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INTRODUCTION. 

Consider a non singular flow f of class C 2 on a compact manifold M and 
t 

denote by X the corresponding vector field. Recall that ft is an "Anosov flow" 

if there is a splitting of the tangent bundle TM as a sum of the line field ~X 

and two df -invariant sub-bundles E ss and E uu in such a way that vectors of E ss 
t 

(resp. E uu) are exponentially contracted (resp. expanded) by df t as t goes to 

+~ (see for instance [ I-3]). When E uu is one dimensional, one says that ft is 

a codimension one Anosov flow (by reversing the time, one might as well assume that 

E ss is one dimensional). These codimension one Anosov flows have been investigated 

by A. Verjovsky in [17] where he shows in particular that they are transitive as soon 

as the dimension of M is bigger than 3 (this is no longer true in dimension 3, as 

shown in [7]). Moreover, A. Verjovsky conjectured that if the fundamental group of 

M is solvable, then the flow f must admit a global cross-section. Recall that 
t 

such a global cross-section is a codimension one submanifold ~ which cuts transver- 

sally every orbit of ft " In such a situation, the flow ft can be reconstructed 

(by "suspension") from the first return map f : ~ ~ ~ and the first return time 

t : ~ ~ ]0,~[ . Observe that, by a result of S. Newhouse [13] and J. Franks [6], 

codimension one Anosov diffeomorphisms are topologically conjugated to hyperbolic 

automorphisms of tori T n . Therefore, Verjovsky's conjecture implies a classification 

of codimension one Anosov flows on manifolds with solvable fundamental groups. 

This conjecture has been proven by P. Armandariz when dim M = 3 and ft is 

transitive [2] and by J. Plante in the general case [15] (see also [ 16] for the end 

of the proof). 
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Obviously, the hypothesis on the fundamental group is necessary since the geo- 

desic flow of a negatively curved compact surface provides an example of a codimension 

one Anosov flow with no global cross-section. However, this example is 3-dimensional 

and A. Verjovsky told us that he knew no higher dimensional example. The purpose of 

this paper is to prove two results that suggest that such an example might not exist. 

CONJECTURE. Let ft be a codimension one Anosov flow on a compact manifold of dimen- 

sion bigger than 3. Then ft admits a global cross-section. 

We are going to prove this conjecture under some additional assumptions related 

to the smoothness of the sub-bundles E ss and E uu . Recall first of all some facts 

(see [ i0]): 

Usually, E ss and E u~" are only (Holder) continuous sub-bundles of TM. 

However, they are uniquely integrable and define foliations F ss and F uu (called 

strongly stable and strongly unstable respectively). These foliations are absolutely 

continuous. In the same way, E ss @ ~ X and E uu @ ~ X also define foliations F s 

and F u (called, respectively, center stable and center unstable foliations). 

In the codimension one case (dim E uu = i) , the hyperplane field E ss @ ~ X 

turns out to be of class C I+~ for some g > 0 . If, moreover, ft is volume prese~ 

ving and dim M > 4 , it is shown in [ i0] that the line field E uu is of class 

C l+C (see also [14]). This last result is not true when dim M = 3 by a theorem of 

J. Plante that we recall below. However, if f is of class C ~= , volume preserving, 
t 

and dim M = 3 , the smoothness of F s has been precisely studied in [ ii] ; it is of 

class C l+C for every 0 < ~ < i . (Actually, the result in [ii] is slightly better: 

the modulus of continuity of the first derivative can be chosen of the form 

~(s) = -ksLog s) . 

We can now state our first result. 

THEOREM i. Let ft be a C 2 codimension one Anosov flow on a compact manifold of 

dimension bigger than 3. Assume that f is volume preserving and that the center 
t 

stable foliation is of class C 2 . Then f admits a global cross-section. 
t 
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Observe that this theorem is invariant under reparametrization of the flow. 

