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The year 2012 was the 125th anniversary of Srinivasa Ramanujan’s birth.

The Ramanuajan Mathematical Society has planned diverse mathematical

activities to commemorate this anniversary. Among them are a series of 20

sets of lectures which has been named “Mathematical Panorama Lectures”.

These Lectures are envisaged to be a survey of a single topic starting at

a level accessible to beginning graduate students and leading up to recent

developments.

I was honoured to be invited to deliver such a series of lectures in March

2012, in the Tata Institute for Fundamenal Research in Mumbay. I would

like to thank Prof. Raghunathan and Dani for this kind invitation and for

the splendid organisation of the meeting. I would also like to thank all

participants : they turned these lectures into a very stimulating experience

for me.

My purpose was to introduce the students to two aspects of current re-

search on the dynamics of vector fields in dimension 3. The first one is very

venerable since it was inaugurated by Poincaré and concerns the quest for

periodic trajectories. The notes contain in particular a description of the cur-

rent state of Seifert conjecture about periodic trajectories for vector fields on
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the 3-sphere. The second aspect deals with the existence of Birkhoff sections

for a wide class of vector fields that I call “left handed”.

In practice, I gave nine lectures (and some exercises sessions) follow-

ing some natural route : from surfaces to 3-manifolds; from Wilson and

Schweitzer to the wonderful example of Kuperberg; and from the old and

powerful ideas of Schwartman to recent constructions of left-handed vector

fields.

These notes have been taken by Matthias Moreno and Siddhartha Bhat-

tacharya. I would like to thank them sincerely for their work.

Étienne GHYS
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Lecture I

Flows and vector fields on surfaces

The qualitative theory of dynamical systems originated in the work of

Henri Poincaré. One of his main goals was to study the restricted 3-body

problem, where the aim is to describe the motion of a planet A that is acted

upon by the gravitational field of two other planets B and C. We assume that

all three planets lie in the same plane, the planets B and C move in circular

orbits about their center of mass, and the mass of the planet A is very small

compared to the mass of the other two planets. In this case at any given time

there are 4 parameters describing the motion of A : two position variables x

and y, and two velocity variables vx and vy. In a rotating frame, in which B

and C are fixed, one can show that there is some invariant quantity J , called

the Jacobi invariant, and related to the invariance of the total energy. This

gives rise to an equation of the form J(x, y, vx, vy) = constant. Hence the

planet moves in a level surface of R4 which is (usually) a 3-manifold.

In order to study similar problems in a more abstract setting we recall a

few basic notions from differential topology. Let M be a compact manifold.

A Cr-flow φ on M is an action of R on M such that the induced map from

R ×M to M is a Cr-map. For a flow φ on M , the map m 7→ t ·m will be

denoted by φt. Any flow φ determines a vector field Xφ on M (of class Cr−1)

defined by Xφ(m) = d
dt
φt(m)|t=0. Conversely, for any vector field X on M ,

there exists a flow φ such that X is the vector field associated to φ. A vector

field X is said to be Cr if the associated map from M to TM , the tangent

bundle of M , is a Cr-map.

Let X be a vector field on a compact manifold M , and let {φt} be the
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flow generated by X. For any x ∈M we define the ω-limit set of x by

ω(x) = {y ∈M : ∃tn →∞ such that φtn(x)→ y}.

Similarly we define the α-limit set of x by

α(x) = {y ∈M : ∃tn → −∞ such that φtn(x)→ y}.

It is easy to see that ω(x) and α(x) are always compact non-empty φt-

invariant sets.

Theorem (Poincaré-Bendixson): Let X be a vector field on the 2-sphere S2

vanishing in a finite number of points (which are fixed points of the associated

flow). Then for any x ∈ S2, the set ω(x) is reduced to a fixed point, or to

a periodic orbit, or is a connected set consisting of finitely many fixed points

together with orbits joining them.

We sketch a proof of this theorem in the special case when ω(x) does not

contain a fixed point of the flow. In order to show that ω(x) is a periodic

orbit, let us first recall the notion of a flow box. It is a subset B of M which

is homeomorphic to some square [−ε,+ε]2 in such a way that the induced

local flow on the square is given by ψt(x, y) = (x+ t, y). Note that the subset

S ⊂ B corresponding to the line segment x = 0 in the square is transversal

to the flow. We first claim that for any flow box B, the set ω(x) intersects

the set S at at most one point. This follows from the observation that as we

go along the orbit of X, the intersection with S forms a monotone sequence.

Indeed, consider two consecutive points p, q of the intersection of the orbit

with S. The piece of trajectory from p to q followed by the interval [p, q]

in S is a Jordan curve which therefore disconnects the sphere. Hence, any

trajectory starting from an interior point r of [p, q] enters one of the two

connected components of the complement of this curve and cannot escape

from this component. It follows that the trajectory of r only intersects [p, q]

in r and this proves our claim that the intersection with S of any trajectory

forms a monotone sequence.
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Now we choose a p in ω(x) and q ∈ ω(p). Since ω-limit sets are invariant it

follows that q ∈ ω(x). By our assumption q is a regular point. We construct

a flow box around q such that q ∈ S. Since q ∈ ω(p) we deduce that the

orbit of p enters the flow box B and intersects S infinitely often. On the

other hand, since p ∈ ω(x) and ω(x) is invariant, from the previous claim

it follows that the orbit of p can intersect S at at most one point. Hence

the orbit of p passes through q infinitely often, i.e., q lies in a periodic orbit.

As ω(p) ⊂ ω(x), this shows that ω(x) contains a non-degenerate periodic

orbit. Now from an elementary topological argument we deduce that ω(x) is

a periodic orbit. This concludes the proof in the special case.

The above theorem does not hold if S2 is replaced by T2. To see this,

consider a linear flow on T2 with irrational slope. It is easy to see that

ω(x) = T2 for all x.

Hilbert’s 16th problem : Consider the equation

dx

dt
= P (x, y),

dy

dt
= Q(x, y),

where P and Q are polynomials of degree d ≥ 2 in real variables (x, y). A

periodic orbit is called a limit cycle if it is not in the interior of the set of

periodic points. The problem is to find an upper bound for the number of

limit cycles that depends only on d.

Ecalle and Illyaschenko have shown that the number of limit cycles is

finite, but no explicit upper bound is known, even for d = 2.

Theorem (Peixoto, 1962): Let M be a compact orientable surface, and let

X∞(M) be the space of all C∞ vector fields on M . Let A denote the set of

all X ∈ X∞(M) with the property that for all x ∈M , ωX(x) is either a fixed

point or a periodic orbit. Then A is a dense Gδ-subset of X∞(M).

Definition : Suppose X and Y are two vector fields on a manifold M .

They are said to be topologically equivalent if there exists a homeomorphism
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h : M →M that maps orbits of X to orbits of Y and preserves their natural

orientations.

The following result classifies all non-singular C2 vector fields on compact

surfaces that do not admit periodic orbits.

Theorem (Poincaré, Denjoy): Every non-singular C2 vector field on a com-

pact surface that has no periodic orbits is topologically equivalent to a linear

flow on T2 with irrational slope.

An example due to Denjoy shows that this result is not true for C1 vector

fields.

We end this section with a problem.

Question : There is no non-singular vector field on a compact manifold that

admits exactly one non-closed orbit.

Exercises :

Exercise 1. Suppose X is a vector field on a compact manifold M . Show

that every orbit of X which is closed as a subset of M is periodic.

Exercise 2. For i = 1, 2 suppose φi is a linear flow on T2 with slope

αi ∈ R−Q. When are the flows φ1 and φ2 topologically equivalent ?

Exercise 3. Show that every non-singular flow on the Klein bottle has a

periodic orbit.

Exercise 4. Suppose X is a non-singular flow on T2, and X∗ is the cor-

responding map from T2 to R2 − {0}. If the induced map on fundamental

groups π1(X
∗) : Z2 → Z is non-trivial, show that X has a periodic orbit.
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Lecture II

Suspensions

In the previous lecture, we concentrated on flows on S2 and other compact

surfaces. In this lecture we present several constructions of flows on higher

dimensional manifolds.

