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Editors’ note: The text is an edited transcript of the author’s conference
talk.

For me, mathematics is just about understanding. And understanding
is a personal and private feeling. However, to appreciate and express this
feeling, you need to communicate with others—you need to use language.
So there are necessarily two aspects in mathematics: one is very personal,
emotional and internal, and the other is more public and external. Today I
want to express this very näıve idea for mathematicians that we should dis-
tinguish between two kinds of simplicities. Something could be very simple
for me, in my mind, and in my way of knowing mathematics, and yet be
very difficult to articulate or write down in a mathematical paper. And con-
versely, something can be very easy to write down or say in just one sentence
of English or French or whatever, and nevertheless be all but completely in-
accessible to my mind. This basic distinction is something which I believe
to be classical but, nevertheless, we mathematicians conflate the two. We
keep forgetting that writing mathematics is not the same as understanding
mathematics.

Let me begin with a memory that I have from when I was a student a long
time ago. I was reading a book by a very famous French mathematician,
Jean-Pierre Serre. Here is the cover of the book (Figure 1). For many
years I was convinced that the title of the book was a joke. How else, I
wondered, can these algebras be complex and simple at the same time? For
mathematicians, of course, the words ‘complex’ and ‘semisimple’ have totally
different meanings than their everyday ones. ‘Complex’ means complex
number and ‘semisimple’ means a sum of simple objects. So, for many,
many years, I was convinced that this was a joke. Recently, actually one
year ago, I had the opportunity to speak with Jean-Pierre Serre, this very,
very famous mathematician, who is now 85 years old. I dared ask him the
question: “is this a joke?” With sincere curiosity, he replied, “What? Why
is it funny?” He never noticed the apparent contradiction. It was not a joke
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Figure 1: “Why is it funny?”

to him. Mathematicians use words as words, and they don’t want to use the
words with their meaning.

There is a famous quote attributed to David Hilbert that says you can
replace all the words in mathematics arbitrarily. Instead of ‘line,’ you could
say ‘chair,’ and instead of ‘point,’ you could say ‘bottle,”and then you could
say that “in between two bottles, there is one chair,” and the mathematics
would be unchanged. This is the point of view of Hilbert, which is not at
all my point of view.

So this is the first aspect, that there is in mathematics an external sim-
plicity which is conveyed by the language, and this language is somewhat
artificial—it is made out of words which are not fully subject to meaning.
Oversimplifying the picture, one could distinguish these two aspects by say-
ing that on the logic side there is Hilbert writing words without looking for
meanings for these words, while Poincaré is on the intuition side (Figure 2).

Notice here that, and this is my favorite part, the latter image is from a
chocolate bar wrapper. Poincaré was so famous they would use his photo-
graph on chocolates. (Do you know one mathematician today whose picture
could sell chocolate?) Hilbert was basically focused on transmitting math-
ematics, and Poincaré was focused on understanding mathematics. This is
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Figure 2: Logic vs. Intuition

one way that I want to distinguish between inner and outer simplicity.
Before we start, since I am the first speaker, I thought it could be a good

idea to open the dictionary at the words ‘simplicity’ and ‘complexity’.

simplicity (n.) late 14c., from Old French simplicity (French sim-
plicité), from Latin simplicitatem (nominative simplicitas) “state of
being simple.” from simplex (genitive simplices) “simple”.

simplex (adj.) “characterized by a single part,” 1590s, from Latin sim-
plex “single, simple” from PIE root *sem- “one, together” (cf. Latin
semper “always,” literally “once for all;” Sanskrit sam “together;” see
same) + *plac- “-fold.” The noun is attested from 1892.

complex (adj.) 1650s, “composed of parts,” from French complexe

“complicated, complex, intricate” (17c.), from Latin complexus “sur-

rounding, encompassing,” past participle of complecti “to encircle, em-

brace,” in transferred use, “to hold fast, master, comprehend,” from

com- “with” (see com-) + plectere “to weave, braid, twine, entwine,”

from PIE *plek-to-, from root *plek- “to plait” (see ply). The mean-

ing “not easily analyzed” is first recorded 1715. Complex sentence is

attested from 1881.