Indeed, let u : M ~ ~ be a smooth positive function. Then the flow gt associated 

to the vector field uX is also Anosov and has the same center stable foliation. If 

ft preserves the volume form ~ then gt preserves (i/u)~ . However ft and gt 

do not have the same strong stable foliation unless u is constant. The fact that 

E ss and E uu depend on the parametrization is illustrated by the following theorem 

C 2 of J. Plante [14]. Suppose ft is a Anosov flow on a compact 3-dimensional 

manifold and assume that E ss • E uu is of class C 1 and that f admits a global 
t 

cross-section. Then f admits a global cross-section with constant return time. Note 
t 

that this result is not true if we don't assume that f admits a global cross sec - 
t 

tion. Indeed, if ft is the geodesic flow of a C -negatively curved surface, it is 

easy to check that E ss ~ E uu is the orthogonal to X in the natural metric of the 

unit tangent bundle and, therefore, E ss @ E uu is of class C °° . Here, we prove a 

similar result in dimension bigger than 3 but we don't assume the existence of a 

global section. 

2 
THEOREM 2. Let f be a C -codimension one Anosov flow on a compact manifold of 

t 

dimension bigger than 3. Assume that the hyperplane field E ss @ E uu is of class 

C 1 . Then f admits a global cross-section with constant return time. 
t 

This paper has been written during a stay at IoM.PoA., R~o de Janeiro. I would 

like to thank this Institute for its warm hospitality. 

i. PROOF OF THEOREM i. 

We begin by a homological characterization of flows with section. 

PROPOSITION 1.1. Let f be a transitive codimension one Anosov flow on a compact 
t 

manifold M . Then f admits a global cross-section if and only if no periodic orbit 
t 

of f is homologous to zero. 
t 

PROOF. The fact that the condition is necessary is clear and well known. Any section 

of f determines a fibration = of M over the circle S 1 whose fibers are trans- 
t 

verse to the flow. In particular, the inverse image by ~ of the fundamental class 
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of S 1 is non zero on periodic orbits of ft " Hence, these periodic orbits can't be 

homologous to zero. 

Consider the universal covering space M of M 

dimension one foliation ~s . It is shown in [17] that 

clidean space IR n in such a way that the leaves of ~s 

~n-i x {,} . In particular, the leaf space of T s is 

equipped with the lifted co- 

is diffeomorphic to a eu- 

are the hyperplanes 

and the fundamental group 

r of M acts naturally on this leaf space ~ . It is well known that a leaf of F s 

is diffeomorphic either to a cylinder ~n-2 × S 1 if it contains a periodic orbit 

of ft or to a plane ~n-i if it does not contain such an orbit. More precisely, 

let y be an element of r . Then the action of y on ~ has a fixed point if and 

only if ft has a periodic orbit which is freely homotopic to y . Under the assump- 

tion that no periodic orbit of f is homologous to zero in M , we deduce that the 
t 

first commutator group [F,F] of r acts on ~ without fixed point. Now, this 

implies that [F,F] , as any fixed point free group of homeomorphisms of ]R , is 

Abelian (see for instance [9]). In particular, F is solvable and the conclusion of 

the proposition follows from the already mentioned solution of Verjovsky's conjecture 

by J. Plante. 

[] 

Before we can use this proposition, we recall some facts coming from foliation 

theory. 

First of all, consider a foliation F on a manifold M . We say that F is of 

class C r if it can be defined by a cr-foliated atlas. The tangent bundle to a C r- 

foliation is usually a C r-I plane field (as a section of the Grassman bundle). Ho- 

wever, it is shown in [8] (see also [5]) that, in any case, F is cr-conjugated to 

a cr-foliation F' for which the tangent bundle is of class C r . For example, if 

F is a (transversally orientable) codimension one foliation of class C 2 , then we 

can always assume, (after conjugating, if necessary, by a 

F is defined by a non singular form of degree 1 and class 

Now, let ~ be such a C2-form of degree 1 defining 

theorem, there exists a cl-form ~ of degree i such that 

C 2 diffeomorphism) that 

C 2 

F . According to Frobenius' 

dw = ~ ^ n • It is well 
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known (and easy to prove [ 9]) that the restriction of ~ to any leaf of F is closed. 