Suspensions : Let M be a compact manifold and let φ : M → M be a

diffeomorphism. We define an equivalence relation ∼ on M × R by

(x, t) ∼ (φk(x), t+ k) ∀x ∈M,k ∈ Z.

Let Mφ denote the manifold M × R/ ∼. We define a flow φt on Mφ by

φt([x, s]) = [x, s+ t].

The flow {φt} is called the suspension of the diffeomorphism φ. It is easy to

see that this flow reflects many dynamical properties of the discrete system

(M,φ). For example periodic points of φ correspond to periodic orbits of the

suspension flow and this correspondence preserves the period.

As a special case we consider the example where M = T2 and φ is a hy-

perbolic automorphism of T2, induced by some 2 by 2 invertible and integral

matrix. Then Mφ is a 3-manifold. Since periodic points of φ form a dense

subset of T2 (exercise), it follows that the suspension flow on Mφ has a dense

set of periodic orbits. Apart from having a dense set of periodic orbits, this

flow has many other interesting properties. We state one such result without

proof.

Theorem (Anosov): Any vector field sufficiently close to Xφ in the C1-

topology is topologically equivalent to Xφ.
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Horseshoe map : Now we look at another special case of the above con-

struction. Let S ⊂ R2 denote the subset consisting of a square capped by two

semi-disks. The horseshoe map f : S → S is a diffeomorphism that is defined

in two steps. In the first step S is contracted along the vertical direction by

a factor C < 1/2. Next it is stretched in the horizontal direction by a factor

of 1/C, and the resulting strip is folded like a horseshoe and placed back to

S.

Let Λ denote the set of all points x such that f i(x) lies in the square

for all i ∈ Z. Then Λ is a compact set and the restriction of f to Λ is a

homeomorphism. It can be shown that Λ is homeomorphic with K × K,

where K ⊂ [0, 1] is a Cantor set.

Now we look at the map Λ→ {L,R}Z where the i-th co-ordinate depends

on whether f i(x) lies in left or or right half of the square. It turns out that

this map is a homeomorphism. Hence the restriction of the horseshoe map

to Λ can be identified with the shift map on {L,R}Z. Now let M be a

compact surface and let f : M →M is a diffeomorphism such that f |S is the

horseshoe map for some region S ⊂M . Let φ be the suspension flow on Mf .

It is easy to see that for each n the shift map has 2n periodic points with

period n. Hence the suspension flow described above f has periodic orbits

with arbitrarily large periods.

Geodesic flow : Let S be a compact surface with some Riemannian metric

g, and let M = T1S, the unit tangent bundle of S. For any (x, v) ∈ M let

α(x, v) be the unique geodesic starting at x in the direction v, and let (xt, vt)

be the position and the direction after time t. We define a flow φ on M by

φt(x, v) = (xt, vt). This flow on M is called the geodesic flow of S.

Proposition : Let φ be a flow as described above. Then it is not a suspension

flow.

Proof : Suppose N is a compact n-manifold and f : N → N is a diffeo-

morphism such that φ can be identified with the suspension flow on Nf . We
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choose a periodic orbit γ in Nf . Now [γ] defines an element of the first ho-

mology group H1(Nf ) and [N ] an element of the nth homology Hn(Nf ). We

note that [N ][γ] > 0, i.e., every periodic orbit intersects N positively. Clearly

for any closed geodesic γ there exists another closed geodesic γ−, which is

the same geometric geodesic with the other orientation. On the other hand

[γ] = −[γ−]. Now, it is known that any closed Remannian manifold admits

at least one closed geodesic. This contradicts the existence of N . �

Horocycle flow : LetG be a Lie group and let Γ be a discrete subgroup ofG.

Then any one-parameter subgroup {gt} of G induces a flow on the manifold

G/Γ defined by φt(xΓ) = gtxΓ. In the special case when G = PSL(2,R)

and Γ is a co-compact discrete subgroup of G, we have the following two well

known examples :

Geodesic flow : gt =

(
et 0

0 e−t

)
, Horocycle flow : ht =

(
1 t

0 1

)
.

Proposition The Horocycle flow has no periodic orbits if Γ is co-compact.

Proof : Suppose this is not the case. An elementary calculation shows that(
et 0

0 e−t

)(
1 s

0 1

)(
e−t 0

0 et

)
=

(
1 e2ts

0 1

)
.

Let φg denote the geodesic flow and φh denote the Horocycle flow on PSL(2,R)/Γ.

The above identity shows that

φg(t) ◦ φh(s) ◦ φg(−t) = φh(e
2ts).

Now suppose φh(s)(x) = x for some x. Then φg(−t)(x) lies in a periodic

orbit of φh with period e−2ts. By compactness, letting t go to infinity, we

deduce that φh has a fixed point. This contradicts the discreteness of Γ and

proves the above proposition. �

Definition : A continuous action of a group G on a topological space X is

said to be minimal if all orbits are dense.
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Theorem (Hedlund): Horocycle flows are minimal in the co-compact case.

There is a conjecture due to Gottschalk that asserts that there are no

minimal flows on the 3-sphere S3. Katok, Fathi and Herman have shown

that S3 admits minimal C∞-diffeomorphisms, disproving the discrete version

of this conjecture.

Hopf flow on S3 : We identify S3 ⊂ C2 with {(z1, z2) : |z1|2 + |z2|2 = 1},
and define a flow φ on S3 by

φt(z1, z2) = (e2iπtz1, e
2iπtz2).

It is easy to see that all orbits are periodic with period 1.

Later, we will prove the following result :

Theorem (Seifert): Any perturbation of the Hopf vector field on S3 has at

least one periodic orbit.

Seifert also conjectured that every non-singular vector field on S3 has a peri-

odic orbit. However, this stronger statement turned out to be false: Kuper-

berg found a C∞ vector field on S3 that has no periodic orbit.

Exercises :

Exercise 1. Let φ be a hyperbolic automorphism of T2 and let Xφ be the

vector field corresponding to the associated suspension flow. Show that there

exists a 3-dimensional Lie group G and a discrete subgroup Γ ⊂ G such that

Mφ = G/Γ, and Xφ corresponds to a right-invariant vector field on G.

Exercise 2 : Let S be the shift map on the topological space X = {L,R}Z.

Show that there exists a point x ∈ X such that ω(x) does not contain a

periodic orbit.
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Lecture III

Seifert’s theorem

In this lecture we sketch a proof of Seifert’s theorem. In order to illustrate

the main idea, we first look at a simpler example.

Proposition : Let M denote the manifold S2 × S1, and let X denote the

vector field ∂
∂θ

where θ is the co-ordinate on the second factor. Then there

exists ε > 0 such that any vector field Y with ||Y −X||0 < ε has a periodic

orbit.

Proof : We identify S2 with the set S2 × {1}. It is easy to see that if ε

is sufficiently small, then the Y -orbit of every x ∈ S2 comes back to another

point in S2, close to x. This defines a map h : S2 → S2 and a vector field V

on S2 defined by V (x) = (h(x) − x) − (x · (h(x) − x))x, (which is indeed a

vector tangent to the 2-sphere). As S2 does not admit non-vanishing vector

fields, we can find a point x0 such that V (x0) = 0. Then h(x0) = x0, and

this implies that the orbit of x0 is periodic. �

Now we turn to the proof of Seifert’s theorem. Recall its statement:

Theorem (Seifert): Any perturbation of the Hopf vector field on S3 has at

least one periodic orbit.

Let φ be a flow on an oriented 3-manifold M , and let x ∈M be a point in

a periodic orbit γ. We choose a small disk D around x and define h : D → D

to be the first return map. It is easy to see that h is a well defined local

diffeomorphism. Using a chart we can view h as a local diffeomorphism from
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R2 to R2 at the origin, with h(0) = 0. We define a vector field Xh in a

neighbourhood of the origin by Xh(v) = h(v)− v, and define Index(γ) to be

the index of Xh at 0. It can be verified that Index(γ) does not depend on

the choice of D or x in γ.

