 since both diagrams
with 2 chords (linked of not linked) appear when one forgets
the marking in the six examples. Now, let w be some analytic
diagram with n + 1 chords, and apply the fundamental lemma.
Therefore, we find �aa�, �ab�ba�, �ab�ab� or �b�aba� in
the diagram. In the case of aa, call b the letter which comes before
a in the cyclic order. Our algorithm deletes a and produces an
analytic diagram w̄ with n chords, for which we can apply the
induction. This means that w̄ can be “clothed” with labels and
orientations in such a way that it is produced by a binary tree,
as above. Our diagram w is obtained from w̄ by replacing one
chord by two chords. It is easy to check that our six examples
are sufficient to realize this duplication using an insertion in the
operad. Hence w is constructed from a binary tree with n + 1
leaves with the same recipe.

1
2

1

1

1

1

22

2

2
2

2

A rooted binary tree with n leaves has n − 1 interior nodes
(including the root) so that there are 6n−1 possible labels on the
interior nodes. The number of planar binary trees with n leaves
is given by the (n − 1)-st Catalan number. Therefore, we get the
following rough estimate.

Theorem. The number an of analytic chord diagrams with n chords is
less than 6n−1 times the (n − 1)-st Catalan number Cn−1.

Recall that 1
n log Cn converges to log 4 when n tends to infinity.

Therefore
lim sup

1
n

log an ≤ log(24).
Note that any permutation on n letters can be seen as a dia-

gram with n chords, such that all its chords connect points on
both sides of a square. In particular separable permutations pro-
duce analytic marked diagrams. This gives a lower bound for the
growth of an since we already counted separable permutations.

lim inf
1
n

log an ≥ log(3+ 2
√

2). i

π(i)
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The 26 = 64 Chinese hexagrams consist of six horizontal bars which can be either connected or discon-
nected. They appeared in the I Ching — the book of Changes — written more than 2500 years ago and
are commonly used as a divination tool. Originally, they were ordered in a mysterious way, usually
attributed to King Wen, that scholars are still trying to decipher. One thousand years ago, Shao Yong
ordered them as shown in the picture, in a circle and in a square. In 1701, the jesuit Joachim Bouvet
sent a copy of this configuration to Leibniz who explained it in terms of binary expansions and wrote
one of the first systematic expositions of arithmetics in base 2. This is an interesting example of interac-
tion between eastern philosophy and western science. I will discuss these I Chings a little bit more in
the final section of this chapter. ©



Analytic chord diagrams:
interlace graphs

Christopher-Lloyd Simon.

One of the pleasant aspects of random promenades

is that they are full of surprises. Christopher-Lloyd Simon is
an undergraduate student at École Normale Supérieure de Lyon
and he kindly agreed to read the first draft of this book. While
he was reading a preliminary version of the previous chapter
he had the brilliant idea to transfer the discussion from chord
diagrams to their associated interlace graphs. We already met
this concept in our study of Gauss’s words associated to generic
immersed curves in the plane. Given a chord diagram, the set
of vertices of its interlace graph is simply the set of chords,
and edges connect linked (i.e. intersecting) chords. Not every
graph comes from a diagram and a graph might come from
several diagrams. Nevertheless, the interlace graphs coming
from analytic diagrams turned out to be easy to analyze. The
icing on the cake is that these graphs have been introduced
forty years ago in a totally different context and are very well
understood. Thanks to this new perspective, we will get the
complete list of basic non-analytic chord diagrams.

Back to separable permutations

In order to motivate what follows, let us revisit quickly the much
simpler situation of polynomial interchanges (alias separable
permutations) that we examined in the first chapters.
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Let p be a permutation of {1, . . . , n}. The permutation graph
G(p) associated to p has {1, . . . , n} as vertices, and an edge
connects i and j if p reverses the order of (i, j). This is also the
interlace graph of the associated marked chord diagram, with n
letters on each side.

1
2
3
4

1 2

3 4

A permutation and its
graph.We know that if p a polynomial interchange, at least two

consecutive integers have consecutive images. The corresponding
chords have therefore the property that any chord intersecting
one of them intersects the other.

False twins. Observe that
two isolated vertices are
false twins.

True twins.

In terms of the graph G(p), this suggests the following defi-
nition. Two vertices x, y in a graph are called twins if they have
the same neighbors (different from x or y). They are called true
or false twins depending on the existence of an edge connecting
them. Two twins in a graph can be merged in a single vertex,
producing a smaller graph with one less vertex.

Therefore the graph G(p) coming from a polynomial inter-
change p contains at least two twins, corresponding to two
consecutive integers i, i + 1 such that p(i + 1) = p(i)± 1. Merging
the twins in the graph amounts to merging the two elements
i, i + 1. Polynomial interchanges are characterized by the fact the
iteration of this merging procedure eventually leads to the trivial
permutation with n = 1.

Definition. A finite graph is called a cograph if it can be reduced
to a trivial 1-vertex graph by merging twins successively.

The terminology “cograph”
comes from the fact that the
complement of a cograph is
also a cograph. A graph G
and its complement G have
the same vertices and two
vertices are adjacent in G
if and only if they are not
adjacent in G.

Proposition. A permutation is a polynomial interchange if and only if
its permutation graph is a cograph.

I just explained why the permutation graph of a polyno-
mial interchange is a cograph. To prove the converse, it suffices
to show that if G(p) is a cograph, there are two consecutive
integers with consecutive images. The proof is by induction
on n. If i < j are false (resp. true) twins, the image by p of
the interval {i, i + 1, . . . , j} is {p(i), p(i + 1), . . . , p(j)} (resp.{p(j), p(j + 1), . . . , p(i)}). If j ≥ i + 2, the image p({i, . . . , j − 1})
is also an interval and we apply the induction hypothesis to the
restriction of p to {i, . . . , j − 1} so that one finds two consecutive
integers with consecutive images. �
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Cographs have been introduced in the 1970’s under differ-
ent names (D�-graphs, hereditary Dacey graphs, and 2-parity
graphs: see156 for references). They are not very difficult to

156 A. Brandstädt, V. B. Le,
and J. P. Spinrad. Graph
classes: a survey. SIAM
Monographs on Discrete
Mathematics and Applica-
tions. Society for Industrial
and Applied Mathematics
(SIAM), Philadelphia, PA,
1999.

describe. Let me list some of their properties, and leave the
(elementary) proofs to the reader.

In what follows, all graphs are finite, with no loops and
no multiple edges. A connected graph defines a metric space
on its set of vertices. The distance between two vertices is, by
definition, the length of the shortest path connecting them.

Graph theorists say that a subgraph H of a graph G is induced
if any edge of G connecting two vertices of H is also an edge of
H.

Theorem. The following properties of a finite graph G are equivalent.

1. G is a cograph.

2. G is the permutation graph of some polynomial interchange.

3. Any two vertices in the same connected component of G are con-
nected by a path of length at most 2.

4. There is no induced subgraph P4 with four vertices as in the margin.

A cograph.

P4

Note that the permutation graphs associated to the two forbid-
den Kontsevich’s permutations (2, 4, 1, 3) and (3, 1, 4, 2) are both
isomorphic to P4.

Collapsable graphs

Pendant vertex.

Starting from a tree, you can strip off its leaves and do it again
until the tree has been stripped completely naked. Let us say
that a vertex in a graph is pendant if it is adjacent to a unique
vertex. Any tree can be constructed by successive additions of
pendant vertices, starting with the tree with only one vertex.

Definition. A finite graph is collapsable if it can be reduced to a
1-vertex graph by applying two kinds of elementary operations:
deleting a pendant vertex and merging twins.
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If you are more constructive than destructive, you can express
the same thing in another way. Start with the trivial graph with
one vertex and apply two kinds of operations: adding a pendant
vertex or creating a pair of twins. The second operation simply
consists in duplicating a vertex and connecting the newly born
twin to the rest of the graph as the orignal vertex was. Then,
decide if you want true or false twins.