This is perhaps obvious, especially to such a scholarly and learned audience
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Figure 3: Andrey Kolmogorov

as I have here today, but I would add that it may not be as obvious for you
as it is for French speaking people. The word ‘simple’ comes from the French
word plier, “to fold.” Something simple is folded only once, and it’s complex
when it has many folds. (The closest cognates in English might be the verbs
“ply” and “plait.”) To explain something is to ‘unfold it.’ Complexity and
simplicity are related to folding in all directions, and this is something we
will keep in mind.

Let’s begin with outer simplicity. Given its reliance on on words, there is
an obvious measure of complexity here: the so-called Kolmogorov complex-
ity. In the 1960s, Andrey Kolmogorov (Figure 3) had the idea of defining
complexity of something to be the length of the shortest explanation of
that something. By merely asking how many words are needed to describe
something, you get a measure of the complexity of this object.

Complexity = Length of the shortest description

Here is an example, a simple example. Take this painting by Kazimir
Malevich from 1915 (Figure 4). I can describe it to you in, let’s say, five
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Figure 4: Black Square, Kazimir Malevich (1915)

or six sentences: it’s a square with such size, and it’s white, and inside it
there is a smaller square which is black. I could give the precise blackness
and whiteness of the two squares. So this is a very simple object. That was
Malevich, let me show you my own art object (Figure 5). This is a totally
random object. It’s a square, and in the square there are many dots. I asked
my computer to put yellow or orange dots here, but it’s totally random. If
you ask me to describe it to you in detail, the only way that I can do it is
to describe it dot by dot. I will need a very, very long sentence that might
begin “the first point is yellow, the second point is red,” etc. It will be a
very long description. So, in Kolmogorov’s terminology, this is a complex
object, and Malevich’s is a simple object.

Here is the third object—one that is very famous, at least in the math-
ematical realm—the Mandelbrot set (Figure 6). It looks complicated and,
mathematically, it is complicated. But for Kolmogorov it’s a very simple
object. In order to produce this picture, it may take a computer a long
time, days, or weeks, or more, but the computer program that describes the
Mandelbrot set is two lines long. So, from the Kolmogorov’s point of view,
this object is very simple. This is the first concept of simplicity, outside
simplicity, the length of what you need to describe it. Clearly, it is not
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Figure 5: High Kolmogorov complexity

Figure 6: Low Kolmogorov complexity
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Figure 7: Cours d’arithmétique by Jean-Pierre Serre, page 1

satisfactory. I mean, for me, I don’t want to consider the Mandelbrot set as
being something simple. This object is complicated for me. It is made out
of many folds.

Let me give you another example, a personal example, of a simple lin-
guistic thing that is complicated. Or, at least, it was complicated to me
when I was a student. Again, I will take the example from Jean-Pierre
Serre. Serre wrote a wonderful book for students on number theory called
Cours d’arithmétique. I opened it when I was, I think, 19. Here is what
I found on the first page (Figure 7). The first sentence of the book be-
gins, “L’intersection...”. (I’ll explain in a moment why I am showing this
in French.) I can tell you that I spent two days on this one sentence. It’s
only one sentence, but looking back at this sentence, I see now that it is
just perfect. There is nothing to change in it; every single word, even the
smallest, is important in its own way. I wanted to show you the English
translation, but the English translation is so bad compared to the French of
Jean-pierre Serre. Serre’s language is so efficient, so elegant, so simple. It
is so simple that I don’t understand it. Even the smallest words, like “d’un
corps K en”, this two-letter word “en” is fundamental. Everything, every
single word is fundamental. Yet, from the Kolmogorov point of view, this
is very simple. But as a student I knew almost nothing about “anneaux
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Figure 8: An illustration

intègres” and all these other things. It looked so complicated. Finally, at
the end of the second day, all of a sudden, I grasped it and I was so happy
that I could understand it. From Kolmogorov’s point of view, it’s simple,
and yet for me—and, I imagine many students—it’s not simple.

