GROUPES D'HOMEOMORPHISMES DU CERCLE ET COHOMOLOGIE BORNEE

Etienne GHYS

ABSTRACT. We show that the second bounded cohomology group of a discrete group Γ can be used to study the dynamics of the actions of Γ on the circle.

1- Introduction.

Pour décrire la dynamique d'un homéomorphisme du cercle respectant l'orientation, on dispose de la notion de nombre de rotation. Il s'agit d'un élément de R/Z qui est un invariant de semi-conjugaison. La définition usuelle d'une semi-conjugaison n'étant pas symétrique, nous allons la modifier légèrement. Nous dirons qu'une application h du cercle $s^1 = R/Z$ dans lui-même est croissante de degré 1 si elle se relève en une application croissante h de R dans R telle que, pour tout réel x, on a : $\overline{h}(x+1) = \overline{h}(x) + 1$. Deux homéomorphismes du cercle f et g seront alors dits "semi-conjugués" s'il existe une application croissante de degré 1 telle que f o h = h o g . Il s'agit d'une relation d'équivalence (voir 2-1). La propriété essentielle du nombre de rotation peut alors s'exprimer de la façon suivante : deux homéomorphismes du cercle qui respectent l'orientation sont semi-conjugués si et seulement si leurs nombres de rotation sont égaux.

Nous nous proposons ici de généraliser cette notion.

¹⁹⁸⁰ Mathematics Subject Classification. 58 D 05

^{© 1987} American Mathematical Society 0271-4132/87 \$1.00 + \$.25 per page

aux groupes d'homéomorphismes. Soit Γ un groupe discret quelconque et ϕ_1,ϕ_2 deux représentations de Γ dans le groupe $\operatorname{Hom\'eo}^+(\mathbb{S}^1)$ des homéomorphismes du cercle qui respectent l'orientation. Nous dirons évidemment que ϕ_1 et ϕ_2 sont semi-conjuguées s'il existe une application h croissante de degré 1 telle que pour tout γ de Γ on ait $\phi_1(\gamma)$ oh = $\operatorname{ho\phi}_2(\gamma)$. Notre but est de construire un invariant complet de semi-conjugaison pour de telles représentations.

Un invariant existe déjà: la classe d'Euler. La donnée d'une représentation de Γ dans $\operatorname{Hom\'eo}^+(\mathbf{S}^1)$ permet en effet de construire, par suspension, un fibré en cercles au dessus de l'espace d'Eilenberg-MacLane $K(\Gamma,1)$. La classe d'Euler de ce fibré, élément de $\operatorname{H}^2(\Gamma;\mathbf{Z})$, est un invariant de semi-conjugaison (voir 5-3). Il est clair, cependant, que cette classe d'Euler est insuffisante pour caractériser une représentation; lorsque $\Gamma = \mathbf{Z}$, on ne retrouve pas le nombre de rotation puisque, dans ce cas, la classe d'Euler est toujours nulle ($\operatorname{H}^2(\mathbf{Z};\mathbf{Z}) = 0$).

L'invariant que nous construisons est un élément de la cohomologie bornée de Γ à coefficients entiers. Rappelons d'abord une définition (voir [Gr] pour cette définition et ses nombreuses motivations géométriques; voir aussi [Br-Se] et [Mit]). Désignons par A le groupe additif $\mathbb R$ ou $\mathbb Z$. On considère, pour chaque entier n, l'ensemble $C_b^n(\Gamma,A)$ formé des applications bornées de Γ^n dans A. Il est facile de vérifier que la collection des $C_b^n(\Gamma,A)$ forme un sous-complexe du complexe

d'Eilenberg-MacLane de Γ (bar construction). La cohomologie de ce complexe est appelée " cohomologie bornée de Γ à coefficients dans A " et notée $H_b^*(\Gamma;A)$. Observons qu'il existe un morphisme naturel de $H_b^*(\Gamma;A)$ dans la cohomologie usuelle $H^*(\Gamma;A)$, obtenu en " oubliant " qu'un cocycle est borné.

Le fait que la classe d'Euler puisse être représentée par un cocycle borné a déjà été observé par plusieurs auteurs (voir [Mil],[Wo],[Su],[Gr],[Je], ...). Notre contribution consiste à montrer que si l'on se " rappelle " que la classe d'Euler est bornée, on obtient presque toute l'information relative à la dynamique de l'action de Γ sur \$\frac{1}{2}\$.

Théorème A : Il existe une classe e dans H_b²(Homéo⁺(\$¹);2) ayant les propriétés suivantes:

- 1) Deux représentations ϕ_1 et ϕ_2 d'un groupe discret Γ dans $\operatorname{Hom\'eo}^+(\$^1)$ sont semi-conjuguées si et seulement si les deux éléments $\phi_1^*(e)$ et $\phi_2^*(e)$ de $\operatorname{H}^2_b(\Gamma;\mathbf{Z})$ sont égaux.
- 2) L'image de e par le morphisme naturel de $H_b^2(\text{Hom\'eo}^+(s^1);z)$ dans $H^2(\text{Hom\'eo}^+(s^1);z)$ n'est autre que la classe d'Euler.
- 3) On a $H_b^2(\mathbf{Z};\mathbf{Z}) = \mathbb{R}/\mathbf{Z}$ et si $\phi \colon \mathbf{Z} \longrightarrow \operatorname{Hom\'eo}^+(\mathbf{S}^1)$ est une représentation, alors $\phi^*(e) \subseteq \mathbb{R}/\mathbf{Z}$ est le nombre de rotation de l'homéomorphisme $\phi(1)$.

Puisqu'une représentation est caractérisée par un

élément de $H_b^2(\Gamma;\mathbf{Z})$, il est naturel de se demander, inversement, quels sont les éléments de $H_b^2(\Gamma;\mathbf{Z})$ qui correspondent à une représentation. Le théorème suivant répond à cette question.

Théorème B: Soit Γ un groupe dénombrable discret et z un élément de $H_b^2(\Gamma;\mathbf{Z})$. Il existe une représentation ϕ de Γ dans $\operatorname{Hom\'eo}^+(S^1)$ telle que $\phi^*(e)=z$ si et seulement si z peut être représenté par un 2-cocycle qui ne prend que les valeurs 0 et 1.

