TRANSLATORS INTRODUCTION
W. E. Grosso

What you are about to read is a rough translation of the “Green Book” on
Hyperbolic Group Theory. At some point in my graduate school career, I realised
that

(1) T knew almost no French.

(2) T knew almost no TeX.

(3) T had never systematically worked through a foundational article on Hyper-
bolic Group Theory

After the epiphany ended, I began working on this translation.

I called this a translation a “rough translation” because I learned French by
translating this book. As I became more fluent, I began to translate more freely,
translating colloquial French into colloquial English. Unfortunately, this means
that the text is sometimes stilted (strict translation) and sometimes veers into
Long Island Native Prose (a peculiar subdialect of American English).

At this point, 1t is traditional for me, as translator, to include a sentence taking
full responsibility for any and all errors in this document. I refuse to do so. However,
as a sop to those who wish for somebody to blame, I offer the following statement:

Any and all errors are strictly your fault

The gist of this is: if you spot an error, you are responsible for it. At which
point you can either wallow in guilt, or you can do something constructive like
e-mail me with complete details of the error. My e-mail address is william@
math.berkeley.edu. If that e-mail address doesn’t work, contact John Stallings
(stall@ math.berkeley.edu). He will probably know how to contact me.

Cordially,
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OVERVIEW (CHAPTER 1)

ETIENNE GHYS AND PIERRE DE LA HARPE

ABSTRACT. The first part of this chapter is a solicitor’s plea for the geometric ap-
proach to groups of finite type, e.g. groups which are finitely generated. Hyperbolic
groups are defined in §4, where we present the results which are central to our expo-
sition. The last section evokes a few important points from Gromov’s article which
are not presented in these notes.

1. THE OBJECTIVE

We attribute to M. Gromov the assertion that a theorem which is valid for all
groups is either trivial or without importance. It is true that the more spectacular
results to date in combinatorial group theory have more often than not been ob-
tained by restricting to particular classes of groups. We cite as examples the well
developed theories of abelian, nilpotent, polycyclic, solvable and amenable groups.
While the interest in these groups is undoubtedly sincere, 1t is nonetheless clear that
these categories are very restricted. Who would dare to pretend that a majority of
interesting groups are solvable, for example 7

In addition to these “minorities”, which have a simple structure and are well un-
derstood, we can list a number of examples of groups whose study has proven to be
both necessary and fruitful: free groups, surface groups, braid groups... Although
these particular groups are very important, it is necessary, above all else, to recon-
sider and change our idea of the behavior of a typical infinite, finitely generated
group.

Given combinatorial group theory’s exemplary resistance to generality, the the-
ory of hyperbolic groups is an extremely satisfying compromise. In this theory, one
defines a vast category of finitely presented groups for which one can, neverthe-
less, prove surprisingly precise results about the structure of the group. Further
down, we will give a definition and some important properties of these groups. Very
roughly, they behave as if they are the fundamental groups of negatively curved,
compact manifolds. Even if they are not all of this type, at least they all have a
number of crucial properties.

Indeed, hyperbolic groups were not the first tentative step in this direction. The
most elaborate example is, without doubt, given by Small Cancellation Theory.
We have dedicated an appendix of these notes to this theory, which has become
an important part of hyperbolic group theory. Meanwhile, the theory of small
cancellation groups remains important for at least two reasons. The first is that it
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2 ETIENNE GHYS AND PIERRE DE LA HARPE

constitutes one of the principal motivations for hyperbolic group theory and remains
a significant source of examples. The second is that, strictly speaking, not all small
cancellation groups are hyperbolic; for example, C’(1/5) groups (see definition 2 in
the appendix by R. Strebel) are not hyperbolic. However, one quickly realizes that
small cancellation groups are quite peculiar. For example, the fundamental group
of a negatively curved, compact manifold of dimension 3 or greater is never a small
cancellation group because small cancellation groups have rational cohomological
dimension at most 2. It is inconvenient that Small Cancellation Theory is not
contained within hyperbolic group theory.

While the theory of hyperbolic groups covers a vast area, it does not contain
all the groups which we find interesting! One grave defect in the theory is that
uniform lattices in real semi-simple Lie groups with real rank at least 2 are never
hyperbolic; these groups are undeniably interesting. Perhaps one should consider
the study of hyperbolic groups as a stopping place, before a still larger class of
groups which M. Gromov has named “semi-hyperbolic” and for which no-one has
given a good definition. Typical examples of semi-hyperbolic groups are already
clear: in addition to the lattices mentioned above, fundamental groups of non-
positively curved compact manifolds should be semi-hyperbolic.

The chapters which follow are devoted to an exposition of part of Gromov’s
theory. We think that hyperbolic group theory is fundamental in combinatorial
group theory because, after all, it gives a picture of the global structure of many
finitely presented groups. Undoubtedly, one of the most interesting aspects of the
theory is the generality of its methods, on which one has some hope of basing the
future theory of semi-hyperbolic groups.

2. THE METHOD

The method is (of course) geometric. The main idea is that a finitely generated
group has, in addition to its algebraic structure, a geometric structure and, more
precisely, a metric. The study of a group will be done through the underlying
metric space.

Let T be a finitely generated group and S a finite set of generators. For simplicity,
we assume throughout that S doesn’t contain the identity element of I' and that S
is symmetric, by which we mean that for every element v of the group which is in
S,y lisalsoin S.

If v is an element of the group I', we denote the minimal number of generators
from S necessary to write the element v by ls(y), and call this the length of ~
relative to S. If 41 and 7, are elements of T, we use dg(y1,72) to denote the value
15(71_172) and call this the distance between 7; and vy relative to S. The reader
can easily verify the following fact:

1. Proposition. The function d,; is a metric on T and it is invariant under left
actions of T'.

There are two possible criticisms of this distance. First, it depends on the choice
of generators; second, 1t only assumes integer values-the metric space that it defines
is consequently discrete.

The second point is not a serious problem— at worst, it might hamper our intu-
ition; moreover there is an easy and graceful solution: the classical construction of
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a Cayley Graph. Tt is a non-oriented graph (this means it has a geometric reali-
sation as a l-dimensional simplicial complex) without loops (consisting of 1 edge)
or multiple edges, denoted by G(T',S). The vertices are the elements of I' and an
edge connects v, and 7 if ds(y1,v2) = 1, this means that 417 1v5) € S. It is clear
that left actions of T' upon itself let us define an action of T' on G(T',S) which is
a simplicial automorphism. One sometimes furnishes the edges with riemannian
metrics that make all of them isometric to a fixed interval of length 1 (and such
that the riemannian metrics are invariant under the action of T'). One then defines
a metric on G(T', S) by considering the shortest length along the paths connecting
two given points. In this way, G(T, S) becomes an arc-connected metric space and
the natural immersion of (T',dg) is an isometry. Although its introduction is “su-
perfluous”, the Cayley Graph nevertheless enables visualisation of I'. Figures 2-4
above show simple examples; others follow.

)

O
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2. Figure. The Cayley Graph for ' = Z and S = {—1,1}.

3. Figure. The Cayley Graph for T' = Z @ Z andS = {£(1,0), £(0, 1)}.

O
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4. Figure. The Cayley Graph for the free group on two generators a, band generating set S = {a

il) bil}.

5. Example : The Heisenberg Group. It is the group I' generated by 3
generators a,b,c subject to the relations

ca = ac ch = be bab~la"' = ¢

This is the simplest example of a non-abelian, nilpotent group. All the elements
of have the form a™b"c? with (m,n,p) € Z3. The map :

1 n
P:ambc? > [0 1
0 0

— 3

is a homomorphism of T into SL3(7). Tt is a fact that all elements of T can be
uniquely written in the form a™ "¢ and that ® is an isomorphism onto its image.
The center of T is the infinite cyclic group generated by ¢ and the quotient of I by
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its center is a free abelian group of rank two generated by the images of a and b.
One can represent I' by the points from the lattice Z3 in R3. The formulas:

(@™b"cPla = a™tpn et
(@™b"cP)b = a™pP P

(@b cP)e = a™pcPtt

indicate how we connect the points of Z3 to obtain the Cayley Graph G(T,S). Each
cross-section n =constant i1s a copy of the Cayley Graph of Z & Z as represented
in figure 3, but the point (m,n,p) is also connected to the neighboring slices at
(m+1,n,p+n) and (m,n — 1,p— m), as indicated in the figure on the following

page.
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Figure for example 5
Before contemplating other examples, we will answer the second criticism made
after proposition 1: the metric depends on the choice of generators.

. Figure. Choose the system of generators {42, +3} in the group Z. The associated Cayley Graph looks this this.
Of course, this graph is different from the one in figure 2, but there is a strong
resemblance when “viewed from afar”. To make this notion of resemblance precise,
we introduce the following definition:

7. Definition. Let (X,d) and (X', d’) be two metric spaces. We say that they are
quasi-isometric if there exist maps f : X — X’ and g : X’ — X and also constants
A > 0, C' > 0 such that:

d'(f(2), f(y) < Md(z,y) +CVz,y e X
dg(2'),9(y")) < Ad'(2',y) + CV2',y € X'
d'(g(f(z)),z) < CVz,ye X
d'(f(g(z")),2") < COVa',y' € X'

The first two inequalities mean that f and g are “lipschitz with ratio A over large
distances”. As for the second two, they mean that f and g are “almost inverse” to
each other.

8. Exercise. Verify that quasi-isometry is an equivalence relation among metric
spaces.

9. Examples. Equip R with the usual metric and give Z the metric induced
from the immersion into IR. This immersion, and the map which sends numbers
to their whole part, permit us to show that Z and R are quasi-isometric (although
not homeomorphic). More generally, if T is a group generated by a finite set S,
the group I' equipped with the usual metric is quasi-isometric to the Cayley Graph
G(T, S) equipped with the metric we have described.

If S and S’ are two finite sets of generators for the group T, the two associated
metric spaces (T',dg) and (T, dg/) are quasi-isometric. As a matter of fact, if Ay is
the maximum of /s: on S and X, is the maximum of g on S’, then it is clear that
ds/ S )\1[15 and ds S )\2dS’

To summarize, every finitely generated group I' can be associated with a metric
space which is well defined up to quasi- isometry: this space is the group is equipped
with dg— it is unimportant which finite system of generators is used (as longase ¢ S
and S = S~1). Consequently, all quasi-isometry invariants of (T, ds) determine
invariants of the group . This is a characteristic of the approach we follow: If two
groups are quasi- isometric then the theory will not be able to distinguish them.
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3. QUASI-ISOMETRIES AND ISOMORPHISMS

We begin by testing out examples of quasi-isometries among groups and we see
that it is remarkably well-adapted for our purpose, neither too loose nor too strict.
The general idea is that, although quasi-isometry identifies non-isomorphic groups
with each other, it nonetheless preserves some of the algebraic structure. The first
examples spell out the difference between isomorphism and quasi-isometry. Recall
that all the groups considered here are finitely generated.

10. Example. All finite groups are quasi-isometric to each other. This result
follows from the fact that two bounded metric spaces are quasi-isometric to each
other.

11.Proposition. If I'1 is a finite index subgroup of the group T', then T'y and T
are quasi-isometric.

One can directly show this proposition by choosing suitable systems of generators
inside I'; and T'. However, we prefer to refer to the proof in chapter 3, where it is a
consequence of a more general result concerning group actions (proposition 3.19).

12. Corollary. Commensurable groups, e.g. those which contain finite index
subgroups which are isomorphic, are quasi-isometric.

13. Examples. A non-abelian free group on k generators (k > 2) is isomorphic
to a finite index subgroup of the free group on two generators. Therefore, two non-
abelian free groups with distinct ranks are quasi-isometric, although not isomorphic.

In the same way, we see that the group PSLy(7Z) is isomorphic to the free product
of Z /27 and 7. /37 and contains a free subgroup of index 6. Consequently, the group
PSLy(7) is quasi-isometric to the free group on two generators. For that matter,
when “we look carefully” at the drawing below of the Cayley Graph (for the natural
generators), 7 /27 x 7 /37 is quasi-isometric to the drawing in figure 4.
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However, quasi-isometry does not always reduce to commensurability. Here is
one way to show this.

14. Proposition. Suppose M is a compact Riemannian manifold. The funda-
mental group of M 1s quasi-isometric to the universal cover of M .

For the proof, see Corollary 21 of Chapter 3.

15. Corollary. There exist groups which are quasi- isometric and not commensu-
rable.

Proof. Let M; and M» be two compact three dimensional Riemannian manifolds
with curvature -1 and such that the ratio of their volumes is irrational (see [THU]
for examples). The fundamental groups of M; and M, are quasi-isometric because,
by proposition 14, they are quasi-isometric to three dimensional hyperbolic space.
If these groups were commensurable, M; and My would have finite covers with
isomorphic fundamental groups. These covers are isometric by Mostow rigidity.
This contradicts the irrationality of the ratio of the volumes of M; and M,. O

The numbers which follow show that two quasi-isometric groups, even if they
are not isomorphic, often have very similar algebraic properties.

16. Exercise. Suppose I' is a finitely generated group; we choose a finite system
S of generators and write |z — y| for dg(z,y) for all z,y € T . We give Z the usual
metric. If I' and Z are quasi-isometric, show that ' possesses a finite index cyclic
subgroup.

Hints:

(1) Show that there exists a surjective map f : I' = Z and two constants A > 0,
C > 0 such that

(4) He =y = C < If@) — FW)] < Aw — o] +C

forall z,y € [ . For alln € Z , choose z, € f~1(n). Show that there exists
D > 0 such that

1
(B) ﬁ|xp—mq|_D§|f(7mp)_f(7rq)S)‘2|Ip_mq|+D

for all p,q € 7Z. In particular, there exists E > 0 such that

(©) [f(vens1) = flyzn)| < B
for ally €T and n € Z.

(2) Suppose v € T'. Show that (B) and (C) imply that there exists €, € {1, -1}
such that

(D) kli}rrc}o f(yzr) = eyoo  and klgglo f(vz_g) = —ey00

Replacing I' by a subgroup of index two, show that we can assume e¢y= 1
for every vy € I'.
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(3) Show that there exists a constant G > 0 such that

(E) flyzg) 2 flyzo) =G and  fyz_k) < f(yzo) + G

forallv €T and k € Z.
(Suppose there is a constant H > 0, an element ¥ € T' and an integer
k > 0 such that f(yzg) < f(yzo) — H. Use 2 to maximise H as a function
of k. By (C) and (D), there is j > k such that |f(yz;) — f(yx0)| < E, and
(B) provides an upper bound on j. This gives an upper bound on H.)
(4) Henceforth, we assume that f(e) = 0 and that zg = e (if necessary, replace
f by &0 f(z) — f(e) ). Show there exists a constant K > 0 with the
following property: for all ¥ € T such that f(y) > K and f(y7!) < —K,
we have f(y"t1) > f(y") and f(y~"~1) < f(y~™) for all n > 0.
(First suppose z € T and k£ > 0 are such that f(z) = k. For all n > 0,
one can maximise |f(z"*!) — f(z"2x)| and minimise f(z"z) — f(2™) by

using (A) and (E). Conclude
(F) FE ) 2 f(@") - (G = (W +1) C)

Verify, on the other hand,
n+1 n 1 1
(@) FE) = @ 2 e O k- 0)—C

For k large enough, deduce from (F) and (G) that f(z"*') > f(z"). Sup-
pose also that Y inl' and k£ > 0 are such that f(y) = —k. Verify in the
same way that, if k is large enough, f(y="~1) < f(y~™") for all n > 0.)

(5) Choose v € T so that f(y) > K and f(y~!) < —K, in such a way that the
subgroup Ty of T generated by v is infinite cyclic. Deduce from (A) that
there exists an R > 0 with the following property: for all z € T, there exists
n € Z such that |[y™"z — e| < R. Deduce that [T : Tg] < 0.

17. Theorem. For dll integers n > 1, a group which is quasi-isometric to Z"
contains a finite index subgroup isomorphic to 7.

We would be interested in seeing an elementary proof of theorem 17. Lacking
such a thing, we limit ourselves to hinting at a very onerous argument after theorem
19; but first we must broach the notion of the growth rate of a group.

Suppose [ is a group generated by a finite set .S. We define for all whole numbers
N

B(N) = Card{y €T : Is(y) < N}

This function § : N — N is the growth function of T relative to S. If d > 0 is an
integer, we say that [ has polynomial growth of degree d if there exist two constants
Cy and C3 such that C;N? < B(N) < CoN? for all N € N; it is easy to verify that
this property is a quasi-isometry invariant. It follows, for example, that Z™ and
Z™ are not quasi-isometric if m # n.
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18. Example. The Heisenberg group has polynomial growth of degree 4. We
sketch the calculations, using the notation of example 5.

First, one shows by induction on N that, if s (a™b"¢?) < N, then |m| < N, |n| <
N, and |p| < N2. Tt follows that B(N) < (2N + 1)*. Also, utilising bab='a™! = ¢,
and therefore b2a%b=%a~% = cq2, we see that [s(cP) is on the order of | /p; continuing,
for all (m,n,p) € Z3 such that |m| < N , |n| < N, and |p| < N?, the length
lg(a™b™cP) is less than lg(a™) 4+ l5(b") 4+ {s(cP), and also less that a product of N
times a suitable constant. It follows that B(N) < kN* for a suitable constant k.

Therefore, the Heisenberg group is not quasi-isometric to Z” if n < 3 or n > 5.
One can further show that it is not quasi-isometric to Z*. More precisely, to any
finitely generated nilpotent group , one associates a simply connected graded Lie
Group Gr(T') and a “Carnot-Caratheodory” metric d.. on Gr(I') and shows (see
[PA1], [PA2]) that the pair Gr(T), d.. only depends on the quasi-isometry class of
T'. Tt is easy to verify that Gr(T') is R™ if T is Z", and the group of real matrices of
the form

1 v =z
0 1 =z
0 0 1

if T 1s the Heisenberg Group of example 5. In particular, the Heisenberg group
is not quasi-isometric to a finitely generated abelian group.

An important theorem of Gromov’s [GR3] characterizes groups of polynomial
growth:

19. Theorem. A group has polynomial growth rate if and only if it contains a
nilpotent subgroup of finite index.

In particular, a group which is quasi-isometric to Z™ contains a nilpotent sub-
group of finite index. Hence, to prove theorem 17, we need to find a “geometric
invariant” of abelian groups amongst nilpotent groups. This could add elegance to
isoperimetric inequalities, but we will not develop this aspect of the theory here.

Theorems 17 and 19 show that commutativity and nilpotence, properties which
are algebraic, are also geometric properties.

Open Problem. Does a group which is quasi-isometric to a solvable group contain
a solvable finite index subgroup 7 A similar, perhaps easier, problem is the formu-
lation for polycyclic groups. And also for torsion free groups.

In [Gr2] and [Grd], M. Gromov gives other example of algebraic properties which
conceal a geometric aspect.

20. Theorem. Let I'y and 'y be two quasi-isometric torsion free groups. If 'y is
a non-trivial free product of two groups, then so is I'y.

The proof appeals to a famous result of Stallings which says that a torsion free
group is a non-trivial free product if and only if it has an infinite number of ends.
Tt is clear that the number of ends is a quasi-isometry invariant (see proposition
7.17).

Here is an analagous result, which we prove in chapter 7.
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21. Theorem. A group which is quasi-isometric to a free group contains a free
subgroup of finite index.

In anticipation of §4, we also mention a result that appears in [GR4] and [CAZ2].
In the first reference, Gromov cites Mostow, Margulis, and Tukia. In the second,
Cannon cites joint work with Cooper. Look also at the end of chapter 11 of [PA2].

22. Theorem. Let n > 2 be an integer and T' a torsion free group. If T 1is
quasi-isometric to a co-compact discrete subgroup of the lie group O(n,1), then T
1s tsomorphic to a co- compact discrete subgroup.

We could continue with our enumeration of “geometric” properties of finitely
generated groups. We do not know an important property of finitely generated
groups which is not a quasi-isometry invariant. Here are 2 more examples in the
form of exercises.

23. Exercise. Show that a group which is quasi-isometric to a finitely presented
group is finitely presented.

Hint. Let T be generated by a finite set S and let G(T', S) be the corresponding
Cayley Graph. For all real numbers R > 0, we use L(R) to denote the set of nooses
of the type ¢yy¢~!. where ¢ is a path joing the basepoint to a point z € G(T, S)
and v is a loop of length | R based at z. First show that I is finitely presented if
and only if L(R) generates the fundamental group of G(T', S) for large enough R.

24. Exercise. Show that a group which is quasi-isometric to an amenable group
is amenable.

Hint. Let [' and S be as above. The boundary of a finite subset X of " is the
set dg X of points € X such that there exists y € I' — X with dg(z,y) = 1. The
isoperimetric constant of I' is defined by

. Card(0sX) .
hs(T) = mf{CaT(X) : X Cland X ﬁmte}

and we say that T' is amenable if hg(T) = 0. Verify that the vanishing of the isoperi-
metric constant is independent of the choice of S; consequently that amenability is
a quasi-isometry invariant.

In addition to the exercises, use the above definition to show that a group with
polynomial growth is amenable and a free group is not. Finally, we note that there
are a number of other equivalent definitions of amenability; see for example [EYM]
for a general introduction, as well as pages 446-448 in [CO] for the equivalence (due
to Folner) in the case of discrete groups of the above definition to the definition
given using “averaging invariants”.

4 . PRESENTATION OF RESULTS

After we have convinced you that it can be useful to consider finitely generated
groups as metric spaces, we will define hyperbolic groups. We start with several
definitions concerning a metric space (X, d). For the distance between two points
in X, we usually write |z — y| instead of d(z,y).
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25. Definitions. Let zg, z; be two points in X and let a = |zg — 21| be their
distance. A geodesic segment originating at zo and ending at z; is an isometry
g : [0,a] = X such that g(0) = zo and g(a) = ;. We sometimes say that g is
a parametrised geodesic segment and that the image of g is a geometric geodesic
segment (or, abusing terminology, a geodesic segment).

We say that X is a geodesic space if for each pair of points zg, 21 € X, there
is a geodesic segment [0, |z — z1|] = X with endpoints zg, 21 (we don’t demand
that there be only one such segment).

A geodesic triangle with vertices z,y, 2z € X is the union of 3 geodesic segments
joining pairs of vertices. We allow degenerate cases, like for example a triangle
where the points y and z are the same but the segments from z to y and from z to
z are distinct.

26. Examples and Notation. Let T' be a group generated by a finite set .S. The
Cayley Graph G(T', S) defined in §2 is a geodesic space. If T is not freely generated
by S, then G(T',.S) possesses a circuit and therefore contains pairs of points between
which there exist several geodesic segments.

A complete riemannian manifold is a geodesic space (the Hopf-Rinow theorem).
The example of antipodal points on spheres shows that one can have several geo-
desic segments with the same endpoints. Of course, there is the remarkable case
where each pair of points determines a unique geodesic segment (simply connected
manifolds with non-positive curvature).

Although two points zg, z; in a geodesic space do not, in general, determine a
unique segment, it is nevertheless convenient to use [q, 1] to denote a geodesic
segment with endpoints zy and ;.

27. Definition. Given a number § > 0, a geodesic metric space X satisfies the
Rips condition with constant § if, for all geodesic triangles A in X, the distance
between any point on a side of A and the union of the other two sides is less than
6. Formally:

For all A = [z, y] Uy, 2] Ulz, z]
and for all u € [y, z], we have d(u, [z,y] Uz, z]) < §

A geodesic space X is called hyperbolic is there exists a number § > 0 such that
X satisfies the Rips condition with constant 4.
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28. Example: Trees. Suppose T is a simplicial tree given a metric such that
each edge is isometric to the real segment [0, 1] and so that the distance between
2 points is the greatest lower bound of the lengths of paths joing the points. Any
triangle in 7" is degenerate in the sense that each of its edges is contained in the
union of the others. Therefore a tree is hyperbolic since it satisfies definition 27

with § = 0.
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In order for it to enter our general framework, it is important that the notion
of hyperbolicity is a quasi-isometry invariant. Although this is the case, one finds
that the proof of this assertion is not easy; we give it in chapter 5.

29. Theorem. If two geodesic metric spaces are quasi- isometric and one is hy-
perbolic, then so is the other one.

This theorem justifies the following definition.

30. Definition. A finitely generated group T' is hyperbolic if the Cayley Graph
defined by T' and a finite system of generators of I' is hyperbolic.

Theorem 29 also shows that the Cayley Graph G(T, S) is hyperbolic for all finite
systems of generators S if it is for a particular system Sy. It also shows that 2
quasi-isometric groups are either both hyperbolic or neither is. The first examples
of hyperbolic groups are now immediate from looking at numbers 4 (Cayley Graph
of a free group) and 28.

31. Proposition. Any free group is hyperbolic.

Number 27 is one possible definition of hyperbolicity in a metric space, but is
not the definition best adapted to all of our needs. For this reason we give several
equivalent definitions in chapter 2 — we hope these aid the reader in familiarising
herself with this notion. Afterwards, since free groups are not sufficient long term
examples, we dedicate the main part of chapter 3 to the principal source of examples,
which, moreover, suggested the name hyperbolic.

32. Theorem. The fundamental group of a compact riemannian manifold with
negative curvature is hyperbolic.
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A second family of examples, already mentioned in §1, is the subject of the
appendix.

33. Theorem. Suppose I' admits a finite presentation satisfying the small cancel-
lation condition C’(é) or the conditions C"(i) and T(4). The group T is hyperbolic.