Let me give you another example from Jean-Pierre Serre. I should men-
tion that Serre is perhaps the most famous French mathematician. We
mathematicians from France, we consider him to be some kind of (semi)
God. He writes exquisitely. Most of my students, when they are writing
their PhD theses, or whenever they write badly, which is usually the case, I
say to them, “go to the library, open any book of Jean-Pierre Serre, and try
to copy!” In terms of elegance and economy, there is nothing better. Back to
the example I wanted to mention. A long time ago, maybe fifteen years ago,
I was giving a talk in the Bourbaki seminar. I was describing a construc-
tion in dynamical systems due to Krystyna Kuperberg of a very fascinating
counterexample to an old conjuncture of Herbert Seifert (the construction of
a vector field on the 3-sphere with no periodic orbits). This is a wonderful,
simple idea, really wonderful. For my talk, I prepared pictures, and here
is one of the pictures that I showed (Figure 8). It’s not important to my
point that you understand what this object is. In my talk I explained the
construction saying, you know, “you do this, and this...” [gesturing towards
the picture with both hands]. After the talk, well, I thought it was successful,
people were happy. Then Jean-Pierre Serre came up to me and said, “That
was interesting what you said. I have a question.” And he asked, “Would
you consider this to be a theorem?” In other words, he was questioning
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whether the fact that I was using pictures, and not words, didn’t disqualify
me from transmitting mathematics. My feeling, and this feeling is shared
by others who you will see in a second, is that pictures and, more than pic-
tures, even movies, should be incorporated into the world of mathematics as
genuine tools of proof. Not just for fun, but for veracity, and for presenting
mathematics.

So let me explain something to show that I’m far from being the only
one to think this way. We’ll discuss Hilbert’s twenty-fourth problem in this
meeting, but today I want to discuss the zeroth Hilbert problem. When
Hilbert gave his famous lecture in Paris on problems for the future of math-
ematics, his paper contained twenty-three problems. These were preceded
by a general introduction on what makes a good problem, what is interest-
ing, where should we go, etc. There is something in this introduction that
I want to show you because I believe that, to this day, it presents a funda-
mental question for mathematics. The point is that we should incorporate
pictures as genuine tools for understanding and transmitting mathematics.
So, here’s an extract from Hilbert’s introduction of what I call his zeroth
problem:

“To new concepts correspond, necessarily, new signs. These we choose
in such a way that they remind us of the phenomena which were the
occasion for the formation of the new concepts. So the geometrical
figures are signs or mnemonic symbols of space intuition and are used as
such by all mathematicians. Who does not always use along with with
the double inequality a > b > c the picture of three points following
one another on a straight line as the geometrical picture of the idea
of ‘between’? Who does not make use of drawings of segments and
rectangle enclosed in one another, when it is required to prove with
perfect rigor a difficult theorem on the continuity of functions or the
existence of points of condensation? Who could dispense with the
figure of the triangle, the circle with its center, or with the cross of
three perpendicular axes? Or who would give up the representation of
the vector field, or the picture of a family of curves or surfaces with its
envelope which plays so important a part in differential geometry, in
the theory of differential equations, in the foundation of the calculus
of variations and in other purely mathematical sciences?

“The arithmetical symbols are written diagrams and the geometrical
figures are graphic formulas; and no mathematician could spare these
graphic formulas, any more than in calculation the insertion and re-
moval of parentheses or the use of other analytic signs.

“The use of geometrical signs as a means of strict proof presupposes

the exact knowledge and complete mastery of the axioms which un-
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derlie those figures; and in order that these geometrical figures may

be incorporated in the general treasure of mathematical signs, there is

necessary a rigorous axiomatic investigation of their conceptual con-

tent. Just as in adding two numbers, one must place the digits under

each other in the right order, so that only the rules of calculation, i.e.,

the axioms of arithmetic, determine the correct use of the digits, so

the use of geometrical signs is determined by the axioms of geometri-

cal concepts and their combinations.”