Cet article est organisé de la façon suivante; le §2 traite de la notion de semi-conjugaison et le §3 donne deux exemples de calculs de cohomologie bornée. Le §4 est préparatoire au §5 où l'on démontre le théorème A. Enfin, le théorème B est démontré au §6.

2- Semi-conjugaisons d'homéomorphismes du cercle.

Commençons par démontrer un résultat énoncé dans l'introduction.

Proposition 2-1 : La relation de semi-conjugaison entre représentations d'un groupe dans $\operatorname{Hom\'eo}^+(s^1)$, telle qu'elle a été définie dans l'introduction, est une relation d'équivalence.

<u>Démonstration</u>: Seule la symétrie pose problème. Supposons donc que l'on dispose de deux représentations $φ_1$ et $φ_2$ du groupe Γ dans Homéo⁺(\mathbf{S}^1) et d'une application h croissante de degré 1 de \mathbf{S}^1 dans \mathbf{S}^1 telle que, pour tout Υ de Γ, on ait $φ_1(Υ)$ oh = ho $φ_2(Υ)$. Soit $\overline{h}: \mathbf{R} \to \mathbf{R}$ un relevé croissant de h tel que $\overline{h}(x+1) = \overline{h}(x)+1$. Considérons alors l'application \overline{h}^* de \mathbf{R} dans \mathbf{R} définie par:

 $\overline{h}^*(x) = \sup\{ y \in \mathbb{R} \mid \overline{h}(y) \leqslant x \}$

Il est clair que \overline{h}^* est croissante et vérifie $\overline{h}^*(x+1) = \overline{h}^*(x)+1$. Par passage au quotient, \overline{h}^* définit donc une application h^* du cercle dans lui même, croissante de degré 1. Par construction de h^* , et puisque $\phi_1(Y)$ oh = $ho\phi_2(Y)$, il est facile de vérifier que $h^*o\phi_1(Y) = \phi_2(Y)oh^*$. Ceci montre que la relation de semiconjugaison est bien une relation d'équivalence.

Le but des propositions qui suivent est de préciser la signification dynamique de la notion de semi-conjugaison. Rappelons que si $\phi\colon\Gamma\longrightarrow\operatorname{Hom\'eo}^+(s^1)$ est une représentation, trois cas sont possibles:

- toutes
 possède une orbite finie. Dans ce cas, toutes
 orbites finies ont le même cardinal.
- 2) ϕ est minimale, i.e. toutes ses orbites sont denses dans \mathbf{S}^{1} .
- 3) ϕ possède un " minimal exceptionnel ", i.e. il existe un ensemble de Cantor K c S 1 qui est invariant par ϕ et tel que l'orbite de tout point de K est dense dans K. Un tel minimal K, s'il existe, est nécessairement unique (voir [He-Hi] Chap IV-3).

Essentiellement, la notion de semi-conjugaison s'avère extrémement puissante dans les cas 2) et 3) et assez faible dans le cas 1) puisqu'elle ne permet alors que de déterminer le comportement des orbites périodiques.

Proposition 2-2: Soient ϕ_1 et ϕ_2 deux représentations du groupe Γ dans $\operatorname{Hom\'eo}^+(\mathbb{S}^1)$ et soit h: $\mathbb{S}^1 \longrightarrow \mathbb{S}^1$ une application croissante de degré 1 qui est une semi-conjugaison entre ϕ_1 et ϕ_2 ,i.e. $\phi_1(\gamma)$ oh = $\operatorname{ho\phi}_2(\gamma)$ pour tout γ de Γ .

- 1) Si ϕ_1 est minimale, alors h est injective.
- 2) Si ϕ_2 est minimale, alors h est surjective.

De sorte que, si ϕ_1 et ϕ_2 sont minimales, alors h est en fait une véritable conjugaison topologique entre ϕ_1 et ϕ_2 . Démonstration: Ceci résulte de la structure des applications croissantes. Si h : $s^1 \rightarrow s^1$ est croissante de degré 1, on peut définir deux ouverts U et V de \$1 de la façon suivante; U est la réunion des intérieurs des intervalles maximaux sur lesquels h est constante. Pour définir V, on constate que le complémentaire de l'image de h est une réunion disjointe d'intervalles. On définit alors V comme étant la réunion des intérieurs de ces intervalles. Si h est une semi-conjugaison entre ϕ_1 et ϕ_2 , il est clair que U est invariant par ϕ_1 et que V est invariant par ϕ_2 . Si ϕ_1 est minimale, U doit être vide car, h n'étant pas constante, U ne peut être le cercle tout entier. Dans ces conditions, h n'est constante sur aucun intervalle et doit donc être injective car elle est de degré 1. De même, si ϕ_2 est minimale, V doit être vide car V n'est certainement pas le cercle tout entier. Dans ce cas, h est surjective. 11 <u>Proposition 2-3</u>: Soit $\phi_1:\Gamma \to \operatorname{Hom\'eo}^+(S^1)$ une représentation possédant une orbite finie $O_1\subset S^1$. Alors, une représentation $\phi_2:\Gamma \to \operatorname{Hom\'eo}^+(S^1)$ est semi-conjuguée à ϕ_1 si et seulement

- 1) ϕ_2 a une orbite finie θ_2 de même cardinal que θ_1 .
- 2) Il existe une " bijection ordonnée " de O $_1$ sur O $_2$ qui est équivariante sous les actions de ϕ_1 et ϕ_2 .

Démonstration: Supposons que ϕ_2 satisfait les conditions 1) et 2). Notons (a_1,\ldots,a_n) les éléments de O_1 ordonnés cycliquement et (b_1,\ldots,b_n) les images de ceux ci par la bijection de O_1 sur O_2 dont on dispose. Considérons alors l'application h croissante de degré 1 qui envoie les intervalles [$a_1,a_2[\ldots,[a_n,a_1[$ sur les points b_1,\ldots,b_n . Il est clair que h est une semi-conjugaison entre ϕ_1 et ϕ_2 .