The key point is the following.

Proposition. A chord diagram is analytic if and only if its interlace
graph is collapsable.

This will follow from the algorithmic description of analytic
diagrams given in the previous chapter.

Before the proof, let me make an elementary remark, as an
appetizer.

Let w be a diagram and A be a subset of its 2n letters on the
circle. I will say that A is stable under w if any chord with one
end in A has its other end in A. Said differently A is a sub-chord
diagram wA of w.

A B

Suppose that there is an interval A which is stable under w,
and let B be its complement. Clearly the interlace graph G(w)
of w is the disjoint union of the graphs G(wA) and G(wB) of
wA and wB. It follows that G(w) is collapsable if and only if
G(wA) and G(wB) are collapsable. Our algorithm shows that if
wA, wB are analytic so is w. Conversely, if w is analytic, so are
their sub-diagrams wA and wB.

Let us prove now the proposition.

Start with an analytic diagram w. If two chords of w are parallel
or antiparallel, the associated vertices in the interlace graph
are twins and our algorithm merges them. A pitchfork gives a
pendant vertex in the graph and the algorithm deletes the short
chord and keeps the handle. A solitary chord defines an isolated
vertex, which is removed by the algorithm. It follows that the
interlace graph associated to an analytic diagram is collapsable.

For the converse, we show that every diagram w whose interlace
graph G(w) is collapsable contains a solitary chord, or a pitchfork, or a
pair of parallel or antiparallel chords.
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A solitary chord in a diagram corresponds to two consecutive
identical letters �aa� in the cyclic word.

A pitchfork corresponds to a subword of the form �aba�.
A pair of parallel (resp. antiparallel) chords corresponds to�ab�ba� (resp. �ab�ab�).

Our proof will be by contradiction. Consider a possible coun-
terexample w to the previous assertion with a minimal number of
chords. So G(w) is collapsable and w contains no solitary chord,
no pair of parallel or antiparallel chords, and no pitchfork.

Since G(w) is collapsable, there is a vertex a which is either
isolated, or pendant, or is part of a pair of twins. Let w be the
diagram obtained by deleting a from w.

Of course G(w) is collapsable so that, by minimality, w con-
tains a subword �aa� or �aba�, or �ab�ba�, or �ab�ab�. The
problem is that these are subwords of w and not of w, which also
contains two copies of the letter a, which could sneak into the
above subwords.

Note that by minimality any interval which is stable under w
is either empty or everything.

A priori:
– 0, 1 or 2 letters a could sneak in the subword,
– the subword of w could correspond to a solitary chord, or a

pitchfork, or to a pair of parallel or antiparallel chords,
– a could be isolated, pendant or twin, true or false, in G(w). This case by case proof is

not particularly pleasant.
You can skip it if you wish,
but if you do so, you should
sympathize with me, who
had to list all cases one by
one.

That makes 3× 4× 4 cases to examine! Fortunately, many cases
can be studied simultaneously.

1/ If no letter a sneaks into the above subwords, there is no
problem: our solitary chord or pitchfork, or pair of parallel or
antiparallel chords in w have the same property for w E. I use the symbol E to mean

“contradiction”.

2/ If a is isolated in G(w), this means that no chord intersects
a. Therefore a decomposes the circle in two stable intervals,
which have to be empty E.

3/ If two letters a sneak in, they cannot occur as consecutive
letters since that would force the chord a to be solitary in w E.
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So, still in this case, we have to look at

�aabaa�, or�aab�baa�, or�aab�aab�
This produces respectively a pitchfork (a, b), a pair of parallel
chords (a, b) or antiparallel chords (a, b) in w E.

4/ Inserting one a in a solitary chord yields �aaa� which pro-
duces a pitchfork in w with handle a E.

So far, we did not use the fact that a is pendant or twin. This
will be used in the remaining cases, when a single a enters in a
pitchfork or a pair of parallel or antiparallel chords of w.

If a is pendant, let b be the only chord in w which intersects a.
If a has some twin siblings, let us denote one of them by b. The
two chords a, b determine four intervals in the circle, excluding
a, b, that I will call sectors. If a is pendant, the union of two
sectors which are on the same side of a is stable. If a, b are twins,
the union of opposite sectors is stable.

α

α

β β

α

αβ

β

5/ Suppose now that a single letter a enters �aba�, or �ab�ba�,
or �ab�ab� and that one of the two letters a, b is equal to b. Then,
the two letters a and b are consecutive in w. This implies that
one of the sectors is empty.

5-1/ In the pendant case, this implies that the other sector,
on the same side of a, is a stable interval and therefore also
empty. So, a, b is a pitchfork in w with handle b E.

5-2 In the twin case, this implies that the opposite sector is
a stable interval, and therefore empty. So a, b is a pair of parallel
or antiparallel chords in w E.

6/ Finally, suppose that a single letter a enters �aba�, or �ab�ba�,
or �ab�ab� and that none of the two letters a, b is equal to b.

6-1 Assume that (a, b) are parallel or antiparallel chords
in w. Inserting one a in ab yields �aab�ba� or �aab�ab�.
From the consecutive letters ba (or ab), it follows that these
two occurrences are on the same side of the chord a. From
the consecutive letters aab in w, it follows that these other two
occurrences of a and b are in different sides of a. Hence the
chord a intersects only one of the chords a, b.

6-1-1 If a is pendant, this forces a or b to be equal to b E.
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6-1-2 If a, b are twins, this is not possible E.
6-2 Assume that (a, b) is a pitchfork in w. Inserting a letter

a in �aba� yields �aaba or �abaa so that the chord a should
intersect the chord a.

6-2-1 If a is pendant, this forces a = b E.
6-2-2 If (a, b) are twins, the consecutive letters aaba show

that the two letters a lie in opposite sides of a, hence on opposite
sectors. It follows that b = b E.

This finishes the proof. Ouf ! �
Now, we have to understand the nature of collapsable graphs.

Collapsable, distance hereditary

Collapsable graphs have been defined by several authors forty
years ago, under different names, with very different motivations.
We will see that these graphs are very close to being trees.

Howorka157 defined distance hereditary graphs in 1977.

157 E. Howorka. A characteri-
zation of distance-hereditary
graphs. Quart. J. Math. Oxford
Ser. (2), 28(112):417–420,
1977.

Definition. A finite graph G is distance hereditary if for every
connected induced subgraph H ⊂ G, the distance between two
vertices of H in H is equal to the distance between the same
vertices in G.

A cycle of length ≥ 5 is not
distance hereditary.

For instance, a tree is distance hereditary and a cycle of length
at least 5 is not. It suffices to choose H as the induced subgraph
defined by a path inside the cycle whose length is greater than
one half of the length of the cycle (in blue on the picture).

Consider a finite graph and choose some length for each edge,
which could be any positive real number. Define the length of
a path as the sum of the lengths of its edges and the distance
between two vertices as the smallest length of a path connecting
them. One speaks of a metric graph.

We are looking for a characterization of metric spaces (usually
called metric trees) arising in this way from trees. Here is the
answer. Let (E, d) be a finite metric space. Choose four points
x1, x2, x3, x4 in E and compute the sums of the lengths of the
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three pairs of diagonals:

d(x1, x2)+ d(x3, x4) ; d(x1, x3)+ d(x2, x4) ; d(x1, x4)+ d(x2, x3).
Let s (resp. m, l) be the smallest (resp. medium, largest) of these
three numbers: s ≤ m ≤ l. It turns out that a finite metric space is
isometric to a subset of a metric tree if and only if m = l for every
quadruple of points. This is not difficult to prove and I leave it
as an exercise M25. The lazy reader might see the proof in this
short paper158.