For a vector field X on S3 and δ > 0, let Per(X, δ) denote the collection

of periodic orbits of X with period T ∈ (1−δ, 1+δ). We will deduce Seifert’s

theorem from the following stronger result about vector fields on S3.

Theorem (Seifert): Let H denote the Hopf vector field on S3. Then there

exist ε, δ > 0 such that ∑
γ∈Per(X,δ)

Index(γ) = 2,

whenever ||H −X|| < ε and Per(X, δ) is finite.

Before turing to the proof of the above theorem we introduce a few no-

tations. First, we identify S2 with C ∪ {∞}, and S3 with the set

{(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.

Let π : S3 → S2 denote the map defined by π(z1, z2) = z1/z2. We define two

subsets C,D ⊂ S2 by

C = {z : |z| ≥ 1

4
}, D = {z : |z| ≤ 1

2
}.

Let Σ denote the section from C ⊂ S2 to S3 defined by

Σ(z) = (
z√

1 + |z|2
,

1√
1 + |z|2

).

We note that Σ(D) is transversal to the Hopf fibration.

We will deduce the theorem stated above from the following three lemmas.

Lemma 1 : Let H denote the Hopf vector field on S3, and let X1 and X2

be two vector fields on S3 that agree on π−1(D). Then there exist ε, δ > 0
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such that ||H −Xi|| < ε and |Per(Xi, δ)| <∞ implies that∑
γ∈Per(X1,δ)

Index(γ) =
∑

γ∈Per(X2,δ)

Index(γ).

Proof : It is enough to prove the equality when the sum on both sides are

taken over periodic orbits intersecting the set C. Let h1 and h2 be the first

return maps of the vector fields X1 and X2. They are defined on a disk

containing C if ε is sufficiently small. Define two vector fields Z1 and Z2 on

C by Zi(x) = hi(x)−x. Since X1 and X2 agree on D, it follows that Z1 = Z2

on ∂C. Now the above lemma can be deduced from the identity∑
Zi(x)=0

index(x) = Index(Zi, ∂C).

�

Lemma 2 : Let H denote the Hopf vector field on S3. Then there exist

ε, δ > 0 such that for any two vector fields X1 and X2 on S3 satisfying

||H −Xi|| < ε and Per(Xi, δ) is finite, we have

∑
γ∈Per(X1,δ)

Index(γ) =
∑

γ∈Per(X2,δ)

Index(γ).

Proof : Using partitions of unity find a vector field X3 on S3 such that X3

agrees with X1 on π−1(D) and agrees with X2 on π−1(D
′
) where

D
′
= {i/z : z ∈ D}.

From a symmetry argument it is easy to deduce that the previous lemma

holds when D is replaced by D
′
. Now Lemma 2 follows from two applications

of Lemma 1. �
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Lemma 3 : For every ε > 0 there exists a vector field X on S3 such that

||H −X|| < ε, Per(X, δ) is finite for some δ > 0 and∑
γ∈Per(X,δ)

Index(γ) = 2.

Proof. We identify S3 with {(z1, z2) : |z1|2 + |z2|2 = 1}, and for every s > 0

we define a flow φs on S3 by

φts(z1, z2) = (e2πitz1, e
2πi(1+s)tz2).

Let Xs denote the vector field associated to this flow. It is easy to see that

for sufficiently small s, ||H − Xs|| < ε. We also note that for sufficiently

small s, the set Per(Xs,
1
2
) contains only two fixed points, (1, 0) and (0, 1).

Furthermore, it is easy to verify that both these fixed points have index 1.

Hence ∑
γ∈Per(Xs,

1
2
)

Index(γ) = 2.

�

This concludes the proof of Seifert’s theorem.

Exercises :

Exercise 1 : Let X be a vector field on a compact surface. Is it true that

the union of closed orbits of X is always closed ?

Exercise 2 : Let φ be the Horseshoe map. Compute the number of periodic

points of period n. Similarly, for any A ∈ SL(2,Z), compute the number of

A-periodic points in T2 with period n.

Exercise 3 : If A,B ∈ SL(2,Z) are two automophisms of T2, then show

that they are topologically conjugate if and only if they are conjugate in

GL(2,Z). Is the condition Trace(A) = Trace(B) sufficient ?
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Exercise 4 : Show that the horocycle flow on SL(2,R)/SL(2,Z) is not a

suspension.

Exercise 5 : Let M be a compact manifold. Show that the set of minimal

homeomorphisms of M is a Gδ subset of Homeo(M).
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Lecture IV
Wilson and Scheitzer plugs

1966 Wilson surgery: vector fields with only one periodic orbit

The main idea introduced by Wilson in [9] is to start with an ordinary

nonsingular vector field X on a manifold M and operate it by making a

surgery. For this purpose, we define what we call a plug. This object can be

“inserted” in a flow box and locally replace the dynamics, while controlling

the changes outside the plug. We will give sufficiently precise conditions,

which will guarantee that such an operation is possible.

Definition (Plug): A Cr plug, 0 ≤ r ≤ ∞, P is a nonsingular Cr vector

field W on the product of a (n− 1)-dimensional compact connected manifold

Σ and the interval [−1,+1], such that

1. Σ× [−1,+1] can be embedded in Rn so that all the fibers {?}× [−1,+1]

are parallel line segments.

2. In a neighborhood of the boundary ∂(Σ × [−1,+1]), the vector field is

tangent to the fibers {?} × [−1,+1].

When we integrate the field W , we get a local flow on P. The subset

Σ×{−1} will be called the entrance of P and the subset Σ×{+1} will

be called the exit of P . We require the following:

3. If the orbit starting at an entrance point (x,−1) reaches the exit at

(y,+1), then x = y.

4. At least one trajectory (or an open section Ω ⊂ Σ×{−1} of trajectories)

starting at the entrance never reaches the exit.
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For n = 3, we recall that any compact orientable surface with one point

removed Σ can be immersed in R2, and can be embedded in R3 in such a

way that the constant field ∂/∂z is transverse to any point of Σ. Thus, by

pushing Σ along ∂/∂z, we get an embedded manifold with the shape of a

plug.

From now on, z will denote the second coordinate in the product Σ×[−1,+1]

and the nth-coordinate in Rn.

The first two conditions guarantee that the embedding of P can be connected

with the constant vector field ∂/∂z (remember that any non-singular vector

field locally looks like ∂/∂z) in a Cr way.

The following lemma, inspired by [6], shows that we can insert many

copies of our plug and traps all the existing periodic orbits of X. It is impor-

tant to note that this surgery doesn’t change the topology of the manifold.

Lemma: Let M be a n-manifold and X a smooth non-singular vector field on

M . Let Σ be a (n− 1)-dimensional compact connected manifold, containing

an open subset Ω (“the trapping zone”).

Then there exists k ∈ N and embeddings fi : Σ → M for i = 1, . . . , k such

that:

• ∀ i 6= j fi(Σ)
⋂
fj(Σ) = ∅

• X is transverse to
⋃
i

fi(Σ)

• Every orbit of X meets one of the fi(Ω)

For the proof, see [6].

We now show how to use surgery to create nonsingular vector fields with

finitely many periodic orbits. Note however that in the case of S3, this step is

useless since is not hard to give explicit examples of nonsingular vector fields

with only two periodic orbits (or even only one: exercise for the reader!)
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The next theorem gives a construction for general three manifolds. Actu-

ally one can prove that there exists non-singular vector fields with only two

periodic orbits. We omit the proof of the stronger statement and leave it as

an exercise.

Theorem (Wilson, 1966): For every three dimensional compact manifold M

there exists a non-singular vector field with a finite number of periodic orbits.

Theorem (Wilson, 1966): For every compact manifold M with χ(M) = 0

and dim(M) ≥ 4, there exists a non-singular vector field with no periodic

orbit.