Réciproquement, soit h une semi-conjugaison entre ϕ_2 et ϕ_1 , i.e. $\phi_2(\gamma)$ oh = ho $\phi_1(\gamma)$. L'image de O_1 par h est une orbite finie O_2 pour ϕ_2 et il nous reste à montrer que la restriction de h à O_1 est une bijection de O_1 sur O_2 . Si tel n'était pas le cas, O_2 aurait un cardinal strictement inférieur à celui de O_1 . Si h désigne maintenant une application croissante de degré 1 telle que $\phi_1(\gamma)$ oh = h $\phi_2(\gamma)$, h $\phi_2(\gamma)$ serait une orbite finie de ϕ_1 qui aurait strictement moins d'éléments que ϕ_1 , ce qui est impossible.

 $q(\gamma_1,\gamma_2) = \text{Aire du triangle g\'eod\'esique } (x,\gamma_1x,\gamma_2x) \;.$ Comme tout triangle g\'eod\'esique a une aire inférieure à π , il s'agit d'un cocycle borné, de norme inférieure à π . Considérons alors une triangulation de Σ par des triangles g\'eod\'esiques de sommets au point de Σ correspondant à x. Si l'on interprète ces triangles comme des simplexes du complexe d'Eilenberg-MacLane de $\pi_1(\Sigma)$, on obtient:

$$a([\Sigma]) = Aire(\Sigma) = -2\pi\chi(\Sigma)$$
 (Gauss-Bonnet).

Par conséquent, la classe de $-\frac{1}{2\pi\chi(\Sigma)}$ a dans $H_b^2(\pi_1(\Sigma);\mathbb{R})$ se projette dans $H^2(\pi_1(\Sigma);\mathbb{R})$ sur c_Σ . Ceci montre que c_Σ est dans la partie bornée de la cohomologie de $\pi_1(\Sigma)$.

Puisque la norme de $-\frac{1}{2\pi\chi(\Sigma)}$ a est inférieure à $-\frac{\pi}{2\pi\chi(\Sigma)}$, il nous reste à montrer que si a' est un cocycle borné se projettant sur c_{Σ}, alors $||a^i|| > -\frac{1}{2\chi(\Sigma)}$. Soit g le genre de Σ et $\Sigma^i \to \Sigma$ un revêtement à k feuillets. Le genre g' de Σ^i est tel que $2g^i-2=k(2g-2)$. On peut alors représenter $k[\Sigma]$ par une somme de $4g^i-2$ simplexes. On a alors:

$$a'(k[\Sigma]) = k \leqslant (4g'-2)||a'||$$

$$||a'|| \geqslant \frac{k}{4g'-2} = \frac{k}{4kg-4k+2} \xrightarrow{k \to \infty} -\frac{1}{2\chi(\Sigma)}.$$

Ceci démontre l'inégalité souhaitée.

La même formule montre que si $\chi(\Sigma)=0$ (i.e. Σ est un tore), il ne peut exister de classe de cohomologie bornée a^{ι} qui se projette sur c_{Σ} . En effet, on a dans ce cas g=1 , de sorte que l'inégalité devient:

$$||\alpha'|| \geqslant \frac{k}{2} \xrightarrow{k + + \infty} + \infty$$
 ce qui est impossible. Ceci montre que si $\chi(\Sigma) = 0$, alors c_{Σ} n'est pas dans la partie bornée de la cohomologie de $\pi_1(\Sigma)$.

Remarque 3-2 : La première partie de la proposition peut être généralisée de la façon suivante: si Γ est un groupe moyennable, alors $H_h^*(\Gamma;\mathbb{R}) = 0$ (Voir [Gr]).

La borne supérieure du module d'un élément de $C_b^n(\Gamma;A)$ permet de définir, de manière naturelle, une "semi-norme", notée || ||, sur les groupes $H_b^*(\Gamma;A)$. L'image du morphisme de $H_b^*(\Gamma;A)$ dans $H^*(\Gamma;A)$ sera appelée "la partie bornée de la cohomologie de Γ à coefficients dans A ". Cette partie bornée est, elle aussi, munie d'une "semi-norme "naturelle, que nous noterons encore || ||.

Notre second exemple est déjà traité dans [Gr] (dans le cadre de l'homologie singulière). Nous en donnons ici une démonstration dans notre langage.

Proposition 3-3: Soit Σ une surface compacte orientable différente de la sphère, $\chi(\Sigma)$ sa caractéristique d'Euler-Poincaré, $[\Sigma]$ sa classe fondamentale dans $H_2(\Sigma;\mathbb{R}) \sim H_2(\pi_1(\Sigma);\mathbb{R})$ et c_{Σ} la classe fondamentale duale dans $H^2(\pi_1(\Sigma);\mathbb{R})$ (i.e. $c_{\Sigma}([\Sigma])=1$). Alors, c_{Σ} est dans la partie bornée de la cohomologie de $\pi_1(\Sigma)$ à coefficients réels si et seulement si $\chi(\Sigma)$ est non nulle. La semi-norme de c_{Σ} est alors $-\frac{1}{2\chi(\Sigma)}$.

<u>Démonstration</u>: Supposons d'abord que $\chi(\Sigma)$ est non nulle et munissons Σ d'une métrique à courbure -1, ce qui permet d'identifier $\pi_1(\Sigma)$ à un sous-groupe du groupe des isométries du disque de Poincaré D^2 . Soit x un point de D^2 . Définissons un 2-cocycle a sur $\pi_1(\Sigma)$ par :

3- Deux exemples.

Nous proposons dans ce paragraphe deux exemples de calculs de cohomologie bornée qui nous seront utiles par la suite.

<u>Proposition 3-1</u>: $H_b^2(\mathbf{Z}; \mathbf{R}) = 0$; $H_b^2(\mathbf{Z}; \mathbf{Z}) = \mathbf{R}/\mathbf{Z}$.

<u>Démonstration</u>: Puisque $H^2(\mathbf{Z}; \mathbb{R}) = 0$, un 2-cocycle de \mathbf{Z} est une fonction c: $\mathbf{Z}^2 \rightarrow \mathbb{R}$ du type :

$$c(n,p) = du(n,p) = u(n+p) - u(n) - u(p)$$

où u est une fonction de Z dans R a priori non bornée.

Le cocycle c étant supposé borné, il existe une constante C telle que:

$$| u(n+p) - u(n) - u(p) | \leq C$$

Ceci implique l'existence d'un unique réel θ tel que :

$$v(n) = u(n) - \theta n$$

soit borné (voir [La] exercice 20 page 383). On a alors:

$$dv(n,p) = v(n+p) - v(n) - v(p) = c(n,p)$$

Autrement dit, c est nul dans $H_h^2(\mathbf{Z};\mathbf{R})$.