Moreover, if y is a closed loop contained in a leaf of F , then the integral of n 

along y is the logarithm of the absolute value of the linear part of the holonomy 

of F along y . 

In case the foliation F is not transversally orientable, it can still be 

defined by a non singular "odd differential form" e of degree i, i.e. by a differen 

tial form defined up to sign (see [4] for this notation). Note that, in this case, 

de has the same sign ambiguity and, therefore, there exists a usual (or "even") form 

for which de = e ^ N . 

We now begin the proof of theorem i. We consider, as in the theorem, a codimen- 

sion one Anosov flow ft on a compact manifold M of dimension bigger than 3. We 

assume that ft is volume preserving and that the center stable foliation ~ is 

of class C 2 . As we have seen, we can assume that ~: is defined by a non singular 

form e of class C 2 (may be odd) and there exists a cl-form D such that 

de = e ^ ~ . Suppose, by contradiction, that there exists a periodic orbit y of 

ft which is homologous to zero. Then, it would be possible to find a compact oriented 

surface S with one component in its boundary and a smooth map i : S ~ M such that 

i(6S) = y . Note that f o i also satisfies f o i(6S) = y and we can therefore 
t t 

use Stoke's theorem: 

y S S 

The l e f t  hand s i d e  o f  t h i s  e q u a l i t y  i s  s t r i c t l y  p o s i t i v e  s i n c e  i t  i s  e q u a l  to  t h e  

l o g a r i t h m  of  t h e  l i n e a r  p a r t  o f  t h e  boloncrmy o f  F g a l o n g  y which  i s  b i g g e r  t h a n  

1 s i n c e  df  expa,  ds gUU . 
t 

We a r e  g o i n g  t o  f i n d  a c o n t r a d i c t i o n  i n  (1) by showing  t h a t  t he  r i g h t  hand s i d e  

goes  to  z e r o  a s  t t e n d s  to  - ~ .  

LEMMA 1.2. Let E 1 (resp. E 2) be a euclidean (n-l)-dimensional vector space, 

written as an orthogonal sum U 1 • S 1 (resp. U 2 • S 2) where U 1 (resp. U 2) is 

one dimensional. Let f : E 1 ~ E 2 be a linear mapping satisfying the following pro - 

perties: 
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i) f(Sl) = S 2 ; f(Ul) = U 2 

2) det f = I . 

Let ~ be a constant such that Ilf(v)I[ ! D(Ivll for every vector v of S I o 

Then, for every vector Vu of U 2 and Vs of S 2 , one has: 

Ilf-l(vu ^ v )II < ~n-311v ^ v II 
s -- U S 

where II II denotes also the natural norm on exterior powers A2(E I) and A2(E 2) . 

PROOF. Let w E U 1 and w 
u s 

e l , e 2 ,  . . . ,  en_ 3 such t h a t  

Estimate the determinant of 

E S 1 be two unit vectors. Choose vectors 

Wu,Ws,e], ..., en_ 3 is an orthonormal basis of 

f by the Gram-Schmidt inequality: 

E 1 • 

1 = det f < llf(w )llllf(w )If 
-- u s 

n-3 

11 II f (ei)ll 
i=l 

n-3 
< llf(Wu)Illlf(w )N 
-- S 

Now, 

llf(Wu ^ Ws)l I = llf(Wu)llNf(Ws)l I > -(n-3) 

In other words, f expands unit bivectors of the form 

of -(n-3) . The lemma immediately follows. 

W ^ W 
U S 

by at least a factor 

[] 

We can now finish the proof of theorem i by finding a contradiction in (i). 