Proof: Our entrance surface Σ will be the ring Tn−2× [1, 3], and the “trapped

zone” Tn−2 × [3
2
, 5
2
]. The final plug P will be Tn−2 × [1, 3] × [−1,+1]. All

pictures correspond to the case n = 3.

Let’s now construct the vector field on P . We begin with the following

vector field on R := [1, 3]× [−1, 0]:

Then, let f : R → [0, 1] be a positive function, equal to 1 in a neighbor-

hood of (2,−1
2
), and to 0 in the neighborhood of the boundary of R. We

use f to twist a well chosen field Γ on Tn−2. If n = 3 we take Γ to be

the tangent vector field ∂/∂θ on S1. If n ≥ 4 then we choose a vector field
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with irrational slope on Tn−2, that is Γ := α1
∂
∂x1

+ · · · + αn−2
∂

∂xn−2
, with

dimQ(α1, . . . , αn−2) = n − 2. In all the cases, we define a vector field on P

by W := f · Γ +R.

This produces a vector field on half the plug. To complete it, we just take the

mirror-image with respect to the plane {z = 0}, with reversed orientation.

This insures that if an orbit enters at some point (x,−1) and reaches the

plane {z = 0} , then it will exit at the symmetric point (x,+1). If it doesn’t

happen, then it is trapped.

In dimension 3, the obtained plug will have two (and only two) periodic

orbits. In this way, every orbit entering the ring S1× [3
2
, 5
2
]×{−1} is trapped,

winds up, and converges to the circular periodic orbit contained in the plane

{z = −1
2
} . This and lemma complete the proof of the first Wilson theorem.

Figure 1: Wilson plug

In dimension ≥ 4, the ω-limit set of the trapped orbits is Tn−2 × {−1
2
},

which does not contain new periodic orbits. This proves the second theorem.

We therefore obtained a construction of vector fields with no periodic orbit

in dimension≥ 4. The solution described above is smooth, and could be made

analytic (to do so, we can’t ask the original fieldW to be equal to the constant

field ∂/∂z on the boundary, but we can replace this condition by “being

conjugated”). We would then use a difficult theorem by Morey-Grauert that
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asserts that every smooth compact manifold has a unique compatible analytic

structure, up to smooth diffeomorphisms.

We can now point out what is the main goal of our work: finding a convenient

plug in dimension 3 containing no periodic orbit.

1974 Schweitzer’s example: a C1 nonsingular vector field without

periodic orbits

The basic idea of using plugs to destroy periodic orbits of a nonsingular

vector field in dimension 3 remains the same. But instead of trapping them on

two circles, we will use a more complicated minimal set that was constructed

by Denjoy in [1].

This time, the shape of our plug will be (T2 \D2)× [−1, 1], which can be

embedded in R3. The next paragraph explains how to construct a nonsingular

field on T2 without periodic orbits, which has a non-trivial closed invariant

subset with empty interior D. We take the disk outside of D to construct

our surface T2 \ D2.

Figure 2: Shape of the immersed entrance T2 \ D2 and the embedded

Schweitzer plug

Denjoy’s example (1932) :
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The desired flow on T2 will be obtained from a suspension of a diffeomor-

phism f on S1.

To build it, we start with an irrational rotation ρ, and we insert an infinite

family of suitable intervals (In)n∈Z in the circle, one interval for each point

xn := ρn(x) of some orbit. A first assumption should be that the length of

the intervals is summable, i.e., ∑
n∈Z

|In| < ∞

.

Thus, if d denotes the distance between two points in S1, the new dis-

tance between two points xm and xn (which is also the distance between two

intervals Im and In) is d(xm, xn) +
∑

xk∈[xm,xn]
|Ik| and we obtain a manifold

that is homeomorphic to the circle S1. We could even put a C1 differentiable

structure on it.

Figure 3: The construction of Denjoy diffeomorphism

Denjoy showed that, for a good choice of intervals lengths |Ik|, one can

construct a C1 diffeomorphism f on our manifold such that f(In) = In+1

and f|S1\
⋃

n∈Z
In is semiconjugate to ρ. That is, for x ∈ S1 \

⋃
n∈Z

In, we set
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f ◦ i(x) = i ◦ ρ(x), and if we choose for f|In suitable smooth functions.

Denjoy showed that one can organize this construction in such a way that

the resulting f is a C1 diffeomorphism of the circle (in fact its first derivative

has α-Holder derivative, for some α ∈ (0, 1)), with no periodic points, and

with an invariant Cantor set S1 \
⋃
n∈Z

In. For details, see [3].

By taking a suspension of f , we get a C1 flow Φt on the torus T2 such

that

• There exists a Φt-invariant, nowhere dense, compact set D (the Denjoy

set).

• every orbit of x ∈ D is dense in D (i.e., D is minimal).

• T2 \D is homeomorphic to ]0, 1[×R equipped with the linear flow ∂/∂t.

Figure 4 below represents an approximation of this construction (we only

draw a finite number of intervals. The “approximated” Denjoy set appears

in white).

Figure 4: Suspension of f
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It is important to note that neither the diffeomorphism f , nor the Denjoy

vector field, can be of class C2. This has been proved by Denjoy who showed,

more generally, that

Theorem: If a C2 diffeomorphism of the circle does not have periodic points

then all the orbits are dense.

Corollary: Any C2 vector field on T2 without periodic orbits is topologically

equivalent to a linear flow with irrational slope. In particular it does not have

non-trivial closed invariant sets.

Schweitzer’s plug (1974) As we already said, we can embed Σ× [−1,+1] ,

where Σ = T2 \ D2, in any open set of R3 in a C∞ way. We can even

choose this embedding in such a way that segments of the form {?}× [−1, 1]

are mapped to vertical segments in R3. We consider a positive function

g : Σ × [−1, 0]→ [0, 1] such that

• g = 0 in the neighboorhood of the boundary of Σ × [−1, 0].

• g = 1 on D × {−1
2
}.

Then, if we equip the embedded Σ × [−1, 0] with the vector field g ·X + (1−
g) ∂

∂z
, where X is induced on T2 \D2 by a Denjoy vector field, and paste this

half-plug with its mirror image, we get a C1 plug without periodic orbits as

in definition .

Schweitzer used this plug to prove:

Theorem: Every nonsingular vector field on a three-dimensional manifold

is homotopic (in the space of non-singular vector fields) to a C1 non-singular

vector field without periodic orbits.

Exercises:
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Exercise 1. Let X be a non-zero vector field on S2 such that the associated

flow preserves the area. Prove that almost all orbits are closed.

Exercise 2. Let X be a vector field on a compact oriented surface such

that the associated flow preserves the area. Prove that the union of periodic

orbits is an open subset.

Exercise 3. Let φ be a non-singular area preserving flow on T2. Show that

if the flow admits a closed orbit then all orbits are closed.

Exercise 4. Show that there exist volume preserving vector fields on S3 with

only two periodic orbits that are arbitrarily close to the Hopf vector field.

Exercise 5. Show that the Wilson plug is not volume preserving.

Exercise 6. Let X be a vector field on M3 with a finite number of periodic

orbits, as constructed by the Wilson method. Describe all invariant measures

of the associated flow.

Exercise 7. Let X be a non-singular vector field on a compact n-manifold

M . Show that one can find a finite number of pairwise disjoint embedded

balls {Bn−1
i } such that each Bi is transversal to to X, and the union intersects

all orbits.

Exercise 8. Show that in the previous exercise one ball Bn−1 is enough.

Exercise 9. Show that on any compact 3-manifold there exists a vector field

X with only two periodic orbits.
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Lecture V
Kuperberg plug

1994 Kuperberg’s example: a smooth nonsingular vector field with-

out periodic orbit

Twenty years after Schweitzer’s work, we finally had the smooth general-

ization of his theorem:

Theorem (Kuperberg 1993): Every three-dimensional compact manifold M

admits a non-singular analytic vector field without periodic orbits.

We only present the smooth C∞ version. This theorem will be proved

using a plug, “à la Wilson”, and building a more complicated attractor, as

in Schweitzer’s work.