158 P. Buneman. A note on the
metric properties of trees. J.
Combinatorial Theory Ser. B,
17:48–50, 1974.

x1

x2

x3

x4

A block graph.

We should be careful. A graph, where all edges have length 1,
can be isometric to a subset of a metric tree without being itself a
tree. Look at the example in the margin.

In graph theory, those graphs are called block graphs. In order
to construct them, start with a tree, delete some of its vertices
and replace them by cliques, i.e. finite graphs where all pairs of
vertices are adjacent, as in the figure. I suggest that my reader
proves that this is indeed a characterization of block graphs
(M15 and, in case of emergency, see159).

159 F. Harary. A characteriza-
tion of block-graphs. Canad.
Math. Bull., 6:1–6, 1963.

A metric space (E, d) is
geodesic if for every pair of
points (x, y) there exists
an isometric embedding
i ∶ [0, d(x, y)] → E such that
i(0)) = x and i(d(x, y)) = y.

x

z

y

In the 1980’s, Gromov developed a geometric theory for hyper-
bolic spaces which had a very strong influence on combinatorial
and geometric group theory (unfortunately not part of our prom-
enade).

The definition is the following. A metric space (E, d) is called
hyperbolic if there exists some d ≥ 0 such that for every quadruple
of points as above, m and l are “almost equal”, i.e. l −m ≤ d.
Note that any finite metric space is trivially hyperbolic (for d

sufficiently big) so that this concept is only relevant for geometry
in the large.

There are many equivalent formulations of this property, the
most popular (for geodesic metric spaces) being that all geodesic
triangles are slim. Consider three points x, y, z and choose three
geodesics [x, y], [x, z], [y, z] connecting them. Every point in[x, y] should be at some uniformly bounded distance from the
union [x, z]∪ [y, z], independently of the choice of x, y, z (see the
picture).

This concept is remarkably robust. For instance, the universal
cover of a negatively curved compact Riemannian manifold is

http://www.sciencedirect.com/science/article/pii/0095895674900471
http://www.sciencedirect.com/science/article/pii/0095895674900471
http://www.sciencedirect.com/science/article/pii/S0166218X09003771
http://www.sciencedirect.com/science/article/pii/S0166218X09003771
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hyperbolic. These metric spaces are well approximated by trees,
in a quantitative way. For more about this theory, the reader is
encouraged to read160.

160 É. Ghys and P. de la
Harpe, editors. Sur les
groupes hyperboliques d’après
Mikhael Gromov, volume 83

of Progress in Mathematics.
Birkhäuser Boston, Inc.,
Boston, MA, 1990.

In 1986, Bandelt and Mulder published a paper161 proposing

161 H.-J. Bandelt and H. M.
Mulder. Distance-hereditary
graphs. J. Combin. Theory Ser.
B, 41(2):182–208, 1986.

purely metrical characterizations of distance hereditary graphs,
close to Gromov’s hyperbolicity conditions.

A cycle of length 4 is treelike
but not a tree.

Exercise: Show that a treelike
graph is hyperbolic in the
sense of Gromov with d=2.

Definition. A finite graph G is treelike if for every 4-tuple of
vertices x1, x2, x3, x4 two of the following three numbers are
equal:

d(x1, x2)+ d(x3, x4); d(x1, x3)+ d(x2, x4); d(x1, x4)+ d(x2, x3).
My reader has probably guessed that all these definitions turn

out to be equivalent.

Theorem. Let G be a finite graph. The following properties are equiva-
lent.

1. G is the interlace graph of some analytic chord diagram,

2. G is collapsable,

3. G is distance hereditary,

4. G is treelike,

5. G does not contain a cycle of length at least five, or a house, a gem,
or a domino, as an induced subgraph.

The house, the gem and the domino are pictured below.

http://www.sciencedirect.com/science/article/pii/0095895686900432
http://www.sciencedirect.com/science/article/pii/0095895686900432
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All the equivalences in the previous theorem (except of course
the first item) are proved in the above mentioned papers. How-
ever, I will soon propose some elementary proofs.

It is now time to harvest the fruits of our labor and to get a
very simple description of analytic chord diagrams.

The house.

The gem.

The domino.

Cn and its interlace graph:
the n-cycle.

You should not be surprised that the interlace graphs of , ,
are the house, the gem, and the domino.

Exercise : Show that , , are the only chord diagrams
whose interlace graphs are the house, the domino and the gem.

In the same way, we have already described the non-analytic
chord diagram Cn defined by Z�2nZ (n ≥ 5) where there is a
chord connecting 2k and 2k + 3 (for k = 1, . . . , n). Its interlace graph
is a cycle of length n.

Exercise : Show that Cn is the only chord diagram whose
interlace graph is a cycle of length n.

Finally, note that a sub-chord diagram defines an induced
subgraph in the interlace graph. Therefore, we get a very satisfac-
tory description of analytic chord diagrams. I print the following
theorem in blue since it is a highlight in our promenade.

Theorem. A chord diagram is analytic if and only if it does not contain
, , or Cn (n ≥ 5) as a sub-chord diagram.

Cn

Note the complete analogy with our characterization of polyno-
mial interchanges as the separable permutations, which are in turn
precisely those permutations which do not contain Kontsevich’s
examples (2, 4, 1, 3) and (3, 1, 4, 2).
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Some proofs

I present now the proofs of the equivalences of the definitions in
the previous section. They are mostly elementary and I suggest
that the interested reader tries to prove them alone. It is impor-
tant to draw pictures. In this specific case, it was probably more
challenging to find the significant definitions than to prove their
equivalence.

No ≥5 is an induced subgraph �⇒ Distance hereditary.

Let H be an induced subgraph of a graph G. Connect two
vertices p, q of H at distance n in H by a path c = (x0, x1, . . . , xn)
(with p = x0 and q = xn) in H. Two vertices xi, xj are adjacent if
and only if i, j are consecutive since otherwise there would be a
shortcut. In other words, the path c is induced in G. It follows
that in order to show that a graph is distance hereditary, we
should prove that the distance between the endpoints of any
induced path in G is equal to the length of the path.

Suppose that no ≥5 is induced in G. Choose an induced
path c1 = (x0, x1, . . . , xn) and let us show, by induction on n, that
the distance in G between x0 and xn is exactly n. 0

n-3

n-2

n-1

1

xn-1

xn-2
xn-3

x1 y1

yn-3

xn=yn-2

x0=y0

c1 c2

0

n-3

n-2

n-1

1

xn-1

xn-2
xn-3

x1 y1

yn-3

yn-2

xn=yn-1

x0=y0

Connect x0 to xn by a shortest path c2 = (y0, y1, . . . , yl) in G
(with y0 = x0 and yl = xn). Of course, c2 is also induced and
d(y0, yi) = j for 0 ≤ i ≤ l. By induction, d(x0, xi) = i for 0 ≤ i ≤ n − 1.
It follows that l is equal to n − 2, n − 1 or n. We show that the first
two cases are not possible. Suppose that l = n − 2 or n − 1. By
induction, we can assume that the two paths c1, c2 only intersect
at their endpoints: any other intersection point could be used as
the starting point of shorter paths c′1 and c′2.

Draw a picture in the plane in such a way that the height of a
vertex of c1 or c2 is the distance from x0. The cases l = n − 2 and
l = n − 1 are pictured in the margin. Vertices of c1 are red and
vertices of c2 are blue. The union of c1 and c2 defines a cycle c
in G. The length of c is at least 5. The cycle c cannot be induced
since there is no induced cycle of length ≥ 5. Therefore there
must exist diagonals connecting vertices of c1 with vertices of c2.