We note, in passing, that the two families are essentially disjoint. In fact, the
only groups covered by both Theorem 32 and Theorem 33 are surface groups from
orientable surfaces of genus 2 and non-orientable surfaces of genus 3.

Meanwhile, hyperbolic groups are far more than these two families. We point
out an important example of this fact.

34. Exercise. The free product of hyperbolic groups is hyperbolic.

Hint. We are given numbers d; > 0 and groups I'; generated by finite subsets
S; such that the metric spaces G(T';, S;) satisfy the Rips condition with constant ¢;
(1=1,2). Then S = S;|JSs generates T = T'1 T2, Let A = [z, y] Uy, 2] Uz, 2] be
a geodesic triangle in G(T', S). Using the normal form of elements in a free product,
verify that A decomposes into geodesic triangles, each of which is isometric to a
geodesic triangle in G(T'y, S1) or G(T'2, S2). Deduce that G(T', S) satisfies the Rips

condition with constant § = max{d;,ds}.
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To show the reader the extent of the class covered by his theory, M. Gromov used
a statistic. We consider all presentations of groups with p generators and ¢ relators
which are reduced words in the generators. Given positive numbers nq, ..., ng, we
define N(p,n1,...,n,) to be the number of presentations which have relators of
length nl,... ng respectively, and Nj(p,ni1,...,ng) to be the number of these
which are hyperbolic. The statement below by M. Gromov was not accompanied
by a proof, not even a sketch of a proof, and we hesitate about its status: Theorem
? Conjecture 7 We risk the term below

35. Theorem without proof. Asny,..., n, tend towards infinity, the ratio

Np(p,ni, ..., ng)
N(p,ni, ..., ng)

tends towards 1. This 1s the meaning of “a group taken at random is probably
hyperbolic”.

We have separated the properties we show about hyperbolic groups into 3 cat-
egories. First, in chapter 4, we show the properties which result directly from the
definition, of which these are the main ones:

36. Theorem. Let I' be a hyperbolic group. There exists a finite dimensional
polyhedron P and a simplicial action of I' on P such that

(1) The stabiliser of every simplex is finite.

(2) The quotient of P by T is compact.

(3) P is contractible.
It 1s an impressive consequence that I s finitely presented and has finite dimensional
rational cohomology.

The second category of properties is the subject of chapters 6 through 8. First, we
recall the following construction: Let M be a negatively curved compact n-manifold
and M the universal cover of M. Then there exists a natural compactification of M
in which the M, the complement of M, is formed from “limit points” of geodesics.
The boundary at infinity M is is homeomorphic to a sphere of dimension n — 1
on which the fundamental group of M acts by homeomorphisms, and one studies
71 (M) via this “action at infinity” (see, for example, §8 of [BGS]). Tt is a remarkable
fact that an important part of this step generalises to hyperbolic groups.

37. Theorem. Let ' be a hyperbolic group. There exists a compact metric space
0T, called the boundary of T', on which T' acts by quasi-conformal homeomorphisms
(this term will be defined in chapter 6). Furthermore, this space OT is well-defined
up to quasi-conformal homeomorphism by the quasi-isometry class of I'. When T
is the fundamental group of a negatively curved n-manifold, OT is homeomorphic
to the (n — 1) sphere mentioned above.

The theorem will be stated more precisely in chapter 7. We emphasize that OT
in general does not resemble a sphere: it could be a Cantor set or a much more
complicated compact space which can be thought of as a universal curve. Whatever
it is, in general OT' is used in the same way as when T is the fundamental group
of a negatively curved manifold. We also mention two applications: the first is a
proof of theorem 21; the second occurs in chapter 8 and is stated as follows:
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38. Theorem. Let T be a hyperbolic group. The centraliser in I' of any element of
nfinite order contains a cyclic subgroup of finite index, and any amenable subgroup
of contains a cyclic subgroup of finite index. If, in addition, T' is not amenable,
then ' contains a non-abelian free group.

It is a fundamental property of hyperbolic spaces that they “resemble trees” in
a sense which will be made clear in chapter 2. Indeed, experience shows that it 1s
always advantageous to test the truth of a “hyperbolic statement” or the efficiency
of a “hyperbolic proof” in the particular case of a tree. We hope to show that this
holds for the boundary in chapter 6, devoted to the boundary of a tree.

The third category mentioned after number 35 is broached in chapter 9. It
concerns another generalisation of properties already known for fundamental groups
of negatively curved manifolds (results due to J. Cannon). Putting it loosely (we
will be precise in chapter 9), we show that the elements of a hyperbolic group help
to describe a finite Markov chain. In this introduction, we only cite a consequence
of this “Markov property”:

39. Theorem. Let S be a finite system of generators for a hyperbolic group T.
For all integers n > 0, we use o(n) to denote the number of elements of T satisfying
the equation ls(y) = n. Then the series

()= o(n)t®

n=0

s a rational function in the variable t.

Once the basic techniques are firmly in place, the theory of hyperbolic groups
is remarkably flexible and effective. To display these qualities, we have chosen
to develop the construction done by M.Gromov of an infinite, finitely generated
group, all of whose elements are torsion. This construction was not the first (see,
for example [Gol] and [Gri]), but it has the advantage of being extremely natural.

Before we describe this construction and some examples, we introduce (in chap-
ter 10), a general notion of negatively curved polyhedra. These are polyhedra whose
faces are given negatively curved riemannian metrics, and which satisfy a combina-
torial condition requiring that the “amount of curvature” at every point is negative.
The fundamental group of a finite, negatively curved polyhedron is a hyperbolic
group, from which we get new examples of such groups. Even as the notion of a
manifold generalises to that of an orbifold, we introduce (in chapter 11), a notion
of orbi-space which generalises that of polyhedron. Further, we show that an neg-
atwely curved, compact orbi-space naturally possess a fundamental group which is
a hyperbolic group.

Focusing these tools, we obtain the following result:

40. Theorem. Let M be a compact manifold, or more generally, a negatively
curved, finite polyhedron. The fundamental group of M possesses an infinite quo-
tient all of whose elements are torsion.

It is true that this theorem doesn’t give an example of an infinite, finitely gen-
erated group where the orders of all the elements are bounded (to know that such
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groups exist, see [Adi], [O12], and [Gup]). Meanwhile, we can hope that perfecting
the method of M.Gromov will obtain such groups.

We cite two consequences of theorem 40. First, it permits an answer to a question
posed in [Day], and already implicit in the work of Von Neumann [VNe]

41.Theorem. There exist finitely generated groups which are not amenable and
which don’t contain any free, non-abelian subgroups.

Still, this result was already known [Ol1], but by a more difficult to understand
method. A second consequence of theorem 40 has to do with property T of Kazhdan,
which is (for infinite groups) a much stronger property than non-amenability. All
of the examples known before the theory of hyperbolic groups to have property T
were finitely presented. From now on, we have the following result.

42. Theorem. There are an uncountable number of finitely generated groups
which possess property T. In particular, there exist some which are not finitely
presented.

5. WHAT THESE NoTES DoN’T COVER

M. Gromov’s article is too rich; we had to make choices. To end this overview,
we will rapidly describe three major ideas which we, for lack of time and courage,
have not developed.

The first concerns isoperimetric inequalities. Let T' be a finitely presented group
and let X be a finite polyhedron with fundamental group isomorphic to I'. Let v
be a simplicial loop contained in the one-skeleton of the universal cover X of X;
we use [(y) to denote its length (by which we mean the number of 1-simplices in
it). Since X is simply connected, there is a simplical disk with boundary v. We
use A(y) to denote the minimal area (this means the number of two-simplices) of
such a disk. We say that T satisfies a linear isoperimetric inequality if there exists
a positive constant C such that, for all v, we have A(y) < Cl(%). Tt is not hard to
verify that this property is independent of the choice of X.

43. Theorem. [Gr5] If T is a finitely presented group, the following conditions
are equivalent:

(1) T is a hyperbolic group.

(2) T satisfies a linear isoperimetric inequality.

The implication (1)=(2) follows from arguments similar to those of chapter 4.
M. Gromov shows the converse (a very delicate argument) by using Riemann’s uni-
formisation theorem and analytic techniques borrowed from the theory of minimal
surfaces. An appendix of [GeS] gives a completely elementary proof of this result
which doesn’t use “analysis”. We have also received the notes of B. Bowditch on
this subject.

A second point that we would have liked to cover is the construction of geodesic
flows in a hyperbolic group. Suppose V is a compact manifold with a negatively
curved riemannian metric g. We see ([Grl]) that the geodesic flow of (V,g), acting
on the unit tangent bundle 71 (V) of V, only depends on the fundamental group
of V. More precisely, let (V' g') be another compact, negatively curved manifold
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and let ¢ be an isomorphism between the fundamental groups of V and V’. Then,
there is a homeomorphism A(¢) between T1(V) and Ti (V') sending the orbits of
the geodesic flow of V' to those of the geodesic flow of V/. Of course, h(¢) does not
conjugate the flows because the lengths of periodic geodesics in V' and V' may be
different.

M. Gromov proposes a construction of the geodesic flow starting from the fun-
damental groups. Let T' be any hyperbolic group (T' doesn’t have to be the fun-
damental group of a negatively curved manifold). M. Gromov constructs ([Gr5],
section 8.3), a space T1(T) , well defined up to homeomorphism, and a “geodesic
flow” on T3 (T'). This flow is only defined up to topological equivalence (this means
up to homeomorphisms preserving the orbits). In this way, a hyperbolic group is
attached to a dynamical system. This dynamical system satisfies all the properties
of geodesic flows on negatively curved manifolds: hyperbolic topology, stable and
unstable leaves, etc. In this way, the theory of hyperbolic groups linked to that of
Anosov-Smale...

Finally, we regret that these notes have not described a magnificent construction
of M. Gromov which lets us obtain numerous examples. Given any polyhedron, he
gives a procedure to change the topology and associate a new, negatively curved
polyhedron to it. If the original polyhedron was a manifold, the new polyhedron
is also a manifold, naturally cobordant to the original. Since it follows from the
ideas in chapter 10 that a negatively curved polyhedron is an Eilenberg-MacLane
Space, we obtain new examples of compact manifolds which are Eilenberg-MacLane
spaces. By way of example, we cite two results of M. Gromov.

44. Theorem. [Grj] All compact manifolds are cobordant to a manifold which is
an Eilenberg-MacLane Space.

45. Theorem. [Grji] If two manifolds are FEilenberg-MacLane spaces and are
cobordant, then they are cobordant by a space which is also an FEilenberg-MacLane
space.

The interested reader can find a description of these constructions, as well as
some interesting developments in [DalJ].

Translated by WILLIAM GROSSO

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY,
CA 94720
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ABSTRACT. The first section contains a definition of hyperbolic spaces and indicates
an important way that such a space resembles a tree (tangent subcone at infinity,
proposition 11). The second section treats approximating trees to a hyperbolic space
(theorem 12). The third is dedicated to several other equivalent definitions of hy-
perbolicity valid for geodesic metric spaces (subtleties of triangles); in particular, we
will show in corollary 22, that the Poincare disk is hyperbolic ().

1. A DEFINITION OF HYPERBOLICITY

Let X be a metric space. We denote the distance between two points y,z € X
by d(y, z) or |y — z|.

1. Definitions. Given a base point z € X, the Gromov Product of two points
y,z € X 1s
1
Wlz)e = 5 lly — 2| + |z = 2| = e —y[}
We also write (y|z) when there is no ambiguity about the base point. The triangle
inequality shows that

0 < (y]2)s < min{ly — 2|, |z — 2|}

For example, if z, y, and z are colinear, then (y|z); is 0 if z is between y and z
(this means |y — z| = |y — z|+ |z — z|) and (y|z); = min{|y — z|, |z — z|} otherwise.

To explain the geometric significance of the Gromov Product, we introduce the
notion of a metric tree. Let T be a tree, by which we mean a connected graph
without cycles, and let |T'| be its geometric realisation. Choose a real number
l(a) > 0 for each edge a of |T'|. Then, there exists a unique metric on |7 (up to
isometry) which is maximal with respect to the following property:

The edge a is isometric to the interval [0,!(a)] of R.

The space |T'|, with this metric, is called a “metric tree”.

We call a metric tree made up of three edges beginning at a common vertex a
tripod. A tripod is characterised up to isometry by the length of its edges; we allow
the degenerate case where some of the lengths can be zero.

1991 Mathematics Subject Classification. Primary 20F05, 20F14.
Key words and phrases. Hyperbolic Groups.

Typeset by ApS-TEX
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2. Proposition. Let z, y, z be three points in a metric space. There exists a
tripod T and an isometry [ : {z,y,z} — T with image the three endpoints of T.
Furthermore, (y|z); is the length of the edge of T which ends in the image of x.

f(2)

f(y)

The proof is clear. This proposition shows that the metric relationship between
three points in any metric space is the same as in a tree. For four points, on the
other hand, one can use the following definition, which Gromov has shown is very
interesting.

3. Definition. Let § be a non-negative real number. We say a metric space X is
d-hyperbolic if

(z]2)w 2 min{(2|y)w, (Y|2)w} —d
for all w,z,y, z € X. We say that X is hyperbolic if the value of § is irrelevant (the
equivalence between this definition and that of chapter 1 is shown in proposition

21).

4. Reformulation. Let § > 0 and w,z,y,z € X. We replace the three Gromov
products in the previous inequality with their values. We obtain the equivalent
inequality:

|z — 2| + |y — w| < max{[z — y| + |z — w|, [z — w|+ [z - y[} + 20

We can think of w, z, y, and z as four vertices which define 6 distances among
themselves. There are 3 ways to group these points into two pairs and three sums
of two distances.

r=le—wl+]z—y
L= o=yl +]z ]
j=lo—zl+ly—ul
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4

If the notation is such that r <! < j (the reader can think of “regular”, “large”
and “jumbo”), a §-hyperbolic space is characterised by j <+ 24; this means that
“the longest distance does not exceed the median by more than 2§”.

5. Examples.

(1) The most important example is given by metric trees, which are 0-hyperbolic.
It is obvious that the quadrilateral structures of these spaces are of the fol-

lowing type :
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(Tt is understood that some edges might be degenerate). We note that
all subspaces of a §-hyperbolic space are also J-hyperbolic. Thus, all free
groups are 0-hyperbolic for the word metric defined on a free system of
generators.

(2) Tt is clear that any metric space with diameter § < oo is §-hyperbolic. In
what follows, we will not be interested in any examples of this type.

(3) Suppose X and Y are two geodesic metric spaces (definition 1.25). We
suppose that there is a quasi-isometry X — Y and that Y is hyperbolic.
Then X is hyperbolic (chapter 5).

(4) Suppose X is a compact negatively curved Riemannian manifold, X is its
universal cover, [' its fundamental group, and S a finite set of generators
for T. Then X and T' are hyperbolic for the canonical Riemannian metric
and for the word metric respectively (see chapter 3). One can generalise
these examples to the case where X 1s a polyhedron or even an orbi-space
(see chapter 11).

(5) Suppose T is a small cancellation group satifying the conditions C’(1/6) and
given the word metric. Then T is hyperbolic (see the appendix).

(6) On the other hand, Euclidean space R? is not hyperbolic. More generally,
if X i1s a metric space which admits a self-similarity with ratio A > 1 and
contains 4 points w, x, y, and z with:

(#]2)w < min{(2]y)w, (y|2)w}
then X is not hyperbolic.

Example 5 admits a partial converse. We first state it in a simple case.

6. Proposition. Suppose F is a finite 0-hyperbolic metric space. Then there is
an tmmersion of F' into a metric tree.

Proof. Let w be a base point in F'. For all z € F, we write |z| for |z —w|. We denote
the disjoint union of real segments [0, |z|] for x € F —w by T. Given t € [0, |z|]
and ' € [0, |2'|], we set

t~t it =t < (2|2 )w

This defines an equivalence relation; in fact, if ¢ ~ ¢/ ~ ¢ then
L= 17 < min{ (el ), (2120} < (2]}

in view of the hyperbolicity of F'. Let T" be the quotient of T by this relation. The
map T' x T defined by

(t, 1) =t + ¢ —2min{t, ', (z|z)w}

(where t € [0, ]z|] and ¢ € [0,]z’|]]) induces a metric on 7" which makes it into a
metric tree. The desired immersion sends z € F' to the class in T of |z| € [0, |z]] C
T. O

It is clear that this proof only used the finitude of F' to guarantee that the space
T, the quotient of T, is a metric tree.
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7. Definition. A metric space T is a real tree if it meets the two conditions
below:

(1) Any two distinct points are the endpoints of a geodesic segment.
(2) If two segments have exactly one endpoint in common,then their union is a
geodesic segment.

Here 1s a simple example of a real tree which is not a metric tree. Let the metric
d on R? be defined in the following way:

d((z1,31), (v2,92)) = 1 — 12| if &1 =29
= ||+ |21 — 22| + |y2|  ifry # 22

One can consult [Sha] for a study of real trees.

We return to proposition 6; it is not difficult to assure oneself that the class of
real trees is suited to a complete converse of example 5 (i). We give it below as an
exercise.

8. Exercise. Show that a metric space is 0-hyperbolic if and only if it is isometric
to a subset of a real tree. Show that a geodesic metric space i1s 0-hyperbolic if and
only if it 1s a real tree.
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In the rest of these notes, we do not use the theory of real trees. In fact, we have
to content ourselves with defining a real tree as a geodesic 0-hyperbolic space (see

theorem 3.17 of [AIB]).

9. Definition. Let X be a metric space. We say that a metric space T is a tangent
sub-cone of X at infinity if it is a geodesic space and if the following condition is
satisfied:

For all finite subsets {t1,..., 24} of T', there exists an infinite sequence (¢,)n>1 of
positive numbers tending towards zero and k infinite sequences (‘J}iyn)n21 of points
in X with i = 1,..., k% such that

€nllzi,ﬂ - 'rj,nl _

lim =1 ij=1,...,k

n—eo |ty — 1

10. Examples.

(1) A segment is a tangent sub-cone at infinity of R.

(2) Let D? be the Poincare disk of constant curvature -1. Let k be a whole
number and T a star-shaped tree made of k£ segments (of arbitrary lengths)
having a point #g in common. Then T is a tangent sub-cone at infinity for
D?. (if, for example, the set is made from ¢y and ! < k points which are the
same distance from ¢g, consider, in D?, a point g and { sequences of points
(:L‘Z'yn)n21, where z1 ,,..., %, are the vertices of a regular polygon in D?
centered at zg and with n sides.).

(3) If X has finite diameter, any tangent subcone at infinity is a point.

11. Proposition. Let X be a metric space. If X is hyperbolic, any tangent sub-
cone at infinity is a real tree.

Proof. Let T be a tangent sub-cone at infinity. Since T is, by definition, geodesic,
exercise 8 implies that it suffices to show that 7" is 0-hyperbolic.

Let to, t1,t2,t3 € T. Suppose (€p)n>1 and (25 ,)n>1 are as in definition 9. with
j=0,1,2,3. Since X is hyperbolic, there is a § > 0 such that

(Z1,n]%3n) 20, > Min{(21,0|T2.n)z0 s (T20]T30)e0, } — 0

nlTin—Tinl _

for all n» > 1. Since lim, T = 1, we therefore have
i—lj

(t1lts)t, > min{(1]t2)eo, (t2[ts)t,}

d
This proposition shows that “at oo, X looks like a tree”. M. Gromov has also
stated the reciprocal of proposition 11, and F. Paulin has sent us a proof.
2. APPROXIMATING TREES

Proposition 6 showed that a finite 0-hyperbolic space is (isometric to) a subset
of a tree. If F'is a finite §-hyperbolic space with § > 0, the same assertion is almost
true, up to a constant that depends on ¢ and the logarithm of the cardinality
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|F| of F. The theorem below state this assertion precisely and also gives us a
generalisation. The proof of this theorem constitutes this section. We define a
subray with origin z in a metric space Y to be a subspace X C Y containing « such
that there is an isometric immersion (X, z) — (R, 0).

In this section, we are given a constant § > 0. If z is a point in a metric space
with a base point w, we define |z| = |z — w]|.

12. Theorem. Let F be a d-hyperbolic metric space with base point w and let k
be a positive integer.

(1) If |F| < 2% +2, there is a pointed finite metric tree T and a map ® : F — T
such that

A) ® preserves distance to the base point:
|®(z)| = |z| for every z € F
B)ly— x| — 2ké < |®(y) — ()| < |y — z| for all z,y € F.

(2) Suppose there erxist subrays F;, originating at w; in F, withi = 1,...,n
and n < 2%, such that F = |J;_," Fi. We define ¢ = max;=1"|w;|. Then
there is a pointed real tree T and a map ® : F — T with property (A) above
as well as:

Blly—z|—2(k+1)d —c < |®(y) — ®(z)| < |y — z|for allz,y € F

13. Remarks.

(1) If |F| = 3, the theorem follows from proposition 3 and doesn’t use the
hypothesis of hyperbolicity. If |F| = 4, the theorem is essentially a repetition
of the definition of hyperbolicity.

(2) If two points z and y are collinear with the base point and if z is between
w and y (i.e. if |y| = |z| + |y — z|), then ®(z) and ®(y) are collinear with
the base point of 7" and ®(z) is between ®(w) and ®(y). This follows easily
from properties (1) and (2).

(3) As we have already mentioned, we don’t utilise the theory of real trees. The
only property of the space T' that we use in point (2) is that it is geodesic
and 0-hyperbolic. Every finite subtree of T' is contained in a metric tree.

(4) In statement (2) of the theorem, F' is not necessarily finite. Nevertheless,
suppose F' = w, z1, ..., z, is a finite d-hyperbolic space, with |[F|=n+1 <
2% + 1. Theorem 12.2 implies a statement essentially equivalent to theorem
12.1. Below, we give a proof of theorem 12.2, and let the reader fiddle with
the proof of theorem 12.1.

The proof of the theorem is preceded by two lemmas, in which we use the same
notation.

14.i. Lemma (short version). We suppose that |F| < 28 4+ 2. Let L be a whole
number and z1, . ..,z be a sequence of points of F' (repetitions are allowed). Then

(m1le2) > ming<ies (3i-al) - k2
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(note that the term k depends on the cardinality of F and not on L).
Proof. If there exists an index j such that z; = w (the base point of F), then

(zj]z;+1) = 0 and there is nothing to show. From now on, we suppose z; # w for
jed{l,..., L} and that L > 4.

We first suppose L < 2¥ + 1. The proof is by induction on k. We set K = [%],
s02< K <24 1land 2< L— K+ 1 <21 4 1. By the induction hypothesis:
(z1lzx) > minagj<x (zj-1]z;) — (k —1)é
(zr|er) > ming << (zjafz;) — (k= 1)8

Continuing
(z1ler) = min{(21]zk), (¢x|wL)} — 6 > minggjcr(wj—1le;) — ké
Now suppose L > 2k + 1. Then there exist p,q € {1,...,L} with z, = z, and

Ti,...,Tp,Tgt1,...,xr of length at most 28 + 1 (if ¢ = L, we replace Tp, Tgp1 DY
zp_1, 1). The preceding argument permits the conclusion. O

14.ii. Lemma (extended dance remix). The hypothesis on F are the same as
in statement (2) of theorem 12. Let L be a whole number and 1, ...,z a sequence
of points in F'. Then

(l‘1|1‘L) > Hliﬂ2gigL(éL‘i—1|l‘i) — (k + 1)(5 — 2¢

Proof. Suppose z,y € Fandi € {1,...,n}. On the one hand, (z|y) < min{|z|, |y|}
by the triangle inequality, on the other hand

(@|Y)w; — ¢ < (2]y) < (#|Y)w; + ¢
In particular, let p,g € {1,..., L} and i € {1,... ,n} with p < ¢ and z,, 2z, € F;.
Then (zp|2q)w; < min{|z, — w;|, |24 — w;|} and

(zp|zq) > min{|z,|, |4} — 2¢
(*) > min{(zp| Xp41), (24-11X¢)} — 2¢

> minyt1<;<qf(2j-11X;)} — 2¢

Furthermore, we can choose p and ¢ so that z, and z, are the only points in the
sequence Zi,...,%p, xq,...,xr which are in F;.

We apply the preceding argument several times, as follows. First, if there is
J > 1 with 2, and z; in the same F;, we consider the largest such j and replace the

sequence x1,...,xr by x1,z;,...,2r; if there is no such j, we don’t do anything.
Next, we do the same thing with the second term of the new sequence. And so on.
In the end, we obtain a sub-sequence y1 = z1,¥s, ...,y = xg with the following

two properties. For each ¢, there is at most two y; in F;. And, if there are two,
they are consecutive: y;,y;41 € F;. In particular, M < 2n.
The argument in the short version of the lemma shows that

(z1ler) > minagj<nr(yj-1ly;) — (k= 1)8
It follows from (*) that
(o1]e2) > minaggar(es-1les) — (k= 1)6 — 2

whence the lemma. O
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15. Lemma. We define two maps of F x F wnto R, by
(z]y)" = sup {mina<;<r(zj-1|2;)}
with the supremum taken over all chains © = xq,... , 0, =y
|z —yl" = [x] + [y] = 2(x]y)’
and we set §' = (k+ 1)6 — 2c. Then
(1) (z,y) = | — y|'is a psuedo-metric on F.
(2) lz—y| =20 < |z —y|' <|z—y| forallz,ye F.
(3) |z|" = |z| for all x € F (with |z|' = |z — w|', where w is the base point of
(4) The psuedo metric is 0-hyperbolic:
(z|z) > min{(z|y)’, (y|z)'} for all z,y,z € F.