The construction of Kuperberg’s plug. We have to stay with two im-

ages in mind. The first one is a simplified version of the Wilson plug we drew

above, in which all the orbits lay in cylinders {r = cst} (left part of figure

5). This is our “abstract” plug. The second one is the three-dimensional

manifold represented in the right part of figure 5. This is our “actual” plug,

that is, in the way it will be embedded in R3.
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Figure 5: “Abstract” plug and its actual shape

The first image, which is topologically not so different from the second,

is only here to help us visualize what’s happening. For example, when we

say “cylinders”, it actually means surfaces {r = constant} in the first image,

and their straightforward cousins in the second.

As in the previous sections, we construct on our plug P a vector field W
with the following properties:

• Close to the boundary, W is the constant vector field ∂/∂z,

• W is tangent to the cylinders {r = cst},

• W is antisymmetric with respect to the plane {z = 0},

• W has a positive vertical component, except on two periodic orbits

contained in the cylinder {r = 2}.

As showed in figure 5, any cylinder {r 6= 2} is partitioned into orbits entering

at some point (r, θ,−1) and exiting in the opposite point (r, θ,+1), after some

time tending to infinity as r tends to 2.
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On the cylinder {r = 2}, we have a so called “Reeb component”.

The rest of the process is a construction

which is called self-insertion. We will dig

two “mortises”, where we delete the exis-

tent vector field, and insert in it two twisted

parts of the plug, called the “tenons”, so as

to create another manifold equipped with a

smooth non-singular vector field. The final

topological object is depicted in figure 6.

Figure 6: Shape of the plug after self-insertion

The details of the construction are as follows. All the formulas are given

with an index i, which takes only two values 1 or 2, and corresponds to one

tongue, tenon, or the corresponding mortise.

For a start, we define two “tongues”, L1 (re-

spectively L2), on the top {z = +1} of

the cylinder, which are two topological discs

delimited by two smooth arcs α1 and β1 (re-

spectively α2 and β2) as in the figure 7.

Figure 7: Tongues

The two “tenons” mentioned above are T1 := L1×[−1,+1] and T2 := L2×
[−1,+1]. We reproduce figures 6 with the tenons coloured in orange.
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Figure 8: Tenons

The mortises are two zones M1 and M2 in front of the tenons, where we

erase the vector fieldW , and whose shapes will correctly be defined together

with the insertions.

Insertions of the tongues We want to insert the tenons, that is, to define

two embeddings Σi from the tenons to the mortises. We first insert the two

tongues, transversally to W , and then push the images along the orbits of

W . The fact of W being vertical close to the boundary and horizontal near

the periodic orbits forces Σi to rotate by 90 degrees.

We sum up here all the conditions imposed to the insertions Σi, i = 1, 2.

The reader can check that this construction is possible. Their usefulness will

only appear clearly in next paragraph, where we prove theorem .

Condition 1

• Σi is C∞

• The image of Σi(αi) is of the form α′i×{−1}, where α′i is an arc of the

circle {r = 1, z = −1} of the boundary.

• The image of Σi(Li) is transverse to W .
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To destroy the periodic orbits, it is necessary

to trap them. That’s why we also ask for

(figure 9):

Condition 2

• Σi(Li) meets pi at a unique point.

• Σi(Li) does not meet pj, j 6= i.

Figure 9: Insertion of a tongue

Insertion of the tenon We now extend the previous insertions to new

ones, also called Σi, whose starting sets are the tenons Ti, and targets at the

mortises Mi. We now require that:

Condition 3

• These insertions extend the previous ones.

• The vertical arcs of the form {∗} × [0, 1], with ∗ a point of Li, match

with arcs contained in orbits of W .

• The images of αi × {−1} by Σi are α′i × {−1} .

• The two mortises Σi(Li × [−1,+1]), i = 1, 2 are disjoint.

Remark: By “changing time”, ie multiplying W by a C∞ strictly positive

function, we do not change the orbits of W , and this allows us to assume

that Σi matches the vertical segments of the field ∂/∂z in the tenons to W
in a C∞ way.

The following condition is only a more precise version of condition 2:
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Condition 4 The tongue Li contains a point of the form (2, θi) such that

the vertical segment {(2, θi)} × [−1,+1] is inserted by Σi in an arc of the

periodic orbit pi of W .

On the other hand, this one is new, and will

play a central role in the proof of the theo-

rem:

Radius Condition If a point (r, θ) of L1∪L2

is sent (by Σ1 or Σ2) on a point (r, θ, z) of

W , then r > r unless (r, θ) is one of the two

points (2, θ1) or (2, θ2).

Figure 10: A mortise sideways on

We use our insertion to identify, for each x in Li×{−1,+1} ∪ βi×[−1,+1]

the points x and Σi(x). This gives the compact set K of figure 6. We denote

by τ the natural projection on K.

30



Figure 11: A better view of the quotient

The compact set K is a smooth 3-manifold with nonempty boundary.

Since the insertions Σi match the vertical field on W , and W is equal to

∂/∂z close to the boundary, we get a smooth vector field K in K.

Figure 12: The plug
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The boundary of K is composed of a lateral surface S, on which K is

tangent, and corresponds to ∂/∂z, and two components which are transverse

to K, which we call respectively “entering” and “exiting”. Each of these

component is homeomorphic to a torus T2 minus of two discs. It is important

to remark that these components are canonically isomorphic: to each point

τ(r, θ,−1) of the entering component corresponds the point τ(r, θ,+1) of the

exiting one. We say that two such points are “in front of each other.”

Picture 12 shows that K can be embedded in R3 in a smooth way so that:

• Two points in front of each other are sent in the same vertical.

• The field K, extended by ∂/∂z outside of K is C∞.

We now are going to use K so as to trap periodic orbits, without creating

new ones. The next section explains this.
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Lecture VI
Aperiodicity of Kuperberg’s plug

Kuperberg’s theorem

We are now going to prove that Kuperberg’s plug K is indeed an aperiodic

trap, ie that it satisfies all the four conditions of the plug definition , as well

as aperiodicity. Of course, conditions 1 and 2 are already satisfied by our

construction. To check the other properties, we need to handle a correct

description of its orbits. Let’s first see what happens to the Wilson orbits

during the process of self-insertion.

Wilson arcs: A Wilson orbit for the vector field W now meets several

times each mortise, and is split into compact arcs that we will call “Wilson

arcs”.

Each Wilson arc begins and ends with a primary or secondary entrance or

exit point (respectively P.En, P.Ex, S.En and S.Ex). It is also interesting to

note that Wilson arcs are made of points with the same radius (of course,

since the Wilson orbits are contained in cylinders {r = cst}), so we can talk

33



about “the radius of a Wilson arc”. Every Wilson orbit is oriented by the

vector field in a natural way, so that we can say that a Wilson arc is before

another if they are on the same Wilson orbit and the extremity of the first

one is met before the beginning of the second (when we follow the orbit in

the sense given by the orientation).

For instance, each periodic orbit pi meets exactly once the mortise Mi, and

thus gives rise to exactly one Wilson arc

p′i

S.Ex S.En .

An orbit beginning at {r = 2} gives rise to an infinite sequence of Wilson

arcs
λ1

P.En or S.En S.En
;

λ2

S.Ex S.En
;

λ3

S.Ex S.En
. . .

λk

S.Ex S.En
. . .

An orbit beginning at {r ' 2}, r 6= 2, gives rise to a finite sequence of

Wilson arcs (we emphasise the change of mortise) :

λ1

P.En or S.En1 S.En1

;
λ2

S.Ex1S.En1

. . .
λi−1

S.Ex1S.En1

;
λi

S.Ex1S.En2

;
λi+1

S.Ex2S.En2

. . .

. . .
λk−1

S.Ex2S.En2

;
λk

S.Ex2 P.Ex or S.Ex2 .