Etudions maintenant $H^2_b(\mathbf{Z};\mathbf{Z})$. Si θ est un réel, on considère le 2-cocycle entier c_{θ} de \mathbf{Z} défini par:

$$c_{\theta}(n,p) = [\theta n + \theta p] - [\theta n] - [\theta p]$$

où [] désigne la partie entière. Ce cocycle est borné car il ne prend que les valeurs 0 ou 1. L'observation précédente montre que tout cocycle borné entier de ${\bf Z}$ est cohomologue (dans ${\rm H}^2_{\rm b}({\bf Z};{\bf Z})$) à un certain ${\rm c}_{\theta}$. On vérifie par ailleurs que ${\rm c}_{\theta}$ et ${\rm c}_{\zeta}$ sont cohomologues si et seulement si θ - ζ est un entier.

4- La section canonique et l'inégalité de Milnor-Wood.

Nous noterons dorénavant G le groupe $\operatorname{Hom\acute{e}o}^+(S^1)$ et \overline{G} son revêtement universel, c'est-à-dire le groupe des homéomorphismes de R qui commutent avec les translations d'amplitudes entières. On a donc une extension centrale:

$$0 \longrightarrow \mathbf{Z} \longrightarrow \overline{\mathbf{G}} \xrightarrow{\mathbf{p}} \mathbf{G} \longrightarrow \mathbf{0}$$

La classe d'Euler est l'obstruction à trouver un homomorphisme qui soit une section de p. Soit σ une section de p (qui n'est pas un morphisme). Considérons, pour g et h deux éléments de G, l'élément

$$c(g,h) = \sigma(fg)^{-1}\sigma(f)\sigma(g)$$

Cet élément est dans le noyau de p. C'est donc un entier. Nous obtenons donc un 2-cocycle de G dont la classe de cohomologie dans $H^2(G;\mathbf{Z})$ n'est autre que la classe d'Euler à laquelle nous nous intéressons.

Dans notre cas, il existe une façon naturelle de choisir une "section canonique " de p. Soit T le générateur du centre de \overline{G} correspondant à la translation d'amplitude +1. Si g est un élément de G, les divers éléments de $p^{-1}(g)$ diffèrent des puissances de T; il existe donc un unique élément \overline{g} de $p^{-1}(g)$ tel que $\overline{g}(0)$ $\boldsymbol{\epsilon}$ [0,1[. La section canonique σ est alors celle définie par $\sigma(g)=\overline{g}$.

Proposition 4-1 : Le cocycle c associé à ce choix de σ ne prend que les valeurs 0 et 1 .

<u>Démonstration</u>: Soient g et h deux éléments de G. Par définition de la section canonique, on a :

 $\bar{h}(0) \in [0,1[$.

Puisque \overline{g} est croissant, on a :

 $\overline{g}(\overline{h}(0)) \in [\overline{g}(0), \overline{g}(1)]$.

L'intervalle $[\overline{g}(0), \overline{g}(1)[$ est d'amplitude 1 et $\overline{g}(0) \in [0,1[$. On a donc:

 $g\bar{h}(0) \in [0,2[$.

Puisque \overline{gh} et \overline{gh} sont deux relevés du même élément de G et que $\overline{gh}(0)$ ε [0,1[, on a l'égalité

 $\overline{gh} = \overline{gh} T^{\epsilon}$

où ε = 0 ou 1 . Ceci signifie que c(g,h) ne peut être égal qu'à 0 ou 1.

Corollaire 4-2 : La classe d'Euler peut être représentée par un cocycle borné réel de norme inférieure à 1/2.

 $\frac{D\text{\'emonstration}}{k(g,h)} = 1/2 \text{ est le cobord de la cochaîne constante \'egale \`a-1/2.}$ La classe d'Euler est donc représentée par le cocycle c-k qui ne prend que les valeurs +1/2 et -1/2.

Corollaire 4-3 : (Inégalité de Milnor-Wood) Soit ϕ une représentation du groupe fondamental d'une surface compacte orientable Σ dans le groupe des homéomorphismes du cercle respectant l'orientation. Soit eu (ϕ) le nombre d'Euler du fibré en cercles associé à ϕ . Alors

 $|eu(\phi)| \leq |\chi(\Sigma)|$.

<u>Démonstration</u>: On reprend les notations de 3-3. La classe d'Euler du fibré considéré est $eu(\varphi)$ c_{Σ} . Si $\chi(\Sigma) \neq 0$, la proposition 3-3 et le corollaire précédent montrent que:

$$|\operatorname{eu}(\phi)| \left(-\frac{1}{2\chi(\Sigma)}\right)| \leqslant \frac{1}{2}$$
.

Ceci donne l'inégalité annoncée. Si $\chi(\Sigma)=0$, nous savons que $eu(\phi)$ c_{Σ} est une classe de cohomologie bornée et que c_{Σ} ne l'est pas. Dans ce cas, $eu(\phi)$ est donc nul.

5- Démonstration du théorème A.

Puisque le 2-cocycle c que nous avons construit au paragraphe précédent ne prend que les valeurs 0 et 1, nous pouvons considérer sa classe de cohomologie dans $H^2_b(G;\mathbf{Z})$. Nous allons montrer que cette classe, notée e, vérifie les propriétés énoncées dans le théorème A.

Une partie du théorème est déjà claire:

Proposition 5-1: L'image de e par le morphisme naturel de $H_b^2(G; \mathbf{Z})$ dans $H^2(G; \mathbf{Z})$ est la classe d'Euler.

Nous abordons maintenant la démonstration de la partie essentielle du théorème A.

Proposition 5-2 : Soient ϕ_1 et ϕ_2 deux représentations d'un groupe Γ dans G. Si ϕ_1 et ϕ_2 sont semi-conjuguées, alors les deux éléments $\phi_1^*(e)$ et $\phi_2^*(e)$ de $H_b^2(\Gamma;\mathbf{Z})$ sont égaux.

