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It is very unusual for a mathematical idea to disseminate into the society at large. An interesting 
example is chaos theory, popularized by Lorenz’s butterfly effect: “does the flap of a butterfly’s 
wings in Brazil set off a tornado in Texas?” A tiny cause can generate big consequences! Can one 
adequately summarize chaos theory in such a simple minded way? Are mathematicians responsible 
for the inadequate transmission of their theories outside of their own community? What is the 
precise message that Lorenz wanted to convey? Some of the main characters of the history of chaos 
were indeed concerned with the problem of communicating their ideas to other scientists or 
non-scientists. I’ll try to discuss their successes and failures. The education of future mathematicians 
should include specific training to teach them how to explain mathematics outside their community. 
This is more and more necessary due to the increasing complexity of mathematics. A necessity and a 
challenge! 

 

INTRODUCTION 

In 1972, the meteorologist Edward Lorenz gave a talk at the 139th meeting of the American 
Association for the Advancement of Science entitled “Does the flap of a butterfly’s wings in 
Brazil set off a tornado in Texas?”. Forty years later, a google search “butterfly effect” 
generates ten million answers. Surprisingly most answers are not related to mathematics or 
physics and one can find the most improbable websites related to movies, music, popular 
books, video games, religion, philosophy and even Marxism! It is very unusual that a 
mathematical idea can disseminate into the general society. One could mention Thom's 
catastrophe theory in the 1970's, or Mandelbrot's fractals in the 1980's, but these theories 
remained confined to the scientifically oriented population. On the contrary, chaos theory, 
often presented through the butterfly effect, did penetrate the nonscientific population at a 
very large scale. Unfortunately, this wide diffusion was accompanied with an 
oversimplification of the main original ideas and one has to admit that the transmission 
procedure from scientists to nonscientists was a failure. As an example, the successful book 
The butterfly effect by Andy Andrews “reveals the secret of how you can live a life of 
permanent purpose” and  “shows how your everyday actions can make a difference for 
generations to come” which is not exactly the message of the founding fathers of chaos 
theory! In Spielberg's movie Jurassic Park, Jeff Goldblum introduces himself as a 
“chaotician” and tries (unsuccessfully) to explain the butterfly effect and unpredictability to 
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the charming Laura Dern; the message is scientifically more accurate but misses the main 
point. If chaos theory only claimed that the future is unpredictable, would it deserve the 
name “theory”? After all, it is well known that “Prediction is very difficult, especially the 
future!”1. A scientific theory cannot be limited to negative statements and one would be 
disappointed if Lorenz's message only contained this well known fact. 

The purpose of this talk is twofold. On the one hand, I would like to give a very elementary 
presentation of chaos theory, as a mathematical theory, and to give some general overview 
on the current research activity in this domain with an emphasis on the role of the so-called 
physical measures. On the other hand, I would like to analyze the historical process of the 
development of the theory, its successes and failures, focusing in particular on the 
transmission of ideas between mathematics and physics, or from Science to the general 
public. This case study might give us some hints to improve the communication of 
mathematical ideas outside mathematics or scientific circles. The gap between 
mathematicians and the general population has never been so wide. This may be due to the 
increasing complexity of mathematics or to the decreasing interest of the population for 
Science. I believe that the mathematical community has the responsibility of building 
bridges. 

 

A BRIEF HISTORY OF CHAOS FROM NEWTON TO LORENZ 

Determinism 

One of the main pillars of Science is determinism: the possibility of prediction. This is of 
course not due to a single person but one should probably emphasize the fundamental role 
of Newton. As he was laying the foundations of differential calculus and unraveling the 
laws of mechanics, he was offering by the same token a tool enabling predictions. Given a 
mechanical system, be it the solar system or the collection of molecules in my room, one 
can write down a differential equation governing the motion. If one knows the present 
position and velocity of the system, one should simply solve a differential equation in order 
to determine the future. Of course, solving a differential equation is not always a simple 
matter but this implies at least the principle of determinism: the present situation determines 
the future. Laplace summarized this wonderfully in his 1814 “Essai philosophique sur les 
probabilités” (Laplace, 1814): 

“We ought then to consider the present state of the universe as the effect of its previous 
state and as the cause of that which is to follow. An intelligence that, at a given instant, 
could comprehend all the forces by which nature is animated and the respective situation 
of the beings that make it up, if moreover it were vast enough to submit these data to 
analysis, would encompass in the same formula the movements of the greatest bodies of 
the universe and those of the lightest atoms. For such an intelligence nothing would be 
uncertain, and the future, like the past, would be open to its eyes.” 

                                         
1 See www.peterpatau.com/2006/12/bohr-leads-berra-but-yogi-closing-gap.html for an interesting 
discussion of the origin of this quotation. 
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The fact that this quotation comes from a book on probability theory shows that Laplace's 
view on determinism was far from naïve (Kahane, 2008). We lack the “vast intelligence” 
and we are forced to use probabilities in order to understand dynamical systems.  

Sensitivity to initial conditions 

In his little book “Matter and Motion” published in 1876, Maxwell insists on the sensitivity 
to initial conditions in physical phenomena (Maxwell, 1876):  

“There is a maxim which is often quoted, that ‘The same causes will always produce the 
same effects.’ To make this maxim intelligible we must define what we mean by the 
same causes and the same effects, since it is manifest that no event ever happens more 
that once, so that the causes and effects cannot be the same in all respects. [...]  
There is another maxim which must not be confounded with that quoted at the beginning 
of this article, which asserts ‘That like causes produce like effects’. This is only true 
when small variations in the initial circumstances produce only small variations in the 
final state of the system. In a great many physical phenomena this condition is satisfied; 
but there are other cases in which a small initial variation may produce a great change in 
the final state of the system, as when the displacement of the ‘points’ causes a railway 
train to run into another instead of keeping its proper course.” 