By the triangle inequality, the height difference of the two
endpoints of a diagonal can only be −1, 0, 1. Moreover, diagonals
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connect points of different colors.

δ1δ1
δ2

δ1

Let us order the diagonals (xi, yj) from top to bottom, i.e.(xi, yj) is before (xi′ , yj′) if j > j′ or j = j′ and i > i′.
Now, try to construct the ladder, one diagonal at a time. The

rule of the game is the following. You have to draw an ordered
sequence of diagonals d1, d2, . . . respecting the conditions above
and without creating any induced ≥5 . Note that the
diagonal dk together with the part of c which is above it defines
a cycle. Any chord in this cycle has to be one of the previously
chosen chords d1, . . . , dk−1.

In the case l = n− 1, there are only two possibilities for the first
diagonal d1. It could be (xn−1, yn−2) or (xn−2, yn−2). In the case
l = n − 2 there is only one possibility for d1.

Then, try to select the second diagonal d2, avoiding ≥5 .
Only one of the three choices of d1 allows you to do so.

Finally, try to draw the third diagonal, in the only case where
you could draw d1, d2. It is not possible to continue without
creating one of the forbidden graphs. �

Distance hereditary �⇒ Collapsable.

Let me first make an elementary remark.

x

y

y'z

Sk

Sk-1

Choose some vertex x in a connected distance hereditary
graph G and look at the largest k such that the sphere Sk in G of
radius k and centered on x is non-empty. Let C be a connected
component of Sk. If C contains only one element, then it is a
pendant vertex in G.

Choose two vertices y, y′ in C which are adjacent in C. Choose
some point z which is adjacent to y, at distance k − 1 from x.
Choose a chain c of length k − 1 from x to z and call c′ the chain
of length k + 1 obtained by adding the edge between z and y and
from y to y′. Since the distance between x and y′ is exactly k,
this chain cannot be induced and y′ has to be adjacent to z. This
implies that two points in C are simultaneously adjacent or not
to any point z at distance k − 1 from x. It follows that C cannot
contain an induced path P4 of length 3, since together with z,
it would produce a gem in G, which is not distance hereditary.
Hence C is a cograph and in particular contains a pair of twins.
By the above observation, two twins in C are twins in G. �
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Collapsable �⇒ Treelike.

Easy by induction. Take four points in a graph, delete a pen-
dant vertex or merge two twins. One of the four points might be
the vertex which has been removed. If this is the case replace it
by the other end of the removed edge. Look at the corresponding
points in the stripped graph (taking into account for instance the
fact that two of our four points could be the two twins which
have been merged). Apply the induction hypothesis. �

Treelike �⇒ No induced ≥5 .

Obvious since one checks easily that none of these examples
of graphs are treelike. �
Completely decomposable graphs

Another detour. The only
purpose of this section is
to describe the structure of
collapsable graphs.

Graphs that can be stripped to a point by deleting only pendant
vertices are trees. Graphs that can be stripped to a point by
merging only pairs of twins are cographs.

I prefer the terminology
“decomposable” to “separa-
ble” which is also common
in this area, since we already
used the word “separable”
for permutations.

My reader has probably guessed that collapsable graphs
should not be far from being trees. This is indeed true as I
explain now.

A1
A2

B1 B2

x1 x2

G1 G2

x1 x2
G

Let G be a finite connected graph. Suppose that its vertices
have been partitioned in two parts A1 and A2. Let B1 ⊂ A1 (resp.
B2 ⊂ A2) the set of vertices of A1 (resp. A2) which are adjacent
to some vertex in A2 (resp. A1). Suppose that every element of
B1 is adjacent to every element of B2. This condition is trivially
satisfied if A1 or A2 contains only one (or zero!) element, so we
assume that A1 and A2 contain at least two elements each. In
this situation, the graph G is called decomposable and the partition
A1, A2 is a split. In order to keep track of this decomposition,
let us create two graphs G1, G2 in the following way. The set of
vertices of G1 (resp. G2) is A1 plus one extra vertex x1 (resp. x2)
called the control vertex. As for the edges of G1 (resp. G2), choose
the edges of G plus extra edges connecting x1 (resp. x2) to all
elements of B1 (resp. B2).

The graph G can be reconstructed from (G1, x1) and (G2, x2)
by an elementary join construction. Notice that the control points
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x1, x2 are not vertices of G: they are only useful to define the
edges connecting the two parts.

Note that when A2 contains two elements, as in the margin,
the graph G has a pendant vertex or a pair of twins.

Note the analogy with trees.
A finite connected graph is
a tree if and only if every
induced connected subgraph
contains a cut edge, i.e. an
edge that disconnects it.

Hammer and Maffray162 introduced another definition in

162 P. L. Hammer and F. Maf-
fray. Completely separable
graphs. Discrete Appl. Math.,
27(1-2):85–99, 1990. Computa-
tional algorithms, operations
research and computer
science (Burnaby, BC, 1987).

1987.

Definition. A finite graph is completely decomposable if every
induced connected subgraph with at least four vertices is decom-
posable.

It is not hard to prove that completely decomposable (con-
nected) graphs are precisely the collapsable (connected) graphs.

Indeed in the join construction, if G1 and G2 are collapsable,
the same is true for G, so that completely decomposable graphs
are collapsable, by induction.

Conversely, we have seen that a pendant vertex or a pair of
twins gives rise to a decomposition. Therefore collapsable graphs
are decomposable and even completely decomposable, since an
induced subgraph of a collapsable graph is collapsable.

In order to give a precise description of completely decompos-
able graphs, let me state first the important split decomposition
theorem for general connected finite graphs.

If a finite connected graph G is decomposable, consider it as
the join of G1 and G2 as before. Then, try to decompose G1 and
G2 etc. until the resulting graphs become non-decomposable.
The final result of this decomposition into “prime pieces” can be
conveniently described by a graph-labeled tree, as explained below.

It consists of a tree T where each internal node x is equipped
with a connected finite graph Gx. Moreover some bijection has
been chosen between the vertices of Gx and the edges getting out
from the node x in T. Assume that the valency of each node is at
least 3. Given such a structure, we construct a graph G(T) which
is a “composition of the Gx’s controlled by T”. The definition is
the following.
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The vertices of G(T) are the leaves of T. In order to under-
stand the edges of G(T), let me just draw a picture, inspired by
the paper of Gioan and Paul163 who introduced this concept

163 E. Gioan and C. Paul. Split
decomposition and graph-
labelled trees: characteri-
zations and fully dynamic
algorithms for totally decom-
posable graphs. Discrete Appl.
Math., 160(6):708–733, 2012.

of graph-labeled tree. We see a tree with 16 leaves and 6 internal
nodes, in pink. The associated graph, with 16 vertices, is drawn
on the right.
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Choose two leaves of T and connect them by the shortest path
in the tree. For each node x which is visited by this path, there
is an entrance edge and an exit edge. In turn, these two edges
define two vertices of Gx. Two vertices of G(T), i.e. two leaves of
T, are adjacent in G(T) if for every node x visited by this path,
the two corresponding vertices of Gx are adjacent in Gx. The
vertices of the Gx’s generalize the two control vertices, as in the
simple case where T contains only one edge.

It seems that graphs can
be labeled in the USA and
labelled in other English
speaking countries.

The main result, proved by Cunningham and Edmonds164

164 W. H. Cunningham and
J. Edmonds. A combinatorial
decomposition theory. Canad.
J. Math., 32(3):734–765, 1980.

in 1980 (and reformulated by Giona and Paul), is that any finite
connected graph is obtained by such a construction in which the Gx’s
are indecomposable, in an essentially unique way. The existence of this
splitting is easy. The hard part is the “essential uniqueness” that
I don’t define since I will not need it.