Les deux applications croissantes $\overline{\phi_1(\gamma)h}$ et $\overline{h\phi_2(\gamma)}$ correspondent aux mêmes applications croissantes de degré 1 de S^1 dans S^1 . Il existe donc une fonction u de Γ dans Z telle que :

$$\phi_{1}(Y)\overline{h} = \overline{h}\phi_{2}(Y)T^{u(Y)}$$
 (1)

Revenant à la définition du 2-cocycle c, on obtient:

$$\phi_1^*(c)(\Upsilon,\Upsilon') - \phi_2^*(c)(\Upsilon,\Upsilon') = u(\Upsilon\Upsilon') - u(\Upsilon) - u(\Upsilon').$$

Pour démontrer que $\phi_1^*(e)$ et $\phi_2^*(e)$ sont égaux dans $H_b^2(\Gamma;\mathbf{Z})$, il suffit donc de montrer que u est bornée. Puisque

$$\overline{\Phi_1(Y)}(0) \in [0,1[$$

on a:

$$\overline{\Phi_1(Y)}\overline{h}(0) \in [0,2[$$
 .

De même,

$$\overline{h} \phi_{2}(Y)(0) \in [0,2[$$
 .

L'équation (1) montre alors que u ne peut prendre que les valeurs -1 , 0 ou +1 .

11

Remarque 5-3: Evidemment, cette proposition montre, en particulier, que la classe d'Euler est un invariant de semi-conjugaison.

Proposition 5-4: Réciproquement, si ϕ_1 et ϕ_2 sont deux représentations de Γ dans G telles que $\phi_1^*(e)$ et $\phi_2^*(e)$ sont égaux dans $H_b^2(\Gamma;\mathbf{Z})$, alors ϕ_1 et ϕ_2 sont semi-conjuguées.

Démonstration : On suppose qu'il existe une fonction bornée u de l' dans 2 telle que :

$$\phi_2^*(c)(\gamma,\gamma') - \phi_1^*(c)(\gamma,\gamma') = u(\gamma\gamma') - u(\gamma) - u(\gamma).$$

En particulier, les 2-cocycles $\phi_1^*(c)$ et $\phi_2^*(c)$ sont cohomologues dans $H^2(\Gamma;\mathbf{Z})$. On peut donc construire une

$$0 \longrightarrow 2 \longrightarrow \overline{\Gamma} \xrightarrow{\pi} \Gamma \xrightarrow{} 0$$

munie de deux sections s $_1$ et s $_2$ de π et ayant les deux propriétés suivantes. D'une part, si δ désigne l'image de 1 dans \overline{r} , on a:

$$s_2(\gamma) = s_1(\gamma) \delta^{u(\gamma)}$$
.

D'autre part, les 2-cocycles de Γ associés aux sections s et s sont précisément $\phi_1^*(c)$ et $\phi_2^*(c)$.

Nous pouvons alors construire deux représentations $\overline{\phi}_1$ et $\overline{\phi}_2$ de $\overline{\Gamma}$ dans \overline{G} en définissant:

$$\overline{\phi}_{1}(\delta) = T \qquad \overline{\phi}_{2}(\delta) = T$$

$$\overline{\phi}_{1}(s_{1}(\gamma)) = \overline{\phi}_{1}(\gamma) \qquad \overline{\phi}_{2}(s_{2}(\gamma)) = \overline{\phi}_{2}(\gamma) \qquad .$$

Avant de terminer la démonstration, nous allons démontrer le lemme suivant:

Lemme 5-5: Pour tout x de R, l'application

$$\alpha \in \overline{\Gamma} \longmapsto \overline{\phi_1}(\alpha)^{-1}\overline{\phi_2}(\alpha)(x) \in \mathbb{R}$$

a une image bornée.

extension centrale

Démonstration du lemme : Puisque les applications $\overline{\phi}_1(\alpha)$ et $\overline{\phi}_2(\alpha)$ commutent avec T, il suffit de démontrer le lemme lorsque x est un réel de [0,1[De même, puisque $\overline{\phi}_1(\alpha)$ et $\overline{\phi}_2(\alpha)$ sont croissantes, il suffit de démontrer le lemme lorsque x est nul.

Le point $\overline{\phi}_1(\alpha)^{-1} \overline{\phi}_2(\alpha)(0)$ ne dépend évidemment que de la projection de α dans Γ car $\overline{\phi}_1(\delta) = \overline{\phi}_2(\delta) = T$ et T est dans le centre de \overline{G} . Par ailleurs, si $\alpha = s_2(\gamma)$,on a : $\overline{\phi}_1(\alpha) = \overline{\phi}_1(s_2(\gamma)) = \overline{\phi}_1(s_1(\gamma)\delta^{u(\gamma)}) = \overline{\phi}_1(\gamma) T^{u(\gamma)}$

de sorte que :

$$\overline{\Phi}_1(\alpha)(0) \in [u(\gamma), u(\gamma)+1[$$

car

$$\overline{\Phi_1(Y)}(0) \in [0,1[$$
 .

Par conséquent,

$$\overline{\phi}_1(\alpha)^{-1}(0) \in [-u(\gamma)-1,-u(\gamma)[$$

Puisque, par ailleurs:

$$\overline{\Phi}_2(\alpha)(0) = \overline{\Phi_2(Y)}(0) \in [0,1[$$

on a:

$$\overline{\phi}_{1}(\alpha)^{-1} \ \overline{\phi}_{2}(\alpha)(0) \ \epsilon \ \left[\ -\mathrm{u}(\gamma)_{-1}, -\mathrm{u}(\gamma)_{+1} \right]$$

Ceci démontre le lemme puisque, par hypothèse, u est bornée.

Fin de la démonstration de la proposition 5-4 :

On définit une fonction h de R dans R par :

$$\overline{h}(x) = \sup_{\alpha \in \overline{\Gamma}} (\overline{\phi}_1(\alpha)^{-1} \ \overline{\phi}_2(\alpha)(x)) \quad .$$

Il est clair que \overline{h} est une fonction croissante qui commute avec T. Si α est un élément de \overline{t} , on a :

$$\overline{h}(\overline{\phi} (\alpha)(x)) = \sup_{\beta \in \Gamma} (\overline{\phi} (\beta)^{-1} \overline{\phi}(\beta\alpha)(x))$$

$$= \sup_{\beta \in \Gamma} (\overline{\phi} (\beta\alpha^{-1})^{-1} \overline{\phi}(\beta)(x))$$

$$= \overline{\phi}_1(\alpha)(\sup_{\beta \in \overline{\Gamma}} (\overline{\phi}_1(\beta)^{-1} \overline{\phi}_2(\beta)(x))$$

$$= \overline{\phi}_1(\alpha)(\overline{h}(x)) .$$

C'est-à-dire que l'on a

$$\overline{h} \overline{\phi}_2 = \overline{\phi}_1 \overline{h}$$

Si l'on note h l'application croissante de degré 1 de s^1 dans s^1 qui est obtenue à partir de \overline{h} , on a :

$$h \phi_2 = \phi_1 h .$$

En d'autres termes, les représentations ϕ_1 et ϕ_2 sont semiconjuguées. Ceci termine la démonstration de 5-4.