Notice that Maxwell seems to believe that “in great many cases” there is no sensitivity to 
initial conditions. The question of the frequency of chaos in nature is still at the heart of 
current research. Note also that Maxwell did not really describe what we would call chaos 
today. Indeed, if one drops a rock from the top of a mountain, it is clear that the valley 
where it will end its course can be sensitive to a small variation of the initial position but it 
is equally clear that the motion cannot be called “chaotic” in any sense of the word: the rock 
simply goes downwards and eventually stops. 

Fear for chaos 

It is usually asserted that chaos was “discovered” by Poincaré in his famous memoir on the 
3-body problem (Poincaré, 1890). His role is without doubt very important, but maybe not 
as much as is often claimed. He was not the first to discover sensitivity to initial conditions. 
However, he certainly realized that some mechanical motions are very intricate, in a way 
that Maxwell had not imagined. Nevertheless chaos theory cannot be limited to the 
statement that the dynamics is complicated: any reasonable theory must provide methods 
allowing some kind of understanding. The following famous quotation of Poincaré 
illustrates his despair when confronted by the complication of dynamics (Poincaré, 1890): 

“When we try to represent the figure formed by these two curves and their infinitely 
many intersections, each corresponding to a doubly asymptotic solution, these 
intersections form a type of trellis, tissue, or grid with infinitely fine mesh. Neither of the 
two curves must ever cut across itself again, but it must bend back upon itself in a very 
complex manner in order to cut across all of the meshes in the grid an infinite number of 
times.  The complexity of this figure is striking, and I shall not even try to draw it. 
Nothing is more suitable for providing us with an idea of the complex nature of the 
three-body problem, and of all the problems of dynamics in general […].” 
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One should mention that ten years earlier Poincaré had written a fundamental memoir “Sur 
les courbes définies par des équations différentielles” laying the foundations of the 
qualitative theory of dynamical systems (Poincaré, 1881). In this paper, he had analyzed in 
great detail the behavior of the trajectories of a vector field in the plane, i.e. of the solutions 
of an ordinary differential equation in dimension 2. One of his main results — the 
Poincaré-Bendixson theorem — implied that such trajectories are very well behaved and 
converge to an equilibrium point or to a periodic trajectory (or to a so-called “graphic”): 
nothing chaotic in dimension 2! In his 1890 paper, he was dealing with differential 
equations in dimension 3 and he must have been puzzled — and scared — when he realized 
the complexity of the picture. 

Taming chaos 
In 1898 Hadamard wrote a fundamental paper on the dynamical behavior of geodesics on 
negatively curved surfaces (Hadamard, 1898). He first observes that “a tiny change of 
direction of a geodesic [...] is sufficient to cause any variation of the final shape of the curve” 
but he goes much further and creates the main concepts of the so-called “symbolic 
dynamics”. This enables him to prove positive statements, giving a fairly precise description 
of the behavior of geodesics. Of course, Hadamard is perfectly aware of the fact that 
geodesics on a surface define a very primitive mechanical system and that it is not clear at 
all that natural phenomena could have a similar behavior. He concludes his paper in a 
cautious way: 

“Will the circumstances we have just described occur in other problems of mechanics? In 
particular, will they appear in the motion of celestial bodies? We are unable to make such 
an assertion. However, it is likely that the results obtained for these difficult cases will be 
analogous to the preceding ones, at least in their degree of complexity. […]  
Certainly, if a system moves under the action of given forces and its initial conditions 
have given values in the mathematical sense, its future motion and behavior are exactly 
known. But, in astronomical problems, the situation is quite different: the constants 
defining the motion are only physically known, that is with some errors; their sizes get 
reduced along the progresses of our observing devices, but these errors can never 
completely vanish.” 

So far, the idea that some physical systems could be complicated and sensitive to small 
variations of the initial conditions — making predictions impossible in practice — remained 
hidden in very confidential mathematical papers known to a very small number of scientists. 
One should keep in mind that by the turn of the century, physics was triumphant and the 
general opinion was that Science would eventually explain everything. The revolutionary 
idea that there is a strong conceptual limitation to predictability was simply unacceptable to 
most scientists.  

 

Popularization 

However, at least two scientists realized that this idea is relevant in Science and tried — 
unsuccessfully — to advertize it outside mathematics and physics, in “popular books”.   
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In his widely circulated book Science and Method, Poincaré expresses the dependence to 
initial conditions in a very clear way. The formulation is very close to the butterfly slogan 
and even includes a devastating cyclone (Poincaré 1908): 

“Why have meteorologists such difficulty in predicting the weather with any certainty? 
Why is it that showers and even storms seem to come by chance, so that many people 
think it quite natural to pray for rain or fine weather, though they would consider it 
ridiculous to ask for an eclipse by prayer? We see that great disturbances are generally 
produced in regions where the atmosphere is in unstable equilibrium. The meteorologists 
see very well that the equilibrium is unstable, that a cyclone will be formed somewhere, 
but exactly where they are not in a position to say; a tenth of a degree more or less at any 
given point, and the cyclone will burst here and not there, and extend its ravages over 
districts it would otherwise have spared. If they had been aware of this tenth of a degree 
they could have known it beforehand, but the observations were neither sufficiently 
comprehensive nor sufficiently precise, and that is the reason why it all seems due to the 
intervention of chance.” 