So Hilbert is asking for a language of pictures, for ways of presenting
mathematics simply while not restricted to the use of letters and languages.
Recently I had a discussion with some choreographers, and they face a sim-
ilar problem. They are looking for a notation for dance. How would you
denote choreography? They have several ways of doing it, for example, one
is called Benesh Movement Notation, but there are many other possibilities.
And they have exactly the same problem: why should we restrict ourselves
to a linear, totally ordered language in order to describe mathematics, since
we are not linearly ordered in our mind? Or at least I am not.

“The agreement between geometrical and arithmetical thought is shown

also in that we do not habitually follow the chain of reasoning back to

the axioms in arithmetical, any more than in geometrical discussions.

On the contrary we apply, especially in first attacking a problem, a

rapid, unconscious, not absolutely sure combination, trusting to a cer-

tain arithmetical feeling for the behavior of the arithmetical symbols,

which we could dispense with as little in arithmetic as with the geo-

metrical imagination in geometry. As an example of an arithmetical

theory operating rigorously with geometrical ideas and signs, I may

mention Minkowski’s work, Die Geometrie der Zahlen.”

This is not the usual way that we think of Hilbert; here he is praying
for a better use of pictures. Now let us get back to Poincaré. Poincaré
was not at all motivated by words or language, which are on the outside of
mathematics. He was motivated by the inside of mathematics, by intuition.
He warns that we should not compare mathematics with the game of chess.
Anyone can easily learn the rules of the game, you can check if a game is
fulfilling the rules, but it is clear that you are not a mathematician if you only
know the rules of the game. You need to have some global understanding
of the subject, and from that point of view logic is totally useless. Here’s
what he writes:
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“If you are present at a game of chess, it will not suffice, for the under-

standing of the game, to know the rules for moving the pieces. That

will only enable you to recognize that each move has been made con-

formably to these rules, and this knowledge will truly have very little

value. Yet this is what the reader of a book on mathematics would do

if he were a logician only. To understand the game is wholly another

matter; it is to know why the player moves this piece rather than that

other which he could have moved without breaking the rules of the

game. It is to perceive the inward reason which makes of this series of

successive moves a sort of organized whole. This faculty is still more

necessary for the player himself, that is, for the inventor.”

This reminds me of something. When you use your smart phone to look
up direction with Google Maps, it’s amazing how quickly it finds the best
path from A to B. Basically, this is what we are trying to do in mathematics.
We want to go somewhere, and we are looking for the best path. I don’t
know if any of you have looked at the algorithm that Google Maps uses.
It’s called the A* algorithm. It’s a very, very clever way of finding your way
in an unknown country, and I strongly suggest that you take a look at this
remarkable algorithm. Maybe it could be used, by analogy, to understand
better how mathematicians work, how sometimes we try to move forward
by first moving backward so as to change course.

What I want to say is that at present the connection between mathe-
matics on the outside and the inside is not good. We should improve it. We
should write mathematics in a different way. Hilbert is suggesting that we
should use pictures, I would even add that we should use movies.

Let me give you an example. There is this theorem of Stephen Smale
that implies that, in a particular sense, it is possible to turn the 2-sphere
inside out (we can evert it in 3-space). This is not an easy theorem to prove,
the proof is formal and difficult to understand. However, about 20 years
ago, Silvio Levy, Delle Maxwell and Tamara Munzner created a movie on
this result called Outside In, which is based on ideas of Bill Thurston. This
22-minute long movie uses extraordinary computer graphics to show you
how the eversion works. Of course, it still would not qualify as a proof,
but it comes very close to a proof. And if we follow the advice of Hilbert,
we ought to devise the rules with which to transform such a film into a
genuine proof. In the future, maybe tomorrow, or in ten years, one should
be able to publish proofs using movies, as soon as they are certified by some
certification that we do not as yet know how to do.