Choose a C°-Riemannian metric on M for which: 

i) X has length 1 

2) E ss @ E uu @ ~ X is an orthogonal splitting. 

3) The given ft invariant volume form is the Riemannian volume. 

Consider the linear mapping df t restricted to E ss • E uu at a given point 

x . By definition of an Anosov flow, this linear mapping satisfies the hypothesis of 

lemma 1.2 for a constant ~ of the form C~ t (C > 0 and 0 < ~ < i) . Therefore, 
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one gets, for every v E E ss and v E E uu 
s u 

Ildf_t(v s ^ Vu)II < C (n-3) ~(n-3)tllVs ^ Vull 

If, as we always assume, n > 4 , this provides a uniform convergence to zero as t 

to +~. Note that A2(TM) is the orthogonal sum of A2(ESS @ ~X) and of the goes 

vector space of bivectors of the form v ^ v . We know that the 2-form dn vanishes 
s u 

on A2(ESS @ ~X) . Therefore, the above inequality shows that for every bivector w 

of A2(TM) , one has: 

If~t d~(w) l = Id~(df_t(w))l ~ C (n-3) M(n-3)tllwl I 

This obviously implies the required contradiction in (i) since the right hand side 

converges to zero as t goes to -~ . This finishes the proof of theorem i. 

2. PROOF OF THEOREM 2. 

We consider a codimension one Anosov flow f on a compact manifold M of 
t 

dimension bigger than 3 and we assume, as in theorem 2, that the distribution 

E ss @ E uu is of class C I . Consider the differential form ~ of degree 1 which is 

equal to 0 on E ss @ E uu and to 1 on the vector field X associated to f . Obvious 
t 

ly, ~ is invariant under f* and, therefore, 8 = d~ is a 2-form of class C ° 
t 

which is also invariant under f* . If we could show that B is identically 0, that 
t 

would mean that E ss @ E uu is integrable and a theorem of J. Plante ([14], theorem 

3.7) would imply that ft has a global cross-section with constant return time. Note 

that J. Plante proves the existence of such a section of class C 1 ; however it would 

be easy to deduce from [12] that this section is actually very smooth (of class C °= 

if f is C == and at least of class C r-n/2 if f is of class C 2 and dim M = n) . 
t t 

In order to prove the theorem, we are led to prove that the form $ vanishes. 

The following lemma shows that it suffices to study the restriction of ~ to 

E ss @ E uu . 

LEMMA 2.1. The vector field X lies in the kernel of the 2-form ~ . 
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PROOF. Consider first a vector v belonging to E ss . By invariance of ~ , we have: 

~(X,v) = ~(dft(X),dft(v)) = ~(X,dft(v) ) . 

The continuity of ~ , the compactness of M and the fact that dft(v) goes to zero 

as t goes to +~ , show that: 

B(X,v) = 0 , 

Reversing the time, we see in the same way that ~(X,v) = 0 if v belongs to E uu 

In other words, X lies in the kernel of $ . 

[] 

We shall analyse the situation at a periodic point using the following lemma 

which is analogous to lemma i.i. 

LEMMA 2.2. Let E be a (n-l)-dimensional euclidean vector space (n >_ 3) 

as an orthogonal sum S @ U where U is one dimensional. Let 

mapping and B a non trivial skew s}~mmetric bilinear form on 

I) S and U are invariant under f . 

2) 8 is invariant under f . 