In 1908 Poincaré was less scared by chaos than in 1890. He was no longer considering 
chaos as an obstacle to a global understanding of the dynamics, at least from the 
probabilistic viewpoint. Reading Poincaré’s papers of this period, with today’s 
understanding of the theory, one realizes that he had indeed discovered the role of what is 
called today physical measures (to be discussed later) which are at the heart of the current 
approach. Unfortunately, none of his contemporaries could grasp the idea — or maybe he 
did not formulate it in a suitable way — and one had to wait for seventy years before the 
idea could be re-discovered! 

“You are asking me to predict future phenomena. If, quite unluckily, I happened to know 
the laws of these phenomena, I could achieve this goal only at the price of inextricable 
computations, and should renounce to answer you; but since I am lucky enough to ignore 
these laws, I will answer you straight away. And the most astonishing is that my answer 
will be correct.” 

Another attempt to advertize these ideas outside mathematics and physics was made by 
Duhem in his book The aim and structure of physical theory (Duhem, 1906). His purpose 
was to popularize Hadamard’s paper and he used simple words and very efficient “slogans”: 

“Imagine the forehead of a bull, with the protuberances from which the horns and ears 
start, and with the collars hollowed out between these protuberances; but elongate these 
horns and ears without limit so that they extend to infinity; then you will have one of the 
surfaces we wish to study. On such a surface geodesics may show many different aspects.  
There are, first of all, geodesics which close on themselves. There are some also which 
are never infinitely distant from their starting point even though they never exactly pass 
through it again; some turn continually around the right horn, others around the left horn, 
or right ear, or left ear; others, more complicated, alternate, in accordance with certain 
rules, the turns they describe around one horn with the turns they describe around the 
other horn, or around one of the ears. Finally, on the forehead of our bull with his 
unlimited horns and ears there will be geodesics going to infinity, some mounting the 
right horn, others mounting the left horn, and still others following the right or left ear. 
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[...] If, therefore, a material point is thrown on the surface studied starting from a 
geometrically given position with a geometrically given velocity, mathematical 
deduction can determine the trajectory of this point and tell whether this path goes to 
infinity or not. But, for the physicist, this deduction is forever unutilizable. When, indeed, 
the data are no longer known geometrically, but are determined by physical procedures 
as precise as we may suppose, the question put remains and will always remain 
unanswered.” 

Unfortunately the time was not ripe. Scientists were not ready for the message… Poincaré 
and Duhem were not heard. The theory went into a coma. Not completely though, since 
Birkhoff continued the work of Poincaré in a strictly mathematical way, with no attempts to 
develop a school, and with no applications to natural sciences. One should mention that 
Poincaré’s work had also some posterity in the Soviet Union but this was more related to 
the 1881 “non chaotic” theory of limit cycles (Aubin, Dahan Dalmedico, 2002). 

Later I will describe Lorenz's fundamental article, written in 1963, which bears the technical 
title “Deterministic non periodic flow”, and was largely unnoticed by mathematicians for 
about ten years (Lorenz, 1963). In 1972 Lorenz gave a lecture entitled “Predictability: does 
the flap of a butterfly's wings in Brazil set off a tornado in Texas?” which was the starting 
point of the famous butterfly effect (Lorenz, 1972).  

“If a single flap of a butterfly's wing can be instrumental in generating a tornado, so all 
the previous and subsequent flaps of its wings, as can the flaps of the wings of the 
millions of other butterflies, not to mention the activities of innumerable more powerful 
creatures, including our own species.” 
“If a flap of a butterfly's wing can be instrumental in generating a tornado, it can equally 
well be instrumental in preventing a tornado.” 

This is not really different from Poincaré’s “a tenth of a degree more or less at any given 
point, and the cyclone will burst here and not there”. However, meanwhile, physics (and 
mathematics) had gone through several revolutions and non-predictability had become an 
acceptable idea. More importantly, the world had also gone through several (more important) 
revolutions. The message “each one of us can change the world2” was received as a sign of 
individual freedom. This is probably the explanation of the success of the butterfly effect in 
popular culture. It would be interesting to describe how Lorenz’s talk reached the general 
population. One should certainly mention the best seller Chaos : making a new science 
(Gleick, 1987) (which was a finalist for the Pulitzer Prize). One should not minimize the 
importance of such books. One should also emphasize that Lorenz himself published a 
wonderful popular book The essence of chaos in 1993. Note that the two main characters of 
the theory, Poincaré and Lorenz, wrote popular books to make their researches accessible to 
a wide audience.   

                                         
2 Subtitle of a book by Bill Clinton (2007). 
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LORENZ’S 1963 PAPER   

Lorenz's 1963 article is wonderful (Lorenz, 1963). At first unnoticed, it eventually became 
one of the most cited papers in scientific literature (more than 6000 citations since 1963 and 
about 400 each year in recent years). For a few years, Lorenz had been studying simplified 
models describing the motion of the atmosphere in terms of ordinary differential equations 
depending on a small number of variables. For instance, in 1960 he had described a system 
that can be explicitly solved using elliptic functions: solutions were quasiperiodic in time 
(Lorenz, 1960). His article (Lorenz, 1962) analyzes a differential equation in a space of 
dimension 12, in which he numerically detects a sensitive dependence to initial conditions. 
His 1963 paper lead him to fame.  

“In this study we shall work with systems of deterministic equations which are 
idealizations of hydrodynamical systems.” 

After all, the atmosphere is made of finitely many particles, so one indeed needs to solve an 
ordinary differential equation in a huge dimensional space. Of course, such equations are 
intractable, and one must treat them as partial differential equations. In turn, the latter must 
be discretized on a finite grid, leading to new ordinary differential equations depending on 
fewer variables, and probably more useful than the original ones.  

