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1. Introduction 

The group of holomorphic diffeomorphisms of a compact complex manifold is a 
finite dimensional Lie group and one could expect a rather complete description 
of the dynamical behaviour of such diffeomorphisms, at least in low dimensions. 
For instance, holomorphic diffeomorphisms of compact K/ihler manifolds, pre- 
serving the cohomology class of the K~ihler form, have very simple dynamics, 
with zero topological entropy [Fu], [Sn]. A theorem of F. Enriques describes 
alyebraic surfaces for which the group of holomorphic diffeomorphisms has 
infinitely many connected components [En], [Ro]. 

However, very interesting examples do exist and deserve attention. Some 
K3-surfaces have an infinite discrete group of diffeomorphisms whose dyna- 
mical study seems promising [Maz]. More classical examples are provided by 
matrices A of GL(n, ~ )  preserving some lattice A C Cn and, therefore, inducing 
a holomorphic diffeomorphism,4 of the complex torus ~n/A. If the spectrum 
of A is disjoint from the unit circle, this diffeomorphism/1 is of Anosov type, 
with rich dynamics. 

The purpose of this paper is to investigate the structure of holomorphic 
Anosov diffeomorphisms and flows, especially in low dimensions. 

Theorem A. Let c~ be a holomorphic Anosov diffeomorphism of a compact 
c,~mplex surface S. Then S is a ?complex torus IE2/A and q~ is holomorphically 
c'on/ugate to a linear automorphism of C2/A. 

In higher dimensions, we have the following partial result. Recall that a 
diffeomorphism is called transitive if it has a dense orbit. 

Theorem B. Let ffa be a transitive holomorphie Anosov diffeomorphism of a 
compact complex manifoM M. Assume that dp has complex codimension 1, i.e., 
tlze unstable foliation of  ~ has real dimension 2. Then M is homeomorphic 
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to a torus and d~ is topologically conjugate to a linear automorphism of  this 
torus. 

According to a well-known conjecture, any Anosov diffeomorphism should 
be topologically conjugate to some automorphism of some infra-nilmanifold 
[Sin]. In the holomorphic case, it might be true that any Anosov diffeomor- 
phism is holomorphically conjuyate to some automorphism of a complex infra- 
nilmanifold. 

Next, we study the Anosov flows on compact complex 3-dimensional mani- 
folds. Strictly speaking, a holomorphic vector field never defines an Anosov 
flow because it defines an action of 112 _~ ]R 2 and this is of course not compati- 
ble with the Anosov property. We shall therefore modify the definition slightly 
in the following way. 

Consider a holomorphic action q5 of r  on a compact complex manifold 
M denoted by: 

(T,x) E ~* x M ~ q~(T)(x) E M .  

Equip M with a hermitian metric, I[. [[. We shall say that ~b is a holomorphic 
Anosov flow if there exist sub-bundles E uu and E ~ of the real tangent bundle 
T~M and constants c > 0, a > 0, such that: 

i) T~M is the direct sum of E uu, E ~'~ and the 2-dimensional bundle tangent 
to the orbits of  the action ~b. 

ii) For all T E 112", tr * E E ~ and v u E E u~, one has: 

IId~(T)(v~)ll  <__ clTl-~llv"ll  

lldc~(T)(v~)ll <= clTl~llvUll . 

If q5 is an action of ~* and k E 7/--  {0}, one can define another action 
q~k by qbk(T) = qS(Tk). It is clear that if q~ is Anosov, so is ~bk with the same 
E u~, E ss if k > 0 and reversed if k < 0. Of course, the ktn roots of unity act 
trivially by qSk so that ~bk is not an effective action. Conversely, it is easy to 
see that any holomorphic Anosov flow is of the form qSk for some k and some 
effective action ~b. Therefore, we shall always assume that the holomorphic 
Anosov flows under consideration are effective. 

A first way of constructing examples is by holomorphic suspension. Let 
A E GL(2, ~ )  preserve a lattice A C C 2 and letA be the corresponding diffeo- 
morphism of IE2/A. Choose co in ~* away from the unit circle and consider 
the following diffeomorphism of ~2/A x IIY: 

(x, T) E ff~2/A x r  ~-+ (,'t(x), coT) E ~2/A x ~.*. 