3) There is a constant ~ such that 0 < ~ < 1 

< ~'llvll for v E S . Then, 

n-3 
1 Her fl < ~/ 

In particular, if n > 4 , one has 

PROOF. Note first of all that, if v 1 

B(Vl,V2) = B(fn(vl),fn(v2)) 

f : E-~E 

E . Suppose that: 

I det fl < i . 

and v 2 

) 0 
n-+g~ 

amd for which one has Ilf(v)ll < 

are vectors of S , one has: 

v in U and let % be such that f(v) = %v . Taking into 

is non trivial, one sees that the linear form: 

Choose a unit vector 

account the fact that 

written 

be a linear 

£ : xe S ~ B(v,x) e 
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is non zero. Obviously, this linear form satisfies: 

/(f(x)) = l /X /(x) (2) 

Consider a unit cube C = |0,i] n-2 in S whose base [0,i] n-3 × {0} is contained 

in the kernel of £ . The image of C by f is a parallelepiped whose base 

f([0,1] n-3 x {0}) has (n-3)-volume bounded by n-3 (by Gram-Schmidt inequality) 

and whose height is precisely i/1% I by (2). Therefore, the volume of f(C) is at 

most (lli%i)~ n-3 . Recalling that f(v) = %v , that S and U are orthogonal and 

invariant under f , one gets: 

I det f l  ~ t~t llt~I n-3 : n - 3  

In theorem 2, we do not assume that f 
t 

add this hypothesis, the proof is now easy: 

is volume preserving. However, if we 

COROLLARY 2.3. If ft satisfies the hypothesis of theorem 2 and preserves some volume 

form, then ft is a constant time suspension. 

PROOF. If x is a periodic point of ft of period T > 0 let E = E ss @ E uu 
X X 

S = E ss E uu (dfT)k X ' U = x and f = : E ~ E . If k is sufficiently big, then the 

conditions i), 2), 3) of the previous lemma are satisfied for some euclidean structure 

on E ° If the 2-form ~ were non zero at x , we would get i det fl < 1 contradict- 

ing the assumption that ft is volume preserving. Using the continuity of ~ and 

the density of periodic points of ft (dim M ~ 4) , we deduce that B vanishes ever~ 

where. As we have already mentioned, this implies that f is a constant time suspen- 

sion. 

[] 

In the remaining part of this paragraph, we get rid of the condition that ft 

is volume preserving. 

We still assume, by contradiction, that ~ is not identically zero and we denote 

by U the non empty ft-invariant open set consisting of points where ~ is non zero. 
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If M is orientable, choose any volume form ~ on M and denote by u : M ~ ~R 

the divergence of X with respect to ~ , i.e., the function such that £X ~ = u~ 

where £X denotes the Lie derivative. If M is not orientable, we can choose an 

"odd" volume form ~ and remark that there is still a function u such that £X ~ : 

: u.~ . According to le=~a 2.2, we know that if 

period T > 0 and if x is in U , then: 

u(ft(x) dt < c < 0 

0 

for some constant c independent of 

tha following two lemmas: 

x is a periodic point of ft of 

(3) 

x and T . Suppose for a moment that we prove 

would imply that 

M has to be pre- 

LEMMA 2.4. Every ft-invariant probability measure on M can be approximated by convex 

combinations of invariant probabilities concentrated on periodic orbits contained in 

U . 

LEMMA 2.5. Let u : M ~ ~ be a smooth function such that f u d~ < 0 for every 

f -invariant probability measure ~ on M . Then there exists a smooth function 
t 

v : M ~ ~ such that u + X(v) < 0 . Here, X(v) denotes the derivative of v in 

the direction of X . 

Assuming these two lemmas, we can finish the proof of theorem 2 which reduces, 

as we have seen, to the fact that the open set U cannot be non empty. Indeed, assum 

ing that U ~ ~ , lemma 2.4 and (3) would imply that / u d~ < 0 for every ft-inva - 

riant probability measure. In turn, lemma 2.5 would imply that there is a smooth fun! 

tion v such that u + X(v) < 0 . Consider now the volume form ~' = exp(v)~ . Then 

the divergence of X with respect to ~' is given by the formula: 

£X ~' = exp(v)X(v)~ + exp(v)u~ 

= (u + X(v))~' 

This is the required contradiction since the negativity of u + X(v) 

the measure associated to ~' is contracted. But the total mass of 

served by the flow ft " 
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We are therefore left with the proof of lemmas 2.4 and 2.5. 