Another thing that I consider important is that we should think of the
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Figure 9: Outside in

way we write mathematics. For many years we have written papers from
A to Z, and it is well-known that no mathematician would open the paper
or book and start by the beginning and go to the end. We go forward, we
jump, we come back, we go to some other place. So we should be able to
write mathematics (and not only mathematics, actually) in a non-linear way.
Today’s technologies—computers, e-books, the Internet—make it possible to
do. So why don’t we do that? I think it’s time to create papers that are not
just standard papers going from A to Z.

An exciting possibility, at least for me, in this direction will begin next
week, when I will meet with a group of eighteen mathematicians who plan
to write a new book on algebraic topology for graduate students. We want
to do it this way. We don’t want to write a book with pages. We want to
write a book which is completely electronic, in which you can travel in a way
which is adapted to you as a reader. Of course, this requires some planning
before we start. But we feel that we have to try to adapt the outer ways of
describing mathematics to the inner ways of our readers.

Here is a very different idea about mathematical writing. This is this
crazy idea that comes from Paul Erdös that somewhere in heaven there is
THE BOOK, are in it are some jewels, some wonderful proofs, and we should
work toward these beautiful proofs, simple proofs, elegant proofs. Martin
Aigner and Günter Ziegler’s book Proofs from THE BOOK (Figure 10) is
supposed to contain a few hundred of those jewels. I’m not really convinced.
I don’t how many of you read this book, but some of the theorems inside this
book are really wonderful. But I tried myself to read it, and I can guarantee
that in most proofs, not all but most, they are just wonderful. And then you
close the book, and let’s see, now it’s one year later, I have forgotten them.
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Figure 10: Proofs from THE BOOK by Aigner and Ziegler

This is a bad sign. I mean, when I understand something, by definition, I
don’t forget it. The concept of beauty here, in my opinion, cannot be the
correct one. Simplicity is not the correct one.

I would like to finish by explaining some mathematics. I’m not sure if
it’s true in this country as well, but when I was a student, I was told that
you should never, never, never give a talk, without stating a theorem. So I
decided that maybe I could spend the last minutes of this talk mentioning
a theorem that I understand and that I think I will never forget. I will
not give you the proof, but I will explain this theorem because I believe it
reveals something about the way the brain understands mathematics. I’m
not a neurobiologist, I know even less about psychology, but I think it’s
something fundamental. It’s a simple, fundamental idea, and I want to
share it with you.

What I’d like to try is to discuss how we can understand large networks.
To begin, here is a picture of a network of neurons (Figure 11). You have
hundreds of thousands of neurons, and they are connected in a way that you
don’t really understand. And you want to describe this structure. Do you
know how many neurons I have in my brain? [Audience member: “A hundred
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Figure 11: Large networks

billion.”] I think I have only ten billion in my brain. Okay I think it’s ten
billion. For comparison, here’s a picture, albeit somewhat vague, of the
Internet (Figure 12). How many HTML pages are there in the world? Ten
billion. So the number of pages in the Internet is approximately the same as
the number of neurons in your brain. The difference is in the connectivity of
these two networks. A typical webpage is connected to about twenty other
webpages. But a typical neuron is connected to ten thousand neurons, so
things are much more connected in my brain. Another main difference is
that communication is much faster on the Internet than in my brain. This is
because Internet connections use electricity or light, while communications
in my brain use biological or chemical reactions, which are much slower. So
my brain is slower but better connected, and the Internet is less connected
but faster.

How can we understand these two huge structures? This is part of the
motivation for the theorem I want to mention. It’s a theorem of Endre
Szeméredi (Figure 13) called the Szeméredi regularity theorem. As you will
see, it’s a very general theorem that is true for all networks. It conveys the
idea that all networks, no matter how big they are, can be understood in
finite terms, so to speak. Let me explain. Here’s a network (Figure 14). A
network is just a bunch of points, which could be whatever you want, and
some of them are connected by links, or edges, which you draw between the
points as in the picture. Of course, this picture is reasonable because the
number of dots used is small. It’s totally impossible for me to draw a picture
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Figure 12: The Internet

Figure 13: Endre Szeméredi
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Figure 14: A network

of a complex network like the Internet. Now here’s the question: How could
I draw the Internet? What would be a good picture of Internet? Clearly, the
number of pages on the Internet in the world is so big that it’s impossible to
draw it here. There are more points on Internet than pixels on the screen.
So there’s no way of drawing a picture of the actual Internet. How can I
draw a fairly accurate picture of large networks? This is what Szeméredi’s
theorem tells you. It is possible to do something, and that’s what I want to
express.