The bibliography in Lorenz's article includes one article of Poincaré, but not the right one! 
He cites the early 1881 “non chaotic” memoir dealing with 2 dimensional dynamics. Lorenz 
seems indeed to have overlooked the Poincaré’s papers that we have discussed above. 
Another bibliographic reference is a book by Birkhoff on dynamical systems (Birkhoff, 
1927). Again, this is not “the right” reference since the “significant” papers on chaos by 
Birkhoff were published later. On the occasion of the 1991 Kyoto prize, Lorenz gave a 
lecture entitled “A scientist by choice” in which he discusses his relationship with 
mathematics (Lorenz, 1991). In 1938 he was a graduate student in Harvard and was 
working under the guidance of… Birkhoff  “on a problem in mathematical physics”. 
However he seems unaware of the fact that Birkhoff was indeed the best follower of 
Poincaré. A missed opportunity? On the other hand, Lorenz mentions that Birkhoff “was 
noted for having formulated a theory of aesthetics”. 

Lorenz considers the phenomenon of convection. A thin layer of a viscous fluid is placed 
between two horizontal planes, set at two different temperatures, and one wants to describe 
the resulting motion. The higher parts of the fluid are colder, therefore denser; they have 
thus a tendency to go down due to gravity, and are then heated when they reach the lower 
regions. The resulting circulation of the fluid is complex. Physicists are very familiar with 
the Bénard and Rayleigh experiments. Assuming the solutions are periodic in space, 
expanding in Fourier series and truncating these series to keep only a small number of terms, 
Salzman had just obtained an ordinary differential equation describing the evolution. 
Drastically simplifying this equation, Lorenz obtained “his” differential equation: 

!"
!" = ! ! + !   ;     

!"
!" = −!" + !" − !  ;     

!"
!" = !" − !". 
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Here x represents the intensity of the convection, y represents the temperature difference 
between the ascending and descending currents, and z is proportional to the “distortion” of 
the vertical temperature profile from linearity, a positive value indicating that the strongest 
gradients occur near the boundaries. Obviously, one should not seek in this equation a 
faithful representation of the physical phenomenon. The constant σ is the Prandtl number.  
Guided by physical considerations, Lorenz was lead to choose the numerical values 
r = 28, σ =10, b =8/3. It was a good choice, and these values remain traditional today. He 
could then numerically solve these equations, and observe a few trajectories. The electronic 
computer Royal McBee LGP-30 was rather primitive: according to Lorenz, it computed 
(only!) 1000 times faster than by hand. The anecdote is well known (Lorenz, 1991): 

 “I started the computer again and went out for a cup of coffee. When I returned about an 
hour later, after the computer had generated about two months of data, I found that the 
new solution did not agree with the original one. […] I realized that if the real 
atmosphere behaved in the same manner as the model, long-range weather prediction 
would be impossible, since most real weather elements were certainly not measured 
accurately to three decimal places.” 

Let us introduce some basic terminology and notation. For simplicity we shall only deal 
with ordinary differential equations in ℝ! of the form !"

!"
= ! !  where x is now a point in 

ℝ! and X is a vector field in ℝ!. We shall assume that X is transversal to some large sphere, 
say ! = !, pointing inwards, which means that the scalar product !.! !   !s negative on 
this sphere. Denote by B the ball ! ≤ !. For any point x in B, there is a unique solution of 
the differential equation with initial condition x and defined for all ! ≥ 0. Denote this 
solution by !! ! . The purpose of the theory of dynamical systems is to understand the 
asymptotic behavior of these trajectories when t tends to infinity. With this terminology, one 
says that X is sensitive to initial conditions if there exists some ! > 0  such that for every 
! > 0 one can find two points x, x’ in B with ! − !! < ! and some time ! > 0   such that 
!! ! − !! !! < !. 

Lorenz's observations go much further than the fact that “his” differential equation is 
sensitive to initial conditions. He notices that these unstable trajectories seem to accumulate 
on a complicated compact set, which is itself insensitive to initial conditions and he 
describes this limit set in a remarkably precise way. There exists some compact set K in the 
ball such that for almost every initial condition x, the trajectory of x accumulates precisely 
on K. This attracting set K (now called the Lorenz attractor) approximately resembles a 
surface presenting a “double” line along which two leaves merge. 

 “Thus within the limits of accuracy of the printed values, the trajectory is confined to a 
pair of surfaces which appear to merge in the lower portion. [...] It would seem, then, that 
the two surfaces merely appear to merge, and remain distinct surfaces. [...] Continuing 
this process for another circuit, we see that there are really eight surfaces, etc., and we 
finally conclude that there is an infinite complex of surfaces, each extremely close to one 
or the other of the two merging surfaces.” 
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(Lorenz, 1963) 

Starting from an initial condition, the trajectory rapidly approaches this “two dimensional 
object” and then travels “on” this “surface”. The trajectory turns around the two holes, left 
or right, in a seemingly random way. Notice the analogy with Hadamard's geodesics turning 
around the horns of a bull. Besides, Lorenz studies how trajectories come back to the 
“branching line'' where the two surfaces merge, which can be parameterized by some 
interval [0,1]. Obviously, this interval is not very well defined, since the two merging 
surfaces do not really come in contact, although they coincide “within the limits of accuracy 
of the printed values”. Starting from a point on this “interval”, one can follow the future 
trajectory and observe its first return onto the interval. This defines a two to one map from 
the interval to itself. Indeed, in order to go back in time and track the past trajectory of a 
point in [0,1], one should be able to select one of the two surfaces attached to the interval. 
On the figure the two different past trajectories seem to emanate from the “same point” of 
the interval. Of course, if there are two past trajectories starting from “one” point, there 
should be four, then eight, etc, which is what Lorenz expresses in the above quotation. 
Numerically, the first return map is featured on the left part of Figure, extracted from the 
original paper. 