PROOF OF LEMMA 2.4. This lemma is not typical to our situation but is valid for any 

transitive Anosov flow (we have seen that this condition is satisfied for codimension 

one Anosov flows in dimension bigger than 3). 

Recall first of all how to approximate an ergodic invariant probability measure 

by a probability measure concentrated on a periodic orbit. Consider a ~-regular 

x , i.e. a point for which, for every continuous function h : M ~ ~ , one point 

has: 

I if T h d~ = lira ~ h(ft(x))d t 

0 

Such a point is obviously recurrent and we can use Anosov's closing lemma (see [3]) 

to produce periodic orbits ~k that approximate long pieces of orbits ft(x) , 

t E [0,Tk] . It is clear that the sequence of probability measures supported by Yk 

converges to the given measure ~ . 

Now, the compact convex set of all invariant probability measures is the closed 

convex hull of ergodic invariant measures (Krein-Millman). In order to prove the lemma 

it suffices to show that the invariant probability measures concentrated on periodic 

orbits can be approximated by those contained in U . 

This can easily be done using symbolic dynamics. Under our assumption, the flow 

is transitive and therefore, there exists a Markov partition for f ([3]). We can 
t 

even suppose that one of the boxes of the Markov partition is contained in U . To 

this partition corresponds a finite connected graph G whose vertices are the boxes. 

A closed loop in this graph corresponds to a periodic orbit of f . Let y be such 
t 

a closed loop originated at the vertex p of G and let yk denote the same loop 

iterated k times. Let Po be a vertex of G corresponding to a box contained in 

U and choose a path 6 (resp. 6') from Po to p (resp. p to po ) . Then the 

sequence ~yk6' represents a loop at Po and therefore represents a periodic orbit 

of f which is contained in U . It is clear that the sequence of invariant probabi- 
t 

lity measures ~k concentrated on these orbits converges to the invariant probabili- 
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ty measure concentrated on the periodic orbit corresponding to Y . 

[] 

PROOF OF LEMMA 2.5. This lemma is true for any smooth flow 

fold M, independently of the Anosov property. 

f on any compact mani - 
t 

We consider a function u : M -+ II 

ant measure Z . We claim that for T > 0 

lIT = u(ft(x))dt UT(X) ¥ 0 

such that f u d~ < 0 for every ft-invari- 

big enough, the function u T defined by 

is negative. Indeed suppose that there exists a sequence x in M and a sequence 
n 

T g o i n g  to  + ~  such  t h a t  u T (x n) > 0 . C o n s i d e r  t h e  p r o b a b i l i t y  m e a s u r e  g 
n - -  n 

n 

u n i f o r m l y  c o n c e n t r a t e d  on t h e  p i e c e  o f  o r b i t  f rom Xn to  fT (Xn) . Then any weak 
n 

l i m i t  o f  t h e  s e q u e n c e  ~n would be an i n v a r i a n t  p r o b a b i l i t y  m e a s u r e  ~ f o r  wh ich  

f u d~ > 0 c o n t r a r y  to  our  a s s u m p t i o n .  

In order to prove the lemma, it is therefore sufficient to construct a function 

v T such that: 

u + X(VT) = u T (4) 

Consider the following two probability measures on • . The first one is 6 ° , the 

Dirac mass at the point 0 and the second one YT is uniformly distributed on 

[0,T] . Then, the difference YT - 6o es derivative (in the sense of distributions) 

of the function 

t E I~ -+ (YT -6o)(]-~,t[)= [~--i] if 0 < t < T 

= 0 otherwise. 

In other words, we get the following formula for every smooth function 

= ~(t)dt - 4(0) . 0 1- ~'(t) dt ~ 0 

It is now cleat that the following function v T will satisfy (4): 

[] 
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