An orbit beginning at r ' 1 or r ' 3 is either destroyed (only in the case r =

1) when we dig the mortises, or gives rise to a sequence of one or two Wilson

arcs (exactly one of the four following cases: P.EnP.Ex
or

S.EnS.Ex
or

λ1

P.EnS.En1

;

λ2

S.Ex1P.Ex
or

λ1

P.EnS.En2

;
λ2

S.Ex2P.Ex
)

Kuperberg arcs We call a Kuperberg arc a compact arc γ of an orbit of

the Kuperberg flow K which begins and ends with a primary or secondary

entrance or exit point. Considering the properties of the insertions, it is
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clear that a Kuperberg arc is naturally divided in a finite sequence of Wilson

arcs λ1, . . . , λk. Note that the radiuses of the Wilson arc constituting γ are

generally not the same, due to the numerous insertions, so we have a sequence

of changing radiuses. The changes are ruled by the condition and will be

crucial to prove aperiodicity.

Levels The last notion to be introduced (it was suggested by Matsumoto)

is the concept of levels, which helps to describe all the transitions of the

arc γ. The levels are a sequence of integers lev(i), i = 1, . . . , k defined by

lev(1) = 0 and for i = 1, . . . , k − 1 by lev(i + 1) = lev(i) + 1 if xi is an

entrance point or lev(i+ 1) = lev(i)− 1 if it is an exit point.

We are now able to state and prove the main lemma. It essentially says

(see the immediate consequence after the proof) that “two points that are

connected after the insertion were connected before”.

Lemma Let [λ1, . . . , λk] be a Kuperberg arc such that lev(1) = lev(k) = 0

and ∀ i lev(i) ≥ 0. Then λ1 and λk are on the same Wilson orbit, and λ1 is

before λk.

In particular, if λ1 begins by an entrance point x, and λk ends with an exit

point y, then y is in front of x.

Proof : The proof is by induction on k. The condition lev(1) = lev(k) =

0 forces k to be odd.

For k = 3 the only possibility is x1 x2 x3 x4

λ1 λ2 λ3

; x2 and x3 are respectively

secondary entrance and exit points, so they belongs to a tenon Ti and are in

front of each other. We know that, by construction, the image by Σi of the

segment {x2}× [−1,+1] is a portion of Wilson orbit, which connects λ1 and

λ3. The desired conclusion immediately follows, and this proves the lemma

for k = 3.
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Let’s take k ≥ 5. We have to consider two situations:

Case 1: ∀ i 6= 1, k lev(i) > 0.
. . .

Then the lemma applied to [λ2, . . . , λk−1] says that λ2 is before λk−1. In

particular, the secondary exit point xk is in front of the secondary entrance

point x2. Then again we know that, by construction, the image by Σi of the

segment {x2}× [−1,+1] is a portion of Wilson orbit, which connects λ1 and

λk. This proves the lemma in this case.

Case 2: ∃ i 6= 1, k lev(i) = 0.
. . . . . .

Then the lemma applied to [λ1, . . . , λi] and to [λi, . . . , λk] says that λ1 is

before λi and λi is before λk so that λ1 is before λk. This proves the lemma

in this case, and ends the proof.�

Condition 3 now directly follows from the lemma. Let’s take two points

x = (r, θ,−1) and y = (r′, θ′,−1) connected by a Kuperberg arc [λ1, . . . , λk].

We suppose that x (respectively y) is a primary entrance (respectively exit)

point. The first observation is that lev(2) = 2 and lev(k) = lev(k − 1) − 1,

because we cannot go from a primary entrance to a secondary exit in just

one arc, and from a secondary entrance to a primary exit. This forbids the

situation where lev(i+ 1) = lev(i) + 1 for all i or lev(i+ 1) = lev(i)− 1 for

all i .

Consequently, we must show that the associated sequence of levels cannot

reach negative values. Indeed, if it did, then by stopping just before the

first arc with negative level (let’s say λi+1), we would have a kuperberg arc

[λ1, . . . , λi] with nonnegative level sequence, beginning and ending by zero,

whose first point is a primary entrance point, and last point an exit point.

Thus, by applying the lemma, λi would be in the same orbit as λ1, and then

it would end with a primary exit point, which of course cannot be.

36



Let’s now imagine that the last level is not zero. Then, by stepping backward,

we must encounter a first Wilson arc (say λi) with the same level value than

λk, and beginning with an entrance point. The lemma again, applied to the

Kuperberg arc [λi, . . . , λk], gives the conclusion that λi is before λk in the

same Wilson orbit, which would mean that λi begins with a primary entrance

point, which of course cannot be.

We conclude that all the levels are nonnegative and that lev(1) = lev(k) = 0,

so that, by the lemma, λ1 is before λk, and (r, θ) = (r′, θ′).

The previous proof also shows that condition 4 is satisfied: the orbit which

enters the plug at point (2, θ,−1) never exits. Indeed, if it were the case,

then it would do so through the point (2, θ,+1), and by applying the main

lemma , there would exist a Wilson trajectory connecting these two points,

which is obviously not the case.

We shall now check the most interesting and central assertion: the Ku-

perberg plug doesn’t house any periodic orbit. This will end with the proof

of Kuperberg theorem.

Aperiodicity We use reductio ad absurdum and suppose that there exists a

Kuperberg arc P := [λ1, . . . , λk] with λ1 = λk. We can assume that lev(i) ≥ 0

for all i, only by beginning P with the Wilson arc of lowest level; and also

that for all i such that 1 ≤ i < j ≤ k − 1 λi 6= λj by taking P minimal.

Case 1 We suppose that lev(k + 1) = lev(1) = 0.

Then the lemma implies that λ1 is before λk+1, and they are equal. But

the only Wilson arcs that are before themselves are p′1 and p′2! Thus, we

have λ1 = λk+1 = p′i, with i = 1 or 2, beginning with the secondary exit

point x and ending with the secondary entrance point y, which are matched

with two points of radiuses 2 in the corresponding tongues. Those points

are not connected by a Wilson arc, and then, they cannot be connected by

a Kuperberg arc. This completes the proof in this case.
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Case 2 We suppose that lev(k + 1) = n > 0 (the negative case is analogous

and is solved by reversing the orientation of K).

We have to remember the way we built our insertions. Note that this is the

first and only time where we use the radius condition . Every time our arc hits

the mortise Mi in a secondary entrance, it is “deflected” to the corresponding

point of tenon Ti (remember figure ), with an increasing radius. That is, if

we have two Wilson arcs λi and λi+1 consecutive in a same Kuperberg orbit,

with lev(i+ 1) = lev(i) + 1, then the radiuses satisfy ri+1 ≥ ri with equality

if and only if λi is one of the two arcs p′1 or p′2.

In particular, the sequence of radiuses cannot be increasing all the time,

because as r1 = rk+1, we would have ri = r1 for all i, thus λi = p′1 or p′2 for

all i, which is impossible because those arcs are not K-consecutive.

In the general case, we can find a sequence of indices 1 = i1 < i2 < · · · <
in+1 ≤ k + 1 such that lev(ia) = a − 1 and lev(i) ≥ a − 1 for i ≥ ia. Then,

lemma allows us to “fill in the blanks”: every time that ia+1 > ia + 1, we

apply the lemma to the sequence of K-consecutive Wilson arcs lia , . . . , lia+1−1,

and we have that λia is W-before λia+1−1, so that r(ia) = r(ia+1 − 1) for

a = 1, . . . , n. Then again, the fact that r1 = rk+1 implies that all the r(ia)

are equal, and thus that each arc is equal to p′1 or p′2 for a = 1, . . . , n.

If ia+1 > ia + 1, we know that lia is W-before lia+1−1, and thus that lia is

equal to p′1 or p′2, which is impossible because the l1, . . . , lk are all distinct.�

This ends the proof of theorem .