 
Working by analogy, Lorenz compares this map to the (much simpler) following one: 
! ! = 2!   if 0 ≤ ! ≤ !

!
   and ! ! = 2 − 2!    if !

!
≤ ! ≤ 1   (right part of the Figure). 

Nowadays the chaotic behavior of this “tent map” is well known, but this was much less 
classical in 1963. In particular, the periodic points of f are exactly the rational numbers with 
odd denominators, which are dense in [0,1]. Lorenz does not hesitate to claim that the same 
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property applies to the iterations of the “true” return map. The periodic trajectories of the 
Lorenz attractor are “therefore” dense in K. What an intuition! Finally, he concludes with a 
lucid question on the relevance of his model for the atmosphere. 

“There remains the question as to whether our results really apply to the atmosphere. One 
does not usually regard the atmosphere as either deterministic or finite, and the lack of 
periodicity is not a mathematical certainty, since the atmosphere has not been observed 
forever.” 

To summarize, this remarkable article contains the first example of a physically relevant 
dynamical system presenting all the characteristics of chaos. Individual trajectories are 
unstable but their asymptotic behavior seems to be insensitive to initial conditions: they 
converge to the same attractor. None of the above assertions are justified, at least in the 
mathematical sense. How frustrating! 

Surprisingly, an important question is not addressed in Lorenz's article. The observed 
behavior happens to be robust: if one slightly perturbs the differential equation, for instance 
by modifying the values of the parameters, or by adding small terms, then the new 
differential equation will feature the same type of attractor with the general aspect of a 
branched surface. This property would be rigorously established much later by 
Guckhenheimer and Williams. 

 
The Lorenz attractor looks like a butterfly 

 

MEANWHILE, MATHEMATICIANS… 

Lack of communication between mathematicians and physicists? 

Mathematicians did not notice Lorenz’s paper for more than ten years. The mathematical 
activity in dynamical systems during this period followed an independent and parallel path, 
under the lead of Smale. How can one understand this lack of communication between 
Lorenz — the MIT meteorologist — and Smale — the Berkeley mathematician? Obviously, 
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during the 1960’s the scientific community had already reached such a size that it was 
impossible for a single person to master mathematics and physics; the time of Poincaré was 
over. No bridge between different sciences was available. Mathematicians had no access to 
the Journal of Atmospheric Sciences3. 

Smale’s Axiom A 

In 1959 Smale had obtained remarkable results in topology, around the Poincaré conjecture 
in higher dimension. The main tool was Morse theory describing the gradient of a (generic) 
function. The dynamics of such a gradient is far from chaotic: trajectories go uphill and 
converge to some equilibrium point. Smale initiated a grandiose program aiming at a 
qualitative description of the trajectories of a generic vector field (on compact manifolds). 
His first attempt was amazingly naïve (Smale, 1960). He conjectured that a generic vector 
field has a finite number of equilibrium points, a finite number of periodic trajectories, and 
that every trajectory converges in the future (and in the past) towards an equilibrium or a 
periodic trajectory. He was therefore proposing that chaos does not exist! Poincaré, 
Hadamard or Birkhoff had already published counterexamples many years earlier! Looking 
back at this period, Smale wrote (Smale, 1998):  

“It is astounding how important scientific ideas can get lost, even when they are aired by 
leading scientific mathematicians of the preceding decades.” 

Smale realized soon by himself 4 that the dynamics of a generic vector field is likely to be 
much more complicated than he had expected. He constructed a counterexample to his own 
conjecture. The famous horseshoe is a simple example of a dynamical system admitting an 
infinite number of periodic trajectories in a stable way.  

In order to describe this example, I should explain a classical construction (due to Poincaré). 
Suppose we start with a vector field X (in a ball in ℝ!, as above). It may 
happen that one can find some ! − 1  dimensional disc D, which is 
transverse to X  and which is such that the trajectory of every point x in D 
intersects D infinitely often. In such a situation, one can define a map 
!:! → ! which associates to each point x in D the next intersection of 
its trajectory with D. For obvious reasons, this map is called the first 
return map. Clearly the description of the dynamics of X reduces to the 
description of the iterates of F. Conversely, in many cases, one can 
construct a vector field from a map F. It is often easier to draw pictures 

in D since it is one dimension lower than B. In Smale’s example, D has dimension 2 and 
corresponds to a vector field in dimension 3, like in Lorenz’s example. The map F is called 
a horseshoe map since the image ! !  of a square C does look like a horseshoe as in the 
picture.  

                                         
3 In order to find an excuse for not having noticed Lorenz paper, a famous mathematician told me 
that Lorenz had published in “some obscure journal”! 
4 as if obeying Goethe’s dictum “Was du ererbt von deinen Vätern hast, erwirb es, um es zu 
besitzen” (“That which you have inherited from your fathers, earn it in order to possess it.”) 
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The infinite intersection ∩!∞!∞ !! !  is a nonempty compact set ! ⊂ !,  and the restriction of 
F to K is a homeomorphism. The intersection ! ∩ ! !  consists of two connected 
components !!  and !!. Smale shows that one can choose F in such a way that for every 
bi-infinite sequence !!(with !! = 0 or 1), there exists a unique point x in K such that 
!! x ∈ !! for every i. In particular, periodic points of F correspond to periodic sequences 
!! ; they are dense in K. 