It generates a group acting properly discontinuously and freely on 11~2/A x ~'~, 
commuting with the obvious G*-action on the second factor. The quotie~at 
manifold M is naturally equipped with a holomorphic Anosov flow as soon as 
the spectrum of A is disjoint from the unit circle. 

This construction can be generalized. Instead of the trivial ~*-bundle over 
qg*/A, one can consider any ~*-bundle E --~ qg2/A over C2/A. In some cases, 
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there is an automorphism 0 of E overi[  which acts freely and properly discon- 
tinuously so that the quotient of E by 0 is a compact 3-dimensional manifold 
equipped with a I~*-action. However, it is not difficult to check (see 7.2) that 
such a 0 can only exist if the bundle E is trivialized by a pullback to a finite 
cover of 11~2/A. Hence, this generalized construction leads to examples which 
are the same as the previous ones after lifting to a finite cover. We shall leave 
the detailed analysis of possible bundles E as an exercise for the reader but 
we mention that, in other situations, these "twisted holomorphic suspensions" 
can lead to very different IE*-actions. 

A second kind of examples of holomorphic Anosov flows comes from 
the choice of a cocompact discrete subgroup F of SL(2,11?). The complex 
manifold M ----- SL(2 ,C) /F  is 3-dimensional. The II?*-action on SL(2, C) by 

left translations by ( r 0 )  0 r -~ commutes with right translations and induces a 

r on M which is a holomorphic Anosov flow. The proof of this fact 
is exactly the same as the proof of the corresponding well known fact in the 
real domain. 

We shall modify these examples by using a construction described in [Gh2]. 
Let u : F ~ ~* be a homomorphism. Consider the following right action of 
F on SL(2,~;): 

0 ) 
(x, 7) E S L ( 2 , 1 1 ? ) •  u(y)_ l x7 E SL(2,1~). 

This action still commutes with the action of II;* on S L ( 2 , ~ )  by left transla- (: 0) 
tions by r -  ~ . If this new action of F is free, proper and totally discon- 

tinuous, we shall say that u is admissible and we shall denote by SL(2 , f ) / /uF  
the quotient manifold. This is a compact complex 3-manifold naturally equipped 
with an action of ~* which gives rise to a holomorphic Anosov flow. A few 
remarks are in order (see Sec. 6 for proofs). If ul and u2 are two admissi- 
ble homomorphisms from F to I1]*, then SL(2,1I~)//ul F and SL(2,1IY)~u2F are 
C~-diffeomorphic. One can even choose a diffeomorphism in such a way that 
it maps the orbits of the IE*-action corresponding to ul to those correspond- 
ing to u2. However, the two IE*-actions are conjugate by a homeomorphism 
only if there is an automorphism 0 of F such that u2 = ul o 0. Note that by 
Mostow's rigidity theorem, the embedding of F in SL(2 ,C)  is rigid and the 
outer automorphism group of F is finite--unlike that in the real case. 

Let us finally mention an el'ementary modification of an action ~b of 112" 
on a compact complex manifold M. Choose k E Z - {0} and assume that the 
group ;~/kTZ of k th roots of unity acts freely on M. Denote by nk the projection 
of M onto the quotient, Mk, of M by 71/k71. On Mk one has a natural ~2*-action 
defined by: 

1 

(r ,~k(x))  ~ r  • M~ ~ k4~(r)(~k(x)) :=  ~k(4~(rr)(x)).  
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It is easy to check that this is indeed well defined and that if ~b is Anosov so 
is k4~. 

Theorem C. Let q~ be a holomorphic Anosov flow on a compact complex 3- 
dimensional manifold. Then, up to finite covers, q~ is holomorphically conjugate 
to one of the examples described above. 

The same construction enables us to describe interesting examples of an- 
other phenomenon. Consider a 2-dimensional real foliation on a compact mani- 
fold and assume that all leaves are conformally hyperbolic (this does not 
depend on the choice of a Riemannian metric on the manifold). In [Ca] it 
is shown, in particular, that under such hypothesis, there is a Riemannian met- 
ric on the tangent bundle of the foliation--which is continuous on the manifold 
and C a along the leaves--for which all leaves have constant negative curva- 
ture (see also [Gh3], [Ve]). We show that such a result cannot be extended to 
the euclidean case. 