Kuperberg’s plug is not volume-preserving. In fact, we can show that

there exists some ε > 0 such that all the orbits with entrance points (r, θ)

with 2− ε < r < 2 never exit. Thus, we conclude that for

Ω := { Φt(r, θ) | t ≥ 0, 2− ε < r < 2, (r, θ) is a primary entrance point },
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then Φ1(Ω) is stricly contained in Ω. Hence

µ({ Φt(r, θ) | t > 1, 2− ε < r < 2, (r, θ) is a primary entrance point }) = 0.

Since it is an open set, this proves the claim.

G. Kuperberg proved the following:

Theorem: There exists a nonsingular vector field on any three-dimensional

manifold which is C1, volume-preserving, and without periodic orbit.

However, it is still unknown if we can ask the vector field to be both

C2-smooth and volume-preserving.
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Lecture VII

Schwartzman’s cycles

In this lecture we give a characterization of suspension flows on compact

manifolds. The result was obtained by several people, including Schwartz-

man, Sullivan and Fried.

Suppose φ is a flow on a compact manifold V . Let M denote the set of

all φ-invariant probability measures on V . ThenM is a non-empty compact

convex set. We fix an element µ ofM, and for any closed 1-form ω on V we

set

θ(µ)(w) =

∫
ω(X)dµ.

Now suppose ω = df for some function f . Since µ is φ-invariant, it follows

that
∫
f ◦ φtdµ =

∫
fdµ. Hence

d

dt

∫
(f ◦ φt − f)dµ = 0 =

∫
V

ω(X)dµ.

This shows that θ(µ) induces a linear map from H1(V,R) to R, i.e. θ induces

a map from M to H1(V,R).

Theorem : Let φ be a flow on a compact 3-manifold V , and let M and θ

be as described above. Then the flow φ is a suspension flow if and only if

θ(M) ⊂ H1(V,R) does not contain the origin.

Proof. Since µ is invariant under φ, almost all x ∈ V are recurrent, i.e.,

there exists a set of full µ-measure such that for any element x in that set

we can find a sequence {tn} with the property that φtn(x) → x as n → ∞.

Now we fix a point x, and for each n join the points φtn(x) and x by a

short geodesic. Let γn denote the resulting loop. It is easy to see that for
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sufficiently large n, [γn] ∈ H1(V,R) is “almost” independent of the choices

involved: these choices can only change [γn] by some bounded amount. One

can also show that ∫
V

lim
n→∞

1

tn
[γn]dµ(x) = θ(µ).

Now suppose φ is a suspension flow. Let M ⊂ V and h : M → M be

such that φ is the suspension of h. Note that there is a projection map from

V to S1 with copies of M transversal to the flow as fibers. For any loop

γ ∈ H1(V,R) let l(γ) denote the number of times γ intersects M . It is easy

to see that this induces a linear map from H1(V,R) to R. Furthermore from

the above remark it follows that l(θ(µ)) ≥ 1 for all µ ∈ M. This proves the

first half of the theorem.

For any 1-form ω and for any t > 0 we define

ωt =
1

t

∫ t

0

φ∗s(ω)ds.

From the given condition one can deduce that there exist ω and t0 such that

ωt(X) > 0 for all t > t0. In particular, we can find ω such that ω(X) > 0. We

can now approximate ω by some other 1-form, still positive on X, and such

that the periods of ω (integrals over loops) constitute a discrete rank one

subgroup of R. Finally, multiplying by some constant, we can even assume

that all periods are integral. We choose a basepoint b. For any x ∈ V , we

join x and b by a path and define

π(x) =

∫ x

b

ω.

It is easy to see that π(x) is well defined as an element of R/Z. One can use

the fibration by π to show that φ is a suspension flow. �

Example : Suppose X has a periodic orbit γ. Let µ be the Lebesgue

measure on γ. It is easy to check that θ(µ) = [γ]/T , where T is the period

of γ.
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Birkhoff sections : Let X be a non-singular flow on a compact 3-manifold

V . Let S be a surface with boundary that is imbedded in V . We call it a

Birkhoff section if the following three conditions are satisfied.

1) The flow is transversal to the interior of V .

2) The set ∂S consists of periodic orbits.

3) The surface S intersects all orbits.

Let Σ be a compact orientable surface and let m be a Riemannian metric on

Σ with constant negative curvature. Let φ be the geodesic flow on T1Σ, the

unit tangent bundle of Σ. Since φ is invariant under the symmetry sending a

vector to its opposite, the set θ(M) is symmetric with respect to the origin.

Hence 0 ∈ θ(M) and φ is not a suspension flow. However, we have the

following :

Theorem : (Birkhoff) There is a Birkhoff section S for this flow such that

S can be identified with the 2-torus with the union of twelve disks removed.

Proof. We consider the six geodesics beneath (in blue and green):

Figure 13: bitorus with 6 geodesics

They lift to twelve periodic orbits of the geodesic flow on T 1Σ. Now if we

cut the bitorus along these geodesics, we get four hexagonal pieces with

geodesic boundaries and corners. We take two opposite hexagons and we
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fill their interiors with one point and a family of concentric strictly convex

curves (this is obviously possible if one look at an hexagon in the Klein model

where geodesics are straight lines):

Figure 14: An hexagon Figure 15: An hexagon in the Klein model

For each point x neither in the center, the boundaries, nor the corners, we

exactly have two unit tangent vectors to the unique strictly convex curve that

passes through x. This gives a section from almost all the hexagon to T 1Σ

with exactly two images for each point. The image of the hexagon deprived

of its center and its boundaries is thus a couple of surfaces.

What happens on the center and the boundaries?

Let’s first forget about the corners and imagine that we are lifting from our

surface to the unit tangent bundle a disc bounded by closed curves, whose

boundary would be smooth. Passing to limits as the convex curves get close

to the center, we have a whole circle of unit tangent vectors above the center.

This circle connects the two precedent surfaces in a self-closed double spiral

staircase.
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Figure 16: Double spiral staircase. The projection is a disc, with a circle

above the center and two points above each point of the interior.

For each geodesic segment of the boundary of our hexagons we have two
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possible orientations, which give two lifted curves (in red and blue in the

picture).

Above each corner x, we have four directions tangent to the geodesics of the

boundaries that join at x. They divide the circle of unit tangent vectors at

x into four segments (fig. 17). Our surfaces lean on two of these segments

as in figure 18:

Figure 17: A corner

The final result for one hexagon is a surface

of T 1Σ with geodesic boundaries (in blue and

red in the figures) and non-geodesic segments

(in black in the figures). Its Euler-Poincaré

characteristics is 0, as one easily convince (an

hexagon minus the center has the homotopy

type of a circle with Euler characteristics 0,

and two circles glued along one circle gives

0 + 0− 0 = 0).

Figure 18: A lifted corner

But two hexagons are connected through corners, and this makes disappear

the non-geodesic segments from the boundaries. The final topological result

is a surface with twelve boundary components and its Euler characteristics

is equal to 0+0−2×6 = −12. If we fill all the boundaries with discs, we get

a surface without boundary with Euler characteristics -12 + 12 = 0, hence

is a torus.
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The next step is to prove that our surface is a Birkhoff section.

First, the surface is transverse to the geodesic flow, by strict convexity of the

convex curves (ie the curves have geodesic curvature ¿ 0 while the geodesics

are of curvature 0).

Second, the surface intersects transversally all but the twelve chosen orbits.

This is true because a geodesic is infinite so it cant stay in one hexagon. We

leave it as an exercise to the reader to show that a geodesic couldnt pass

from one hexagon to another only through corners. �

Remark. One can construct this section in such a way that the first return

map is an element of GL(2,Z).
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Lecture VIII
Birkhoff sections

In this lecture we introduce the notions of linking number and left handed

vector fields. Let γ1, γ2 : S1 → S3 be two disjoint embedded loops in S3. We

delete a point in S3 and view these loops in R3. We project them generically

onto a plane, and at each point of intersection of these two projections,

assign +1 or −1, depending on whether the corresponding tangent vectors

form an oriented or unoriented basis. We add all these numbers and denote

the resulting number by lk(γ1, γ2). It is called the linking number of γ1 and

γ2.