(Note that we do not exclude the possibility of two distinct points x,y € F with
lz—y|'=0.)
Proof.

(1) We need to verify the triangle inequality. Let z,y, z be three points in F.
The definition of the psuedometric implies that |z — z|' < |z — y| + |y — 2|’
if and only if

(zly)" + (yl2)" < Iyl + (2]2)
We assume, WLOG, that (z]y)’ < (y]z)".
Let € > 0. We choose sequences © = uj,us,...,ur;, = y and y =
vg, V1, ...,V = 2z with

(zly)" < minagjcr(uj1u;) + ¢

(yl2)" < min<jenr(vi-1]v;) + ¢

We use z1,...,zr4+m to denote the sequence from z to z obtained by con-
catenating the two chosen sequences. Then

(z]2)" > minagj<rim(zi-1lz;) > min{(z]y)’, (y|2)'} — e
Since we can do this for any ¢ > 0, we have
(**) (z]2)" > min{(z]y)’, (yl2)'} = (z]y)’
On the other hand,
lyl > (ylv1) = (volv1) > (yl2) — €

for all € > 0, hence |y| > (y|z). This last inequality, along with (**), implies
(*).

(2) Let z,y € F. We have (z|y)' > (z]y), hence |z —y|' < |z — y|. In view of
lemma 14, we also have (z|y) > (z|y)’ — (k + 1)d — 2¢, hence

|z =yl > [a]+ |yl + 2(z|y) — 2(k + 1)6 —dc = |z —y| —2(k + 1)d — 4c

(3) For each z € F, we have (z|w) = 0, hence also (z|w)’ = 0 and therefore
2] = |=|"
(4) Follows from the proof of (1).
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d
Proof of 12.2. Let F' be the quotient of F' by the equivalence relation

r~yif|le—y| =0

Then | - | defines a distance on F’. Let T be the real tree associated to F’ as in
proposition 6. The composition ® of the natural maps F — F’ and F' — 7" has
the desired properties. O

3. DEFINITIONS IN TERMS OF TRIANGLES

Let zg, X1 be two points in a metric space X at a distance d from each other. If
there exists a geodesic segment g : [0,d] = X from zq to z; (definition 1.25), recall
that we often denote the image of g by [zo, z1]. This is abuse of notation, inasmuch
as ¢ i1s not, in general, uniquely defined by zy and z;, but it is nonetheless very
useful.

16. Definition Let A = [z, y] [y, z] U[#, #] be a geodesic triangle in a metric
space X. Let Ta be the tripod and fa the isometry from proposition 2. Then fa
admits a unique extension (also denoted fa) to A which, restricted to each edge of
A, is an isometry. Given a real number § > 0, we say that the triangle A is J-thin
if ju—v| < § for all u,v € A with fa(u) = fa(v) (an equivalent condition is that
|lu —v| < |fa(u) — fa(v)|+ 0 for all u,v € A).

17. Lemma. Let A = [z,y]U[y, 2] Uz, 2] be a geodesic triangle in a metric space
X; we use d(,) to denote the distance in X.

(1) We have (y|z); < d(z,[y,z])

(2) If, furthermore, A\ is 6-thin, then d(z,[y,z]) < (y|2)z + 6

Proof. We use p € [y, z], q € [z,2], and r € [z,y] to denote the three points in A
mapped by fa to the center of the tripod. We have |¢ — 2| = |r — 2| = (y|z)s. We
now show (1).
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Take w € [y, 2] with |w — z| = d(=z, [y, z]). There is a point v’ € [z, y] U]z, 2]
which has the same image as w under fo. WLOG, we assume w’ € [z,z]. Then

W2)e < Jw' =2 = |z — 2] = |z — w| < |z — w] = d(, [y, 2])

Under the hypothesis of (2), we also have

d(z,[y,z]) < d(z,q) +d(p,q) < (y]2)e + 9

18. Definitions. Let A and fa be as in definition 16. The inscribed triple of A
is the preimage of the center of the tripod and the insize of A is the diameter of
the inscribed triple.

The minsize of A is the minimum of the diameters of set {u, v, w} with u € [y, 2],
v € [z,2z], and w € [z, y].

19. Remarks.

(1) Let X be a simply connected surface given a complete riemannian structure
with constant non-positive curvature, and let A be a geodesic triangle in
X. The points of the inscribed triple are the tangent points of A with and
inscribed circle; the insize of A is less than the diameter of this circle.

(2) Let X,Y be two metric spaces and let g : X — Y be a map which takes
geodesics to geodesics. Suppose that g is a contraction (|g(z) — g(z')| <
|z — 2’| for all z,2" € X). If A is a geodesic triangle in X, the minsize of
g(A) is less than the minsize of A. Tt follows from the lemma below that
the insize of g(A) is less than 4 times the insize of A.

20. Lemma. Let A = [z1,22) U[z2, 23] U3, 1] be a geodesic with minsize § and
insize 8'. Then § < §' < 44.

Proof. The inequality § < ¢’ follows from the definitions; it remains to show that
0" < 44.
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Suppose p1 € [x2, 23], p» € [z3,z1], and ps € [zl z5] are the points of the
inscribed triple of A. Let ¢1 € [z2, 23], ¢2 € [23, 21], and ¢3 € [x] 23] be the points
such that 6 = diam{q1, g2, q3}.

Let (7, j, k) be a permutation of (1,2,3). We set

a; = |e; — xj] bik = |pi — 2| ik = |gi — zi
Then )
big =bjr= i(ai +a; — ag)

bij+bik=cijeik=ai

by definition. We have |¢; — ¢;| < J, whence, by the triangle inequality applied to
{41,92, 93}, we have |¢;  — ¢; 1| < J. We therefore get, in succession,

20ip=ai+a;—ar=cij+cipg+bii+bjr—cri—crj
(*) Cijtciktbei—bix—cri—cp;=0

leik = bik — ki + bril = leij —er [ <6
From now on, we assume that (7, j, k) is a circular permutation of (1, 2, 3) and define
di = cij — bij = —(cij — bik)

On one hand, |d;| = |p; —¢i|- On the other hand, the inequality (*) (and the related
inequalities obtained via circular permutations of (i, j, k)) can be written

| —d; —di| <6
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| —d;j —di] <6

| —dy—dj| <6
In this way,

1 3
il = 5ldi +dj + di + di — dj — dp| < 50
Thus, one finally has

lp; —pel < Ipj — a5l + 195 — qr| + |lgx — p| < 40

This says that §' < 46. O

21. Proposition. Let X be a geodesic metric space. We consider the properties
below on X, where § is a positive real number.

(P1,0) The space X is §-hyperbolic (definition 3).

(P2,0) All geodesic triangles in X are §-thin.

(Ps3,d) The space X satisfies the Rips condition with constant § (definition 1.25) :
For every geodesic triangle A = [z, y|Uly, 2] Ulz, ] C X, and for all u € [z, y], we
have d(u, [y, z] [z, z]) < 4.

(P4,0) Every geodesic triangle in X has insize less than 4.

(Ps,0) Every geodesic triangle in X has minsize less than 6. Then, except for a
slight change in constants, the properties (P1,8) to (Ps,d) are equivalent. More
precisely, for all i,j € {1,...,5}, there is a constant ¢; ; with 1 < ¢; ; < 4 such
that the following assertion is true:

Let 6,0' > 0 be given with &' = ¢; ;j6; If X satisfies

(Pi,d), then X also satifies (P;,0).

Proof. The implications (Py,d) = (P3,d) and (P3,d) = (P4,d) = (P5,d) are obvi-
ous; the implication (Ps,d) = (P4,40d) follows from lemma 20. We show the follow-
ing: (Pl,é) = (P2,46) (PQ,(S) = (P1,26)

(Pg,é) = (P2,46) (P4,(5) = (P2,26)

Proof of. (P1,d) = (P2,4d). Let A = [z, y] Uly, 2] U[#, z] be a geodesic triangle in
X and f: A — T the map from definition 16. Suppose u,v € A with u # v and
f(u) = f(v). We must show |u —v| < 44.
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Z

WLOG, u € [z,y] and v € [z, 2]. if t = |z — u], we have

i
|f(z) = fu)] = |f(z) = f(v)| =t < (y]2)s
(uly)e = (v]y)s =t s0

(u|v)y > min{(v|y)z, (Y|2)s, (z|v)s} —20 =1 —26

But (u|v), =t — $|u—v|, and therefore

|lu—v| <2t—2(t—20) =46

Proof of (P,0) = (P1,2J). We consider 4 points zg, 21, 3, z3 € X and six geodesic
segments connecting them two by two.
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The Gromov Products are taken relative to zg. We define t = min{(z1|z3), (z2]z3)}
and we must show that (z1]|z2) >t — 26.

Furthermore, we may assume that ¢ > (z1]|z3) as without this there is nothing
to show.
For j € {1,2,3}, we denote the point on [z, 2;] with distance ¢ from zo by x;».
For j € {1,2}, we denote the map of definition 16 on the triangle [zq, 2;] U[z;, 23] U[21, z0]
by foj3. We have |:L‘3 —zo| = |z — 0| < (zj|zs) and hence fojg(x}) = foja(zs) and
|zj — z3| < 4. Tt follows that |z} — x5 < 26.

Since ¢t > (z1]z2), there is a point y; € [z1, 2] with fmz(x}) = fo12(y;); this
implies |z} — y;| < 6. We have

20 > &) — wy] > |y —yal — 26 = |21 — 2| — |21 — 1| — |w2 — ya| — 26
= &1 — xa| — (|1 — ®o| — |2} — ®o) — (|22 — ®o| — |2y — ®o) — 20
=2t — 2(331|l‘2) — 29

and therefore (zq1|z2) >t —24. O

Proof of (P3,d) = (P2,46). Suppose the implication is false.
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4

y

Then there is a geodesic triangle A = [z, y] Uy, 2] Uz, 2] in X and points u €
[z,y], v € [z, 2] with
lu—z|=|v—z|=t < (y|2)s
|lu —v| > 44
But

d(v’ [z, y]) = min{d(v, [z, u]), d(v: [u, y])}
> min{(z|u)y, (u|y)v}

by lemma 17, and

2(x|u)y = |u—v|
2(uly)y = lu—v|+ |y = v = (Jz =yl = [z — u])
B T RN ) S

hence .
(v, [2.3]) > 5lu— o] > 2

In particular, |v — 2| > 26 and there exists p € [z, v] with |[p — v| = §. We have
d(p,[2,9]) > d(v, [, 9]) = [v—p| > ¢

d(p, [y, 2]) > d(z,[y, 2]) = |z — p| > (y|2)z — |z — p|
>t—|z—pl=lv—z|-|r-p|l=|p—v|=4¢

Therefore d(p, [z, y] Uly, z]) > J, which contradicts the hypothesis. O
Proof of (P4,d) = (Pg,26).
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WLOG, § > 0. Let A = [z,y] U[y, 2] U[z, z] be a geodesic triangle in X. We use
pr € [z,y] and qr € [z, 2] to denote the points mapped by fa to the center of the
tripod and set t; = |pr — z| = g1 — 2| = (¥]2)s-

X%Q_//

pl y
For every number s € [0,¢;], we denote the point in [z, y] with distance s from
z by ps and denote the point in [z, 2] with distance s from z by ¢;. We must show
that |gs — ps| < 24.
Step One. We use induction to define a sequence of points (p;)i>1 in [z, pr] and
a sequence of points (¢;)i>1 in [z,¢;]. First, set p1 = py and ¢; = ¢7. Next, if
p; and ¢; are already defined, we consider the canonical map f; frmo the triangle
[z, pi] U[ps, ¢i] Ulgi, 2] to the corresponding tripod T;. Then p;11 € [z,p;] and
qi+1 € [, q;] are the points mapped by f; to the center of T;. For each i > 1, we
have |p; — ¢;| < & by hypothesis, hence

y4

*) |pi —piva1|+19i — dig1|l = Ipi — ;| <6

Since |z — pit1] = |2 — qi1] < |2 — pi| = |2 — ¢;], the p;’s have a limit p, € [z, p1]
and the ¢;’s have a limit ¢oo € [2,q7]. We set ' = |2 — pso| and observe that
Poo = Goo- Let s € [th,tr]. There is i > 1 with |p; — ps| = |¢: — ¢s] < %(5 by (*). If
t} <4, there is nothing more to show.

Step Two. If t7 > §, we define ¢ty = th — 2 and use prr € [z, pr], qr1 € [2q,]
to denote the points Wlth distance ty; from z. The preceding argument produces
sequences (pi)i>1( 2) and (ql)l>1( 2) which convergely, respectively, to poo(2) = o0 (2)
with distance Z’H from z and, in this way, we show that |p; — ¢s| < 2§ for all
ENS [tlII’tII]'

In this way, in a finite number of steps (less than %t;—l—l), we show that |p; —q;| <
26 for all s € [0,¢7]. O

22. Corollary and Example. The Poincare Disk D? is a hyperbolic space.

Proof. Let § be a disk in D? with area . The Gauss-Bonnet formula shows that
the area of any geodesic triangle A in D? is less than 7. Tt follows that the diameter
of an inscribed circle is less than d, and therefore, that A is d-thin. O
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23. Exercise. Show that every triangle in D? is -thin with § = log(3).

We end this chapter by examining the relationship between hyperbolicity and
convexity.

24. Definition. Let X be a geodesic metric space. We consider a number § > 0
and a geodesic segment g : [0,d] — X with origin 2y and endpoint 1. The natural
parametrisation of this segment is the map ¢ + z; from [0, 1] into the image of g
defined by |z: — zo| = |z — 20| for all ¢ € [0, 1].

Given a real number § > 0, we say that X is -convex if

|zt — | < (1 —=1)|z0 — wol +t|z1 —y1| + 9
for every pair [zg,z1] and [yo,y1] of naturally parametrised geodesic segments in

X.

A 0-convex space is called convezr. A complete, non-positively curved riemannian
manifold is convex (see theorem 1.3 of [BGS]).

25. Proposition. A geodesic space with §-thin triangles is 20-convexr.

Proof. Let [zg,z1] and [yo, y1] be two naturally paramtrised geodesic segments in
X.

Special Case. Suppose g = yo. Let T be the tripod and f : [z, 1] U[yo, 1] = T
as in definition 16. Since T' is convex, we have

lze — ye| < |f(@e) = flye)| +0 <t f(z1) = Flyn)| +6 =tlzr —ya| + 6

General Case. Let t — 2z be the naturally parametrised geodesic segment such
that zg = xg and z; = y;. Then

lze — ye| < et — 2|+ |20 — yel <tler —ya| + 6+ (1 = d)|xo —yo| +6

in view of the special case. O

The converse of this proposition is not true! For example, the Euclidean plane
1s convex and not hyperbolic.

Translated by WILLIAM GROSSO

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY,
CA 94720



NEGATIVELY CURVED SPACES AND
HYPERBOLIC GROUPS (CHAPTER 3)

M. TrROYANOV

ABSTRACT. We have seen in 2.22 that the Poincare disk is a hyperbolic space in
the sense of Gromov. Using classical comparison techniques (reviewed in §1) we
generalise this result to manifolds with negative curvature; more precisely, we show
that all complete, simply connected riemannian manifolds with curvature less than
a number k£ < O are hyperbolic. In §3, we show that the fundamental group of a
compact riemannian manifold M is quasi-isometric to the universal cover M. We
deduce (thanks to the invariance of hyperbolicity under quasi-isometry established
in chapter 5) that the fundamental group of a compact negatively curved riemannian
manifold is a hyperbolic group (theorem 24). The last section of this chapter presents
several ways to define “convexity”

1. COMPARISON OF (GEOMETRIES

In this section, we discuss the method of “comparison of geometries” due essen-
tially to A.D. Aleksandrov (cf [Ale], [ABN]).

We denote the usual plane with constant curvature £ < 0 by Hg. When k& = 0,
this 1s the Euclidean plane and a homothety of the Poincare disk when & < 0. We
simply use H for the plane H_1.

Let X be a geodesic space and let A = [w, z]U[z, y]U[y, w] be a geodesic triangle
in X (definition 1.25). We say that a triangle A* = [w*, 2*] U [2*,y*] U [y*, w*] in
Hy is a comparison triangle for A if

27 —w' = |z —w| |y" 27| =

ly—=z| |w* =y =|w-y

It is easy to see that a comparison triangle always exists and it is unique up to
an isometry of Hg. It is convenient to introduce the comparison map between a
triangle A of X and a comparison triangle A* of Hp; it is the map f : A — A*
such that f(w) = w*, f(y) = y*, f(z) = z*, and f, restricted to each edge of A | is
an isometry. If z € A, we often denote f(z) € A* by z* and name this the “point
corresponding” to z.

Following Aleksandrov, we also introduce the notion of comparison angles. Sup-
pose g : [0,a] - X and h : [0,b] — X are two geodesic segments parametrised by
arc length and beginning at some point w € X. For all s,¢ such that 0 < s < a
and 0 < ¢ < b, we choose a segment [g(s), h(¢)] and we denote the triangle
9([0,s]) U [g(s), h(t)] U f([0,%]) by A(s,t). We use a*; (s, t) (or, more simply,
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a(s,t) if g, h, and k are fixed) to denote the angle at w* of a comparison triangle
A* C Hy, of A(s,t). We call o ,(s,t) the comparison angle of the segments g and
H (note that this “angle” is a function of 2 variables, and this function is constant
in the special case when X = Hj). We observe that this definition is independent
of the choice of segment [¢(s), h(2)].

We define three criteria for comparing the geometry of a geodesic space X and
that of Hy

1. Condition C. We say that X satisfies the condition (Cy) if, for every triangle
A = [w,z]U[z,y] U [y, w] of X and every point z € [z, y], we have

|z —w[ <27 — ¥

where A* C Hj is a comparison triangle for /A and z* is the point of A* corre-
sponding to z.

X

2. Condition A. The space X meets the criterion (Ax) if ¥ 1 (s,) is a monotone
non-decreasing function of its arguments s,¢ for all geodesic segments g : [0, a] —
X, h:]0,b] - X beginning from the same point w € X.

3. Condition T. We say that X satisfies condition (7}) if, for every triangle
A = [w,z]U[z,y] U [y, w] of X and all points p € [w, z],q € [w, y] we have

lp—ql <|p" —q"

where A* C Hj is a comparison triangle and p*,¢* are the points of A* corre-
sponding to p, q
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*

X

w

4. Theorem. Let X be a geodesic space and k < 0. The conditions (Cy), (Ag)
and (Ty) are equivalent.

5. Definition. We say that X is C' AT} if the criteria (C), (Ax) and (T%) are sat-
isfied. (C'AT can be read as “criteria of Camparison of Aleksandrov-Topoganov”).

6. Example. If X is a metric tree, then X satisfies C ATy for all k.

We sometimes says that X has curvature bounded by k if every point in X
possesses a convex neighborhood satifying C'AT.

7. Proposition. Suppose X is a geodesic space which is C ATy for a fixred k < 0.
ThenX is hyperbolic.

Proof. We know that there exists a § > 0 such that all the triangles in Hj are
d — thin (corollary 2.22). Tt follows immediately from condition (7%), that the

triangles of X are also § — thin; proposition 2.22 then shows the hyperbolicity of
X. O

Proof of Theorem 4. To simplify notation, in this proof we assume that k& = —1;
there are no essential changes in the other cases.

(Cx) = (Ag). Consider a point w € X and two geodesic segments g : [0,a] —
X,h : [0,b] - X beginning at w. Suppose s, 7, ¢ are such that 0 < s < a and
0 <7<t <b Wedenote the triangle with vertices w, g(s), h(t) by A(s,t). We
must show that a(s,7) < a(s,t) when a = o=, 4 (s,t) is the comparison angle of
the segments ¢ and h. We choose 5 points w*,s*,t*, 7%, 7" in the Poincare disk
such that

(1) w*,s*,t* are the vertices of a comparison triangle for A(s, ).
(2) w*,s*,7* are the vertices of a comparison triangle for A(s, 7).
(3) 7 is a point on the segment [w*,¢*] such that |w* —t*| = |w* — 7*| = 7.
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h( 1)

By definition, a(s, 7) is the angle at w* of the segments [w*, s*] and [w*, 7*].
These segments have length s and 7.; we therefore have the cosine formula
cosh(s)cosh(r) — cosh(|s* — 7*|)

sinh(s) sinh(r)

cos(a(s, 7)) =

On the other hand, a(s, ) is angle at w* of the segments [w*, s*] and [w*, t*] which
is also the angle at w* of the segments [w*,s*] and [w*, 7*]; these segments also
have lengths s and 7. Therefore

cosh(s) cosh(r) — cosh(|s* — 7*])
sinh(s) sinh(7)

cos(a(s,t)) =

Now the condition C_; implies
s =77 2 |s" = " |(=lg(s) —g(t)])

Tt follows that cos(a(s, 7)) > cos(a(s,t)) and therefore a(s, 7) < a(s,t).

(Cx) = (Ag). The proof is the same type of argument (trigonometry shows us
that an inequality in angles forces an inequality in distances). Let A = [w,z] U
[z, y]U[y, w] be a triangle in X and p € [w, 2], ¢ € [w, y] two points in A. Consider a
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comparison triangle A* with vertices w*, z*, y* in the Poincare disk. We denote the
points corresponding to p and ¢ by p*, ¢* € A*. Suppose also that ¢§* is a point in H
such that the triangle with vertices w*, z*, y* is a comparison triangle for the points

X

*

w
w,p,q.
Denote the angle at w* of the triangle A* by a and the angle of the segment [w*, p*]

and [w*,§*] by @. The condition A_; forces @ < a. Observe, on the other hand,
that « is also the angle at w* between the segments [w*, p*] and [w*, ¢*], therefore

cosh(|u* — p* ) cosh(|uw” — g*[) = cosh(lp” — ¢°)

cos(e) = snh{Jw* — p*]) sinh{[u* — ¢°])
" (" — p7[) cosh(fu” — ")) —coshp” ~ )
cos(a) = = Siﬂfil(hﬂcfs_ pfl}) sin(l]1(|w* EO;*DP :
Since |w* — ¢*| = |w* — ¢ and cos(&) > cos(a), we see that

lp—al=1p"—q"| < |p* — ¢
(Tk) = (Ck). Obvious. O
8. Remark. If £ > 0 then we define the conditions (Cy) and (7}) as when k£ < 0,
but only test those triangles with perimeter < 2—\/’;— (the comparison triangles are

constructed on the sphere of radius ﬁ inR3). Similarly, to define (Ay), we only

consider those segments g : [0,a] = X and A : [0,b8] = X such that a + B+ |g(a) —
h(b)] < 2—\/’;— Theorem 4 is still true when k > 0.

2. THE CASE oF RIEMANNIAN MANIFOLDS

The goal of this section is to give a complete proof of the theorem, due to Alek-
sandrov, below (the theorem follows, for example, from theorem 3.2 and corollary

5.1 of [ABN]).
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9. Theorem. Let (M,g) be a simply connected, complete riemannian manifold
which has sectional curvature K < k < 0. Then M s CAT}.

By proposition 7, it immediately follows that

10. Corollary. A simply connected, complete, riemannian manifold with curva-
ture K < k < 0 is hyperbolic (in the sense of Gromov).

11. Remarks.

(1) Theorem 9 implies that all C AT} geodesic spaces are also C ATy for all &' >
k (indeed, the theorem tells us that Hy is C ATy, therefore (Ty) = (Ty/)).

(2) In the theorem, and the corollary, one can replace M by any convex subset
of M.

(3) The theorem (but not the corollary), if also true if & > 0. C'ATj is then
defined as in remark 8.

(4) Tf we omit the hypothesis that M is simply connected, the theorem is clearly
false (a complete, negatively curved riemannian manifold which is not sim-
ply connected always has a simple closed geodesic and therefore never meets
CATy).

(5) Corollary 10 is also false when M is not simply connected. Here is an
example of a complete negatively curved riemannian manifold which is not
hyperbolic: Let @ be the set of points (z,y,z) € R3 such that z = 0
and either z or y is an integer. Then there is an infinite grating invariant
under the group Z? (acting by translations).Let U C R? be a Z? invariant
neighborhood of @ such that for all v € U, d(u,Q) < %. Let M = 9U;
M is a smooth surface of infinite genus which is quasi-isometric to Z? (or
to R?) and is therefore not hyperbolic (theorem 5.12). Meanwhile, M/Z?
is a closed surface of genus 2; consequently M has a riemannian metric
of constant negative curvature This example generalises (via corollary 21,
below) to covers of a compact, negatively curved manifold with covering
group Z™ (m > 2).
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The proof of theorem 9 relies on Aleksandrov’s comparison theorem. Although
it is a classical theorem, it is not in introductory textbooks. We find it, for example,
in [Ale], [Gve, thm 3.9] or [Tsu]. Grove calls it the “Inverse Topogonov Theorem”.

12. Theorem (Aleksandrov Comparison Theorem). Suppose (M, g) is a
simply connected, complete riemannian manifold with sectional curvature K < k <
0. let A be a geodesic triangle in M and let A* be a comparison triangle in Hy; we
denote the angles of A by «a, 3,v and the corresponding angles of A* by o*, 3%, v*.
Then

a<at BB oy

To prove this theorem, we need the following lemma.