Theorem D. There is a holomorphic foliation, ~,~, of complex dimension 1 on 
a compact complex 3-dimensional manifold with the followin9 properties: 

i) every leaf o f  ~ is dense and is of polynomial 9rowth, 
ii)  every leaf o f  ~, ~ is conformally equivalent to the complex line IlY, 

iii) there is no hermitian metric on the tanyent bundle o f  ~,~, continuous 
on the manifold and smooth alon9 the leaves, Jbr which all the leaves 
are flat. 

Let us compare the main results of  this paper with their analogues in the real 
domain [Ghl], [Gh4], [Gh5]. For holomorphic Anosov systems, we make no 
assumption concerning the regularity of  the stable and unstable distributions and 
one of  the contributions of this paper is to show that, indeed, these distributions 
are necessarily holomorphic. Of  course, "holomorphic rigidity" helps us a lot, 
but, in many places, it is also an obstacle. For instance, the non  existence of 
an order in I1~ prevents us from adapting the proofs of [Gh5] and leads to the 
discussion of  section 4. 

2. First properties of  the unstable foliation 

Let M be a compact complex n-dimensional manifold. We denote by TcM its 
complex tangent bundle. This is a holomorphic fibre bundle over M whose un- 
derlying real bundle T~M is the tangent bundle of  the underlying real manifold 
M. We shall always equip TcM with an auxiliary hermitian metric, II- II. Let 
~b be  a holomorphic Anosov diffeomorphism o f  M. By definition, there exist 
complementary sub-bundles E s and E u of TrtM and constants C > 0, 2 > I 
such that for every v ~ E E s, v u E E u and every k > 0, one has: 

lld'pk(v~)ll ~ C~-kllv~ll 

IIdr ~ CA-klIv=ll. 
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Lemma 2.1. The sub-bundles E s, E ~ are complex sub-bundles of  TcM, i.e., 
stable under multiplication by i = x / ~ .  

Proof This is obvious since for v ~ c ES: 

IId~bk(iv~)l ] = [lid~k(v~)l I = []dc;bk(v~)ll ~ c~.-klli~ll ,  

and therefore iv ~ E E s. Same proof for E u. [] 

Let ~ and ~ be the stable and unstable foliations tangent to E s and E" 
respectively. The leaves of , ~  and ~ are C~-immersed submanifolds of M. 
It follows from 2.1 that each leaf of ~ s  or o ~ is an immersed holomorphic 
submanifold of M. 

Remark. For general Anosov diffeomorphisms, ~ "  and ~ "  are usually only 
continuous foliations. We know of no example of holomorphic Anosov diffeo- 
morphism for which J~~ and .~-u are not holomorphic. 

However, we shall prove the following: 

Proposition 2.2. I f  E ~ has complex dimension 1, then ~ s  is a (transversely) 
holomorphic foliation. 

Proof Experts will not be surprised by this result. Indeed, it is well known 
that if an Anosov diffeomorphism of  class C ~ is such that E u has (real) 
dimension 1, then ~ s  is a codimension 1 foliation of  class C 1. Proposition 
2.2. is a "complexification" of  this result taking into account the fact that in 
the complex domain C 1 implies holomorphic. Therefore, the proof that we 
present is nothing more than an adaptation of this classical fact [HPS]. 

Let x and y be two points of M lying in the same leaf L of ~ s .  Let 
"077~ U J'x and ~y~-U be the leaves of  ~ "  going through x and y respectively. Small 
neighborhoods /Ix and Vy of  x and y in ~u  and ~ ~ x  ~ v  can be considered as 
holomorphic curves which are transversal to Ws. L e t h  be the holonomy of 
some path contained in L connecting x and y measured on these transversals. 
This is a homeomorphism, defined at least on some compact neighborhood Wx 
ofx in Vx, whose image h(Wx) = Wy is a compact neighborhood of y in Vy. 
Note that, obviously, h(x) = y and that h does not depend on the choice of 
the path connecting x and y since the leaves of  o~  are simply connected (and 
even diffeomorphic to some euclidean space). In order to prove the proposition 
we have to show that h is holomorphic. 