The linking number lk(γ1, γ2) can be defined in various other ways. For

example, since γ1 is a an embedded loop, it follows that H1(S
3 − γ1,Z) is

isomorphic with Z. It can be shown that [γ2], as an element of H1(S
3−γ1,Z)

is equal to lk(γ1, γ2). The linking number can also be defined as the number

of times γ2 intersects S, where S is any oriented surface with γ1 as it’s

boundary. Alternatively suppose γ1 and γ2 are two disjoint loops in R3. We

define a map h from S1 × S1 to S2 by

h(t1, t2) =
γ1(t1)− γ2(t2)
||γ1(t1)− γ2(t2)||

.

The linking number of γ1 and γ2 is the degree of this map. If γ1 and γ2 are

two disjoint loops in R3 then lk(γ1, γ2) can be computed by the following

explicit formula due to Gauss :

lk(γ1, γ2) =
1

4π

∫ ∫
det(γ1(t1)− γ2(t2), γ

′
1(t1), γ

′
2(t2))

||γ1(t1)− (γ2(t2)||3
dt1dt2.

Let φ be a non-singular flow on S3, and letM denote the compact convex set

of all φ-invariant probability measures on S3. Note that each periodic orbit
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γ gives rise to an element of µ ofM, where µ is the Lebesgue measure on γ.

Hence elements of M can be viewed as generalized periodic orbits. We now

generalize the notion of linking number in this context.

Let µ1 and µ2 be two elements of M. It can be shown that set of non-

recurrent points has measure zero with respect to any element of M. We

choose two recurrent points x and y, and choose {tn} and {sn} such that

φtn(x) → x and φsn(y) → y. For each n obtain loops γnx and γny at x and

y respectively by joining φtn(x) to x and φsn(y) to y. We define a function

h : S3 × S3 → R by

h(x, y) = lim
n→∞

1

sntn
lk(γnx , γ

n
y ).

It turns out that this limit exists for µ1 almost every x and µ2 almost every

y and depends only on x and y. Now we define

lk(µ1, µ2) =

∫ ∫
h(x, y)dµ1(x)dµ2(y).

Definition : A non-singular vector field on S3 is called left handed if

lk(µ1, µ2) > 0 for every µ1, µ2 ∈M.

Theorem : If X is left handed then any finite collection of periodic orbits

of X is the boundary of a Birkhoff section.

Example. Let H denote the Hopf flow on S3. We choose n complex numbers

α1, . . . , αn ∈ C and define a set B ⊂ S3 by

B = {(z1, z2) : (z1 − α1z2) · · · (z1 − αnz2) ∈ R+}.

It can be verified that B is a Birkhoff section.
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Lecture IX
Left handed flows

Let M be a 3-manifold. A bi-form Ω of degree (1, 1) is a symmetric

bilinear map Ωx,y(vx, vy), defined whenever vx ∈ TxM, vy ∈ TyM and x 6= y.

Let Ω be a bi-form on S3. It is called a Gauss form if for any two disjoint

loops γ1, γ2 : S1 → S3 we have

lk(γ1, γ2) =

∫ ∫
Ωγ1(t1),γ2(t2)(γ

′

1(t1), γ
′

2(t2))dt1dt2.

Theorem : Let X be a non-singular vector field on S3. Then the following

two conditions are equivalent :

a) For any µ, ν ∈M, lk(µ, ν) > 0.

b) There exists a Gauss linking form Ω such that Ωx,y(Xx, Xy) > 0 for all

x, y.

Now suppose X is a left handed vector field on S3, and γ is a periodic orbit.

We claim that X admits a Birkhoff section. To see this we first define a

1-form ω by

ωx(v) =

∫
Ω(x,γ(t))(v, γ

′
(t))dt.

It is easy to see that ω is a closed form. Hence it defines an element of

H1(S3−γ,Z). Now we fix a base point b in S3. For any x in S3−γ we choose

a curve α joining b to x, and define

h(x) =

∫ x

b

ω.

Clearly h is a well defined map from S3 − γ to R/Z. The inverse image of

{0} defines a Birkhoff section with γ as the boundary.
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This construction can be generalized to invariant measures. Suppose µ is

an element of M. We define a 1-form ω by

ωx(v) =

∫
Ω(x,y)(v,Xy)dµ(y).

It can be shown that ω is a closed form on S3 − Supp(µ). As before ω

induces a map from S3− Supp(µ) to R/Z. This map h defines a foliation on

S3 − Supp(µ) that is transversal to φ. It is called the Birkhoff foliation. For

example, if µ arises from a finite collection of periodic orbits, then this gives

rise to a Birkhoff section with the union of those orbits as the boundary.

Corollary : Let X∞(S3) denote the set of all C∞-vector fields on S3. Then

the collection of all left handed vector fields forms an open subset of X∞(S3).

Since the Hopf vector field H on S3 is C∞ and left handed, this immediately

implies that any vector field sufficiently close to H is left handed. As another

consequence we obtain the following :

Corollary : If X is a left handed vector field in S3 then any periodic orbit

of X is a fibered knot.

Example : Let g be a Riemannian metric on S2, and let φ be the geodesic

flow on T1S2. We identify T1S2 with SO(3) and lift φ to a flow φ̂ on S3. If

g is the canonical metric then φ̂ is the Hopf flow. We deduce that if g is

sufficiently close to a metric with constant positive curvature then φ̂ is left

handed.

Conjecture : If g is positively curved then φ̂ is left handed.

Suppose M is a compact 3-manifold such that H1(M,Z) = 0. Then we can

define left handedness of vector fields in a similar fashion, and the analogue of

the previous theorem holds. For example suppose Γ is a co-compact Fuchsian

group. Then M = PSL(2,R)/Γ is a homology sphere. Let {gt} be the one
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parameter subgroup of PSL(2,R) defined by

gt =

(
et 0

0 e−t

)
,

and let φ be the induced geodesic flow on M .

Conjecture. These flows are left handed.

We mention one interesting special case. Suppose p, q, r are positive integers

with 1
p

+ 1
q

+ 1
r
< 1. Let Γ ⊂ PSL(2,R) be the group corresponding to the

triangle with angles π
p
, π
q

and π
r
. Then M = PSL(2,R)/Γ is a homology

sphere.

Theorem : (Pierre Dehornoy) If (p, q, r) = (2, 3, 7) then the geodesic flow

on M is left handed.
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Six open problems :

Problem 1 : Hilbert’s 16’th problem. (very hard !) Let X be a polyno-

mial vector field on R2 of degree d. Prove that the number of limit cycles of

X is bounded by some function f(d). It would be even better to find some

explicit bound for f(d).

Problem 2 : Quantitative Seifert theorem. Find a large Neighbor-

hood U of the Hopf vector field H on S3 such that every element of U has

at least one periodic orbit close to a Hopf fiber. The question is probably

easy if one looks for some neighborhood. It is probably more difficult to

explicitly construct some kind of maximal open set U . What is happening

on the boundary of U ?

Problem 3 : Minimal flows on 3-manifolds. Which 3-manifolds admit

minimal flows ? This is a widely open question. Some examples are known,

often with low smoothness regularity. Any progress is welcome, even after

adding strong assumptions on the flow or on the manifold.

Problem 4 : Volume preserving flows on S3 without periodic orbits.

K. Kuperberg’s example is of class C∞, but it is not volume preserving. G.

Kuperberg’s example is not C2 but it is volume preserving. Can one find a

volume preserving C∞-vector field on S3 with no periodic orbits ?

Problem 5 : Geodesic flows on positively curved surfaces. Let g

be a Riemannian metric on S2 with positive curvature. Is it true that the
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geodesic flow of g, acting on T1S2, is left handed ? If not, can one characterize

metrices g for which this is the case ?

Problem 6 : Left handed vector fields on homology spheres. Let Γ be

a co-compact discrete subgroup of PSL(2,R) such that M = PSL(2,R)/Γ

is a homology sphere. Is it true that the geodesic flow acting on M is left

handed ? Pierre Dehornoy proved it for some specific examples.
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