13. Lemma. Let (M,g) be a complete riemannian manifold and let V = {(r,0) €
RZ:0<r <00,0< 6 < a}. Choose a point w € M. as well as a C? curve
A:[0,a] = Ty M such that [XN(0)| =1 and |25 =1 for all 6. Let ¢ : V — M be the
map defined by ¢(r,0) = exp,, (rA(#)). Then

¢*(g9) = dr? + p*(r, 0)d6?

where p: V — R is a function such that p(0,0) = 0 and g—f =1 for all 6.

Proof of lemma 13. We denote ¢(V) C M by F; let R and T be the vector fields
on F defined by R = dd)(%) and T = d(b((,?—e). Then, we have

¢*(9) = q(R, R)dr* + 2g(R, T)drdd + g(T,T)d6*
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By the definition of the exponential map, we have g(R, R) = 1. Gauss’ lemma
(cf. [Gve], lemma 2.11) says that g(R,T’) = 0. The function p(r,#) = g4(r¢)(T,T)
vanishes at r = 0 since dy(g ) is 0.

It remains to show that g—ﬁ(O, 6) = 1. Let U C M be a neighborhood of w on
which exp,, psosses an inverse log,, : U = T,y M. And let &1, ... &, be a system of
orthonormal coordinates for T, M. The z; = &;0log,, defines a system of coordinates
for U (the “riemann normal coordinates”). Recall (cf: [Sp2], proposition 1 of
chapter 4, page 159), the the metric on M can be written, in these coordinates, as

Gz = Edmf =+ Ehm(a@)drld%

where h; ; = o(z). Define A; : [0,a] 5> R (i = 1,...,n) byexp,, (A(8)) = (A1(8), A2(6), ...

and z;(r, ) = rA;(). We now have

é(r,0) = (z1(r, 0), z2(r, 0), ..., 2n(r,0))

Consequently
d d\;
dz? = X2 (0)dr® + r@(/\?(é')drdé’ + r2ﬁd92)
Now,
2 2 d 2 2 d)\z 9
Ydz? = (ZA(0)) + ro (2MP(0)) drd6 + v*%. TR

— dr? + r?d6?

We also have

d dX; d);
daide; = Adjdr? + r—5 (1) drdf + 1 < 7 d_9]> g’

Hence, if

Shi j(x)deide; = Adr® + Bdrdf + Cdo?

Then, we see that C(r,8) = r?u(r, ) where u(r,6) = O(r) (since h; ; = o(z)). So,
p(r,0) = \/r2(1 4+ u(r,)) which satisfies g—f(O, )y=1. O

14. Proof of theorem 12.

The idea of the proof is to define a ruled surface (e.g. one foliated by geodesic
segments) F' in M containing A as well as a contraction mapping F to the Poincare
Disk. We can then compare the angles of A to those of A* suing this map.

We use w,z,y to denote the vertices of A and « to denote the angle At w.
Recall (Cartan-Hadamard) that the map expy : Ty M — M is a diffeomorphism
and denote its inverse by log, : M — T, M. We also denote the norm of a vector
& € T,y M by |£]. We introduce the following objects:

L is the geodesic segment [z, y] C M.
¥ 1s the unit sphere of Ty, M.
€ =log,(z) € T, M& = €X.
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n=log,(y) €TwM m=pr€X.
A =log, (L) C TuM Alz{l% :CeA}CE.

The curve A; is a simple and differentiable curve in X.Let a; denote its length
and let A : [0, 1] = Ay be its parametrisation by arc-length (such that A(0) = ¢&;
and A(ay) = n1). We have:

(a) a >«

In fact, « is the angle between ¢ and 7. Hence, it is the distance on the unit sphere
Y of Ty M between & and 7;. Therefore, « is less than a3 (which is the length of
the curve A; joining &; to 11).

Let V={(r,0) eR?:0<r <00,0< 6 < a;}and consider the map ¢ : V — M
defined by ¢(r,0) = expy,(rA(f)). Lemma 13 then implies that the metric on
F = ¢(V) by the immersion of F C M can be written, in (r, ) coordinates, as
(b) ds* = dr* + p(r, 0)*d6*
where p(0,0) = 0 and g—f(O,Q) = 1for all 8 € [0, aq].

The curvature of F' satisfies
(c) K<k
In fact, F' is a ruled surface in M (i.e. foliated by geodesics of M), and we can
apply Synge’s inequality (cf [Pre] or [Sp3], corollary 7 of chapter 1).

Recall (cf [Sp2] page 119) that the curvature of F is given by the equation

?p(r,0) .
2 = —K(r,0)p(r,0)
(where K (r,f) is the curvature of F'). Since p(0,6) = 0, gg(O, 6) =1, and K < k,

Sturm’s comparison theorem (cf. [Har]), gives us the following estimate for p(r, 6)

@ pir,0) > 2K

We now construct a map ¢ : F — Hg; to do this, we use w*, z2*,y* € Hj to
denote the vertices of A* and introduce a polar system of coordinates ¢* : [0, 00) x
R /277 — Hy such that wx = ¢*(0,0) and z* = ¢*(|]z — w|,0). Next, we define 1
by ¢¥(¢(r,0)) = ¢*(r,0). In particular, we observe that ¢(w) = w* and ¢(z) = z*.
We use y* to denote ¥(y) (in general, y* # y*). Since the metric on Hy is, in polar
coordinates, dr? + %sh2(\/];r)d92, inequality (d) implies that the map ¢ : F — Hj,
is a contraction. Therefore, we have,

(e) 2" =y | < fx—y|l = &7 — ¥

On the other hand, it is clear that the segments [w*, z*] and [w*, y*] meet at w* at
an angle of ;. Therefore, we have

ch(Vk|e* — w*|)ch(Vly* — w*|) — ch(Vk|z* — y*|)
sh(Vk|z* — w)sh(VE|y* — w*|)

cos(ay) =
and
ch(Vklz* —w*|)ch(Vk|y* — w*|) — ch(Vk|z* —y*])
sh(Vk|z* — w)sh(VE|y* — w*|)
By (a) and (e), we therefore have a* > a3 > . O
The proof of theorem 9 also uses a lemma, due to Aleksandrov, on quadrilaterals.

cos(a™) =
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15. Lemmma. [Ale] Let ) be a quadrialteral in hy with vertices a,b,c and d.
Consider a triangle /\' C Hy with vertices a’, b, c'such that

o =¥ =la=b] |'—|=[b—c| |’ —¢|=|a—d|+|d—c]

Denote the angles in ) at the corners a,b,c,d by a,3,v,8 and use o, 3,y for
those in A\'. Assume that § > w. Then

a<a p<p v

b

a a'

Proof of lemma 15. Tt is obvious that |a —¢| < |a’ — ¢/| and the cosine formula then
implies that 3 > 3. We show that o < o’. Pretend that @ is an articulated system
with @ and b anchored. We can then define a movement of this system ¢(t), d(?)
such that ¢(0) = ¢(1) = ¢; d(0) = d and d(1) is the reflection of d with respect to
the line ac (a and b are fixed, as well as the lengths of the 4 segments). We may
assume that during this movement, the angle at a, a(t), increases continuously.
There is an intermediate time ¢ where the points a, d(to), ¢(fg) are collinear. Then
the triangle with vertices a, b, ¢(tg) is isometric to A'; it follows that

o' = alty) > a(0) = a
The proof that v > 4’ is similar. O

16. Proof of Theorem 9. We assume that £ = —1 and leave the other cases to the
reader. Let g : [0,a] = M, h : [0,b] &> M be two geodesic segments beginning at
the same point w € M. We must show that a(s,t) = a™', s(s,t) is a monotone
non-decreasing function of s and ¢ (the (A_;) criterion).

We assume that we are given three numbers s,¢, 7 such that 0 < s < @ and
0 <7 <t<b. Weconsider 4 points w*, s*, t*, 7" in the hyperbolic plane H such
that

(1) w*, s*, t* are the vertices of a comparison triangle for w, g(s), h(7).

(2) 7, t*, s* are the vertices of a comparison triangle for h(7), h(t), g(s).

(3) w* and t* are situated on opposite sides of the line s*7*.
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We also consider the triangle A’ C H with vertices w’, s’, t' such that A’ is a
comparison triangle for w, g(s), h(t).

Some notation:
a* is the angle at w* of the triangle with vertices w*, s*, 7*.
o’ is the angle at w’ of the triangle with vertices w', s, 7.
v is the angle at h(7) of the triangle with vertices w, g(s), h(t).
v* is the angle at 7* of the triangle with vertices w*, s*, ¢*.
p is the angle at h(7) of the triangle with vertices h(7), h(t), g(s).
p* is the angle at 7* of the triangle with vertices 7%, t*, s*.

Then, we have o* = a(s, 7) and @’ = a(s,t). By theorem 12, we have v < v* and
p < p*. Hence, w*, s* t*, and 7 are the vertices of a quadrilateral ) in H where
the angle at 7* is v* 4+ p* > v+ u = m. On the other hadn, |w' — §'| = |w* — s*|,
|s" —t'| = |s* —t*| and |w' — /| = |w* —7*| + |7* — t*|. It follows from lemma 15

(applied to Q and A'), that

Hence, we have shown that if 7 < ¢, then a(s,7) < a(s,t). O
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3. AcTIiOoNS OoF DISCRETE (GROUPS

17. Definitions. A metric space is proper if all bounded balls are compact. A
discrete group I' acting on a topological space X acts properly if for every compact
set C' C X, the set of v € T such that yC' N C # § is finite.
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18. Lemma. Let X be a geodesic space. Then X is proper if and only if X 1s
locally comact and complete.

This lemma is proved in [GLP] (theorem 1.10). We note that the lemma is false if
X is not geodesic. For example, let X = R with the metric d(z,y) = min{l, |z—y|};
then X is locally compact and complete, but X is not proper (any ball of radius
> 1 is not compact).

The following result is, essentially, lemma 2 of [Mil]; see also theorem 1 of [Cal]
and propositions 3.22 and 3.23 of [GLP].

19. Proposition. Let X be a proper geodesic space and let T' be a discrete group
of isometries of X acting properly on X. If T\X is compact, then T is finitely
generated and T, given the word metric (relative to any finite system of generators),
15 quasi-isometric to X.

Proof of Proposition 19. Since T acts by isometries, I'\ X is a metric space. Its
diameter R is finite (because T'\ X is compact and proper). Let 2 be a point in X
and set

B={zeX:|lz—=z9/|<R} and S={yeTl:y#eandyBnNB+0}

Observe that B is compact (because X is proper), and that {yB},er is a covering
of X. Furthermore S = S~! and S is finite (because I' acts properly). Now set
A =sup{|zo —yzo| : v € S} and r = inf{d(B,yB) : vy €T — (S U{e})}.

We show that » > 0. The set F =~ {y € T — (SU{e}) : |20 — zy20| < 4R}
is finite (because T' acts properly), and therefore ' = inf{d(B,vyB) : v € E} is
non-zero (the infinum is attained becase F is finite). If E is empty, we set ' = co.
Then, it is easy to see that » > min{r’, R}. We observe that r has the following

property.
(*)  If there exists y,z € X, 0 € T'such that y € B,z € eBand |y — zz| < r
theno € S U e

The proposition follows from the following assertions:
(1) S generates T and, for all y € T, we have :ds(1,7) < L|zg — yao| + 1.
(2) |20 — yaoo| < Adg(1,7) forally €T
(3) The orbit Tzg C X is quasi-isometric to X.

In fact, (1) and (1) imply that T is quasi-isometric to X.

To prove (1), we consider an element y € T and let k be the smallest integer such
that |zg — yzo| < kr + R. We choose a segment [zq,yzo] C X, as well as points
T1,T9,...,TEp1 = YTo ON [Tg,yZo] such that |zg — 21| < R and |z; — zj41| < r for
1<2<k. Since X =TB,foreachi=1,2,... k41, we can find an element v; € T
such that z; € v;B. We can choose 71 = id and vx41 = 7. Set o; = 'yi_lfyH_l; we
then have vy = o109 ...0%.. For 1 <1<k, we have

vi~'wi € B, ¥ 'wigr = 0i(Yig1) ' wigr € B and |y;'wi — 47 g < v

Hence, (*) forces o; € S| J{e} fori =1,... k. This shows that S generates I' (since
v was arbitrary); more precisely, we have shown that dgs(1,7) < k.
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Now, (k— 1)r + R < |zo — yzo| (by minimality of k), and therefore
1 R
ds(1,7) <k < —lzo—yzo[+1——

Inequality (2) can be verified inductively: if ¥y = o103 ... 0, with

|zo — y2o| = |20 — 0102 . . .onz0|
< |zg — o120| + |o120 — 02 .. . TR

<A+ (n—-1)A

Finally, (3) is obvious because I'B = X and diam(X) < co. O

20. Corollary.

(1) Let T'y be a finite index subgroup of a finitely generated group T'y. Then Ty
and 'y are quasi-isometric.

(2) If 1 5> A =5 Ty — Ty is an exact sequence of groups, and if A\ is finite,
then I's and T'y are quasi-isometric.

Proof.

(1) Let X = G(T'3,S) be the cayley graph of T's with respect to a finite system
S of generators. Then X is locally compact and Ty acts on X (properly
and by isometries); morevoer I'1\ X is compact.

(2) The homomorphism 'y — T's defines a proper action of T'; on X. for which
1\ X is compact.

O

We can also state this corollary by saying that two finitely generated groups
which are commensurable are quasi-isometric.
Applied to riemannian manifolds, proposition 19 implies the following result.

21. Corollary. Let Mbe a riemannian manifold, and let T C rm[so(M) be a
discrete group of isometries which acts properly. Then T s finitely generated and
15 quasi-isometric to M .

In particular, we have:

(1) The fundamental group of a compact riemannian manifold M is quasi-
isometric to its universal cover M.

(2) Two compact riemannian manifolds with commensurable funddamental groups
have quasi-isometric universal covers.

(3) The fundamental group of a compact riemannian manifold with positive
Ricci curvature is finite (in fact, it follows from Myer’s theorem that the
universal cover is compact. See [Gve], proposition 4.1).

Recall that a group T is called hyperbolic if it is finitely generated and there is
a finite system S C T' of generators such that T', given the word metric induced
by S, is a hyperbolic space. In anticipation of chapter 5 (where we prove that
hyperbolicity is invariant under quasi-isometry for geodesic spaces), we obtain the
following characterisation of hyperbolic groups.
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22. Theorem. Let T be a dicrete group; then the following conditions are equiva-
lent:

(1) T is finitely generated and hyperbolic.
(2) There is a proper hyperbolic geodesic space X on which T' acts properly by
isometries and such that diam(T'\X) < oo.

Proof. Tf T satifies (1), we can take X to be the Cayley Graph of T' defined by
any finite system of generators. Conversely, if there is a space X which meets the
hypothesis, then T is quasi-isometric to X by porposition 19, hence T is hyperbolic
(by theorem 5.12). O

We will see, in the next chapter, that every hyperbolic group acts simplicially on
a contractible, finite-dimensional polyhedron (the action is properly discontinuous
and has compact quotient). For infinite groups, this is a non-trivial condition (for
finite groups, one can take the polyhedron to be a point).

Theorem 22, with corollary 20, implies

23. Corollary.

(1) If Ty is a finite index subgroup of a hyperbolic group T's, then Ty is hyper-
bolic.

(2) If 1 5 A = Ty = Ty is an exact sequence of groups, and if A\ is finite and
'y s hyperbolic, then T'y is hyperbolic.

Finally, proposition 19 and theorem 22 imply the promised result.

24. Theorem. Let (M,g) be a complete, simply connected, riemannian manifold

with curvature K < k < 0, and let T C Iso(M) be a discrete group of isometries
such that M = T\M is compact. then T is finitely generated and hyperbolic.

In particular, the fundamental group of a surface with negative Euler character-
istic is a hyperbolic group. In dimension 3, there are many examples of negative
curved compact manifolds. In dimensions greater than 3, it is non-trivial to con-
struct such manifolds. Nevertheless, one sees [Bor], that the rank 1 symmetric
spaces (which are riemannian manifolds whith curvature —4 < K < 1) possess co-
compact discrete groups of isometries (which are, therefore, examples of hyperbolic

groups).

4. CONVEXITY AND CAT

25. Definitions. A geodesic space X is called geodesically convex if there exists
one and only one geodesic segment [p, q] between any two points in X. It is called
metrically convez if, given two affinely parametrised geodesics (i.e. parametrised
proportionally to arc-length) ¢ : [0,1] = X and h : [0, 1] = X, we have

lg(s) = h(s)| < (1 = 5)|g(0) — A(0)] + s|g(1) — A(1)]

(i.e. the distance function is convex).
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26. Example. A vector space is metrically convex.

Proof. Let g(s) = sz + (1 — s)y and h(s) = sz’ + (1 — )y’ be two geodesics. We
then have, by the triangle inequality

l9(s) = h(s)] = Is(z — &) + (1 = s)(y —¢)| < (1 = 8)|z — 2| + 5|y — ¢/|
d

27. Proposition. A geodesic metrically convex space is geodesically convez.

This proposition is obvious. However, the converse is false; for example, the
open half-sphere is geodesically convex and not metrically convex.

28. Proposition. A geodesic metrically convex space is contractible.

Proof. We choose a base point and contract the points in the space along the unique

geodesic joining them to the base point. The convexity of the distance function
implies that this is continuous.

29. Proposition. If X s a geodesic space satisfying CATy, k < 0; then X is
metrically conver.

Proof. Suppose g : [0,1] — X and h : [0,1] — X are two affinely parametrised
geodesic segments. Let ¢ € [0, 1] and denote zo = ¢(0), 21 = g(1),y0 = h(0), 11 =
h(1),p = g(t) andg = h(t). Choose six points zg*, T1*, Yok, y1%,p * andgx € Hy
with the following properties: First, zg*, z1%,yo* form a comparison triangle for
zo,21,yY0 and px € [zo*,z1%] is the point corresponding to p € [zg,z1]. Next,
Yo*, y1*, z1* form a comparison triangle for yg,y1, 21 and gx € [yo*, y1*] is the
point corresponding to q € [yo, y1]. Finally, the points zg* and y;* are on opposite
sides of the line z1 * yo* (i.e. (zo*,y1*) N (z1*, yox) = 0).

©

Ry
hemmmmm=4m========

O |-
*

*
yO

The segment [p*, ¢*] intersects the diagonal [z1%, yo*] in a point w*. We observe
that |[px —g*| = |p* —w* |+ |wx —¢gx|. we choose a segment [z1,ys] C X, and use
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w to denote the point in [1, yo] such that |w — 21| = |w* —z1 *|. Since X satisfies
C' AT}, we have, by criterion (T):
lp—w[ < [px —wx]and [g—w| < gx —wx|
whence we deduce:
P—gl<lp—wl+|w—q| < [px—wx|+]wx—gx|=[p*—gx]
On the other hand, for k < 0, Hg is metrically convex and therefore
lpx—q x| < (L—1t)[zox —z1 % |+ tyo * —y1 * |
It follows that

lg) —h()] =Ip—ql < (1 —1)[zo— 21| +t[yo — y1]
= (1—1)]g(0) — g(1)| +t|R(0) — A(1)]
0

In particular, if X is a geodesic space satifying C ATy, for £ < 0, then X is
contractible.

30. Remark. The converse of proposition 29 is false; a metrically convex space is
does not necessarily satisfy C' ATg.

Consider, for example, R? given the norm |(z,y)| = (|z|P + |y|p)%. We denote
the associated metric space by L,. L, is a metrically convex space (since is is a
normed vector space). We claim that L, satisfies C ATy if and only if p = 2.

Suppose that g(s) = (s,0) and h(t) = (0,t) (these are two geodesics in L,
originating at the point (0,0)). The comparison angle with the Euclidean plane is
given by the law of cosines

$2 + 12 — |g(s) — h(t)?
2st

We show that the criteria (Ag) is not satisfied if p # 2. Set s = 1, and define f(¢)
by

cos(a’(s,t)) =

d 0 1
Ecos(oz (s,1)) = Zf(t)

Then f(t) = 1[(t2 = 1) — (1 —t7)(1 + tp)%_l]f in particluar, f(¢) satisifes

(1) fB)~0ep=2

(2) Ifp# 2, then f(t) =0t =1;

(3) f(t) =—f(3).
Hence, if p # 2, then f changes sign at ¢t = 1. It follows that cos(a’(s,t)) is not
monotone at (s,t) = (1, 1).

Metrically convex spaces were first studeied by Busemann [Bus].

Translated by WILLIAM GROSSO

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY,
CA 94720



FIRST PROPERTIES OF HYPERBOLIC GROUPS (CHAPTER 4)

ELIANE SALEM

ABSTRACT. In this chapter, we prove a result due to I. Rips which implies that a
hyperbolic group I' has the following properties (see theorem 1.36):

(1) T is finitely presented.
(2) The number of conjugacy classes of torsion elements in I is finite.
(3) The cohomology groups H*(T',Q) are trivial for large enough k.

Here is the result:

1. Theorem (I. Rips). Let T be a hyperbolic group. There is a contractible,
locally finite, finite dimensional, simplicial compler P on which ' acts simplically,
faithfully, properly discontinuously, and so that the quotient T\ P is compact.

In the first section of this chapter, we associate the Rips Complex Py (T, S) to each
finitely generated group I" with a given generating set S (with S = S~! and e ¢ 9).
It is a locally finite, finite dimensional, simplicial complex on which the group I' acts
simplically, faithfully, properly discontinuously and with compact quotient. In the
second section of this chapter, we show that, if I" is a hyperbolic group (for the word
metric associated to the generating system S), then the simplicial complex Py (T, S)
is contractible for n sufficiently large (Rips’ Theorem). Finally, in the third section,
we show that a hyperbolic group has the three properties stated at the beginning of
this chapter.

The results in this chapter are stated in sections 1.7 and 2.2 of [Gr5]. The proofs
given here are based on introductory lectures of E. Ghys.

1. CoNsTRUCTION OF THE RiPs CoMPLEX P,(T,S)

Throughout this chapter, T' denotes a finitely generated group and S a finite
system of generators for T'; we always assume (and we won’t mention it again) that
S7! = S and e ¢ S. We denote the word metric on T associated to S by d. Tt is
invariant under left translations: if v,4', 4" € T then d(vy',vy") = d(v¥',7").

2. Definition. Let n be an integer, n > 1. The Rips Complex P,(T,S) is the
simplicial complex whose k-simplices are the (k + 1)-tuples (yo,71, ... ,7%) of pair-
wise distinct elements of I' such that maxy; ;3 d(vi,v;) < n. We give P, (I, S) the
weak topology.
3. Remarks.

(1) The complex P,(T,S) is locally finite and finite dimensional. In fact, let b
be the cardinality of the closed ball

B(e,n) ={y €T :d(e,y) <n}
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2 ELTANE SALEM

Then P,(T,S) has dimension at most b — 1 and every vertex of P,(T,5)
belongs to exactly b — 1 edges.

(2) The vertices of P, (T, S) are the elements of I'. The 1-skeleton of P, (T,.S) is
the Cayley Graph of the group T for the system of generators B(e,n) — {e}.

4. Examples. If ' =7 and S = {£1}, the Rips Complex P(T,S) is represented

by the figure below
1 1 3
0 )

3 )
The group T acts simplically on P, (T, S) by left translation: ifo = (yo,v1,- .., V&)
is a k-simplex of P, (T, S) and if ¥ € T, then vo is the k-simplex (yyo, ¥y1,- - -, YVk)-

-2

5. Proposition. The action of T on P, (T, S) defined above possesses the following
properties:
(1) The action is faithful.
2) The stabiliser of any simplez is finite.
3) The action is properly discontinuous.
4) The space of orbits is compact.
5) Furthermore, if T is torsion-free, the action is free.

Proof.
(1) The action is free on the set of vertices of P,(T,S) and therefore faithful
(2) If v € T leaves the k-simplex (yg,71, ..., vk) invariant, then 4 permutes the

(k + 1) elements vo,v1,...,7 € T'. Hence, the stabiliser of any simplex in
P, (T, S) is finite.
(3) Tf o and o’ are two simplices of P,(T,S), the set

{veTl:vono #0}

is finite. Since any compact set C' in P, (T, S) can be covered by a finite
number of simplices of P, (T, S), we deduce that the set

{yeT:vCNC + 0}

is finite.
(4) Let A be the finite union of all the simplies of P, (T, S) with e € T as one
of their vertices. The set A is compact and the inclusion of A in P,(T,S)
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induces a homeomorphism of T\ A onto I'\ P,(T', S). We remark that, as a
matter of fact, for every simplex ¢ of P,(T,S), there is an element y € T
such that vo € A.

(5) The assertion follows from (ii)

O

6. Remark. In general, the quotient T'\ P, (T, S) is not a simplicial complex. Let
P,"(T,S) be the second barycentric subdivision of P,(T,S). The action of T on
P, (T, S) by left translation induces a simplical action of T on P,” (T, S) which also
has properties (i) to (v) of proposition 5. Suppose, moreover, that p is a vertex of
P,"(T, S) and v is an element of ' such that yp # p; then the stars of p and yp are
disjoint. It follows that the quotient T\ P,”(T, S) is a simplicial complex, and that
the projection

n: P,"(T,S) = T\P,"(T, S)
is simplicial (see [Bre], page 117).

7. Notation. The Cayley Graph G(T,S) (defined in chapter 1) is identified with
a subset of the 1-skeleton of P, (T',S). Thus, two vertices v and v’ of P, (T, S) can
be joined by a curve in P, (T, S) which is in G(T',S). and which is a geodesic in
the sense of numbers 1.25 and 1.26. We denote such a curve by [v,4'], although
it is not, in general, uniquely defined by the endpoints v,+’. Every expression of
4~ 14" as a product s;ss...s; of a minimal number of generators corresponds to a
geodesic segment [y, 4] which is the union of the 1-simplices.