More importantly, Smale shows that his example is structurally stable. Let us come back to 
a vector field X defined in some ball in ℝ! and transversal to the boundary. One says that X 
is structurally stable if every vector field X’ which is close enough to X (say in the 
!!  topology) is topologically conjugate to X: there is a homeomorphism h of B sending 
trajectories of X to trajectories of X’. Andronov and Pontryagin had introduced this concept 
in 1937 but in a very simple context, certainly not in the presence of an infinite number of 
periodic trajectories (Andronov, Pontrjagin, 1937). The proof that the horseshoe map 
defines a structurally stable vector field is rather elementary. It is based on the fact that a 
map F’ from D to itself close enough to F is also described by the same infinite sequences 
!! . 
Smale published this result in the proceedings of a workshop organized in the Soviet Union 
in 1961. Anosov tells us about this “revolution” in (Anosov, 2006). 

“The world turned upside down for me, and a new life began, having read Smale's 
announcement of ‘a structurally stable homeomorphism with an infinite number of 
periodic points’, while standing in line to register for a conference in Kiev in 1961. The 
article is written in a lively, witty, and often jocular style and is full of captivating 
observations. [...] [Smale] felt like a god who is to create a universe in which certain 
phenomena would occur.” 

Afterwards the theory progressed at a fast pace. Smale quickly generalized the horseshoe; 
see for instance (Smale 1965). Anosov proved in 1962 that the geodesic flow on a manifold 
of negative curvature is structurally stable5. For this purpose, he created the concept of what 
is known today as Anosov flows. Starting from the known examples of structurally stable 
systems, Smale cooked up in 1965 the fundamental concept of dynamical systems satisfying 
the Axiom A and conjectured that these systems are generic and structurally stable. Smale's 
1967 article “Differential dynamical systems” represents an important step for the theory of 
dynamical systems (Smale, 1967), a “masterpiece of mathematical literature” according to 
Ruelle. But, already in 1968, Abraham and Smale found a counterexample to this second 
conjecture of Smale: Axiom A systems are indeed structurally stable but they are not 
generic (Abraham, Smale, 1968). 

Lorenz’s equation enters the scene 

Lorenz’s equation pops up in mathematics in the middle of the 1970’s. According to 
Guckenheimer, Yorke mentioned to Smale and his students the existence of Lorenz’s 
                                         
5 Surprisingly, he does not seem to be aware of Hadamard's work. It would not be difficult 
to deduce Anosov’s theorem from Hadamard’s paper. 
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equation, which did not fit well with their approach. The well-known 1971 paper by Ruelle 
and Takens (Ruelle, Takens, 1971) still proposed Axiom A systems as models for 
turbulence, but in 1975 Ruelle observed that “Lorenz's work was unfortunately overlooked” 
(Ruelle, 1975). Guckenheimer and Lanford were among the first people to have shown 
some interest in this equation (from a mathematical point of view) (Guckenheimer, 1976; 
Lanford, 1977). Mathematicians quickly adopted this new object which turned out to be a 
natural counterexample to Smale’s conjecture on the genericity of Axiom A systems. It is 
impossible to give an exhaustive account of all their work. By 1982 an entire book was 
devoted to the Lorenz’s equation, although it mostly consisted of a list of open problems for 
mathematicians (Sparrow, 1982). 

Bowen's 1978 review article is interesting at several levels (Bowen, 1978). Smale’s theory 
of Axiom A systems had become solid and, although difficult open questions remained, one 
had a rather good understanding of their dynamics. A few “dark swans” had appeared in the 
landscape, like Lorenz’s examples, destroying the naïve belief in the genericity of Axiom A 
systems. However mathematicians were trying to weaken the definition of Axiom A in 
order to leave space to the newcomer Lorenz. Nowadays, Axiom A systems seem to occupy 
a much smaller place than one thought at the end of the 1970’s. The Axiom A paradigm had 
to abandon its dominant position...  According to (Anosov, 2006): 

“Thus the grandiose hopes of the 1960’s were not confirmed, just as the earlier naive 
conjectures were not confirmed.” 

For a more detailed description of the “hyperbolic history” one can also read the 
introduction of (Hasselblatt, 2002), or (Ghys, 2010). See also “What is... a horseshoe” by 
one of the main actors of the field (Shub, 2005). 

 

LORENZ’S BUTTERFLY AS SEEN BY MATHEMATICIANS 

In order to understand Lorenz’s butterfly from a mathematical point of view, 
Guckhenheimer and Williams introduced a “geometrical model” in 1979 (Guckenheimer, 
Williams, 1979). Remember that Lorenz had observed that “his” dynamics seems to be 
related to the iterates of a map f from an interval to itself, even though this interval and this 
map were only defined “within the limits of accuracy of the printed values”.  The main idea 
of Guckenheimer and Williams is to start from a map f of the interval and to construct some 
vector field in 3-space whose behavior “looks like” the observed behavior of the original 
Lorenz equation. The question of knowing if the constructed vector field, called the 
geometric Lorenz model, is actually related to the original Lorenz equation was not 
considered as important. After all, the original Lorenz equation was a crude approximation 
of a physical problem and it was unclear whether it was connected with reality, and 
moreover mathematicians in this group were not really concerned with reality!  
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The following figure is reprinted from6 (Guckenheimer, Williams, 1979): 

 

 
This is a branched surface Σ embedded in space. One can define some dynamical system !! 
(! ≥ 0)  on Σ whose trajectories are sketched on the figure: a point in Σ has a future but has 
no past because of the two leaves which merge along an interval. The first return map on 
this interval is the given map f from the interval to itself. The dynamics of !!  !" easy to 
understand: the trajectories turn on the surface, either on the left or on the right wing, 
according to the location of the iterates of the original map f. So far, this construction does 
not yield a vector field. Guckhenheimer and Williams construct a vector field ! !  in some 
ball B in ℝ! , transversal to the boundary sphere, whose dynamics mimics !