Pour terminer la démonstration du théorème A, il nous reste à démontrer la :

<u>Proposition 5-6</u>: Si $\Gamma = \mathbf{Z}$ et si $\phi: \Gamma \longrightarrow \mathbf{Z}$ est une représentation, alors l'élément $\phi^*(e)$ de $H_b^2(\Gamma; \mathbf{Z}) \in \mathbb{R}/\mathbb{Z}$ est le nombre de rotation de $\phi(1)$.

<u>Démonstration</u>: Soit $\theta \in \mathbb{R}/\mathbb{Z}$ et R_{θ} la rotation " d'angle " θ définie par $R_{\theta}(x) = x + \theta \pmod{\mathbb{Z}}$. Soit $\phi_{\theta} : \mathbb{Z} \longrightarrow \mathbb{G}$ la représentation envoyant 1 sur R_{θ} . On vérifie immédiatement que le 2-cocycle $\phi_{\theta}^*(c)$ est égal au 2-cocycle c_{θ} défini en 3-1. On obtient la proposition en remarquant que toute représentation

 $\phi:\Gamma\longrightarrow \mathbf{Z}$ est semi-conjuguée à la représentation ϕ_θ où θ est le nombre de rotation de $\phi(1)$.

Remarque 5-7: Il est clair que, pour obtenir le théorème A, il nous faut considérer la cohomologie bornée à coefficients entiers et non pas à coefficients réels. Nous avons vu, en effet, que $H_b^2(\mathbf{Z};R)=0$ de sorte que la cohomologie bornée réelle ne peut " contenir " la notion de nombre de rotation. Dans certains cas, cependant, la cohomologie bornée de Γ à coefficients réels peut suffire pour décrire les représentations de Γ dans G. Ce sera le cas si Γ est un groupe parfait car, dans ce cas, on vérifie que $H_b^2(\Gamma;\mathbf{Z})$ s'injecte dans $H_b^2(\Gamma;R)$.

6- Démonstration du théorème B .

Une partie du théorème B est déjà claire : si $\phi:\Gamma \to G$ est une représentation, la classe $\phi^*(e)$ est représentée par le 2-cocycle $\phi^*(c)$ qui ne prend que les valeurs 0 et 1 d'après la proposition 4-1.

Réciproquement, soit ω un 2-cocycle sur Γ qui ne prend que les valeurs 0 et 1. On peut alors construire une extension centrale

$$0 \longrightarrow \mathbf{Z} \longrightarrow \overline{\Gamma} \xrightarrow{\overline{\mathbf{r}}} \Gamma \longrightarrow 0$$

et une section s telles que le cocycle w soit défini par:

$$\omega(\gamma_1,\gamma_2) = s(\gamma_1\gamma_2)^{-1}s(\gamma_1)s(\gamma_2) .$$

On note encore δ l'image de +1 dans $\overline{\Gamma}$. La donnée de s permet d'identifier $\overline{\Gamma}$, comme ensemble, à $\Gamma x \mathbf{2}$; la loi de multiplication dans ces coordonnées étant:

$$(\gamma_1, n_1)(\gamma_2, n_2) = (\gamma_1 \gamma_2, n_1 + n_2 + \omega(\gamma_1, \gamma_2))$$
 (2)

Nous ferons tout d'abord l'hypothèse que w est un cocycle non dégénéré, c'est-à-dire qu'il satisfait la condition:

$$\omega(\gamma,1) = \omega(1,\gamma) = 0$$

(Le symbole 1 désignera aussi bien l'élément neutre de Γ que celui de $\overline{\Gamma}$, ainsi que, bien entendu, l'entier 1 ...)

Cette dernière condition est équivalente au fait que s(1) = 1 ou encore que (1,0) est l'élément neutre de $\overline{\Gamma}$. Nous nous débarasserons de cette hypothèse de non dégénérescence à la fin de ce paragraphe.

<u>Lemme 6-1</u>: Il existe une relation de préordre sur $\overline{\Gamma}$, notée ξ telle que:

- i) $(1,0) \leq (\gamma,n)$ si et seulement si $0 \leq n$;
- ii) si $\alpha_1 \ \ \ \alpha_2$, alors pour tout α de $\overline{\Gamma}$, on a $\alpha\alpha_1 \ \ \ \alpha\alpha_2$;
- iii) \$\dagger\$ est une relation de préordre total.

Démonstration: Une relation de préordre satisfaisant ii) est parfaitement définie par l'ensemble des éléments supérieurs à l'élément neutre qui doit être un semi-groupe. Puisque ω ne prend que des valeurs positives, la relation (2) montre

que l'ensemble des éléments de $\overline{\Gamma}$ du type (γ,n) avec $n\geqslant 0$ est effectivement un semi-groupe. Les conditions i) et ii) définissent donc bien un préordre sur $\overline{\Gamma}$.

Puisque ω ne prend que les valeurs 0 et 1, l'inverse de l'élément (γ,n) de $\overline{\Gamma}$ est soit $(\gamma^{-1},-n)$ soit $(\gamma^{-1},-n-1)$. En observant que, pour tout entier n, on a:

0 \leqslant n ou (0 \leqslant -n et 0 \leqslant -n-1) , on déduit que, pour tout élément (γ,n) de $\overline{\Gamma}$, on a :

ou encore, d'après ii) :

 $(1,0) \diamondsuit (\gamma,n)$ ou $(\gamma,n) \diamondsuit (1,0)$.

Ceci montre que \$ est une relation de préordre total.

<u>Lemme 6-2</u>: On suppose Γ dénombrable. Alors, il existe une application i de $\overline{\Gamma}$ dans $\mathbb R$ telle que :

- i) i(1) = 0 ;
- ii) pour tout a de $\overline{\Gamma}$, on a $i(\delta a) = i(a) + 1$;
- iii) $a_1 \neq a_2$ si et seulement si $i(a_1) \leq i(a_2)$.