(71’7‘81)7 (’7811782)7 sy (’78182 .. ~Sl—177/)
of P, (T, S); these simplices are also edges of length 1 in G(T',S)

2.ProoF oF RIPS’ THEOREM

We consider, as in §1 a group I, a finite system of generators S, an integer n > 1
and the Rips complex P, (T, S). The goal of §2 is to finish the proof of theorem 1
by showing that, if T' is hyperbolic, then P,(T,S) is contractible for large enough
n.

Fix a number § > 0. We say that T is d-hyperbolic for S if the space T' satisfies
the conditions of definition 2.3 when given the word metric defined by S.

8. Lemma. We assume that T is §-hyperbolic for S. We choose an integer n >
40 4 2 and a verter vy of P, (T, S).
If v is a vertex of P,(I',S) such that d(~yo,v) > [3], there is a vertex %' of
P,(T,S) satisfying
(1) d(v0,7) = d(v0,7) = d(7,7') ,
d

(2) dv',7) =131,
(3) For all vertices v of Py(T',S), we have

d(v',5") < max{[g] +d(r0,7") = d(30,7); d(7,7") = [5]} + 25
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Proof. We choose a geodesic segment [yo,7] as in number 7 and take for 4/ the
vertex of this segment such that d(y,v) = [5]; we clearly have (i) and (ii).
For all 4" € T, we have, by definition of d-hyperbolicity

d(v', ") + d(v0,7) < max{d(v',7) + d(v0,7"), d(v0,7") +d(v",7)} + 24

Inequality (iii) now follows. O

9. Proposition. We suppose that the group T is §-hyperbolic for the system of
generators S. We consider a finite simplicial complex K of vertices {po,p1,...,pr},
an integer n > 46 + 2 and a simplicial map f : K — P,(T,S). Then there is a
continuous homotopy h : K x [0,1] = P, (T, S) of f to a simplicial map f' : K —
P,(T,S) such that

n .
(S (po), /' (p3)) < 5 VP € K
Proof. Let p; be a vertex of K such that

d(f(po), f(pi)) = sup1<j<kd(f(po), f(p;))

We may assume that d(f(po), f(pi)) > 5 (if not, there is nothing to show). By
applying lemma 8 with vy = f(po) and v = f(pi), we see that there is a vertex '
of P, (T, S) such that

(a) d(f(po),¥') = d(£(po), f(pi)) — [5]

(b)
For every vertex p; of K, we have d(v, f(ps)) < max{[g] +26;d(f(ps), f(p;)) — [%] + 24}

Since n > 44 4 2, we have [2] 420 <n and 20 — [3] < 0, and therefore

(c) for every vertex p; of K, we have d(v', f(p;)) < max{n;d(f(pi), f(p;))}

Let h: K x [0,1] = P,(T, S) be the map defined on the vertices of K by

I(pj) iff(pj) # f(pi)
ty + (1 =t)f(pi) iff(pj) = f(pi)

and extended to the simplices of K (this is possible by inequality (c)) by

R

h1(Zj=0"Ajpj,t) = Ej=0" A ha(p;, 1)

where 0 < A; < 1 and E?:o)‘j = 1. Then h; is a continuous homotopy of f to a
simplicial map f1 : K — P, (T, S) satisfying:

n

(d) If p; is a vertex of K such that d(f(po), f(p;)) < [2] then fi(p;) = f(p;)
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(©) We have d(f1(po), J1(p)) = d(f (po). f(p1)) ~ []

If supi<;j<rd(fi(po), f1(p;)) < n, the proof is finished.
If not, we choose a vertex p; of K such that

d(f1(po), f1(pi)) = supr<j<rxd(fi(po), f1(p;))

and we construct, as above, a homotopy hs of fi to a map fs such that

n
d(f2(po), f2(pir)) = d(fi(po), f1(pi)) — [E]
By repeating this a finite number of times, we obtain a sequence hy, hy, ... whose

composition 1s a homotopy with the stated properties. O

10. Rips’ Theorem. Suppose that T' is §-hyperbolic for the system of generators
S. If n > 46 + 2, the Rips Complex P, (T, 2) is contractible.

Proof. Let K be afinite, non-empty subcomplex of P, (T, S) with vertices {pg, p1, . ..
Tt suffices to show that K retracts to a point in P, (T, S). But, proposition 9 shows
that K retracts in P, (T, S) to a subcomplex K’ whose vertices are contained in the

ball n
B={y €T :d(po,7) < 5}

Since max{d(y',¥") : v',4" € B} < n, the subcomplex K’ is contained in a simplex
of P,(T,S), and therefore can be retreacted into a point. O

Corollary. We suppose that the group T is §-hyperbolic for the system of genera-
tors S. If n > 43 + 2, every simplicial map of the circle S into P,(T,S) extend to
a a simplicial map from the disk D? into P,(T,S).

We summarise proposition 5 and theorem 10 in the following manner:

12. Theorem. Let I' be a hyperbolic group. There is a finite dimensional, locally
finite, contractible, simplicial complex P on which T acts faithfully, simplicially,
and properly discontinuously , in such a way that
(1) The stabiliser of any simplex is finite.
(2) Ifp is a verter of P and vy an element of T such that p # vp, then the stars
of p and vp are disjoint.
(3) The space of orbits T\P is a finite, simplicial complex and the projection
7 P — T\P is simplicial.
(4) Moreover, if T is torsion free, the action is free.

Proof. Let S and n be as in theorem 10. One can take P to be the second barycen-
tric subdivision of P,(T,S). O
3. COROLLARIES OF RIP’S THEOREM

13. Proposition. A hyperbolic group T possesses a finite number of conjugacy
classes of torsion elements.

Proof. Let P be a simplicial complex as per the conclusion of theorem 12. If y € T
is a torsion element (4" = e,n > 2,4™ # e for 0 < m < n), then v leaves a simplex

1pk}'
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o of P invariant. In fact, if this is not the case, the cyclic group Z/nZ generated
by 7 acts freely on P and, therefore there is an [ > 0 such that H*(Z/nZ,Z) = 0
for all & > [; this is absurd ([Bro], page 58). Further, if v leaves the simplex ~
invariant, then 4/4y' ™" leaves the simplex 4'¢ invariant for all 4/ € T.

We use S(v) to denote the set {¢ € P : yo = o}. Since S('y"y'y’_l) =~'S(w)
for any 4 € T, we can associate a non-empty subset 7(S(y)) of the finite set of
simplices in '\ P to every torsion element v € T.

If v is another torsion element of T' with w(S(y)) = 7(S(v)), then for every
simplex o of S(v), there is an element 4" € T such that v'c € S(v), hence such that
7’_11/7’ leaves ¢ invariant. Since the simplicial complex T\ P is finite and since
the stabiliser of any simplex of P is finite, we deduce that there are only a finite
number of conjugacy classes of torsion elements in I'. O

For all integers k > 0, we use H*(I',Q) to denote the k’th cohomology group of
[ with coefficients in Q (T acts trivially on Q). Recall that H*(T',Q) = H*(X,Q)
if X is an Eilenberg-MacLane space K (T, 1); see [Bro], chapter III.

14. Proposition. If T' is a hyperbolic group, there is an integer Il > 0 such that
HY(T,Q)=0 for all k > 1.

Proof. Let P be a simplicial complex as per the conclusion of theorem 12.

First, we assume that T' is torsion free, so that I' acts freely on P and that
H*(T,Q) = H*(T\P,Q) for all k > 0. Then H*(I',Q) = 0 for all k greater than
the dimension of T'\ P (which is the dimension of P).

If T is a group with torsion, we can invoke a standard spectral sequence argument.
We can also proceed as follows. Let BT be the classifying space of I' and ET its
universal cover, which is contractible. We use ET'xpP to denote the quotient of
ET x P by the natural action of I'. The projection ET'x P — ET induces a map
ETxprP — BT which is the fibration (with fibre P) associated to the covering
ET — BT and to the action of ' on P; since the fibre P is contractible, the
fibration is a homotopy equivalence , and we have H*(I',Q) = H*(ET xr, Q) for
all £ > 0.

The projection ET x P — P induces a map f : ETxpP — T\P which is
continuous and surjective. We denote the vertices of the finite simplicial complex
T\P by {p1,...,pm}. We choose a vertex ¢; € P which projects to p; and denote
the isotropy group of ¢; in I' by I';. Let V; be the union of all the open simplices of
P containing ¢; in their closure (this is the star of ¢;) and let U; be the image of V;
in T\ P. Then V; is invariant under T'; and we have yV; N V; = @ for ally € T — T
(we are using property (2) of theorem 12 here). Furthermore,

Ui = T:\V; and f~'(U;) = ETxrl'V; = ETxrV;

where I'V; denotes the orbit of V; under the action of T.

Since T acts freely on ET, the space ET/T; is a K(T';,1). the natural map
ETxpV; — ET/T; is a fibration with contractible fibre V;. Therefore, it is a homo-
topy equivalence and H*(f~1(U;),Q) = H*(I';,Q). T; is a finite group; therefore
its rational cohomology is that of of a point (see [Bro], page 59) and it follows that
H*(f~1(U;),Q) is the cohomology of a point for each i = 1,...,m. Similarly, for
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all non-empty intersections W = U;, N...NU;, (with each U;; € {U1,...,Uk}),
the cohomology H*(f~1(W),Q) is that of a point.

A proposition of Leray shows that the cohomology H*(ET xr P, Q) is the Cech
cohomology of the complex C*(W, Q) where W is the cover (f~!(U;))i<i<m of
ETxrpP. (This proposition follows from a Mayer-Vietoris argument; see [Ler] and
also see theorem 7.26 of [Rot]). It follows that HX (ET xp P, Q) = 0 for large enough
k. O

15. Notation. Let T' be a group generated by a finite set S of generators. We
use L(S) to denote the free group on S and « : L(S) — T to denote the canonical
homomorphism. Each element w € L(S) possesses a unique reduced word w =
$187 -+ -s; with s¢S and s;41 # s;~'; the integer [ is the length of w.

Consider an integer n > 1 and the Rips Complex P,(T,S). If (yo,71) is a
1-simplex in P, (T, S), we define E(vy0,7v1) to be the subset of L(S) consisting of
the reduced words w such that m(w) = 4oy1~'. We define E(y0,71) to be the
empty word if 49 = v1. If 0 = (0, 71,72) is an oriented 2-simplex in P,(T, S), we
define E(yo, 00) to be the set of words of the form wowyws where wg € E(vo,71),
wy € E(Pyla'y?)’ and ws € E("yg,"yo).

Assume that we are given a simplicial map F : D? — P,(T',S) where D? is a
simplicial disk. We associate the subset E(zg, 21) to each oriented 1-simplex (zg, 1)
in D% If ¢ is a path in D? which is the union of the 1-simplices (z;, zi41), 0 <
i < m—1, we associate the set F(zg,c) of all the words of the form wowiws - - - Wy,
(w; € E(z;,2i41)) to c.

16. Definition of R,. Let ' be a group generated by a finite set S. For every
integers n > 1, the ser R, is the subset of the free group L(S) consisting of
Words of the form ww'™" with w,w’ € E(e,v) and

(e,7v) a 1-simplex of P, (T, S) and

the words in E(e, d0) where ¢ is a two-simplex of P, (T, S)containing e.

Notice that the words in R, all have length at most 3n; in particular, R, is
finite.

17. Proposition. Let T' be §-hyperbolic for a finite system of generators S and let
n > 40 + 2. Let R, be defined as above. Then < S : R, > is a presentation of T'.

Proof. Let w: L(S) = T be the canonical homomophism and let w € Ker(w). We
must show that w is the product of conjugates of elements in R,.

Let w = s1---s, be the reduced form of w in L(S), and let S! be an oriented
simplicial circle with { vertices pg < p1 < ... < p; = pg. Associate to w the pointed
simplicial map f : (S, po) = (Pa(T,S),e) which maps the 1-simplex (p;_1,p;) of
S' to the 1 simplex (sq ---s;_1,51---5;) of P,(T,5).

Since n > 46 + 2, the complex P,(T',S) is contractible. Therefore, there is an
oriented simplicial 2-disk D? and a simplicial map F : D? — P,(T,S) such that
the boundary of D? is the is the circle S! (with vertices pg < p1 < ... < p =
po) and such that F extends f. We denote the oriented two simplices of D? by
g1,092,...,0N.

Given ¢ € {1,...,N} and a vertex z of oy, we define the subset Ep(z,do;) C
L(S) as follows. If F(o;) is a O-simplex, Ep(z, d0;) is the empty word. If F(o;) is a
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1-simplex, (F(z), F(z')), then Ep(z,do;) is the set of words of the form ww' ™ with
w,w’ € E(e, F(z)~1F(2')). Finally, if F(o;) is an oriented 2-simplex of P, (T, S),
then Ep(z,0o;) us the set

E(e, 0(F(x)~"F(04)))

defined in number 15. In each case, Er(z,d0;) is a subset of R,.

For i € {1,..., N}, we consider the set A; of pairs (z,c) where z is a vertex of
o; and ¢ is an oriented path from pg to z in the l-skeleton of D?. We use M; to
denote the words of the form ara=!, where a € Ep(po,c) and r € Ep(z, do;).

By the construction of f, we have w € Ep(po, S'). Now, every word in Ep(pg, S*)
can be written as the prodcut of words m; € M; for7 = 1,..., N, hence is a product
of conjugates of words in R,,. O

Translated by WILLIAM GROSSO

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY,
CA 94720



QUASI-ISOMETRIES AND QUASI-GEODESICS (CHAPTER 5)

ETIENNE GHYS AND PIERRE DE LA HARPE

ABSTRACT. We have already indicated, in chapter 1, how it is sometimes necessary
and useful to weaken the relation of isometry to that of quasi-isometry. Here, we
similarly introduce the idea of a quasi-isometric map of one space into another; it is an
idea which is well-suited to hyperbolic spaces. The quasi-geodesics of a metric space
X are then the quasi-isometries (or their images) from the real line (or the rational
numbers) into X. For technical reasons, we also introduce local quasi-geodesics in
X: these are maps R — X or 7Z — X whose restrictions to appropriate intervals are
quasi-isometries.

This chapter is dedicated to the proof of a fundamental approximation result
for geodesic hyperbolic spaces: within a finite controllable distance from a quasi-
geodesic (or even a local quasi-geodesic) there always is a genuine geodesic segment
(81 and §4, thereoms 11 and 22); when the space is also proper, this extends to
rays (half-geodesics) and to minimising geodesics (§5, theorem 25). In particular, it
follows that, for a finitely generated group, hyperbolicity, which is defined in terms
of a finite system of generators, is independent of the system chosen (§2, corollary to
theorem 12). Gromov gives a much different, and for now elliptical, method of proof
(page 76 of [Gr5]) for this crucial point of the theory. Finally, we give a criterion for
when a sequence of points defines a quasi-geodesic segment (§1 , theorem 16) which
will be used in chapter 8.

1. GEODESIC AND QUASI-GEODESIC SEGMENTS.
In the first two definitions, the ideas involving L are not used much before §4.

1. Definition. Consider metric spaces X, Xg, a map F : Xg — X and three
numbers A > 1,¢> 0,L > 0. We say that F' is an isometry if

[F(s) = F(t)] = [s — ]

for all s,t € Xo (this does not imply that F' is surjective), and that F is a (A, ¢, L)
quasi-isometry if

1
Sls—tl=c < |F(s) = F{O)l < Mls —t] +¢

for all s,# € X such that |s —¢| < L, and that F is a (A, ¢) quasi-isometry if the
last inequalities are true for all s,# € Xg.
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2. Definition. Let X be a metric space and I in Z or R. An isometry g : [ — X
is

(1) A geodesic segment in X if T is bounded (see definition 1.25).
(2) A ray or a minimising ray if I is semi-infinite.
(3) A minimising geodesic if T is 7, or R

A (A ¢) quasi-isometry f: ] — X is

(1) A (A, ¢) quasi-geodesic segment in X if I is bounded.
(2) A (A ¢) quasi-ray if I is semi-infinite.
(3) A (A ¢) quasi-geodesic if I is Z or R
A (A ¢, L) local quasi-isometry f: 7 — X is
(1) A (A e, L) local quasi-geodesic segment in X if T is bounded.
(2) A (A, ¢, L) local quasi-ray if I is semi-infinite.
(3) A (A, e, L) local quasi-geodesic if Tis 7 or R
3. Remarks.
(1) We also say quasi-isometry and local quasi-isometry , quasi-geodesic seg-
ment and local quasi-geodesic segment,. .., if the constants A, ¢, L are not
important.

(2) Tt is easy to verify that two spaces X, X are quasi-isometric in the sense of
definition 1.7 if and only if there is a quasi-isometry F' : Xy — X such that
sup, ¢ x d(z, Im(F)) < oo.

(3) Quasi-geodesic segments, quasi-rays, and quasi-geodesics are clearly invari-
ant under quasi-isometry, in contrast to the ideas introduced by Gromov in
§7.2 of [Gr5].

(4) As in the case of segments, we define parametrised quasi-geodesic segments
and geometric quasi-geodesic segments, and we commit the same abuses (see
definition 1.25).

(5) A quasi-isometry with domain R is not necessarily continuous; for example
the map R — Z which maps a number to its whole part. A quasi-isometry
can be locally “very irregular”; for example, there is an easy construction
of a map f : R — R? which, for every i € 7, maps the interval [i,i + 1] onto
the square defined by the equations i < z <i+land 0 <y <1 (itisa
variant of the Peano Curve).

(6) Tt might be less abusive to call the quasi-geodesics defined above “min-
imising quasi-geodesics”. Although we do do not do this, in a manifold, a
geodesic is classically defined by a local property, and is not necessarily a
quasi-geodesic in the above sense.

(7) When I = {m,m+1,... ,n} is a bounded interval in Z, we often denote a
map from I to X by (#;)m<i<n. We use (2;);>0 and (2;);¢z similarly.

4. Definitions. Let X be a metric space, Y and Z two non-empty subset of X
and H a positive real number.

We call the set {z € X : d(z,Y) < H} the H-neighborhood of Y in X and denote
it by v (V).

We define the Haussdorff distance of Y and Z, denoted by H(Y,Z), to be the
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number defined by
inf{H >0:Y Cvy(Z)andZ C vy (Y)}

when this expression makes sense (and oo otherwise).

Furthermore, suppose A, B are two non-empty sets and f: A —- X, G: B = X
are two maps. We denote the Haussdorff distance between the images f(A), g(B)
by H(f,g) and call this the Haussdorff distance between f and g.

5. Remark. The Haussdorff distance is not a distance in the strict sense; First,
because it can take on infinite values and, also H(Y,Z) = 0 does not imply that
Y = Z. But, this i1s not important here.

The following result is the central theorem of this chapter. It reappears below
in a different, reinforced, form as theorem 11, and one can think of theorems 12,
16 ,21 and 25 as corollaries or variants of it.

6. Theorem. Given three real numbers § > 0, A > 1, and ¢ > 0, there is a
constant H = H (4, A, ¢) with the following property.

Let X be a geodesic dhyperbolic space, I = [0, a] a bounded interval in Z or R,
and f: I = X a (X, ¢) quasi-geodesic segment. Denote the interval [0, |f(a)— f(0)]]
in R by J and choose a geodesic segment g : J — X with origin f(0) and endpoint
f(a). Then Im(f) Cvu( Im(g)).

7. Lemma. Consider a metric space F, two points zg,z, € F and a geodesic
segment [xq,z,] which joins them. Also consider a constant ¢’ > 0, a metric tree
T and a map ® : F — T such that

(1) The restriction of ® to [xg, x,] is an isometry.

(2) We have |[u—v| —¢ < |®(u) — ®(v)| < |u—v| for allu,v e F.
Let x be a point in F. Choose y € [xq, x,] such that |z — y| = d(z, [z, z,]). Let
z' € T be the point in [®(xg), ®(x,)] with minimal distance from ®(x) and let
z € [z, &p] be such that ®(z) = z'. Then ly—z| < ¢,

o) J

® X S (X)
O0—0O ) ® *—©
T Xg  8(xp) 5(y) 3(2)
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Proof. We have |z — y| < |z — z| and

|z —yl — ¢’ <[@(x) — @(y)| < |z —y|
v — 2| — ¢ < |®(x) — ®(2)] < [z — 2]

Therefore,
[@(y) — @(2)| = [®(y) — (2)| - [®(2) = B(2)[ < o —y| — |z — 2| + ¢

And it follows that |y —z| < ¢. O

8. Lemma. The reduction to the case ¢ = 0. We use the notation of theorem 6
and consider a (A, ¢) quasi-geodesic segment f: I — X.

Then there is a constant X' = XN (A, ¢), an interval I' of Z and a (N,0) quasi-
geodesic segment f : I' = X from f(0) to f(a) such that

Im(f) C v ( Im(f')) where H = max{(2A? + 1)c, \%c + 2)\ + ¢}

Proof. First, assume that 7 is an interval [0,a] C R. If a < 4Ac, every point ¢ € [0, a]
is within 2Ac of {0, a}, and the distance between f(¢) and f({0,a}) never exceeds
(202 + 1)e. Thus, we choose a geodesic segment f/ from f(0) to f(a), and we have
1m(f) C vonssne( Im(f"))

We can therefore suppose that @ > 4Xc. Choose an integer a’ such that ;5- <
a’ < 552, and let I denote the interval {0,...,a'} in Z. Set t; = ai,a forallie I’
(so that t; = 0 and to = a). We define f' : I' —> X by f'(i) = f(t;). One can
easily check that

n(f) C vagrosnrel ("))

Let i,j € I’ be such that i # j. By the hypotheses on f, we have

1
Tt —til = e <Uf() = f{t5)] < Alts — 23] +c

hence )
a . . . . a . .

2 = dli—dl <170~ PO < DS+ dlli—

As %% —c>cand A5 +c< 4X\2c + ¢ (by choice of a'), we can set
/ 1 2
A = max{—, ¢}
c

We have

Sl < 176) = PG < Xl

for all 7, j € I'; therefore f' is a (X, 0) quasi-geodesic segment.

Next, assume that I is an interval {0,1,...,a} in Z. We set X = max{\, \%c +
2XA + ¢}. Let N be the integer such that Ac+1 < N < Ac+ 2, and let a’ be the
integral part of £-. We denote the interval {0,...,a'} by I' and define f': I’ = X



QUASI-ISOMETRIES AND QUASI-GEODESICS (CHAPTER 5) 5

by f'(i) = f(Ni). for each i € I, there is an ¢ € I’ such that |i — Ni'| < N, hence
such that

|£(5) — /(")) AN + ¢ < Mc+ 2\ + ¢ < lambdd’

Tt follows that Tm(f) C v ( Im(f")).
Let i,j € I' be such that 7 # j. Since %—cz % > % and AN + ¢ < X, we
have, by our hypotheses on f

1, .1 . . . . . . o
yIZ—JISXINZ—NJI—CSIf'(l)—f’(J)lSAINZ—NJHCSXIZ—JI

and f'is a (X, 0) quasi-geodesic segment. O

9. Proof of Theorem 6. The preceding lemma shows that we may assume, without
loss of generality, that T is an interval {0,... ,n} of Z and that f: T — X isa (A,0)
quasi-geodesic segment. Set z; = f(i) for each i € I. Choose a geodesic segment
[0, 2,) with endpoints zq and x,. We need to show that {z;}o<i<, is contained
within the H-neighborhood v ([zg, 2,]) for a constant H which only depends on
d, A, and c¢. The argument which follows is an adaptation of that which one finds
in the notes of Thurston (see proposition 5.9.2 of [Thu]).

First, we define H. Choose an integer N > 1 such that log, (N +2) < %—2. We
use k to denote the integer satifying k — 1 < log, (N +2) < k and set ¢/ = 2(k+1)d
and R = %)\N + ¢’. Thus, we observe that

1 46 d

c c
> %(25(k+1)—c’):0

and, finally, we set

-1
o

1
H:R+)\+2A(X—2N) (R+X+)

There is nothing to show if Im(f) is in the R neighborhood of the segment
[zg,...,z,] and henceforth, we suppose that Im(f) ¢ vgr, where we write vg
for vr([zo, zn]).

Consider the integers u,v € {1,2,...,n — 1} such that

u<wv
Ty—1 € VR
Ty41 € VR

{anIu+1a~~~ :xu} CX—vp

Weset Iy = {u,...,v}. For each i € Iy, we choose y; € [z0, 2,] such that |z; —y;| =
d(z;, [0, Tn]).



6 ETIENNE GHYS AND PIERRE DE LA HARPE

®x,

Consider the integers i,7 € Iy such that 0 < j — i < N. We denote the set
[zo, o] U{®i, ..., z;} by F and choose zq to be the base point of F'. Since N +2 <
2% theorem 2.12.ii shows that there is a pointed real tree 7 and amap & : F — T
such that

(1) The restriction of ® to [zg, z,] is an isometry.
(2) We have |[p—q| — ¢ < |®(p) = ®(q)| < [p—g| for all p,g € F.
We have

A(®(z:), [®(x0), B(2a)]) = R~ ¢
A(®(z;). [(x0), D(aa)]) = R~ ¢
[®(zi) — (2] < Jas — 25| AN

Since AN = 2(R — ¢'), the point in [®(z0), ®(z,)] a minimum distance from ®(z;)
coincides with the point having minimum distance from ®(z;). It follows from
lemma 7 that |y; — y;| < 2¢'.