! . More 
precisely, denote by !! !  the trajectories of ! !  and by Λ the intersection ∩!!! !! ! , so 
that for every point x in B, the accumulation points of the trajectory !! !  are contained in 
Λ. The vector field ! !  is such that Λ is very close to Σ and that the trajectories !! !  
shadow !!. In other words, for every point x in Λ, there is a point x’ in Σ such that !! !  
and !! !!   stay at a very small distance for all positive times ! ≥ 0.  This vector field ! !  
is not unique but is well defined up to topological equivalence, i.e. up to some 
homeomorphism sending trajectories to trajectories. This justifies Lorenz's intuition, 
according to which the attractor Λ behaves like a branched surface. Moreover, every vector 
field in B which is close to ! !  is topologically conjugate to some ! !!  for some map f’ 
of the interval which is close to f. Furthermore, they construct explicitly a two-parameter 
family of maps ! !,! which represent all possible topological equivalence classes. In 
summary, up to topological equivalence, the vector fields in the neighborhood of ! !  
depend on two parameters and are Lorenz like. This is the robustness property mentioned 
above. 

Hence, the open set in the space of vector fields of the form ! !  does not contain any 
structurally stable vector field. If Smale had known Lorenz’s example earlier, he would 
have saved time! Lorenz’s equation does not satisfy Axiom A and cannot be approximated 
by an Axiom A system. Therefore any theory describing generic dynamical systems should 
incorporate Lorenz’s equation. 

                                         
6 Incidentally, this figure shows that the quality of an article does not depend on that of its 
illustrations. 
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As we have mentioned, the geometric models for the Lorenz attractor have been inspired by 
the original Lorenz equation, but it wasn't clear whether the Lorenz equation indeed behaves 
like a geometric model. Smale chose this question as one of the “mathematical problems for 
the next century” in 1998. The problem was positively solved in (Tucker, 2002). For a brief 
description of the method used by Tucker, see for instance (Viana, 2000). 

 

THE CONCEPT OF PHYSICAL SRB MEASURES 

Poincaré 

The main method to tackle the sensitivity to initial conditions uses probabilities. This is not 
a new idea. As mentioned earlier, Laplace realized that solving differential equations 
requires a “vast intelligence” that we don’t have… and suggested developing probability 
theory in order to get some meaningful information. In his “Science and method”, Poincaré 
gives a much more precise statement. Here is an extract of the chapter on “chance”: 

“When small differences in the causes produce great differences in the effects, why are 
the effects distributed according to the laws of chance? Suppose a difference of an inch in 
the cause produces a difference of a mile in the effect. If I am to win in case the integer 
part of the effect is an even number of miles, my probability of winning will be ½. Why 
is this? Because, in order that it should be so, the integer part of the cause must be an 
even number of inches.  Now, according to all appearance, the probability that the cause 
will vary between certain limits is proportional to the distance of those limits, provided 
that distance is very small.” 

This chapter contains much more information about Poincaré’s visionary idea and one can 
even read some proofs between the lines… In modern terminology, Poincaré considers a 
vector field X in a ball B in ℝ!, as before. Instead of considering a single point x and trying 
to describe the limiting behavior of !! ! , he suggests choosing some probability 
distribution µ in the ball B and to study its evolution !⋆!! under the dynamics. He then gives 
some arguments showing that if µ has a continuous density, and if there is “a strong 
sensitivity to initial conditions”, the family of measures !⋆!! should converge to some limit 
ν which is independent of the initial distribution µ 7. Even though individual trajectories are 
sensitive to initial conditions, the asymptotic distribution of trajectories is independent of 
the initial distribution, assuming that this initial distribution has a continuous density. 
Amazingly, none of his contemporaries realized that this was a fundamental contribution. 
This may be due to the fact that Poincaré did not write this idea in a formalized 
mathematical paper but in a popular book. One would have to wait for about seventy years 
before this idea could surface again. 

                                         
7 I may be exaggerating because of my excessive worship of Poincaré, but it seems to me that, in 
modern terminology, Poincaré explains that the limiting probability ν is absolutely continuous on 
instable manifolds and may not be continuous on stable manifolds. 
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Lorenz 

We have seen that the 1972 conference of Lorenz on the butterfly emphasized the 
sensitivity to initial conditions and that this idea eventually reached the general public. 
However, this conference went much further: 

“More generally, I am proposing that over the years minuscule disturbances neither 
increase nor decrease the frequency of occurrence of various weather events such as 
tornados; the most they may do is to modify the sequence in which these events occur.” 

This is the real message that Lorenz wanted to convey: the statistical description of a 
dynamical system could be insensitive to initial conditions. Unfortunately, this idea is more 
complicated to explain and did not become as famous as the “easy” idea of sensitivity to 
initial conditions. 

Sinai, Ruelle, Bowen 

Mathematicians also (re)discovered this idea in the early 1970’s, gave precise definitions 
and proved theorems. A probability measure ν in the ball B, invariant by !!, is an SRB 
measure (for Sinai-Ruelle-Bowen), also called a physical measure, if, for each continuous 
function !:! → ℝ, the set of points x such that 

lim
!→∞

1
! ! !! ! !" =    !  !"

  

!

!