Démonstration : Soit (1 , γ_1 , γ_2 , ... , γ_n , ...) une énumération de Γ . On suppose donnée une application i de $\pi^{-1}\{1,\gamma_1,\gamma_2,\ldots,\gamma_n\}$ dans R satisfaisant les conditions i),ii) et iii). L'ensemble $\pi^{-1}\{\gamma_{n+1}\}$ est constitué de $s(\gamma_{n+1})$ et de ses translatés par les puissances de δ . Puisque la relation de préordre Φ est totale, il est facile de choisir un réel, noté $i(s(\gamma_{n+1}))$, de façon à satisfaire la condition iii) sur l'ensemble $\pi^{-1}\{1,\gamma_1,\ldots,\gamma_n\}$ v $s(\gamma_{n+1})$. On définit alors,

Supposons donc que t est un point d'accumulation unilatéral de \overline{F} , par exemple à gauche. Dans ce cas, t est l'extrémité gauche d'une composante connexe de R- \overline{F} et, d'après l'hypothèse faite, t est du type $i(\beta_1)$ pour un certain élément β_1 de Γ . Il suffit évidemment de montrer la continuité de $\overline{\phi}(\alpha)$ à gauche. Dans le cas contraire, on aurait:

$$\lim_{t\to t} \overline{\phi}(\alpha)(t') < \overline{\phi}(\alpha)(t)$$

$$t'\to t$$

$$t'< t$$

Le membre de droite de cette inégalité est égal à $v=i(\alpha\beta_1)$. Quant au membre de gauche, d'après la définition de $\overline{\phi}(\alpha)$, il est égal à :

$$u = \sup \{i(\alpha \tau) \mid \tau A \beta_1 \}$$

où la notation $\tau \land \beta_1$ signifie $i(\tau) < i(\beta_1)$. L'intervalle]u,v[ne peut contenir d'élément de $i(\overline{\Gamma})$. En effet, si $i(\beta_2)$ est un élément de]u,v[, alors l'élément $\beta_3 = \alpha^{-1}\beta_2$ aurait la propriété que $\beta_3 \land \beta_1$ ce qui entraînerait la contradiction suivante:

 $u = \sup \left\{ i(\alpha\tau) \mid \tau 4\beta_1 \right\} \geqslant i(\alpha\beta_3) = i(\beta_2) > u \;.$ Comme u et v sont clairement des éléments de \overline{F} , l'intervalle]u, v [est donc une composante connexe de $R-\overline{F}$. D'après l'hypothèse faite, u est du type $i(\beta_4)$ pour un certain β_4 de \overline{F} . La définition de u montre alors que β_4 est tel que $\tau 4\beta_1$ si et seulement si $\alpha\tau 4\beta_4$. En d'autres termes, il n'y aurait aucun élément de $i(\overline{F})$ entre $i(\overline{F})$ et $t = i(\beta_1)$ ce qui contredit le fait que t est un point d'accumulation à gauche de $i(\overline{F})$.

Dans le cas où t est un point d'accumulation bilatéral

pour chaque entier k,

 $i(s(\gamma_{n+1}) \ \delta^k) = i(s(\gamma_{n+1})) + k$ de sorte que i est maintenant définie sur $\pi^{-1} \ \{1,\gamma_1,\ldots,\gamma_{n+1}\}$ et vérifie toujours i), ii) et iii). Par récurrence, on construit donc l'application cherchée.

Remarquons que $\overline{\Gamma}$ opère sur lui-même par translations à gauche et que ces translations sont des bijections croissantes de l'ensemble préordonné ($\overline{\Gamma}$, \checkmark). Soit \overline{F} l'adhérence de $\overline{\Gamma}$ 0 dans \overline{R} et α un élément de $\overline{\Gamma}$ 0 définit une fonction $\overline{\phi}(\alpha)$ de \overline{F} dans \overline{F} par:

 $\overline{\varphi}(\alpha)(x) = \sup \left\{ \ i(\alpha\beta) \ \middle| \ i(\beta) \leqslant x \ \right\} \ .$ La restriction de $\overline{\varphi}(\alpha)$ à $i(\overline{\Gamma})$ est une bijection car $\overline{\varphi}(\alpha)(i(\beta)) = i(\alpha\beta)$. Il se peut cependant que $\overline{\varphi}(\alpha)$ ne soit pas un homéomorphisme de \overline{F} . Le lemme suivant donne une condition pour que $\overline{\varphi}(\alpha)$ soit un homéomorphisme.

Lemme 6-3: On suppose que les deux extrémités x et y de toute composante connexe]x,y[de $\mathbb{R}-\overline{F}$ sont dans $i(\overline{\Gamma})$. Alors, pour tout α de $\overline{\Gamma}$, la fonction $\overline{\phi}(\alpha)$ est un homéomorphisme de \overline{F} .

<u>Démonstration</u>: Il suffit de montrer que $\overline{\phi}(\alpha)$ est continue sur \overline{F} car l'inverse de $\overline{\phi}(\alpha)$ sera évidemment $\overline{\phi}(\alpha^{-1})$.

Soit tun élément de \overline{F} . Trois cas sont a priori possibles: t peut être un point isolé de \overline{F} , un point d'accumulation "unilatéral" de \overline{F} ou un point d'accumulation "bilatéral" de \overline{F} . La question de la continuité de $\overline{\phi}(\alpha)$ en t ne se pose évidemment que dans les deux derniers cas.

de 1, les propriétés suivantes de 1 sont évidentes:

- 1- 1 est continue
- 2- la restriction de l à i(T) est strictement croissante
- 3- la restriction de l à un élément de ${\bf \acute{e}}$ est constante Par conséquent, l'application ${\bf i}$ = 1 o ${\bf i}_0$ vérifie toutes les conditions requises.

Nous sommes maintenant en mesure de démontrer la partie principale du théorème B.

<u>Proposition 6-5</u>: Soit Γ un groupe dénombrable et ω un 2-cocycle non dégénéré sur Γ qui ne prend que les valeurs 0 et 1. Alors, il existe une représentation $\phi\colon\Gamma\to G$ telle que $\phi^*(c)=\omega$.