By successively applying the preceding argument to the pairs

(4,7) = (u,u+ N),(u+ N,u+2N), ...
We obtain

|33u_$v| < |xu_yu|+ |yu_yu+N|+|yu+N_yU+2N|+~~~+|yU _mvl

|u—v]

§R+)\+(T+1)2c’+)\+R

But, on the other hand, §|u — v| < |2, — 2,| and it follows that

CI

1
— ——2—)<2 A /
|u v|(}\ N)_ (R+A+¢)
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It follows that

1 o !
u—Zi| <M+ —-2=) 2(R+X+¢
ru =i AL —25) 2R+ A+0)
for all i € {u,u+1,...,v} so that {zy, Zyq1,...,2,} is in the ball centered at z,

with radius H — R — A, and hence in vg[zg, z,].
The preceding statement is equivalent to : for all “connected components” of
{Zu, Zusg1, .-y} in IM(F)N(X —vr([zo, 2s])) we have Im(f) C vy ([zo,z,]). O

Theorem 11 uses the same idea as proposition 6.

10.Lemma. Given three real numbers A > 1,¢ > 0 and H' > 0, there is a constant
H = H(\ ¢, H') with the following property.

Let X be a metric space, I = [p,q] and J = [r,s] two intervals in Z or R, with
two maps f: I - X and g : J — X. We assume that

(1) f is a (A ¢) quasi-geodesic segment.

(2) g is a geodesic segment.

(3) 1£(p) —g(r)| < H' and |f(q) —g(s)| < H'.

(4) Im(f) Cvm:( Im(g)).
then, H(f, f') < H
Proof. The constant H = 2H' + )\ + ¢ is suitable. In fact, consider a partition
p=to<t; <...<t,=qof I such that |t; —¢;—1| < 1forallie {1,...,n}. By
hypothesis, for all i € {0,...,n} there is a point u; € J such that |f(¢;) — g(u;)| <
H', and we can suppose that ug = r and u, = s. Since

|f(tic1) = FE) S A+
we also have
lg(uiz1) —g(us)| <2H + X +c
For all u € J, there exists an 1 € {0,...,n} such that

1
fu—usl = lg(u) — g(us)| < '+ 5(A+ )

Tt follows that d(g(u), Im(f)) < 2H' + %()\ +¢) O

11. Theorem. Given three real numbers § > 0, A > 1, and ¢ > 0, there cxists a
constant H = H (4, A, ¢) with the following property.

Let X be a geodesic §-hyperbolic space, I = [a,b] a bounded interval in Z or
R, and f: I = X a (XA ¢) quasi-geodesic segment. Let J C R be an interval of
length |f(a) — f(b)| and let g : J — X be a geodesic segement with origin f(a) and
endpoint f(b). Then H(f,g9) < H.

Proof. This result follows from proposition 6 and lemma 10. O
2. INVARIANCE OF HYPERBOLICITY UNDER QUASI-ISOMETRY
AND QUASI-INVARIANCE OF THE GROMOV PRODUCT

The following result (which immediately implies theorem 1.29) is essential for
the idea of a hyperbolic group to even make sense.
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12. Theorem. Consider two geodesic metric spaces X,Y and a quasi-isometry
F:X =Y. IfY 1s hyperbolic, then X 1s too.

Proof. We use § > 0, A > 1 and ¢ > 0 to denote the constants such that Y is §-
hyperbolic and such that F is a (A, ¢) quasi-isometry. Denote the constant H (4, A, ¢)
of theorem 11 by H.

Let I be a bounded interval in R ( or in Z) and let g : I — X be a geodesic
segment. Then Fog: T — Y is a (A ¢) quasi-geodesic segment. Tt follows that,
if (F o g)o denotes a geodesic segment with the same endpoints as F o g, we have
H(Fog,(Fog) <H.

Consider a geodesic triangle A in X and denote its three sides by g; : I; —
X (j = 1,2,3). We obtain,as above, a geodesic triangle FA; in YV with edges
(Fogj)o:J; =» Y. For each point y in the image of (F o g3)g, we have, by the
hypothesis on Y and § and by proposition 2.21

d(y, Tm((F o g1)0) | ] Im((F 0 g2)o)) < 49

For each point ¢ in the image of F o g3, we therefore have
d(y, Tm(F o g1)| ] Tm(F 0 g3)) < 46 + 2H
It follows that , for each point z in the image of g3, we have
d(z, Tm(g1) | ] Tm(g2)) < A(40 +2H + ¢)
By again applying proposition 2.21, we see that X is §’-hyperbolic with ¢’ = 8\ (45+
2H +¢). O

13. Remark (J. Heber). Theorem 12 is no longer correct if we omit the as-
sumption that X is geodesic. Indeed, let X be the broken semi-infinite line in in
the Euclidean plane C defined by X = J,,5,¢" (Xo), with Xo = [0, 1+ ][ J[1 + 1, 2]
and ¢ : 2% 2z + 2. Let Y be the half-axis R and let F : X — Y be the vertical
projection. We give X and Y the metrics induced by the usual metric on C. The F'
isa (\/ 2, 0) quasi-isometric bijection and Y is 0-hyperbolic, but X is not hyperbolic.
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14. Corollary. Let T be a finitely generated group, S, T two finite systems of
generators of U such that S = S™! and T = T~1, and let G(T,S), G(T,T) be
the associated Cayley Graphs as in §1.2. Then G(T',S) is hyperbolic if and only if
G(T,T) is.

Proof. This follows from theorem 12, because, as we saw in 1.9, the spaces G(T',.5)

and G(T',T) are quasi-isometric. O

So, the notion of hyperbolic group makes sense, as we had announced in definition
1.30

In view of chapter 7 (which concerns the boundary), it is also useful to study
the effects of a quasi-isometry on Gromov Products. The next proposition is a
contribution (among others) of M. Berger to our text.

15. Proposition. Given three real numbers 6 > 0, A > 1 and ¢ > 0, there is a
constant A = A(d, A, ¢) with the following property.

Let X, Y be two geodesic 6-hyperbolic spaces and F : X — Y a (A ¢) quasi-
sometry. Let w, x, y, z be points in X. Then

(1) 3w =A< (F@)F@)pw) < Mzly)w + A
(2) 3llyw — W)l = A< |(F (@) F ) rw) — (F)IF () Fw)]

<A@ |y)w = (y]2)w|+ A

Proof. Denote the constant H (4, A, ¢) of theorem 11 by H.
(1) We choose geodesic segments [z,y] in X and [F(z), F(y)] in Y. We have

(@Y)w < d(w, [z, y]) < (2|y)w
(F(@)|F(y)Fw) < d(F(w),[F(z), F(y)]) < (F(@)|F(y))F) +96

by lemma 2.17 and
H(F([e,4]). [F (=), F(y)]) < H

by theorem 11. On the other hand,

1

Y [2,y]) — e < d(F(w), F([z,4])) < Ad(w, [z, y]) + ¢
by the hypothesis on F. We therefore have

(F (@) F () rw) < d(F(w), [F(z), F(y)])
< d(F(w), F(lz,9])) + H
< M(w, [#,) + ¢+ H
<AMz|Y)w + A0 +c+ H

and, similarly

(F(2)|F(¥)rw) > v (|Y)w — A6 —c— H

> =
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Every constant A > A§ + ¢ + H is therefore suitable for 1.

(2) We choose geodesic segments [w, z], [w, y][w, 2], [, y]and[y, z] in X. We use
A; to denote the geodesic triangle [w,z]J[w,y]U[z,y] and v € [w,z],
uz € [w,y], and us € [z,y] to denote its inscribed triple of points (the
inverse image of the center of the corresponding tripod, see definition 2.18).
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We use A, to denote the geodesic triangle [w, y] U[w, 2] U[y, 2] v1 € [w, y],
vy € [w, z], and vs € [y, z] to denote the points of its inscribed triple. We
have that

lw—u1| = |w—us| = (2]y)w
lw—v1] = |w—v2| = (y]2)w

Similarly, we introduce a geodesic triangle A} in YV

such that

|F(u) —uf| <H i=1,23
|F(v;)— /| <H i=123

The tails of Ay and Ay are less than 45 (see definition 2.18 and proposi-
tion 2.21), and hence the diamters of the sets {F(u1), F(u2), F(us)} and
{F(v1), F(v2), F(v3)} are less than 46X + c. Tt follows that the diamters of
{uf,uly, usi} and {v{, v}, v4} are less than 40 A+ c+2H. The argument used
in the proof of lemma 2.20 shows that

|ufy — ub| < 3(45A+c+2H)

[\

[v} — v} < =(40A + ¢+ 2H)

N | Qo
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If we set B = %(46)\—1— ¢+ 2H)+ H and A = 2B + ¢, we have, in light of
the preceding equations,

Plus)— | < B and  [F(vr) — F(o})| < B
hence

[(F(2)IF () Fw) = (FW)IF(2)) pewy| = |IF(w) = us| = [F(w) — vi]|
= Juy 4]
< |F(u) = F(vi)| + 2B
<Auz—vi|+2B+c¢
= MN@y)w = (yl2)w| + 4

We get the lower bound in the same way

3. A CRrITERION FOorR QUASI-GEODESICS.

We consider a constant § > 0 and a geodesic hyperbolic space X which satisfies
the Rips condition with constant d (that is, d(u, [z, y] [z, #]) < § for every geodesic
triangle [z, y] U[y, z] Ulz, 2] and for every u € [y, z] — see definition 1.27). The
criterion of this section is an approximation of result 7.2C in [Gr5]

16. Theorem. We consider a constant k > 0 and a sequence (Ii)ogign of points
m X such that

|#i_1 — @41 | > maz{|zi_ — 2|, |2; — 24|} + 180 + &

foreachiec {1,... ,n—1}. Then |zqg — z,| > kn.

Suppose, furthermore, that L is a constant such that |z;—1 — z;| < L for all
i€ {l,....n—1}. If we set A = maz{L L}, then (z;)o<i<n is a (A, 0) quasi-
geodesic segment.

The second assertion follows easily from the first. For the proof of the first
statement (and, in particular, in numbers 17 and 19), we adapt arguments of J.

Cannon (see [Cal] and [Ca2]).

17. Definition. Let [w, z] and [w, y] be two geodesic segments with the same origin
X, and let ¢ > 0 be a constant. We call the quantity

sup {max{|u — w|,|v —w|} : w € w,z],v € [w,y] and |u—c| < ¢}

the c—deviation of [w, z] and [w,y] and denote it by dev.([w, z], [w,y]).
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18. Remarks. We use the notation of definition 17, but write dev, for dev, ([w, z], [w, y]).

(1) We clearly have ¢ < dev, < maz{|z — w|, |y — w|}, and one easily verifies
that dev, < (z|y)w + c.
(2) Furthermore, suppose that ¢ > 2d. We also have

|z —w|+ |y — w| —2(deve +6) < |2 -y < [z —w|+ |y - v

In fact, choose a segment [z, y] and let p be the point in [z, y] farthest from z such
that d(p, [w, z]) < d; then d(p,[w,y]) < . Let u € [w,z] and v € [w, y] be points
such that |p — u| < § and |p — v| < 4. Then |u— v| < ¢, hence |u — w| < rmdev.
and |v — w < dev,. It follows that

|z —w|+ |y — w| < |z —u|+ |y — v| + 2dev, < |z — p| + |y — p| + 2dev,

and the assertion follows because |z — y| = |z — p| + |p — y|-

19. Lemma. We consider a constant k > 0 and a sequence of points (l‘i)ogisn n
X. For each i € {1,...,n}, we choose a geodesic segment [x;_1, x;] joining x;_1
and x;; we set devg = 0 and

dev; = devss([zi—1, z:], (i, Tiy1])

foreach i € {1,... ,n}. If we have

|z;i—1 — x| > devi_1 + dev; + 50 fori €{l,... , n—1}
|zio1 — ;] > 2devi_y + 126+ k  fori €{1,...,n— 1}

then

|zg — x| > k0
Proof. for every i € {2,...,n}, we choose a geodesic segment [zg,z;]. We first
show that

devss ([zo, #i], [2i, 2ig1]) < dev; + 5d

This assertion is trivial for ¢ = 1; we proceed by induction on i. Hence, suppose
i > 2 and that the assertion is true up to i — 1. Let u € [zg, ;] and v € [z;, zi + 1]
be points such that |u — v| < 36. we must show that |u — z;| and |v — z;| are less

than dev; + 54.
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i-1 i i+1

We choose a point r € [zq, z;] for which there is s € [zo, z;—1] and t € [z;_1, 2]
such that |r —s| <4 and |r —¢| < §. Similarly, we choose a € [u, z;], b € [z;,v] and
¢ € [u,v] such that |a —b] < § and |a — ¢| < 4.

Suppose that r € [a,z;]. By considering a triangle with vertices z;,a, b, we see
that d(r, [z;, b]) < 24. Tt follows that d(¢, [z;, 8]) < 3 and hence that |t —z;| < dev;.
But, [t — s| < 26, hence [t — z;_1| < dev;_1 + 56 by the induction hypothesis. We
therefore have |z;_1 — ;| < dev;_1 + dev; + 5J, which is contrary to this lemma’s
hypotheses.



QUASI-ISOMETRIES AND QUASI-GEODESICS (CHAPTER 5) 17

i+1
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We can therefore suppose that r € [zg, a] . By considering a triangle with vertices
z;,r,t, we see that d(a, [z;,1]) < 24; it follows that d(b, [t, z;]) < 3¢ and hence that
|b—z;| < dev;. Since |[v—b| < [v—c|+]|c—a|+|a—b| < 5, we have v—z;| < dev;+54.
Finally,

|lu— ;| <|u—c|+|c—al+ |a—b|+1|b— ;] < dev; + 58

and we have finished the induction on 1.
The assertion of the lemma if trivial if n = 1, and we now proceed to induct on
n. We assume that n > 2 and |29 — 2,_1] > &(n — 1). Remark 18.2 shows that
|I0 - mnl Z |I0 - xn—1| + |=’En—1 - mnl - 2deV35([l‘0, mn—l]: [:En—la xn]) —26

Now, the first part of this proof showed that

|21 — zn| — 2devas([To, Zn-1], [Tn-1, Zn]) — 20 > |2n_1 — Tn| — 2dev,_1 — 126
> K

Therefore, we have that |zg — z,| > kn. O
20. Proof of Theorem 16. It suffices to show that the hypothesis of lemma 19
are satisfied. We choose i € {1,...,n — 1} and two points u € [z;_1,2;],v €
[z, zit1] such that |u —v| < 38. As in chapter 2, we now associate a metric tripod
T and a map f : [zi—1, 2] U[xs, ¢iy1] = T. Since f doesn’t increase distances,
|f(u) = f(v)] < 348. Hence,

lu— i = |f(u) = f2:)] <36 + (2ioa|zig1)s,
and a similar formula for |v — z;|. Also,

dev; <35+ (zi—1|®ig1)s,

First, it follows that, for i € {1,...,n — 1}, we have

1
dev;_; +dev; + 54 < 115 + 5 {leice — ica| + |wic1 — 2| — |wice — x| + |wic1 — @ + |2 — 2ig1 — |xio1 — g}
1
<110+ |mimy — 2] + 2 {lzice — @im1| — |@ice — 2|+ |2i — g1 — |ic1 — @ig1|}

1 1
<118+ |zimg — x| — 3 {zice — @] — |@ice — i_a|} — 3 izt — ziga] — & — 2ip1]}

<118+ |@jmy — x| — 186 — k < |®iog — 24
It also follows that, for i € {1,...,n}, we have

2devi_1 + 120+ K < 183+ k + |zjm1 — 2|+ — 2z — i+ 1| — |@io1 — 24

< |wioq — a4

Hence, we can apply lemma 19. O
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4. LocAL QUAsi-GEODESIC SEGMENTS.

Using theorem 16, we are going to show the following extension of theorem 11

21. Theorem. Given 38 real numbers § > 0,A > 1 and ¢ > 0, there exists a
constant H = H(d, A, ¢) and L = L(d, A, ¢) with the following property:

Let X be a geodesic §-hyperbolic space, I = [a,b] a bounded interval in Z or R,
and f: 1 = X a (A ¢, L) local quasi-geodesic segment. Let J C R be an interval of
length |f(a) — f(b)|, and let g : J — X be a geodesic segment with origin f(a) and
endpoint f(b).

Then H(f,9) < H.

In the rest of this section, X denotes a geodesic d-hyperbolic space. Here is,
first, a special case of theorem 21 corresponding to I C Z and ¢ = 0.
22. Lemma. Given a real number A > 1, there is a constant Hy = Hy(d,A) and
Lo = L2(d, A) with the following property: Consider an integer n > 1, a (A, 0, L)
local quasi-geodesic segment (y;)o<i<n and a geodesic segment [yo, yn] joining yo to
Yn. Then

H({yiYo<i<n. [Yo,Yn]) < Ha
Proof. We denote the constant H(d, A, 0) of theorem 11 by H; and choose an integer
N such that
N >2A(186+1) and N >4A(H; +2A%H; 4 4A%))

and set Ly = 2N. The constant H; will be given precisely below so that Hy < 2AN.

Let p be the whole part of £-. We define a sequence (2;)o<j<p by 2; = ynj. If
n < 2N, then |y; — yo| < A2N for each i € {0,1,...,n} and the lemma is clearly
true. We may therefore suppose that p > 2. We show that

(*) |zj—1 = zja| S max{lzj—1 — 2], [z — 241 [} + 180 + 1
for all j € {1,...,p— 1}. We may assume, WLOG, that j is 1.

f(zo)



20 ETIENNE GHYS AND PIERRE DE LA HARPE

Choose geodesic segments [zg, z1], [21, z2] and [zg, z2]. This defines a geodesic
triangle A and we associate a metric tripod 7" and a map f : A — T to A as
in chapter 2. We denote the inverse images of the center of T' by u € [z, 1],
v € [21,22], and w € [zg, z2]. Recall that |u — v| < 44 (proposition 2.21). Theorem
11 shows that there are integers 7, j such that 0 <i < N < j < 2N and such that

i—ul < H, and [y — v < H,

Since |i — j| < 2N = L4, we have %|z —J|l < yi —yj] £ 2H1 4 40 and hence that
|i — N| < A(2H; + 46). Therefore

lu— 21| < |Ju—yil + |yiz1| < Hi + A*(2H, + 46)

On the other hand, |zg — 21| > %N. One hypothesis on N implies that we have
|u—z1| < 3|20 — z1|. Similarly, [u—z1| = [v—21| < $|21 —22]. We can now compute

|20 — 29| = |20 —w| + |w — 22| = |20 — 21| + |21 — 22| — |[u — 21| — |v — 71|
1 .
2 |20 = 21| + |21 = 2zof = o min{|z0 — 21, [z1 — 22}

1 .
= max{|z0 — 21|, |21 — 22|} + §mlﬂ{|zo — 21|, |21 — 22|}

N
> max{|zo — 21|, |21 — 22|} + A

The other hypothesis on N shows that the inequality (*) is therefore true.

Since (yi)o<i<n is a (A, 0, La) quasi-geodesic segment, we have that |z;_1 —z;| <
AN for all j € {1,...,p}. Therefore, inequality (*) and theorem 16 show that
(zj)o<j<p 1s a (AN, 0) quasi-geodesic segment.

We let H; denote the constant H(J, AN,0) of theorem 11 and and choose a
segment [yo, ynp] joining y + 0 = zg to ynp = z,. then d(z;,[yo, ynyp]) < Hi
for all j € {0,...,p}. Each point of [yo, ynp] is within 46 of [yo, Y] U[Yn, ynp)
(by proposition 2.21), and hence within 46 + AN of [y,0, yn]. so, d(z;, [yo, Yn]) <
H{+46+AN. Since N and Hj don’t depend on § or A, lemma 10 shows that there
is a constant H/, independent of § and A, such that

H({z bo<i<p: Yo, yn]) < Hy
But
H({zjto<j<ps {vitocicn) < AN
Tt therefore suffices to set Hy = H) + 2AN. O

23. Lemma. Guwen constants A > 1, ¢ > 0, and Ls > 1, there are constants
H=H(\c), A=A\ c) and L = L(A, ¢, Ly) with the property below.

Let X be a metric space and (2;)o<i<a be (A, c¢L) local quasi-geodesic segment in
X. Then there is a (A, 0, Ly) local quasi-geodesic segment (y;)o<j<p such that

Yo=2x0 |yp—xal <H and H{{xi}o<i<a {¥j}o<i<s) < H
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Proof. Set H = Mc+ 2 +¢, A =max{\, H}, and L = Ly(Ac+ 2).
Let N be the integer such that Ace+1 < N < Ac+ 2 and let b be the whole part

of %; weset y; = an; forall j € {0,...,b}.
For all ¢ € {0,...,a}, there exists a jin{0,...,b} such that |i — Nj| < N.
Since N < L, we have |z; — y;| = |z; — #n;] < AN + ¢. Hence, we have

H({zito<i<a, {¥j}o<ij<p) < H and, similarly, |y, — 24| < H.
Let 7,5 C n{0,...,b} be such that 0 < |i — j| < Ly. Since NLy < L, we have
|[Ni— Nj| < L and

N .. 1 . . . . ..
(5 -c) =il < NI = Nil = e < I =yl S ANi = Nl 40 < OV + 0=

Now %—cz %—cz % and AN + ¢ < A2c+ 2X 4 ¢ < A; in this way, we sce
that (y;)o<j<s is a (A, 0, La) local quasi-geodesic segment. [

24. Proof of Theorem 21. We consider the statement of theorem 21 in which 7 is
an interval in Z, and let §, A, ¢ be as given in the theorem.

We use A = A(d,¢) to denote the constant of lemma 23, and then set Hy =
Hy(8,A) and Ly = L3(d,A) to be the constants from lemma 22. Finally, we set
H' = H(X ¢)and L = L(A, ¢, L2) to be the constants from lemma 23.

If (z5)o<i<a is a (A, ¢, L) local quasi-geodesic segmen, we obtain, as in lemma 23,
a (A, 0Ls) local quasi-geodesic segment (y;)o<;<p such that yo = zo, |2, —ys| < H’
and H({zi}o<i<a, {¥jto<i<p) < H'. Lemma 22 shows that

H({y; Yo<i<h, [Yo, ve]) < Ha
But, on the other hand, H([zo, z4], [yo, ys]) < H' + 48. Tt follows that
H({zito<i<a, [®0, %a]) < 2H'+ Hy 4+ 40

and it therefore suffices to set H = 2H' + H, + 44.
We leave the details of the statement when I C R to the reader. O

5. LocAL QUASI-RAYS AND LOCAL QUASI-GEODESICS IN PROPER SPACES

Recall that a metric space is proper if every bounded ball is compact (definition
3.17). For these spaces, we can, via a theorem of Ascoli, extend theorems 11 and
21 to rays and minimising geodesics. More precisely,

25. Theorem. Given three real numbers § > 0, A > 0, and ¢ > 0, there exist
constants H = H(8, A, ,¢) and L = L(8, A, ¢) with the property below.

Let X be a proper, geodesic, §-hyperbolic metric space.

(i) Let f be a map from Ry or N to X which is a (A, cl) local quasi-ray. There
erists a minimising ray g : Ry — X such that g(0) = f(0) and H(f,9) < H.

(ii) Let f be a map from R or 7Z to X which is a ( lambda,c, L) local quasi-
geodesic. There exists a minimising geodesic g : R — X such that H(f,g) < H.

Proof. Let H' and L be the constants given by theorem 21 (where they are called
H and L). We will show that one can set H = 2H' + 1.
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Let f be as in assertions (i) and (ii). For al integers k£ > 1, we consider the
set g of all geodesic segments originating at f(0) and with endpoints in the ball
By = {z € X : |e— f(0)| = k}; we give ¢ the topology of uniform convergence
(for this to make sense, we consider all geodesic segments in g with length [ < &
as maps defined on [0, k] which are constant on [, k]). Since the ball By is compact
(X is poper), Ascoli’s theorem shows that &5 is compact.

For each geodesic segment h : J — X, where J = [a,b] C Ry and A(0) = f(0),
we set JE) = J|J[o, k] and we denote the restriction of h to J*¥) by H®*). Hence,
we have h%) € ¢

(i) Consider a (A, eL) local quasi-ray f. For each integer n > 1, set a, =
|f(n) — f(0)] and J,, = [0, an] C Ry. Denote the restriction of f to [0,n] by f,. We
choose a geodesic segment hy, : J, — X with endpoints f(0) and f(n) such that
H(f, ho) < H'.

Let k£ > 1. Since ¢ is compact, there is a subsequence (hk,m)mZI such that the
sequence (h(k)k,m)m21 is uniformly convergent. Cantor’s diagonalization argument
provides us with a subsequence (g, )m>1 of (hn)n>1 witht he following properties:
first, for all & > 1, the sequence (g(k)m)mzl converges uniformly to a segment
g'k) : [0, k] = By; second, g) extends g(*) if | > k. These geodesic segments g(*)
define a ray g : Ry — X originating at f(0).

It remains to estimate H(f, g).

Let z € Im(f). Let n be a large enough integer so that z € Im(f,). We can
choose y, € Tm(hy,) such that |z — y,| < H'. The sequence (Yn)ns1 possesses a
subsequence which converges to a point y € Im(g), and we still have ¢ —y| < H'.
Hence, the image of f is in the H' neighborhood of the image of g.