Let us back to completely decomposable graphs. In this
special case the Gx’s must have at most 3 vertices. Indeed, they
are indecomposable and induced subgraphs of G, so that the
claim follows from the definition of complete decomposability.

https://arxiv.org/abs/0810.1823
https://arxiv.org/abs/0810.1823
https://arxiv.org/abs/0810.1823
https://cms.math.ca/openaccess/cjm/v32/cjm1980v32.0734-0765.pdf
https://cms.math.ca/openaccess/cjm/v32/cjm1980v32.0734-0765.pdf
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This gives a fairly precise geometric description of completely
decomposable graphs. Take a tree such that every node has
valency 3. For each node, choose a connected graph with 3

vertices (there are not too many choices!), and construct a graph-
labeled tree as in the margin. All completely decomposable
graphs are produced in this way.

11
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7
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54
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2
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This is absolutely not a surprise. Indeed look at the third
picture in the margin, showing three small graphs with three
leaves. When you hook one of them to some (blue) leaf of a
graph-labeled tree T, you get another graph-labeled tree T′ with
one more leaf. If you examine the effect on the associated graph
G(T), you see that you have split a vertex in a pair of twins (true
or false) or you have created a pendant vertex, depending on the
cases. We are back to the original definition of collapsable graphs
as graphs that can be constructed from a point by successive
introductions of twins or of pendant vertices. We are also back to
operads. This was indeed a detour!

Computability

There is an algorithm deciding in quadratic time (in n) if a graph
of size n is an interlace graph. This was proved in165 after a long

165 J. Spinrad. Recognition of
circle graphs. J. Algorithms,
16(2):264–282, 1994.

period of successive improvements (starting from a n9 algorithm,
in 1987).

Given a diagram with n chords, constructing its interlace
graph requires a time which is quadratic in n. Then, look for
pendant vertices and twins and iterate the process n times so
that you decide in quadratic time if it is analytic.

An esoteric exercise

The 64 hexagrams pictured on the first page of this chapter are
traditionally grouped in 32 pairs of complementary hexagrams.
Think of the Yin and Yang. To get the dual of a hexagram, just
turn it upside down. In the case where the hexagram is sym-
metric, replace each connected line by a disconnected one and
conversely.
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Here are two examples of dual pairs.

27 383728

The numbers (27-28) and (37-38) are relative to the King Wen
ordering. Many experts like to draw a segment between dual
hexagrams. Working with Shao Yong’s circular arrangement, this
produces a diagram with 32 chords.

Will my reader have the patience to draw these chords and
decide whether or not this I Ching diagram is analytic?

On November 14th 1701, Leibniz received a copy of Shao
Yong’s circular arrangement from the French Jesuit Joachim
Bouvet who was living in China. Two years later, he published
a remarkable paper on binary arithmetics166 in the Mémoires de

166 G.-G. Leibniz. Explication
de l’arithmétique binaire, qui
se sert des seuls caractères 0
et 1 avec des remarques sur
son utilité et sur ce qu’elle
donne le sens des anciennes
figures chinoises de Fohy.

l’Académie des Sciences. According to him:

These figures are perhaps the most ancient monument of science
which exists in the world.

“Ces figures sont peut-être le
plus ancien monument de
science qui soit au monde”.

“Leibniz hoped that his astute analysis of the trigrams from
the I Ching would awaken in China a deep appreciation for
Western science and, ultimately, for Christianity 167.”

167 D. Lach. Leibniz and
China. Journal of the History of
Ideas, 6(4):436–455, 1945.

https://hal.archives-ouvertes.fr/ads-00104781/document
https://hal.archives-ouvertes.fr/ads-00104781/document
https://hal.archives-ouvertes.fr/ads-00104781/document
https://hal.archives-ouvertes.fr/ads-00104781/document
https://hal.archives-ouvertes.fr/ads-00104781/document
https://hal.archives-ouvertes.fr/ads-00104781/document
https://hal.archives-ouvertes.fr/ads-00104781/document
https://www.jstor.org/stable/pdf/2707344.pdf
https://www.jstor.org/stable/pdf/2707344.pdf
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The dwarf planet Ceres, as
seen by Dawn mission, in
July 2016. The determination
of its orbit was a spectacular
achievement of Gauss. ©



Gauss, again:
linking, magnetism and astronomy

A coin from Germany,
released in 1977, celebrating
Gauss’s 200th birthday. ©

Gauss and linking numbers

On January 22nd, 1833, Gauss wrote some enigmatic

formula in his notebook168.

168 C. F. Gauß. Werke.
Ergänzungsreihe. Band
V. Georg Olms Verlag,
Hildesheim, 1975. Briefwech-
sel: C. F. Gauss–H. C. Schu-
macher. Teil 3. [Correspon-
dence: C. F. Gauss–H. C.
Schumacher. Part 3], Edited
by C. A. F. Peters, Reprint of
the 1863 and 1865 originals.

His purpose is to “to count the linking number of two closed
curves": an integer associated to two disjoint closed curves in
3-space which is invariant under deformation.

“Die Umschlingungen zweier
geschlossener Lieben zu
zählen.”

In 1833, Topology did not exist yet. . . Even the word would
only appear in print twelve years later in a book by Listing.
Leibniz had already coined the word Analysis Situs and was only

https://archive.org/details/Werkecarlf05gausrich
https://archive.org/details/vorstudienzurto00listgoog
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dreaming about some science manipulating shapes just like alge-
bra manipulates symbols. Gauss uses the terminology Geometria
Situs and mentions Euler and Vandermonde as precursors.

Do not forget that these Nachlasse were not intended for
publication. What would he have thought if he had been aware
that his private drafts would become publicly available? This
was indeed published in 1867, after Gauss’s death, and the editor
included it in a volume dedicated to electromagnetism. That
was a reasonable choice and a recent paper169 does propose a

169 R. L. Ricca and B. Nipoti.
Gauss’ linking number
revisited. J. Knot Theory
Ramifications, 20(10):1325–
1343, 2011.

good electromagnetic interpretation. Another paper170 claims

170 M. Epple. Orbits of
asteroids, a braid, and the
first link invariant. Math.
Intelligencer, 20(1):45–52,
1998.

on the contrary that the formula has an astronomical origin and
this paper seems just as credible. Who is right? Both, of course!
Gauss was convinced by the deep unity of mathematics, and
he would not build frontiers between mathematics, astronomy,
physics etc. I will certainly not make a choice and I will present
three parallel points of view: three definitions of the linking
number of two disjoint closed curves in 3-space.

Geometry

A closed oriented smooth embedded curve in the plane bounds
a domain, which has some area. Let us say that this area is
positive if the curve is oriented anti-clockwise and negative in
the other case. That’s easy. Now, if the curve is not embedded
the situation is slightly more complicated, as for example in
the figure eight curve in the margin. The left loop is oriented
anti-clockwise and the right one clockwise, so that we are led to
define the signed area as the algebraic sum of the two areas.

+ -
0

1

21

0
-1

In the general case of an immersed curve with finitely many
double points, we proceed in a similar way. The curve decom-
poses the plane into connected components. Let us equip the
unbounded component with the coefficient 0. Now, equip each
component with some integer with the convention that when
we cross the curve positively this integer jumps by +1. In other
words, a point moving on the curve in the positive direction sees
a coefficient on its left equal to the coefficient on the right +1.
It turns out that such a labeling exists and is unique. We then

Try and prove the existence
of such a labeling using
the fact that the (algebraic)
intersection number of
two closed transverse
oriented curves in the plane
is 0. Let c1 and c2 be two
transversal oriented curves
in an oriented surface. Any
intersection point of c1 and
c2 has a sign ±1 depending
on the orientation given by
the pair of tangent vectors
of c1 and c2 at this point.
The sum of all these signs
for all intersection points
is the algebraic intersection
number of c1 and c2. If c1, c2
are curves in the plane,
this intersection number
is 0. In modern terms, this
follows from the fact that
the homology of the plane is
trivial. Gauss knew this fact.
Can you produce a proof
that he could have accepted?define the signed area of the curve as the linear combination
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of the geometric areas of the components with these integral
coefficients. This definition is natural and is due to. . . Gauss.