Here’s a network (Figure 15). You have dots and you have links between
them, and the idea is that we want to group vertices or dots into several
groups. We want to replace the complicated picture having many dots by a
much simpler picture with fewer dots. Instead of having maybe twenty dots,
you’ll collapse these into only five dot-groups, A1, A2, A3, A4, A5, which
you’ll think of as new dots. Now let me give a definition and then state the
theorem, since this is my job. My job is to state and then prove theorems.

So here’s a similar picture (Figure 16). You have two sets, A and B.
Inside A and B you have subsets, X1 and Y1, where X1 is subset of A, and
Y1 is subset of B.

And then we define some numbers, the first number is called the density.
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Figure 15: Simplifying a network

Figure 16: Defining ε-regularity
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To calculate the density d(X,Y ) of X and Y , you count how many edges go
from X to Y ; that is, the total number e(X,Y ) of connections going from
some point of X to some point of Y . You then divide this number by the
product of the number |X| of points in X and the number |Y | of points in
Y .

d(X,Y ) =
e(X,Y )

|X||Y |
The density tells you the probability of connecting two points in X, Y .

You say that two sets A, B are ε-regular if for every subset X ⊂ A and
Y ⊂ B, the density d(X,Y ) and the density d(A,B) agree up to a small
number ε > 0. Here is the formal definition: A pair of sets (A,B) is ε-regular
if for every X ⊂ A with |X| > ε|A| and every Y ⊂ B with |Y | > ε|B|, we
have

|d(X,Y )− d(A,B)| < ε.

In other words, A and B are ε-regular if any part of A and any part of
B are connected basically in the same way. Now I can state the theorem
of Szeméredi, which says that every graph or network, for a given ε, can be
approximated by a smaller graph, with a number of points independent of
the original size of the graph, but only dependent on ε.

Endre Szeméredi regularity theorem. For every ε > 0, there are posi-
tive integers m and M such that every finite graph can be partitioned in n
parts Ai in such a way that

• m ≤ n ≤M

• All Ai have approximately the same size: (1−ε)|Ai| ≤ |Aj | ≤ (1+ε)|Ai|

• Among the n2 pairs (Ai, Aj) at least (1− ε)n2 are ε-regular.

This means that, whatever the size of the original network, you can
approximate it by a small graph which gives you almost all the information
you want about the connectivity inside your original network.

Let me end by showing you one example. This is a famous picture, an
old picture, of the Internet (Figure 17). Of course, it’s a very näıve image of
Internet. It tells you that you can, roughly speaking, decompose the Internet
into several parts. You have the “SCC”, that means the strongly connected
core. It’s about one-third of the total internet world. This is the part in
which everybody interacted with everybody, it’s highly connected. Then
you have “OUT”, which are the pages, where everybody goes, but nothing
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Figure 17: A small graph of the Internet

goes out of them. About the same size, you have “IN”, which consists of
the pages that are not interesting to anybody, but which are interested in
everybody. Apart from these, there are some disconnected components, I
don’t know what exactly those are, maybe the stamp collectors. The point
is that this theorem of Szeméredi, in a word, explains that any network,
even very big ones like the Internet network, can be described in such a way
with a simple picture. It doesn’t tell you everything about the structure of
the graph or network, but it tells you something about the global picture of
it.

I wanted to mention this theorem to you primarily because it’s an exam-
ple of a theorem for which the published proof is complicated, but neverthe-
less I understand it. For me it’s simple. I think I will never forget the proof
because I understand it. And this is the exact opposite of the one-line by
Jean-Pierre Serre, which was so short that it took me days to understand it.
When you read the long proof of this theorem, once you get it, you will say
“Well... I understand it, but why did they write such a long book on this?”
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