On the other hand, let y € Tm(g). For all m sufficientlky large, we choose a
point ¥, € Im(gn) in such a way that the sequence (Y )ms1 converges to y, and
we also choose a point z,, € Im(f) such that |y, — x| < H'. If m is sufficiently
large, we therefore have |y — 2| < H' 4+ 1 and sot he image of g is in the (H' + 1)
neighborhood of that of f.

(i1) Consider a (A, ¢, L) local quasi-geodesic f. For each integer n > 1, we choose
a geodesic segment [z_p,,z,] with endpoints z_, = f(—n) and z, = f(n). It
follows from theorem 21 that there exists y, € [z—n, z,] such that |y, — f(0)] < H'.
Let y € X be the limit of a convergent subsequence (y,,);>1 of (y¥n)n>1; moreover,
we have |y — f(0)| < H'.

Furthermore, by freely passing to a subsequence, we show as above in (i) that
the segments [x_,, 2,,] coverge to a geodesic g : R — X passing through y, and
that #(f,g) < 2H' +1. O

Translated by WILLIAM GROSSO
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THE BOUNDARY OF A TREE (CHAPTER 6)

ETIENNE GHYS AND PIERRE DE LA HARPE

ABSTRACT. This chapter is a look at an example preparing us for the boundary of
a hyperbolic space. We define several metrics on the boundary of a tree, then we
examine how the isometries and quasi-isometries of the tree act on its boundary. The
last section is dedicated to definitions suitable for a “conformal” vocabulary.

1. DISTANCES ON THE BOUNDARY

Let X be a locally finite metric tree whose edges are all of length 1 (see chapter
2, §1). We also assume that each vertex of X possesses at least 3 neighbors (in
particular X is infinite).

Recall (definition 5.2) that the raysin X are the minimizing semi-infinite geodesics
in X. We say that two rays are equivalent if they have the same end, this means
that they contain a common subray. (the rays can also be geometric rays, this
means they are subsets of X; see definition 1.25 and remark 5.3.4

1. Definition. The boundary 90X of X is the set of equivalence classes of rays of
X.

We choose a vertex w € X as a base point. Each element a of X is represented
by a unique ray [w, a) starting at w and going to a. We define the Gromov Product
on 0X by:

(alb) = lim(z[y)

where z (respectively y) is a point on the ray going to a (respectively b) and where
the limit is defined for large enough distance |z — w| and |y —w|. For all real number
€ > 0, we can then define

de(a,b) = e~ clalt)

We immediately have:

(alb) = +o0 & de(a,b)=0&a=1b
(bla) = (a]b) & dc(a,b) =dc(b,a)
(ale) = min{(alb), (blc)} & dc(a,c) = max{d.(a,b),d(b,c)}

for all a,b,c € 0X. Thus, d. is an ultrametric distance on X. We use d for
dy and note that d.(a,b) = d(a,b)®. In particular, the distances d. are pairwise
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topologically equivalent and therefore define a topology on dX. Furthermore, this
topology does not depend on the choice of w. We may also verfiy that X can be
identified, with its topology, with the space of ends of X. We will not emphasize
this aspect, which is very dependent on the fact that X is a tree. The boundary
of a hyperbolic space (defined studied in the next chapter) is, in general, different
from the space of ends (see proposition 7.17).

2. Proposition.
(1) The pair =(X,9X) is a visibility space.
(2) The space X is compact and perfect (hence uncountable).
(3) Suppose that there exists an integer v > 2 such that each vertez of X has at
least v+ 1 neighbors. Fvery distance d. makes 0X into a metric space with
finite Haussdorff dimension.

Proof and Comments.

(1) The assertion says that, for all a,b € 9X such that a # b, there is a
minimising geodesic in X with endpoints a and b (the geodesic is unique
here, but this is not part of the definition of visibility).

(2) The space 0X is homeomorphic to the projective limit thFn where F), is the
set of points distance n from the base point, given the discrete topology, and
with F41 — F, maps ¢ € F,41 to [w,z] (| F, (exercise: modify assertion
(2) for the case where X possesses vertices with 2 neighbors).

(3) For the definition of Haussdorff dimension, see, for example, [Fal]. The
proof of (3) is an easy exercise. If is equally easy to construct an example
of a a tree X which doesn’t meet the condition on v and for which the
Haussdorff dimension of (0X,d,) is infinite for all e.

O

We choose another vertex w' in X as the base point. We use (a|b)’ to denote the
Gromov Product and d.'(a,b) to denote the distances on X which are defined as
above., but this time relative to w’. In view of the arbitrary choice of base point,
we need to know how the distances d. and d.’ compare.

A rough comparison shows that, if n = |w — w'|, we have, successively:

(zly) —n < (z[y)’ < (zly) +n
(alb) — < (alb)’ < (al8) +
e~ "dc(a,b) < d.(a,b) < e™dc(a,b)Va,bec X

It follows that the Lipschitz equivalence class (defined in section 4) of d. does not
depend on the choice of basepoint.

For a finer way to compare metrics, we use vertices w, = w, wy, ..., w, = w’ of
X between w and w’. For k =0,1,...n, we set

s = {a € OX|[w,a) (Y, w') = [w, wi]}
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Then, the 4 are an open cover of 9X. Let a,b € ;. We have

(alb)’ = (alb) — k + (n — k)
dgl([l, b) — 66(2k_n)d6

a b

W
K W

In particular, in L, the balls (not their rays) are the same whether we use d. or
d.’. In short, in the vocabulary of §4 :

3. Proposition. With the above notation, the distances d. and d.' on 0X are in
the same Lipschitz class and are conformally equivalent. Two distances d. and d.',
associated to two basepoints w and w' and two numbers ¢ and ¢’ are in the same
Holder class and are conformally equivalent.

Proof. For the second assertion, we observe that d.' = (dE/)EI/E. a

2. THE ACTION ON THE BOUNDARY INDUCED
BY ISOMETRIES AND QUASI—ISOMETRIES.

We consider, as in section 1, a tree X, a vertex w € X, a number ¢ > 0 and
a corresponding distance d = d.. Let G be the group of isometries of X. Every
isometry v € G acts naturally on the boundary 9X. If we set w' = y~!(w) and if
we use d' to denote the distance relative to w’ and ¢, we have d(vya,vb) = d'(a,b)
for all a,b € X . Hence, it follows from proposition 3 that we have:

4. Corollary. FEvery isometry of the tree X induces a lipschitz, conformal home-
omorphism on the boundary 0X.

Recall the ideas of quasi-isometry between tow metric spaces X and Y, of quas:-
geodesic f : R — X and of quasi-ray f : Ry — X as defined in the beginning of
chapter 5. Henceforward, we consider X to be a metric tree.
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5. Lemma.

(1) Let f : R — X be a quasi-geodesic. There erists a unique geodesic fo : R —
X sucht hat the tmages of f and fo are a finite Haussdorff distance apart.

(2) Suppose f: Ry — X is a quasi-ray. There exists a unique ray fo : Ry = X
such that fo(0) = f(0) and such that the images of f and fy are a finite
Haussdorff distance apart.

(3) Let v’ X — X' be a quasi-isometry and let f, f' be two rays in X which
define the same point in X . then the geodesic rays (vf)o and (vf')o define
the same point in 0X’.

Proof. These statements are just easy special cases of the results shown in chapter

5.

6. Proposition. A quiasi-isometry from a tree to itself induces a holder, quasi-
conformal homeomorphism on the boundary

Proof. Choose a base point w in the tree X and a number ¢ > 0, along with a
distance d = d. on the boundary X. We show that v : X — 9X is quasi-
conformal.

Choose a point @ € X represented by a ray [w,a) and a point z € X on this
ray. Set p = |w—z|. In X, the sphere S, , centered at a with radius e~ consists
of the points b such that (a|b) = p; this means such that [w,b) N [w,a) = [w, z].

Set w' = ~yw; we use (|)’ to denote the Gromov Product (and d' = d.’ the
distance) corresponding to w'. The point ya is represented by the ray [w,~a).
Denote the projection of vz to this ray by =’ and set p’ = |2’ —w'|. Forallb € S, ,,
the two rays [w,a), [w,b) and the geodesic (a,b) pass through z. Hence, their
images under v are two quasi-rays and one quasi-geodesic passing through ~vz. If
z; designates the unique intersection point of [w', ya) N [w’, vb) N (va, vb), there is
a constant k such that |z; — yz| < k and |2’ — vz| < k and such that k& does not
depend on v, w, a, or b. Since (ya|yb)’ = |w’ — z}|, we have

P — 2k < (ya|yb) < p'+ 2k
e—c(p'+2k) < d’(fya,'yb) < e—e(p' —2k)
and it follows that

sup{d'(ya,vb) : d(a,b) = e~} ik
- <e
inf{d'(ya,+b) : d(a,b) = e~} —

And, finally, it follows from proposition 3 that we also have

. sup{d(ya,vb) : d(a,b) = e~}

|

I;iscgp inf{d(ya,vb) : d(a,b) = e~7} <%0
The constants in question don’t depend on a ; it follows that v : 90X — 0X is
quasi-conformal. O

For example, if X is a Cayley Graph of a free group F on a finite set of generators,
all automorphisms v of F' define a quasi-isometry of X, hence a quasi-conformal
map on 0X. However, the constant of quasi-conformity is not uniformly bounded
when v ranges over the group of automorphisms of F.
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7. Exercise. Let F' be the free group on two generators s, and let 4 be the
automorphism mapping s to s and ¢ to st. Show that the homeomorphism defined
by v on the boundary 0X of the corresponding graph is not conformal.

Hint. Let a € X be the point defined by the sequence s, let b € X be the
sequence defined by s”t and let b’ € X be the sequence defined by s”¢~!. Then:

d(va,vyb)/d(ya,vb') = e~ ¢

8. Exercise. We are given a partition A| | B of the edges in a tree X and two
real numbers @ > 0 and @ > 0. We use X’ to denote the metric tree associated to
X by making each edge in A have length o and each edge in B have length 3. Let
f : X = X’ be the map which induces the indentity on the underlying set; it is
a (pt,0) quasi-isometry, where y = max(a, 3,01, 371 (see definition 5.1). Verify
that f induces a map X — dX’. We identify X with dX’ using f. Show that
the distances d. and d. on the boundary, defined using X and X’ are in the same
Holder equivalence class (and are, in fact, quasi-conformal).

3. THE CLASSIFICATION OF ISOMETRIES OF A TREE

In this section, we classify the isometries of a tree as either elliptic or hyperbolic.
In preparation for our approach, we describe the horospheres of a tree, as well as
the distances associated to suitable subsets of the boundary.

Let X be a metric tree and a a point on its boundary 0X. For z,y € X, the
distances |z — a| and |y — a| aren’t defined; however, their difference |y —a|— |z — a|
1s well defined. More precisely, we define

Pa(z,y) = |z —w|—|y—w| €R

where w is a point in the intersetciob of the rays [z, a) and [y, a)— we remark that
the number F, (2, y) doesn’t depend on the choice of w.

X

y
9. Definition. The horosphere centered at @ € X is the set {y € X" B, (z,y) =
0}.

such a horosphere intersects a geodesic heading towards a in a unique point.
More precisely, let (z:)ier and (y:)ier be two geodesics such that a = lim_, oo 2 =
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lim; o0 y¢, let H and H’ be two horospheres centered at a, and let p,q,7, s be
numbers defined by z,,y, € H, 24,y € H'. then ¢—p=s—r’ weset A(H,H') =
g — p € R. Then the set of horospheres centered at a is naturally parametrised as
an oriented copy of R.

If we are given a horosphere H centered at a and a real number € > 0, we can
define, as follows, a distance dg on 9X — {a}. Let b, ¢ be two points in 0X — {a};
we parametrise the geodesic (2¢)ie. = (a,b) and the geodesic (y:)ie~. = (a,¢) so
that zg,y0 € H and lim;_, 0 2 = lim; o0 y: = a. We then set

(ble)s = Jim [(ble), 1]

dH,e(b, C) — e—f(blC)h
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On the other hand, let d be the restriction of one of the distances defined on 9X in
§1 to 9X — {a} (d is defined relative to a positive number and a chosen basepoint

of X). Then

10. Proposition. With the above notation:

1) The distances d and dg . define the same topology on 0X — {a}.

2) Moreover, they’re conformally equivalent.

3) The distance dg . makes 0X — {a} a complete metric space.

4) Let H' be another horosphere centered at a, and let A(H, H') be as above-
then dg . = e_EA(H’HI)dHVE(b, ¢) for all b,c € 0X — {a}.

(
(
(
(

Proof. We consider a point b # a € 0X, the geodesic g between ¢ and b and the
point z = g(H (we can think of z as being “near @”). Then (blc); = (ble)m
for every ¢ € 90X close enough to b, where (b|c), is defined as in the beginning of
§1. Hence, claims (1) and (2) follow from proposition 3.. The proof of claim (3)
is left to the reader (however, see proposition 8.7) and claim (4) follows because

(ble)mr = (ble)m + A(H, HY). O

Let a be a point on the boundary 0.X. We use G, to denote the isotropy group of
a in the group G of isometries of X. Each isometry v € G, premutes the horospheres
centered at a. More precisely, if ¢ = (2¢)ter is a geodesic such that limz; = @ and
if (H:)ier ia the parametrisation associated to the horospheres centered at a (with
zy = g() Ht), there exists a real number A(y) such that y maps H; to Hpyx(q) for

all t € R. The force of v relative to a is the positive number ®,(y) = e,

11. Proposition.
(1) the map G4 — (Rx,+) defined by the force, v — ®4(7) is a group homo-
morphism.
(2) Every isometry v € G4 with ®,(y) = 1 possesses a fized point in X .
(3) In particular, every element v in the commutator subgroup G', of G, acts
by isometries on X — {a} and possesses a fized point in X.



8 ETIENNE GHYS AND PIERRE DE LA HARPE

Proof of (2). Let b € X — {a} and suppose = is a point in (a,b)((a,~d). If
®,(y) =1, it is easy to show that v fixes z. O

12. Proposition. We consider a number ¢ > 0, a point a € 90X, the family
(Hi)ter of horospheres centered at a and we write H for Hy. Let v € G, be an
isometry of X fizing a and let ®,(y) be the force of v relative to a. Then:

die(7h,v¢) = ®a(v) du e(b, )

forallb,c € 0X — {a}. In particular:
If ®4(y) < 1 (respectively ®4(y) > 1) then v is a contraction (resp. expansion)
of the metric space (0X — {a},dn ) possessing a unique fized point o' € 0X — {a}.
If ®,(y) = 1, then v is an isometry of (0X — {a},dm).

Proof. Since
(Yblye)w + A(H,vH) = (vblye)ya = (ble)m

and since A(H,vH) = In®,(y), we obtain
dge(vh,ye) = ®4(y) dme(b, c)

for all b,e € 90X — {a}. O

The following figure illustrates the case where ®,(y) < 1.

y

Th

\60/

13. Definition. We say that an isometry v of the tree X is elliptic if it possesses
a fixed point in X, and hyperbolic otherwise.

14. Proposition. Let v be a hyperbolic isometry of a tree X. Then v possesses
exactly two fired points a and a’ in X . Furthermore, we can assume the notation
is such that a and a’ possess the following property:



THE BOUNDARY OF A TREE (CHAPTER 6) 9

For each neighborhood i of a and each neighborhood ' of a' in X, there exists
an integer k > 0 such that y*(0X \ W) C U and v~ " (90X \ YU) C W for all integers
n > k; we say that a is the target of v and a’ is its source.

Proof. Let x € X. The smallest sub-tree of X containing z,yz,~%z is a tripod—
we denote its center by y and set I’ = |z — y| = |[y?z — y| and I" = |yz — y|. Then
L' > 1" (if not, then there is a point of [y, yz] fixed by v); we set L =1’ — 1", The
tree generated by (7" z)nez is a quasi-geodesic in X invariant under 7.

Y X

y

In particluar, v possesses an invariant geodesic, and hence also possesses two fixed
points in dX. Proposition 14 then results from proposition 12. See also 1.6.4 of
[Ser]. O

4. SEVERAL TYPES oF HOMEOMORPHISMS OF METRIC SPACES

Let (X, d) be a metric space and let ® : X — X be a homeomorphism. For the
rest of this chapter, we assume that X is perfect; in this case, for every x € X, there
exists a descending sequence (¢;);>1 of real numbers tending towards zero such that
all the spheres {y € X : d(y,z) = ¢;} is non-empty. To simplify our notation, we
write the limits taken using these spheres with ¢ — 0 rather than j — oo.

15. Definition. The conformal dilation of ® at a point € X for the distance d
is the “number”

40\ — Tim sup SUP14(2(2), ®(y)) 1 y € X and d(y, z) = ¢}
Ha'(z) =1 e—0 P inf{d(®(z),®(y)) : y € X and d(y,z) = €}

€ [1, +00)

We say that a homeomorphism @ is
conformal if H@d(m) =1lforallze X.
quasi-conformal if sup, ¢ x H@d(m)oo.
K-quasi-conformal if Hq;d(m) < K for all z € X (where K is a given constant).

16. Examples.

We say that the homeomorphism @ is lipschitz for d if there exists a constant
L > 1 such that

%d(;p,y) < d(®(z), B(y)) < Ld(z,y)

for all z,y € X. Any such homeomorphism is L?-quasi-conformal.
Every C! diffeomorphism of the circle or line is conformal.

o o }Zx
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We say that the homeomorphism @ is Holder for d if there exists constants a > 0
and ¢ > 0 such that:

L, )1 < d(®(2), Bly) < cd(z, )"

for all z,y € X. In general, such homeomorphisms are not quasi-conformal, as is
shown by the example defined on the Euclidean line by

o(x) = x%ife >0

é(x) =zifr <0

with 0 < a < 1.

In many familiar metric spaces, it is a strong condition for a homeomorphism
to be conformal or even quasi-conformal. Consider, for example, the sphere S”
with dimension > 2, given the usual angular distance. Then, a quasi-conformal
homeomorphism is differentiable almost everywhere. If ® is conformal, it is a
Mobius transformation(see [Ahl], [LeV], and [Ric]).

On the other hand, the notions of conformality and quasi-conformality lose much
of their interest in “general” metric spaces, as is shown in the following proposition.
It follows that, when one proves that a transformation of the boundary 90X of a
hyperbolic metric space X is (quasi)conformal for a metric d,, it is important to
recall certain properties of (X, 0X), among which is finite haussdorff dimension.

17. Proposition. Let (X,d) be a metric space. There erists a distance d' on X,
topologically equivalent to d, such that every hélder homeomorphism of (X,d) is a
conformal homeomorphism of (X,d’).

18. Exercise. Choose a space (X,d) and verify that the space (X, d') obtained
by the following construction has infinte haussdorff dimension

Before the proof of proposition 17, we recall the following facts. Leyt f: Ry —
R4. We say that f is concave if

f(T=a)s+at) 2 (1 —a)f(s) + af(t)

for all s, € Ry and a € [0,1]. When f is C?, it is well known that f is concave if
and only if f <0.

19. Exercise. Show that a concave function f such that f(0) = 0 satisfies f(s +
t) < f(s) + f(2) for every s,iR.

Let (z,d) be a metric space and let f : Ry — R4 be an increasing, concave
function with f(0) = 0. Tt follows from the preceding exercise that the map

dj=fod: X x X 5 R,

is a distance function on X which is topologically equivalent to d.
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20. Lemma. For all 0 <t < e~ !, we set g(t) = —=——=. Then :

log(—logt) "
(1) limeog(t) = 0.
(2) There exists tg > 0 such that g is increasing and concave in [0,t,) and such
that g(tq) > 0.
(3) Let ¢, be constants with ¢ > 0 and 3 > 0. Then

£
lim 2 _
t—0 g(zt

Proof. Elementary analysis. O

Proof of Proposition 17. Let f: Ry — R4 be a continuous, increasing and concave
function such that:

f(0)=0
f() =g(t) if 0 <t <ty with g and ¢y as above.
f is linear if t > ¢

the reader can easily verify, by utilising conclusion (3) of the preceding lemma, that
the metric d' = d; has the properties required by proposition 17. O

21. Definitions. All the preceding extends naturally to the case of a homeomor-
phism ® from one metric space to another. Suppose, in particular, that X 1s a
space given two distances d and d’ which are topologically equivalent. We say that
d and d' are in the same quasi-conformal class or conformal class (or lipschitz or
Holder ...) if the identity map on X is of the appropriate type.

Translated by WILLIAM GROSSO

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY,
CA 94720



THE BOUNDARY OF A HYPERBOLIC SPACE (CHAPTER 7)

ETIENNE GHYS AND PIERRE DE LA HARPE

ABSTRACT. There are many ways to define the boundary 9.X of a hyperbolic space
X. In §1, we define it in three ways which are equivalent if X is geodesic and proper.
In §2, we define a topology on X which makes it into a compact space. However,
90X is more than just a topological space— it can be given a natural metric and a
conformal structure. This metric is defined in §3. We dedicate §4 to the action on
the boundary of isometries and quasi-isometries of X and we attempt to describe
some examples of boundaries in §5.

1. THE BOUNDARY AS A SET

We consider a given number § > 0 and a §-hyperbolic metric space X with a
base point W; we write the Gromov Product of z and y relative to w as (z|y).
We assume that X is a geodesic space (defintion 1.25) and proper (all closed balls
are compact, definition 3.17). Recall (definition 5.2) that a quasi-ray in X is a
quasi-isometric map f: R4 — X.

1. Definition. Two quasi-rays in X are equivalent if their images are a finite
Haussdorff distance from each other.

2. Proposition. Let g and H be two rays in a geodesic §-hyperbolic space X. The
following properties are equivalent.

(1) The rays g and h are equivalent, by which we mean H(g,h) < co.

(2) We have sup;sq |h(t) — g(t)] < oo.

(3) There exists t1 > 0 such that, for all t > t1, there exists s; such that
Ih(t) — g(s0)] < 80.

(4) There exists u € R and tg > max{0, u} such that |h(t) — g(t — u)| < 166 for
all t > 1.

Proof (see [Pau]).

First, we show that (1)=-(2). We define H = (g, h) and choose sy > 0 such that
|h(0) — g(so)| < H. For all £ > 0, there exists s; such that |h(t) — g(s:)| < H. We
have

st — sol = lg(st) —g(s0)| < |h(t) — h(0)| + 2H =1 + 2H
Ise — s0| > |h(t) — h(0)| — 2H =t — 2H

1991 Mathematics Subject Classification. Primary 20F05, 20F14.
Key words and phrases. Hyperbolic Groups.
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Hence
|st — 1] < s+ 2H and |h(t) — g(t)] < so +3H

We now show (2)=(3). We write D = sup,~ |h(t) —g(t)| and set t; = d+46+1.
Suppose ¢, T € Ry such that t > t; and T >t + D+ 85+ 1 and let S > 0 be
such that |h(T) — g(S)| < D. We complete the geodesic segment [h(0), h(T)] to a
geodesic triangle Ay with vertices h(0), h(7"),¢(0) and then comlete the segments
[9(0), g(S)] and [g(0), h(T)] to a geodesic triangle A,.

9(0) o(s,)
9(S)

Al

-~
h(0) h(t) h(T)

We apply proposition 2.21 first to /Ay and then to As,.
If there exists y € [¢(0), 2(0)] such that |A(t) — y| < 44, we have

t=1h(t) = h(0)| < |A(t) — yl + l9(0) = A(0)[ < D + 44

contradicting the choice of ¢. Hence there exists € [g(0), h(T)] such that |z —
h(t)] < 44. Tf there exists z € [¢(s), h(T)] such that |z — 2| < 44, we have

T—t=h(T) = h(t)] < |A(T) = g(S)[ + ]z — 2|+ ]|z - h()] < D+ 85

contradicting the choice of T'. Hence there exists s; € [0, S] such that |g(s;) — 2| <
44. Tt follows that |g(s¢) — h(t)| < 74.

We show (3)=(4). We write s; for s;, and set u = ¢; — s;. We have |h(t1) —
g(t1 — u)] < 85. Because lim;_, o () — g(t1 — u)| = oo, there exists 71 > 1 such
that ¢ > T} implies s; > s1. We set ¢ = max{t1,7T1,s1}. If t > ¢,

|h(t) — g(t — u)| < [h(t) = g(st)| + |ge — (¢ — u)]
< (st —s1) — (t —t1)| + 8
= llg(st) — g(s1)| = |h(t) = h(t1)|] + 88
< 245
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If there exists € > 0 and ¢ > tg such that |A(¢) — g(t — u)| > 16d + €, we have, for
all T' > 1 (see propositions 2.21 and 2.25)

h(t1) = gft: — w)| + ¢ < |A() — gt — )| - 85
< HIB(T) = g(T = w)| + (1= Dlh(tr) = g(t1 - w)

and it follows that limp_c |R(T) — g(T — u)| = oo, which contradicts the previous
calculation. Hence |h(t) — g(t — u)| < 166 for all ¢ > ;.
The implication (4)=-(1) is trivial. O

3. Corollary. Let X be a geodesic, -hyperbolic space.

(1) If g and h are two equivalent rays with the same origin, then
sup [h(t) — g(1)| < 85
t>0

(2) Suppose g and h are two minimizing geodesics in X. If H(g,h) < oo, then
there exists u € R such that sup,cg |h(t) — g(t — u)| < 166.

Proof.