Another definition comes from the fact that after all the area
below a curve y(x) is the integral of y dx. Consider the differential
1-form w = −y dx in the plane and integrate it along the curve. I
encourage the reader to check that these two definitions give the
same number. En passant, note that the differential of w is the
2-form dx ∧ dy, which is the area form. This is not a surprise for
a 21st century mathematician but was far from obvious at the
beginning of the 19th century.

Consider now a closed oriented curve on the unit 2-sphere.
Can we define the enclosed area? If the curve is embedded,
there is no problem. The curve decomposes the sphere in two
domains, one of them having the curve oriented as an anti-
clockwise boundary, and we can define the area as the area of
this domain. Now, if the curve is complicated, what can we
do? We can still attribute numbers to the connected component
of the complement with the same property as before, but they
cannot be normalized by asking that some component at infinity
has the weight 0, since there is no infinity. Therefore, all these
integers are well defined up to the addition of the same integer
to each component. The signed area enclosed by the curve is
only defined up to the addition of an integral multiple of the
area of the sphere, i.e. modulo 4pZ.

A closed smooth curve in the sphere defines a cone in 3-space,
with apex at the origin. The area of the curve is by definition the
solid angle of the cone, hence defined modulo 4pZ. Just like an
oriented angle in the plane is defined modulo 2pZ. A closed curve in dimension

3 is the image of a map from
S1 to R3. In dimension 2, we
can look at a map from S0

to R2, i.e. two points P, Q
in the plane! The cone is
now replaced by a triangle,
and the angle function
A ∶ R2 � {P, Q} → R�2pZ

maps x to the angle �PxQ.
Looking at the fibers of
A might remind you of
secondary school.

Suppose now that we have a closed oriented curve g in
3-space, not necessarily embedded. For every point x outside
g, look at the solid angle Ag(x) of the cone with apex x and
based on g. Its solid angle defines a function

Ag ∶ R3 �g → R�4pZ.

Note that if g is a knot, i.e. if it is an embedded circle, the pre-
image A−1

g (q) is an orientable surface having g as its boundary
for every regular value q of Ag. We have already met such
surfaces under the name of Seifert.
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Let us compute the differential dAg. Let x, x′ be two nearby
points in space, both being away from g. To compute Ag(x),
we should translate g by −x, project radially the result onto
the unit sphere and compute its signed area. The difference of
areas Ag(x) − Ag(x′) is the signed area of the projection on the
unit sphere of the annulus bounding the translations of g by−x and −x′. Approximate g by some polygonal curve so that
Ag(x) − Ag(x′) is approximated by the sum of signed areas of
the projections of some parallelograms. Note that if dx, d′x are
two vectors in space, the volume of the pyramid with apex 0 and
base

x, x + dx, x + d′x, x + dx + d′x
is

1
3

det(x, dx, d′x).
If dx and d′x are very small, the corresponding solid angle is
approximately obtained by dividing this value by the norm of x
cubed. Putting everything together, going to the limit, we get a
formula for dAg at the point x, on the vector v:

dAg(x, v) = �
g

1��g(t)− x��3 det �g(t), dg

dt
(t), v� dt.

Solid angle. ©

We know the concept of Cauchy index of a closed curve c in
the punctured plane C � {0}: the number of “turns” around the
origin when one goes along c. Follow the argument by continuity
as you go around c and then count the increase of the argument
when you are back to the starting point. One could also use the
differential form 1

2ip dz�z and integrate it on c. All this seems
easy to today’s students, but was not obvious for the founding
fathers Gauss-Cauchy etc.

Now, do the exact same thing in 3-space, replacing the argu-
ment by the solid angle created by some closed curve g. If a
curve g′ does not intersect g, go around g′ and look at the
increase of the solid angle when you make the full turn (divided
by 4p). This index is called the linking number of g and g′: this is
an integer.
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Using the formula for dAg, we get Gauss’s formula for the
linking number link(g, g′):

1
4p� 1��g(t)−g′(t′)��3 det�g(t)−g′(t′), dg

dt
(t), dg′

dt′ (t′)� dt dt′.

This is exactly what Gauss wrote in his notebook on January
22nd, 1833.

Note that the above formula shows that the linking is sym-
metric link(g, g′) = link(g′, g), which was not obvious from the
definition. This is what Gauss wrote:

The value is symmetric: it remains the same when one inter-
changes the two curves.

Der Werth ist gegenseitig,
d. i. er bleibt derselbe, wen
beide Linien gegen einander
umgetauscht werden.

Note also that if g and g′ are deformed continuously in such
a way that they don’t intersect during the deformation, the
linking number has to be constant: an integer cannot change
continuously. This is the most important feature of the linking
number: it is invariant under deformation.

Astronomy

♃♄ ♅ ♆

☄

♂

The orbit of Halley’s comet,
together with the orbits
of Mars, Jupiter, Saturn,
Uranus and Neptune.

The paper of Epple mentioned above proposes a possible
approach to linking numbers. One of the first accomplishments
of Gauss which made him famous was his determination in
1801 of the orbit of the dwarf planet Ceres, which had just been
discovered. Suppose we observe a planet from a fixed position
on our planet Earth. Where should we look in the sky? More
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precisely, let g be the trajectory of the Earth in fixed space (fixed
with respect to the Sun) and let g′ be the trajectory of the planet
that we want to observe. For simplicity, I assume that g and g′
are disjoint ©. If the periods of rotation are rationally indepen-
dent, the positions of the Earth and the planet on their orbits are
independent random variables. Gauss calls zodiacus of the planet
(relative to the Earth) the image of the map:

v ∶ (t, t′) ∈ (R�Z)2 � g(t)−g′(t′)��g(t)−g′(t′)�� ∈ S2.

This is the zone in celestial sphere where the observer should
look for the planet.

The integrand in Gauss’s formula for the linking number
is simply the Jacobian determinant of this map, so that the
linking number is 1�4p times the signed area of the zodiacus. A
modern mathematician knows that the integral of the Jacobian
determinant of a map between two oriented manifolds of the
same dimension is the topological degree of this map. Therefore
the linking number can also be defined as the degree of the zodiacus
map v.

Of course, Gauss studied in detail the case of two ellipses in
space.

Two unlinked ellipses. The
zodiacus is on the left.

When the two ellipses are not linked, like in the picture above, the
zodiacus does not cover the full celestial sphere. The light blue
zone in the zodiacus corresponds to points which are covered
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twice by v. The darker zone, with two singular points, is cov-
ered four times. Compare with the usual picture (in the margin)
of the perspective of a torus of revolution and the singularities
which appear in its contour.

Projection of a torus on a
plane.

When the ellipses are linked, like in the picture below, the zodi-
acus is the full sphere. The light blue zone in the zodiacus
corresponds to points which are covered only once by v. The
darker zone, with four singular points, is covered three times.

Two linked ellipses. The
zodiacus is on the left.

Given a smooth map f ∶ M → N between two compact
oriented connected manifolds without boundary, there are
several possible definitions for its topological degree. The first
consists in choosing some volume form vol on N, of total volume
1, and integrating its pull-back f �vol on M. It is not hard to see
that this is independent of vol. Indeed, if vol′ is another choice of
volume form, vol′ − vol is an exact form, and therefore the integral
of f �vol′ − f �vol is zero. From this definition, it is easy to see that
this is invariant under deformation. Indeed, if two maps f0, f1
are homotopic, f �0 vol − f �1 vol is an exact form. It is less easy to see
that this degree is an integer.