Démonstration : Soit i : $\overline{\Gamma} \to \mathbb{R}$ une application donnée par le lemme 6-4. Dans ce cas, d'après 6-3, $\overline{\phi}(\alpha)$ est un homéomorphisme strictement croissant de \overline{F} . Prolongeons $\overline{\phi}(\alpha)$ en un homéomorphisme de \mathbb{R} , encore noté $\overline{\phi}(\alpha)$, en lui imposant d'être affine sur chaque composante connexe de $\mathbb{R}-\overline{F}$. On obtient ainsi une représentation $\overline{\phi}:\overline{\Gamma} \to \overline{G}$. Par passage au quotient, on obtient finalement une représentation $\phi:\Gamma \to G$. La construction même de ϕ montre que $\phi^*(c) = \omega$.

Fin de la démonstration du théorème B : Il nous reste à nous débarasser de l'hypothèse de non dégénérescence faite sur ω .

La condition exprimant que w est un cocycle s'écrit:

$$\omega(Y_1, Y_2) + \omega(Y_1, Y_2, Y_3) = \omega(Y_2, Y_3) + \omega(Y_1, Y_2, Y_3)$$

On en déduit qu'il existe un entier ν tel que, pour tout γ de Γ , on ait :

$$\omega(1, \Upsilon) = \omega(\Upsilon, 1) = V$$

de i($\overline{\Gamma}$), on procède de façon similaire pour montrer que $\overline{\Phi}(\alpha)$ est continu à gauche et à droite.

Lemme 6-4: On suppose toujours que Γ est dénombrable. Alors, il existe une application i de Γ dans R vérifiant les conditions i), ii) et iii) du lemme 6-2 ainsi que la condition du lemme 6-3.

 $\underline{\text{Démonstration}} \; : \; \; \text{Soit i}_{\Omega} \; : \; \overline{\Gamma} \to R \quad \text{une application vérifiant}$ les conditions i), ii) et iii) du lemme 6-2. Nous allons définir une autre application $i : \overline{\Gamma} \rightarrow \mathbb{R}$ de la forme $i = 1 \circ i_0$ où 1 : R → R sera une application croissante qui "écrase sur un point" les composantes connexes de R- $\overline{ extbf{F}}$ ne satisfaisant pas à la condition du lemme 6-3. Plus précisément, soit 😢 la collection des composantes connexes de ${\rm I\!R}{\rm -}\overline{\rm F}$ dont au moins une des extrémités n'est pas dans i(T). Si]u,v[et]v,w[sont deux éléments de & ayant une extrémité en commun, le point v est un point isolé de \overline{F} et donc un élément de $i(\overline{\Gamma})$. Dans ce cas, u et w ne sont pas des éléments de $\mathrm{i}(\overline{\Gamma})$. Considérons alors la réunion des intervalles du type]u,w[ainsi décrits et des éléments de 🕊 qui n'ont pas d'extrémité commune avec un autre élément de 😮 . On obtient ainsi un ouvert dont le complémentaire $\overline{\mathtt{K}}$ n'a pas de point isolé. Evidemment, $\overline{\mathtt{K}}$ est invariant par translations entières. On peut donc trouver une mesure positive μ sur R, sans atome, dont le support est exactement \overline{K} , invariante par translations entières et telle que $\mu[0,1[=1.0n]$ considère alors la fonction $l: \mathbb{R} \to \mathbb{R}$ définie par $l(x) = \mu[0,x]$ si x \geqslant 0 et 1(x)= - μ [x,0] si x \leqslant 0. Par construction même

BIBLIOGRAPHIE

- [Br-Se] R. Brooks and C. Series: Bounded cohomology of surface groups, Topology 23(1984),29-36.
- [Gr] M. Gromov: Volume and bounded cohomology, Pub.Math. I.H.E.S. 56(1982),5-100.
- [He-Hi] <u>G. Hector and U. Hirsch</u>: Introduction to the geometry of foliations, Part B , Aspects Math. (1983)
- [Je] S. Jekel: Simplicial categories and foliations, preprint Boston.
- [La] S. Lang: Algebra, Addison Wesley (1965)
- [Mil] J. Milnor: On the existence of a connection with curvature zero, Comment.Math.Helvetici32(1958),215-223.
- [Mit] Y. Mitsumatsu: Bounded cohomology and 1 homology of surfaces, to appear in Topology.
- [Su] <u>D. Sullivan</u>: A generalization of Milnor's inequality concerning affine foliations and affine manifolds, Comment.Math.Helvetici51(1976),183-189.
- [Wo] J. Wood: Bundles with totally disconnected structure group, Comment.Math.Helv.46(1971),257-273.

Université des Sciences et Techniques de Lille I U.E.R. de Mathématiques Pures et Appliquées E.R.A. au C.N.R.S. 07590 59655 Villeneuve d'Ascq Cedex FRANCE Cet entier ne peut être égal qu'à 0 ou 1 et ω est non dégénéré si et seulement si ν est nul. Supposons donc que ν = 1 et définissons un 2-cocycle ω' par :

$$\omega'\left(\,\gamma_1^{},\,\gamma_2^{}\right) \;=\; 1\;-\; \omega(\,\gamma_1^{},\,\gamma_2^{}) \;\;. \label{eq:omega_scale}$$

Il est clair que ω^1 est un 2- cocycle non dégénéré qui ne prend que les valeurs 0 et 1. Par ailleurs ω^1 et $-\omega$ sont cohomologues dans $H_b^2(\Gamma;\mathbf{Z})$ (car la fonction constante 1 de $C_b^2(\Gamma;\mathbf{Z})$ est le cobord de la fonction constante -1 de $C_b^1(\Gamma;\mathbf{Z})$).

D'après la proposition 6-5, il existe une représentation $\phi':\Gamma\to G$ telle que ${\phi'}^*(c)=\omega'$. Si $\phi\colon\Gamma\to G$ désigne maintenant une représentation obtenue en conjugant ϕ' par une symétrie de \mathbf{S}^1 qui renverse l'orientation, $\phi^*(c)$ est évidemment cohomologue à $-{\phi'}^*(c)$, c'est-à-dire à $-\omega'$ et donc à ω .

Ceci montre le théorème B pour un cocycle dégénéré et termine donc la démonstration de ce théorème.