(1) Tf there exists € > 0 and ¢ > 0 such that |h(t) — g(t)| > 8 + €, we have, as
in the proof of (3)=(4) above, lim;_, o |h(t) — g(t)| = oo, which is absurd.
(2) In view of the proposition, we may assume, WLOG, that |2(0) —g(0)| < 84.
The same argument then shows that |A(2) — g(¢)| < 166 for all t € R.
O

There are many ways to define the boundary of X. The first model for the
boundary is the set 9,X of of equivalence classes of quasi-rays in X. If a is the
equivalence class of a quasi-ray f, we say that f tends to @ and write f — a or
f(t) = a.

The second model is the set 9, , X of equivalence classes of rays originating at a
base point w; we also write J, X if there is no ambiguity about the base point. We
denote the image of a ray originating at w and tending to a by [w, a)— there are, in
general, many rays of this type, even if the notation doesn’t reflect it! Nevertheless,
the proof of the preceding corollary shows that if ¢ and & are two rays originating
at w and tending towards a, then sup,~q|g(t) — h(t)| < 84.

A sequence (;);>1 of points in X “tends to oo if lim; ;o0 (2i|2;) = 0. The
definition doesn;t depend on the choice of w. Two sequences (;);>1 and (y;);>1
which tend to oo are equivalent if lim; ;o0 (2;]y;) = oo. The third model of the
boundary of X is the set d;(X) of equivalence classes of sequences tending to co. If
a is the equivalence class of the sequence (;);>1, we write z; — a (as an exercise,
show that if X = B2 then the relation defined between sequences tending to oo is
not an equivalence relation).

4. Proposition. Using the above notation, there are natural bijections between

the sets 04X, 0, X and 0, X.

Proof. First, we know that every quasi-ray is a finite Haussdorff distance from a
ray (§5.5), and so 9, X and 0,X are the “same” set. It remains to show that 0, X
and 9,X are identifiable.
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We can associate a sequence (z;);>1 to every map g : Ry — X by defining
z; = g(i). We verify, on one hand, that (%i)i>1 tends to oo if g is a ray and, on
the other hand, that two equivalent rays ¢ and h are associated to two equivalent
sequences. This is a natural map 8, X — 0;X.

Conversely, let (2;);>1 be a sequence tending to oo (tending to a point z € J, X).
For every ¢ > 1, we choose a geodesic segment [z, z;] between z, and z;. Using
Arscoli’s theorem, we show, as in theorem 5.25, that there is a subsequence (y;)i>1
of (zi)i>1 such that the segments [zg,y;] converge to a ray g. This is a map
9;X — 0, X (it is easy check that it is well defined) and it is the inverse to the map
0, X — 0, X defined above. O

5. Definition. From now on, we identify the three models described above to a
single set and denote it by 0 X— we call this the boundary of X

Each model has its advantages. For example, to show that a quasi-isometry of
X induces a map on 0.X, we use the model 9,X. 9,X is well suited for the proof,
below, that X is compact. And, ;X makes sense even if X is neither geodesic
nor proper.

There are other constructions of the boundary of a metric space (X,d). Let
p X — R} be a continuous function and let d,, be the distance defined by
dy(z,y) = inf fC d,, where the infinum is taken over the curves C between z and
y and where fC d, denotes the p-length of such a curve. The py-boundary of X is
X, — X, where X, is the completion of (X,d,) and X that of (X,d). When p is
well-chosen, we recover the boundary 9X of definition 5 (corollary 7.2M of [Gr5],
and [Flo]).

There 1s also a construction of the boundary which uses Busemann functions

(§7.5 of [Grb]).

6. Proposition. Suppose that X is geodesic and proper. The pair (X,0X) is a
vistbility space.

Proof. (See the proof of proposition 6.2 for the definition of visibility space). Let
a,b € 0X with a # b. We choose rays ¢, h originating at the base point w and
tending, respectively, to @ and b. Let f : R — X be the map defined by f(—t) = g(¢)
and f(¢) = h(t) for all ¢ > 0. By approximating the image of f by a tree, we see
that f is a quasi-geodesic. The proposition then follows from the existence of a
geodesic a finite Haussdorff distance from f (theorem 5.25) O

7. Exercise. The boundary of a hyperbolic space X is clearly empty if X has
finite diameter. Show that the converse is true if X is geodesic and proper. In
the case of non-proper spaces, examine the 0-hyperbolic (but not locally compact)
space obtained by giving the “tree distance” to the union of the segments [0, nei=]
(for n > 1) in the complex plain.

2. THE BOUNDARY As A TOPOLOGICAL SPACE

As in §1, the space X is assumed Jd-hyperbolic, geodesic, proper, and given a
base point w. We think of the boundary 0X as given by the sequences model, and
we plan to introduce a topology on d.X which makes it compact.
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The Gromov Product of two points in 90X is defined by
(a[b) = sup lim inf(;|y;)
i.j—00

where the supremum is taken over all sequences (Ii)izl tending towards a and
(yj)j>1 tending towards b.

7. Remark. Let a,b € 0X. For all sequences z; — a and y; — b, we have:

(alb) — 20 < liminf(z;|y;) < (alb)

Proof. Suppose v > 0. There exist sequences z; and y} tending towards a and b
such that
(alt) = < liminf(27 57) < (al)

But
(zily;) > min{(z]2]), (z]1y]), (y] |y;)} — 26

Two of the terms inside the braces tend towards infinityand one is bounded if a # b.
Consequently,

lim inf(z;[y;) > liminf(z]|y)) — 26 > (a[b) —~ — 24

Since this is true for all ¥ > 0, we have the desired inequality. O

For every rational number r > 0, define:
Ve ={(a,b) € 0X x 90X : (alb) > r}

For a given r € Q7% , we choose s € Q} such that s > r 4 64. The definition of
hyperbolicity, and the preceding remark, show that, if (a,b) € V; and (b,¢) € V;,
then (a,c¢) € V.. Tt follows that the family (Vr)rEQi is a fundamental system
of open sets for a uniformly separating structure on 9X (see [BTG], chap II, §1)
which is metrizable (id, chapter 9, §4, prop. 2). from now on, we give X the
corresponding topology.

9. Proposition. The topological space X is compact.

Proof. Since 80X is metrizable, it suffices to show that 90X is sequentially compact.

Let a, be a sequence of elemeents in §.X. For each n, choose a ray g, originating
at the origin and tending towards a,. We know that the sequence z? = g, (¢) tends
towards a,. Since X is proper, we may suppose (by extracting a sub-sequence)
that g, converge uniformly on each compact set to a ray g originating at w. Let
x; = g(i) and let @ be the point of 9X corresponding to (x;);>1 (or, since it comes
to to the same thing, corresponding to the ray g). We are going to show that the
sequence ay (or the sequence which we have extracted) converges to a.

Let R be an arbitrarily large integer. There exists ng(R) such that, for all
n > ng(R), we have

l+% —2r[ <1
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We evaluate (2} |z;) for all 4, j > R. We have

n 1 n
(@7 |25) = 5 (1271 + lzj] = |of — ;)
. . n
= 5(1‘1‘] = |zi — ;)
Now
lof — a;] < |2 — 2|+ |2k — 2r[ + |2r — 25
<i—R+4+14+j—-R

Consequently,

1

M) > R— =
(xz |I]) - 2
By using remark 8, we find that

1 .
(anla) > R— 3~ 2§ for all n > ng(R)
This shows that the sequence a, converges to ¢ in 0X. O

3. THE BOUNDARY AS A METRIC SPACE

Throughout, we keep the same hypotheses on the §-hyperbolic space X; it is
proper, geodesic and has a basepoint w. We have seen in §2 that the boundary 90X
is metrizable. The goal of this section is to explicitly construct a family of metrics
on 0X whose conformal properties will be studied in §4.

We suppose that we are given a real number ¢ > 0 and we set, for all a,b € 0X:

2e(a,b) = exp(—¢(alb))
The Gromov Product on 90X has the following properties:
(alb) = (b]a) for all a,b € IX,
(alb) = oo if and only if a = b,
(ale) > min{(alb), (b|c)} — d for all a,b,c € 9X.
It follows that o, satisfies

(1) ec(a,b) = ec(b,0)

(2) oc(a,b) =0if and only if a = b

(3) oc(a,e) < (1 4 ¢')max{oc(a,b),0(b,c)} for all a,b,c € X with ¢ =

exp(ed) — 1.

The “quasi-ultrametric” inequality (3) does not guarantee that o. satisfies the
triangle inequality. .. Hence, we will slightly modify g. to define a distance.

A chain between two points a and bin 9 X is a finite sequence a = ag, ay, ... ,a, =
b of points in 0.X; we denote the set of chains between a and b by C, . We define

n
0c(ao, a,... an) = Z oc(ai—1, a;)
i=1

de(a,b) = inf{pc(c) : c € Cop}
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10. Proposition. If ¢ <2 —1, d. is a distance on 8X and we have
(1 —2€¢')oe(a,b) < de(a,b) < oe(a,b)

for all a,b € 0X. In particular, d. is compatible with the topology introduced in §2.

Proof. The proof is an adaptation of ([BTG], chapter 9, §1, n® 4). The only non-
trivial point is to show the inequality

(1 —2¢)0c(a,b) < de(a,b)

This follows from the following assertion: for all integers n > 1 and for every
chain @ = ag, a1, ... ,a, = b of length n between a and b, we have

(1 —2€")oe(a,b) < Z oc(@i—1,a;)

i=1

We show this assertion by induction on n. If n = 1, there is nothing to show, and
we henceforth assume that n > 2.

Set R=3""_, 0c(a;—1,a;). The inequality is true if R > 1 — 2¢ since g.(a,b) <
1. Suppose that R < 1 — 2¢’. Let p be the largest of the indices q such that
St 0e(aioq,ai) < %R. We then have

P

1 - 1
;Qe(ai—hai) < gftand 'Zﬂ oc(ai—1,a;) < SR
1= 1=p

By the induction hypothesis, we have

R

and Qe(ap+1,b) S m

(aa)<i
e\ ) = 51 =26

On the other hand, ¢.(ap, apt1) < R. Hence
0e < (1+ ¢)? max{ec(a, ap), oe(aps2,b)}

L ey

1
< o max{i, 1-2¢}R

Since (12)%(1—2¢') < 1 for all ¢ > 0, and since % < lif ¢ <+2—1, we obtain

1 n
oc(a,b) < 120 ; 0c(ai—1a;)

The argument is valid for every n > 2 and we have finished the proof. O
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11. Proposition. If X is quasi-isometric to the Cayley Graph of a hyperbolic
group, each of the distances d. makes 0X into a metric space with finite haussdorff
dimension.

Proof. Suppose, more generally, that there exists constants £ > 0 and C' > 0 with

with the following property: for all integers n > 1, there exists a finite family
(Il(n))iejn of points in the sphere S(n) = {z € X : | — w| = n}, with cardinality

of I, < CeF™, such that the balls Bf") of radius 1 centered at the points .Z‘Z(»n) cover
S(n). For i € I, define

Ul-(n) = {a € 0X : there exists a ray [w, a) which intersects BZ(”)}

let a,b € Ui(n). By approximating the set [w,a) U [w,b) by a tree, we see that
(alb) > n—C1 for a suitable constant Cy. Tt follows that g.(a,b) < exp(—e(n—Cy))
and the d.-diameter of Ul-(n) is less than Cy exp(—en), where Cy is another convenient
constant. If s is a number such that k& — es < 0, we then have

lim ;(diam U™y < lim CeF"Cye™* ™ =0
1€ly,

It follows that the d. Hausdorff dimension is less that s. O

12. A Coding Problem. Let X be a geodesic d-hyperbolic space. Show there
exists a metric tree T' and a surjective continuous map 07 — dX. Furthermore,
suppose that X is a connected metric graph whose edges are all of length 1, and
there exists a integer v such that all the vertices of X have at most v + 1 neighbors.
Show that we can obtain a map 07 — X with finite fibres (there are hints in n°
7.6 of [GRA]).

4. THE ACTION OF ISOMETRIES AND QUASI-ISOMETRIES
ON THE BOUNDARY OF A HYPERBOLIC SPACE

Let X be a geodesic, proper hyperbolic space with base point w. Suppose € is a
sufficiently small real number (as in proposition 10) and let d¢ be the corresponding
distance on the boundary dX. In this section, we assume that 9.X is perfect, as
is the case if X is the Cayley Graph of a non-elementary hyperbolic group (in the
sense of number 15, below). We write as if, for all @ € X and r > 0, the sphere
{b € 0X :d.(a,b) = r} is never empty (see the beginning of §6.4).

Given a homeomorphism ¢ of X and a point @ € 90X, recall that the conformal
dilatation of ¥ at a for the distance d. is given by (definition 6.15)

Hy* = lim sup "R {de((@), ¥(B)) : b € OX and de(a,) = r}
Y o inf{dc(¢(a), (b)) : b € OX and d.(a,b) = r}

Furthermore, we introduce

HS, = lim sup sup{ge(¥(a), ¥ (b)) : b € OX and gc(a,b) = r}
Y roo inf{oc(¥(a), ¥ (b)) : b € 0X and gc(a,b) = r}

Also recall that ¢ is K-quasi-conformal for d. if Hy(a) < K for all a € 0X.
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13. Proposition. There exists a constant K. such that any isometry ® of X
induces a lipschitz, K.-quasi-conformal homeomorphism 0® of 0X. Moreover, K,
tends towards 1 as € tends towards 0.

Proof. (Compare to corollary 6.4) We check, as in chapter 6, that 0® is lipschitz.

Define w’ = ®~!(w) and R = |w — w'|; we denote the Gromov Product of
a,b € 90X relative to w’ by (alb)’ and similarly define ¢, and d.. Let a,b1,bs be
three points in dX. When X is a tree, the inequalities

(alb1) > R and (albs) > R

imply
(alby) — (alb)" = (alb2) — (albs)’

b
1

w

In the general case, we choose a segement [w, w'] and rayons [w, a), [w,b1), and
[w,b2). As in theorem 2.12, we can approximate

[w,a) U [w,by) U [w,bs) U [w, w]
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by a tree. Tt follows that there is a constant C' (depending only on &) with the
following poperty: If

(alb1) > R+ C and (alb2) > R+ C

then

[[(alb1) — (alb1)] = [(alb2) — (alb2)']| < C
One can deduce that
Qf(a;bl)

Qf(a: b?)

Qﬁ(a;bl) Ql (aabl)
—eC < = < C
exp(—e¢ )Qe 7 ba) S gl(a b S exp(eC)
It follows that ~

Hig(a) < exp(2eC)

and
Hpa (a) < exp(2¢C)(1 —2¢)™*

by proposition 10. O

14. Proposition. Let X,Y be two proper, geodesic §-hyperbolic spaces with perfect
boundaries 0X,0Y, and let & : C — 'Y be a quasi-isometry.

Then ® induces a map 0X — 0Y, hereafter denoted by ®, which is holder and
quast-conformal.

Further, if there exists a quasi-isometry ¢ : Y — X such that

sup |¥P(z) — z| < 0o and sup |[P¥(y) — y| < oo
rzeX yey

(for example, if ® : X =Y is a quasi-isometric homeomorphism), then ® : 0X —
dY is a homeomorphism.

Proof. The map ® : 90X — JY is holder by property (1) of proposition 5.15, and
quasi-conformal by property (2) (also see proposition 6.6).

Moreover, if there exists a map ¥ : Y — X with the stated properties, the the
compositions of ® : X — Y and ¥ : Y — X are the identity maps of 90X and
ay. O

5. SoME EXAMPLES

Let T be a hyperbolic group. Proposition 5.15 shows that the boundary JT is
well defined up to quasi-isometry; two finite systems of generators S, S’ of ' define
quasi-isometries between their Cayley Graphs (G, G’ and hence their boundaries are
quasi-conformally equivalent. We use JT' to denote the boundary of any of these

graphs G.

15. Proposition - definition.. Let T’ be a hyperbolic group.
(1) IfT is finite, its boundary is empty.
(2) IfT contains an finite index index cyclic subgroup, its boundary has precisely
two elements.
(3) In all other cases, the boundary of T' has at least 3 elements (and we show
in corollary 18 that the boundary is therefore infinite).
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In cases (1) and (2), we say that the group T is elementary.

Proof. Assertion (1) is obvious. Hence, we assume that T is infinite with a given
system S of generators. For all integers n > 1, we choose an element «,, with length
2n (with respect to S); let 4/, be the midpoint of a geodesic segment joining e and
~n. We have

le = vl =¥ — al = n and (yne)y, =0

We set
-1 -1
B ="n and fn =7, Tn

Which implies
|8 — el = [Bn — e| and (B,]B,)e = 0

Let a (respectively a’) be a point in 9T which is the limit of a subsequence of
(Bn)n>1 (respectively (85 )n>1). Tt is clear that a # a’ and hence that JT contains
at least two points. -

Now, suppose that JT' contains exactly two points a and b. It remains to show
that ' contains a finite index subgroup isomorphic to Z. Let g : Z — T be a
geodesic connecting a and b. Hence, using corollary 3.2, every element of I' lies on
a geodesic whose haussdorf distance from g is at most 164. It follows that every
point of 4 is within 164 of a point in the image of ¢ and hence T is quasi-isometric
to Z. The assertion now follows from exercise 1.16. O

Recall that OT is a Cantor set if ' is a finitely generated, non-abelian free group
(chapter 6).

We examinne the case of the fundamental group of a closed surface M with genus
at least 2. Let g be a negatively curved riemannian metric on M and let Y be the
universal cover of M.

For all y € Y, let Slgyy denote the “visual circle” of tangent vectors at y in YV
with length 1. The map hy,, : S';, — Y which maps a vector 7 to the class of
rays beginning at y with tangent 7 is a homeomorphism. An interesting exercise is
to show that A, , is K.-quasi-conformal if we give S'; , the angular metric and Y
the metric d, which we constructed earlier. Moreover, lim._,q K, = 1.

If we compare the homeomorphisms associated to points y, ¥, we obtain a home-
— 1. of circles which is C! (this is not true for all negatively

9.y
curved surfaces). If we compare the homeomorphisms associated to y and y' with

omorphism, hgy 0 h

different metrics, hgr o ohg_j/ 1s a K-quasi-conformal homeomorphism of circles with
K depending on g and g¢'.

Since the fundamental group T' of M is quasi-isometric to Y, we see that JT is
a circle which is well-defined up to quasi-conformality.

Let T'y and 'y be fundamental groups of two closed surfaces M; and Ms which
have genus at least two. Let T' be the free product I'y #*'y. Let M be the polyhedron
obtained by attaching M; and M, at a common point ¢. Choose a base point w
in M. Every point in T can be represented bya geodesic in M originating at w
(in this particular case, we use geodesic to mean a locally isometric map Rt — M;
this is the classical, differential-geometric meaning of the word “geodesic”).

For concreteness, we will assume that the base point w in in M; and is distinct
from the attaching point c¢. We identify the circle S with the set of unit tangent
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vectors at w in M. Every point of S! defines a ray in M; and these rays contribute
a copy 11 of the circle to JT'.

Let n be a point in S, let g, be the geodesic ray in M; corresponding to 5, and
let tg > 0 be such that g, (o) = ¢— the points n for which there exists at least one
such ¢y form a countable dense subset of S'. There exists a family g; of rays in M
which agree with g, for all ¢ < t; and which are in M, for ¢ > #g; the parameter ¢
describes the unit circle in M5 at ¢. This family contributes a “second generation”
circle T , to OI'. It is useful to think of 75, as a circle around the point 5 € T}
and the corresponding rays as small where ¢; is large.

Iif g, goes through ¢ many times, there are many disjoint circles surrounding 7.

In each circle 75 ,, there is a countable dense set of points corresponding to those
rays which might bifurcate into M; (at ¢) and ....

In the final reckoning, 0T is the projective limit of the spaces T{;) relative to the
surjective maps ®; : T{; 1) — T(;y. The map ®; has a countably infinite collection
of fibres which are homeomorphic to circles (for all r > 0 there are infinitely many
of these circles with rays longer than r), and each of the other fibres deforms to a
point. For example, T{1y = T1 and T{y) is the countable union of the T3, with 77.

16. Exercise. Let I'1I'y, My, M2 be as above, and let ¢; be a simple closed geodesic
in M; (j = 1,2). We assume that ¢; and ¢, are the same length and consider the
polyhedron M obtained by isometrically glueing the image of ¢1in M5 to the image
of ¢3 in My; we use ¢ to denote the resulting curve in M. The fundamental group T
of M is an amalgamated product T'; xz T'2. We use a base point w € (M —¢) C M.

Let 5 be a point in the circle S! of unit tangent vectors at w in M. If the
geodesic ray g, in M7 corresponding to n doesn’t intersect ¢ then 5 defines a point
in JT'. The other possibility corresponds to rays which may bifurcate in M, hence
to intervals in the first circle T{;) which cause doubling in dT'. The exercise is to
find a precise definition of ' = proj lim T{;), where T{;) corresponds to rays in M
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crossing j — 1 times between M; and M.

The next set of ideas allow us to compare the idea of ends of a locally compact
space with the boundary which we have introduced. Since the results are not
essential to the rest of the book, we have just given sketches of the proofs. For the
theory of ends, see [ScW].

The following statement was told to us by F. Paulin; see also [Pav].

17. Proposition. Let X be a proper, hyperbolic, geodesic metric space. Let 0X
be the boundary of X and bt(X ) the space of ends of X. There exists a continuous
surjection from X to btX whose fibres are the connected components of 0X .

Sketch of the Proof. Let g : RT — X be a geodesic ray. Since the ray leaves every
compact subset of X, it defines an end. On can easily check that this end depends
only on the point on the boundary of X defined by g and that the resulting map
7 : 0X — bt(X) is continuous. Let (z,),>1 be a sequence of points of X which
define an end € of X. If a is a limit of a subsequence of (2, )n>1 in 80X, we have that
7(a) = €. Hence, 7 is surjective. Since bt(X) is totally disconnected, the connected
components of X are contained in the fibres of 7.

It remains to show that the fibres of 7 are connected. Suppose that there exists
a partition of a fibre 77 '¢ into two closed, non-empty sets F; and Fy; we choose
two open, disjoint sets €7 and Qg containing F; and Fy (respectively). We choose
a base point w € X and denote the union of of rays beginning at w and ending at a
point in £; by Qj (7 = 1,2). If Bg denotes the ball of radius R centered at w then,
for R large enough, Ql \ Bg and Qz \ Bg are disjoint and are a positive distance
apart.

Let g1 (respectively g2) be a ray originating at w and ending at a point in Fy
(respectively F3). By our hypothesis, the sequences (g1(n)),>1 and (g2(n))n>1
define the same end. Hence, for all N > 1, there exists an integer ny >> 1 and a
path Iy : [0, 1] = X connecting g1 (nn) € Q, with g2(nn) € Q- which stays outside
the ball By . Since, for N large enough, Ql \ Br and Qz \ Bg are a positive distance
apart, there exists ¢ty € [0, 1] such that x = {n(¢n) is not in Q; or 5. Choose a
geodesic segment [w, zx] from w to zx. Since the lengths of these segments tends
to oo, there is a subsequence of ([w, zn]) y>1 Wwhich converges to a ray g originating
at w. It is obvious that g defines the same end ¢ as g; and g», but it is not in F}
or Fy. Since this is absurd, it follows that 7=!(¢) is connected. O

18. Corollary. If the bounary of a hyperbolic group T' has at least three distinct
points, then it is infinite (and, in fact, uncountable).

Proof. Tf 9T is finite, then proposition 17 shows that T = bt(T"). But, we know
that the space of ends of a group is a set with 0,1 or 2 points or is a Cantor set.
The corollary follows. O

19. Theorem. Let T' be a group which is quasi-isometric to a free group on a
finite set of generators. then I' contains a finite-index, free subgroup.

Sketch of Proof. Since T i1s quasi-isometric to a free group, I' is hyperbolic and its
boundary is homeomorphic to a Contor set. It follows from corollary 18 that I' has
infinitely many ends.
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We first assume that T' is torsion-free and show that, in this case, T' is a free
group.

Stallings’ theoreom, along with Grusko’s theorem,imply that I' can be written
as a free product 'y * I'; % ...T,, where each T'; is a finitely presented group with
1 or 2 ends. For each T;, i € {1,...,n}, we choose a finite set S; of generators.
the the union S = UIZ?S; is a system of generators for T' and the immersions
(Ti,ds,) = (T,ds) are isometries. Tt follows that the T'; are hyperbolic and that
their boundaries (mapped into 9T) are totally discontinuous; in this way, the bound-
ary of ['; can be idenitifed with the space of ends of T'; for i € {1,...,n}. Hence,
the boundary of T'; has 1 or 2 elements and T'; is elementary (in the sense of number
15); since T; is torsion-free, T'; is infinite cyclic and T is isomorphic to the free group
Zox 7 - - - x 7, (n-factors).

When T has torsion, the idea of the proof is the same, but one must overcome
some technical difficulties.

To start, since I' is hyperbolic, T is finitely presented. A result of Dunwoody
[Dun] shows that T is accessible. In other words (see lemma 7.1 of [ScW]), T is
isomorphic to the fundamental group of a graph of groups where the edge groups
are finite and where the vertex groups have at most one end. This is analogous
to the decomposition of I' as a free product of I'; and represents an “iterated free
product with amalgamation / HNN extension”. We proceed as in the preceding case
by showing that the vertex groups map isometrically into T' (for a good choice of
generators) and showing that the vertex groups cannot have 1 end and are therefore
finite. We finish by observing that the fundamental group of a graph of groups with
has finite vertex groups contains a finite-index, free subgroup. For more details, see

[ScW] and [Ser]. O
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