A second definition consists in picking a regular value y ∈ N
of f and looking at the finitely many pre-images x1, . . . , xn in
M. At each of these pre-images, the differential of f preserves
or reverses orientation, and we attribute them a + or - sign
accordingly. The degree of f is the sum of these signs. One

Look again at the preceding
pictures of the zodiacus of
two ellipses and figure out
the + or − signs.
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has to show that this does not depend on the choice of the
regular value and that it is a homotopy invariant. This is proved
brilliantly in Milnor’s book171. One should also prove that the

171 J. W. Milnor. Topology from
the differentiable viewpoint.
Princeton Landmarks in
Mathematics. Princeton
University Press, Princeton,
NJ, 1997.

two definitions agree. . . One possibility is to use a sequence of
volume forms on M which converges to the Dirac mass at the
regular value y.

Let us use the regular value point of view to compute the
degree of the zodiacus map v ∶ R2�Z2 → S2. Choose the south
pole of S2 as the point y. The pre-images of y consist of the pairs
of points g(t) and g′(t′) such that g(t) is above g′(t′): they have
the same x, y coordinates and the z-coordinate of g(t) is bigger
than that of g′(t′). The differential of v at such a point is easy
to compute. It is non-degenerate if the projections of g and g′
on the (x, y) plane intersect transversally at the corresponding
point. Its Jacobian determinant is positive (resp. negative) if the
intersection of the projections is positive (resp. negative).

γ γ'

+

-

γ γ'

This leads to the combinatorial definition of the linking num-
ber, that Gauss obviously knew. Project the two curves g, g′ in a
generic plane so that the two projections ḡ, ḡ′ intersect transver-
sally. Mark an index +1 or −1 to each intersection point, accord-
ing to whether the tangent vectors at g and g′ define a positive
or negative basis. Among those intersection points, select only
those where g is over g′. The sum of the corresponding signs is
the linking number of g, g′.

On the picture, the red curve passes 3 times over the blue one
with signs +1,+1,−1. The linking number is 1.

The so-called Whitehead link in the margin has linking number
0 but this does not mean that the two components can be sep-
arated by some deformation172. Show that there is no complex

172 D. Rolfsen. Knots and links,
volume 7 of Mathematics
Lecture Series. Publish or
Perish, Inc., Houston, TX,
1990. Corrected reprint of the
1976 original.

algebraic curve with two branches such that the associated link is
this link.

Whitehead link.

Electromagnetism

Gauss’s formula is reminiscent of the Biot-Savart law in physics.
An electric current generates a magnetic field. Suppose a closed
wire g carries some steady current, with intensity i and let x be a
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point outside the wire. Then the magnetic field created at x is

B(x) = µ0i
4p �g

1��(g(t)− x��3 �(g(t)− x)∧ dg(t)
dt
� dt

where µ0 is the magnetic constant. This vector field is the dual of
the closed 1-form dAg (with respect to the Euclidean metric on
the 3-dimensional physical space). It may also be interpreted as
the gradient field of a local primitive of the 1-form Ag. It follows
that the circulation of the magnetic field on some loop g′ is the
same as the integral of dAg on g′, i.e. the linking number. Hence,
the linking link(g, g′) is the circulation of the magnetic field
created by a current.

The magnetic field generated
by a torus knot. ©

The above mentioned paper by Ricca and Nipoti gives an
interesting reconstruction of what might have been the magnetic
interpretation in Gauss’s mind. Do not forget that, together
with Weber, Gauss established the first telegraph transmitting
messages across Goettingen.

The Gauss-Weber code for
their telegraph: combina-
torics again! ©
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A chord diagram is also a graphical method of displaying the inter-relationships between data. Given
a stochastic matrix aij (i.e. aij > 0 and ∑j aij = 1), one can think of aij as the proportion of entity i
interacting with j. One draws n intervals I1, ..., In around the circle, whose lengths l1, ..., ln have to
be determined, and bands connecting Ii and Ij with widths aijli. The compatibility condition can be
expressed as lj = ∑i aijli. The existence of a solution is guaranteed by the Perron-Frobenius theorem. ©

https://en.wikipedia.org/wiki/Chord_diagram


Kontsevich is back:
A universal invariant

Is this promenade a loop homotopic to a point? We are
back to our starting point: Maxim Kontsevich. This chapter is
not a conclusion but an opening to a vast domain and shows that
in mathematics it is possible to come back to very old ideas with
a completely new perspective. I want to present a short introduc-
tion to a wonderful development in knot theory involving chord
diagrams, in a 1993 paper of Kontsevich173.

173 M. Kontsevich. Vassiliev’s
knot invariants. In I. M.
Gelfand Seminar, volume 16

of Adv. Soviet Math., pages
137–150. Amer. Math. Soc.,
Providence, RI, 1993.

A new point of view on the linking number

Let g1, g2 ∶ R�Z → R3 be two disjoint oriented closed curves.
We know that the linking number of g1 and g2 is the topological
degree of Gauss’s zodiacus map, from the product of the two
curves to the unit sphere. Kontsevich’s formula will express the
same number as a topological degree of a map from an oriented
1-dimensional manifold (which is therefore a union of circles) to a circle.
The great advantage is that this new point of view enables us to
define many more invariants.

Let us think of the space R3 with coordinates (x, y, t) as the
product of the complex line C (with coordinate z = x + iy) and
R (with coordinate t). Assume that our curves g1, g2 are Morse.
This simply means that the projection onto the t-coordinate has a
finite number of critical points and that the second derivative is
not zero at these critical points. Assume that the critical values of
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the t-coordinates are all distinct.
Consider now the set of pairs of points on g1, g2 which have

the same t-coordinate. Formally, this is the set

X = {(s1, s2) ∈ (R�Z)2 � t(g1(s1)) = t(g2(s2))}.
This is a smooth curve of the 2-torus. The only (easy) thing
to check is that this is indeed the case in the neighborhood of
critical points.

Look at this example. There are 8 critical values, decomposing
the first curve in 18 strands and the second in 10 strands.

1
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The submanifold X is represented in the following picture.

1 18171615141312111098765432

1

10
9
8
7
6
5

3
2

4



kontsevich’s universal invariant 287

There is a canonical orientation on X. Choose a small inter-
val I in X, away from the critical values. This interval maps
diffeomorphically onto some interval I1 in g1 and onto some
other interval I2 in g2. A non-critical interval in g1 (or in g2) is
equipped with two orientations, coming from the orientation
of g1 (or g2) on the one hand, and from the t-coordinate, on the
other hand. I will say that such an interval is positive if these
two orientations agree and negative otherwise. Orient I using
increasing t if I1 and I2 are both positive or both negative, and
using decreasing t otherwise.

Check that this does define
an orientation on X.

Now, a point in X defines two points g1(s1) and g2(s2) which
project to distinct points in the complex plane x + iy. The argument
of the difference defines a map p ∶ X → S1. This is a map between
oriented 1-dimensional manifolds.

I claim that the degree of p is the linking number of g1 and g2.
Let us prove this claim. The linking number is the topological

degree of the map

v ∶ (s1, s2) ∈ (R�Z)2 � g1(s1)−g2(s2)��g1(s1)−g2(s2)�� ∈ S2

between oriented surfaces. The unit sphere S2 contains the
horizontal equator S1 (where t = 0). The assumption that g1
and g2 are Morse with distinct critical values implies that v

is transversal to S1 ⊂ S2. The inverse image p−1(S1) is X, by
definition. The differential of v identifies the normal bundle
of X, in the 2-torus, with the normal bundle of the equator, in
the sphere. Our orientation convention on X is such that this
identification is positive.