!
 

has nonzero Lebesgue measure. This set of points is called the basin of ν and denoted by 
B(ν). Sinai, Ruelle and Bowen (Sinai,1972; Ruelle, 1976b; Bowen,1975) proved that this 
concept is indeed relevant in the case of Axiom A dynamics. If X is such a vector field in 
some ball B, there is a finite number of SRB measures ν1,…,νk such that the corresponding 
basins B(ν1),…,B(νk) cover B, up to a Lebesgue negligible set. Of course, the proof of this 
important theorem is far from easy but its general structure follows the lines sketched in 
Poincaré paper… 

In summary, the existence of SRB measures is the right answer to the “malediction” of the 
sensitivity to initial conditions. In the words of Lorenz, “the frequency of occurrence of 
various weather events such as tornados” could be insensitive to initial conditions. If for 
example the ball B represents the phase space of the atmosphere and !:! → ℝ denotes the 
temperature at a specific point on the Earth, the average !

!
! !! ! !"!

!  simply represents 
the average temperature in the time interval [0,T]. If there is an SRB measure, this average 
converges to !  !", independently of the initial position x (at least in the basin of ν). The 
task of the forecaster changed radically: instead of guessing the position of !! !  for a large 
t, he or she tries to estimate an SRB measure. This is a positive statement about chaos as it 
gives a new way of understanding the word “prevision”. It is unfortunate that such an 
important idea did not reach the general population. Poor Brazilian butterflies! They are 
now unable to change the fate of the world! 

The quest for the weakest conditions that guarantee the existence of SRB measures is 
summarized in the book (Bonatti, Dias, Viana, 2005). This question is fundamental since, as 
we will see, one hopes that “almost all” dynamical systems admit SRB measures. 
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The geometric Lorenz models are not Axiom A systems, hence are not covered by the 
works of Sinai, Ruelle and Bowen. However, it turns out that the Lorenz attractor supports 
a unique SRB measure (Bunimovich, 1983; Pesin, 1992). Lorenz was right! 

Palis  

The history of dynamical systems seems to be a long sequence of hopes… quickly 
abandoned. A non chaotic world, replaced by a world consisting of Axiom A systems, in 
turn destroyed by an abundance of examples like Lorenz's model. Yet, mathematicians are 
usually optimists, and they do not hesitate to remodel the world according to their present 
dreams, hoping that their view will not become obsolete too soon. Palis proposed such a 
vision in a series of three articles (Palis, 1995, 2005, 2008). He formulated a set of 
conjectures describing the dynamics of “almost all” vector fields. These conjectures are 
necessarily technical, and it would not be useful to describe them in detail here. I will only 
sketch their general spirit. 

The first difficulty — which is not specific to this domain — is to give a meaning to 
“almost all” dynamics. The initial idea from the 1960’s was to describe an open dense set in 
the space of dynamical systems, or at least, a countable intersection of open dense sets, in 
order to use Baire genericity. Yet, this notion has proved to be too strict. Palis uses a 
concept of “prevalence” whose definition is technical but which is close in spirit to the 
concept of “full Lebesgue measure”. Palis finiteness conjecture asserts that in the space of 
vector fields on a given ball B, the existence of a finite number of SRB measures whose 
basins cover almost all the ball is a prevalent property. 

Currently, the Lorenz attractor serves as a model displaying phenomena that are believed be 
characteristic of “typical chaos”, at least in the framework of mathematical chaos. Even so, 
the relevance of the Lorenz model to describe meteorological phenomena remains largely 
open (Robert, 2001). 

 

COMMUNICATING MATHEMATICAL IDEAS? 

In Poincaré’s time, the total number of research mathematicians in the world was probably 
of the order of 500. Even in such a small world, even with the expository talent of Poincaré 
as a writer, we have seen that some important ideas could not reach the scientific 
community. The transmission of ideas in the theory of chaos, from Poincaré to Palis has not 
been efficient. In the 1960’s we have seen that the Lorenz equation took ten years to cross 
America from the east coast to the west coast, and from physics to mathematics. Of course, 
the number of scientists had increased a lot. In our 21st century, the size of the mathematical 
community is even bigger (~50000 research mathematicians?) and the physical community 
is much bigger. Nowadays, the risk is not only that a good idea could take ten years to go 
from physics to mathematics: there could be tiny subdomains of mathematics that do not 
communicate at all. Indeed, very specialized parts of mathematics that look tiny for 
outsiders turn out to be of a respectable size, say of the order of 500, and can transform into 
“scientific bubbles”. As Lovász writes in his “Trends in Mathematics: How they could 
Change Education?” (Lovász, 2008): 
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“A larger structure is never just a scaled-up version of the smaller. In larger and more 
complex animals an increasingly large fraction of the body is devoted to ‘overhead’: the 
transportation of material and the coordination of the function of various parts. In larger 
and more complex societies an increasingly large fraction of the resources is devoted to 
non-productive activities like transportation information processing, education or 
recreation. We have to realize and accept that a larger and larger part of our mathematical 
activity will be devoted to communication.” 

Of course, this comment does not only apply to mathematics but to Science in general and 
to the society at large. Nowadays, very few university curricula include courses on 
communication aimed at mathematicians. We need to train mediators who can transport 
information at all levels. Some will be able to connect two different areas of mathematics, 
some will link mathematics and other sciences, and some others will be able to 
communicate with the general public. It is important that we consider this kind of activity as 
a genuine part of scientific research and that it could attract our most talented students, at an 
early stage of their career. We should not only rely on journalists for this task and we should 
prepare some of our colleagues for this noble purpose. We have to work together and to 
improve mathematical communication. We should never forget that a mathematical giant 
like Poincaré took very seriously his popular essays and books, written for many different 
audiences.   
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