We want to compare the two topological degrees of v and p.
Take a regular value v ∈ S1 ⊂ S2 of p and let u be a point in its
pre-image. Note that v is also a regular value of v. The sign of
the Jacobian of the differential of p at u is the same as the sign of
the Jacobian of v at u. It follows that the degrees of v and p are
equal. �

We now get a new formula for the linking number, using
Cauchy type indices. This is a special case of Kontsevich’s theo-
rem.
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Theorem. Slice g1 and g2 by horizontal planes passing through the
critical points of the t-coordinate of g1 or g2. Between two consecutive
planes, g1, g2 define a certain number of strands which are positive or
negative. Choose one of the strands corresponding to g1, defined by
some graph (z1(t), t) (for t− ≤ t ≤ t+). Choose a strand (z2(t), t) for
the curve g2 (also for t− ≤ t ≤ t+). Compute the amount of rotation

e
1

2ip � t+
t−

d (z1(t)− z2(t))
z1(t)− z2(t)

where e is +1 if the two chosen strands have the same sign and −1
otherwise.

Sum all these numbers for all possible pairs of consecutive horizontal
planes, and for all pairings of a strand for g1 and a strand for g2. The
result is the linking number lk(g1, g2).

In the previous example, the 8 singular values define 7 inter-
vals containing 2, 2, 2, 2, 4, 4, 2 blue strands, and 0, 2, 4, 2, 2, 0

red strands. Therefore there are

2× 0+ 2× 2+ 2× 4+ 2× 2+ 4× 2+ 4× 0+ 4× 0 = 24

pairings between strands, which corresponds to the number of
intervals in X.

The universal Kontsevich invariant of a knot with values in the
chord algebra

To conclude, I sketch the definition of an invariant associated
to a knot with values in formal series with coefficients in chord
diagrams. This is a brilliant idea of Kontsevich, from his famous
1993 paper.

Let Chord(n) be the set of chord diagrams with n chords..
As we have seen many times, they are sets of 2n points on an
oriented circle, grouped in pairs, up to orientation preserving
homeomorphisms of the circle. Denote by C[Chord] the vector
space having the union Chord of all Chord(n)’s as a basis. Its
elements are therefore finite sums ∑w∈Chordn lw.w where lw = 0
for all but a finite number of w. Consider C[Chord] as a graded
vector space, the grading being given by n.
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Denote by A the quotient of C[Chord] by the subspace gen-
erated by two relations, which might appear artificial at first
sight:

— the one term relation. This means that any chord diagram
obtained from the picture below by completing it in any way
in the dotted part of the circle is declared to be 0 in A. Said
differently, every diagram containing a solitary chord is equal to
0 in A.

= 0

— the four term relation. Analogously, the dotted part of the
circle can be completed in any way (but of course in the same
way in the four constituents of the relation).

- + - = 0

This vector space A is actually a graded algebra ⊕n≥0An. Two
chord diagrams can be multiplied in the following way.

= =

The four term relation is exactly what is needed to make sure
that this operation is well defined, independently of the locus of
the connected sum.

Consider the completion Â, where we add infinite formal
sums ∑w∈Chordn lw.w with no condition on the numbers lw. Let
us call Â the chord algebra.

I can now define the Kontsevich universal invariant of a knot,
with values in Â.
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Let g be some knot in 3-space (assumed to be Morse).
Slice it by horizontal planes passing through the critical points

of the t coordinates. This decomposes the knot in a finite number
of strands, which could be positive or negative, with respect to
the orientation of the knot.

Choose some integer n. Consider the space of 2n-tuples of
distinct points (p1, q1, . . . , pn, qn) on the knot such that

t(p1) = t(q1) < t(p2) = t(q2) < . . . < t(pn) = t(qn).
This is an n-dimensional submanifold Xn with boundary of the
2n-dimensional torus, canonically oriented by the orientation of
the circle.

Note that any element of Xn defines a chord diagram with n
chords.

There is a natural map v from Xn to (C�)n. Indeed, if p and
q are two distinct points on g with the same t-coordinate, their
difference is a nonzero complex number. We therefore associate
the n-tuple (q1 − p1, . . . , qn − pn) ∈ (C�)n to (p1, q1, . . . , pn, qn).

Consider now the (complex) differential n-form

1(2ip)n v� �dz1
z1
∧ . . . ∧ dzn

zn
�

on Xn. Integrating it on each connected component of Xn, mul-
tiplying with the corresponding element of Chord(n) and sum-
ming over all components of Xn, we get an element of An. The
formal sum of all these elements, for all values of n defines an
element of Â: this is the Kontsevich invariant of g, denoted by
Z(g), which is an element of Â.

Strictly speaking, this is not yet an invariant! It turns out that
this is only an invariant if the knot g is deformed among Morse
knots, preserving the number of critical points. This is already a
non-trivial fact.

A general deformation of g could introduce a hump.
However, the change in this introduction of a hump can be

completely described. Let Z(H) be the invariant of the hump in
the margin.
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It can be shown that if the t-coordinate of a knot g has 2c
critical points, the quotient

I(K) = Z(K)�Z(K)c�2 ∈ Â
is an actual invariant of the knot g, for any isotopy, that is any
deformation of the knot, avoiding the creation of double points.

I still have to justify the division by Z(K)c�2 in the algebra Â.
This is not difficult since it is easy to see that Z(K)c�2 has the
form 1 + a with a of degree > 1, so that the inverse of 1 + a is
1− a + a2 − a3 −�.

I proved absolutely nothing. I did not explain in which sense
this invariant is universal. As a matter of fact, it is unknown
whether two knots are equivalent if and only if they have the
same invariant: that would be fantastic.

For a detailed presentation, I strongly recommend this arti-
cle174 and this book175.

174 S. Chmutov and
S. Duzhin. The Kontsevich
integral. Acta Appl. Math.,
66(2):155–190, 2001.

175 S. Chmutov and
S. Duzhin. The Kontsevich
integral. Acta Appl. Math.,
66(2):155–190, 2001.

https://arxiv.org/abs/math/0501040
https://arxiv.org/abs/math/0501040
https://arxiv.org/abs/math/0501040
https://arxiv.org/abs/math/0501040
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Caspar David Friedrich:
Tree of crows. ©

https://en.wikipedia.org/wiki/The_Tree_of_Crows
https://en.wikipedia.org/wiki/The_Tree_of_Crows


Postface

Our promenade is over. We have wandered in quite a lot
of mathematical forests. We have indeed seen many trees, and
our travel was definitely not a geodesic path. My reader will
hopefully want to travel more and to explore new territories in
much more detail, maybe more seriously.

Since our stroll was some kind of closed loop which began
with the romantic Wanderer in the fog, by Caspar David Friedrich,
perhaps it is appropriate to now admire The tree of crows by the
same artist, dated 1822. By this time, Gauss was dreaming about
non-Euclidean geometry.

This painting has been chosen as a frontispiece for one of my
favorite mathematical books176 which also deals with trees, albeit

176 J.-P. Serre. Trees. Springer
Monographs in Mathematics.
Springer-Verlag, Berlin, 2003.
Translated from the French
original by John Stillwell,
Corrected 2nd printing of
the 1980 English translation.

very different from those seen during our promenade. The next
destination for my reader?
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Caspar David Friedrich:
Mann und Frau in Betrach-
tung des Mondes (Man and
Woman contemplating the
Moon) (1818-1824). ©

https://en.wikipedia.org/wiki/Two_Men_Contemplating_the_Moon
https://en.wikipedia.org/wiki/Two_Men_Contemplating_the_Moon
https://en.wikipedia.org/wiki/Two_Men_Contemplating_the_Moon
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