Let W~ = 4~k(Wx) and Wky'= (ok(Wy) for k ~ 0. It follows from the 

definition of  Anosov diffeomorphisms that if z is a point in Wx, then ~bk(z) 
and dpk(h(z)) approach each other when k tends to +cx~. One knows also that 
the leaves of  o ~ "  vary continuously in the C~-topology (see [HPS] for details). 
ll~ particular, this implies that there is a sequence of  diffeomorphisms ztk, of  
class C l, from Wx k to a compact set ~k(Wx k) in the leaf ~'~Uyk of o ~ going 

through Yk = qSk(y) such that: 
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i) the distance between nk(z) and c~kh(o-k(z) in the leaf ~ ~ "  yt goes uni- 

formly to zero when z E Wx k and k goes to +~x~. 
ii) nk tends uniformly to the identity in the Cl-topology in the following 

sense. There is a sequence ek > 0 tending to zero when k goes to + ~  
such that for all vectors v tangent to W~ one has: 

( 1 -  ~k)llv[I _--< [Id~k(v)l[ < (1 +~k)tlvll. 

Let us now consider the sequence of diffeomorphisms hk = ~b-kztkq5 k de- 
fined on Wx with values in ~y.~" As gb is holomorphic and acts conformally in 
each leaf of Y~ the following properties hold: 

i) he is a (1 + ek)-quasiconformal diffeomorphism from W~ to hk(W~) ( 
~ y  (see [Ah]). 

ii) hk converges uniformly to h when k tends to infinity. 
Therefore, h is 1-quasiconformal, i.e., conformal. In other words h is 

holomorphic. [] 

Remark. If M has complex dimension 2, then the proposition can be applied 
to both stable and unstable foliations so that one deduces that these foliations 
are not only transversely holomorphic but are actually holomorphic foliations. 

3. A complex altine structure along the unstable leaves 

In this section, we generalize another property of Anosov diffeomorphisms of 
real codimension 1: their unstable leaves are naturally equipped with affine 
structures (see [Su], [Gh4] or [Gh5])_ 

Recall that a complex affine structure on a holomorphic curve L is an atlas 
consisting of holomorphic diffeomorphisms f i  from open sets Ui of L to open 
sets of • such that the Ui cover L and the f i  o f]-I are restrictions of affine 
diffeomorphisms of �9 to their domains of definition. If x, y and z are three 
distinct points of L, close enough, then the ratio L~x!-f,!y) is well defined and 

�9 J s ~ X ) - - J t ~  z )  

does not depend on the choice of f i  whose domain contains x, y and z. We 
shall denote this ratio by ~-Y' this is a holomorphic function of x, y and z. 

x - z  ' 

One says that an affine structure on a simply connected Riemann surface is 
complete if it is isomorphic to �9 with its canonical affine structure. 

Proposition 3.1. Let d? be a holomorphic Anosov diffeomorphism of a com- 
plex compact manifold. Assume that the unstable foliation ~ u  has complex 
dimension 1. Then there exists a unique way to equip each leaf of ~ u  with 
a complex affine structure in such a way that: 

i) ~b is actin9 affinely on leaves of  ~u,  
ii) Let ? be a path in a leaf of  the stable foliation, parametrized t~ 

t E [0, 1], and let h(t) be the eorrespondin9 holonomy between opc~ 
sets of  ~ (o )  ~ and ~'~(0" I f  x, y and z are three points of  ~ o ) ,  clo:~e 
enouoh to ?(0), then the ratio h(t)(x)-h~t)~y) is a continuous function oft. 

h ( t ) ( x ) - h ( t ) ( z )  

Moreover, for this structure, each leaf of  ~ is complete. 
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The proof of this proposition is based on the same ideas as in the real 
case but technical difficulties occur since it is not a priori clear that there is 
a holomorphic vector field tangent to ~ "  or even a continuous vector field 
which is holomolphic on the leaves. Before giving the proof, we describe a 
general construction. 

Let L be a holomorphic curve. For p > 0 we denote by Lp the fibration 
over L consisting of p-jets at 0 E ff~ of local holomorphic diffeomorphisms 
f from a neighborhood of 0 c C to some open set of L. Of course L0 is 
naturally identified with L, and L1 with the set of nonzero tangent vectors to 
L. Moreover, one has a chain of fibrations: 

. . . .  L2 P-~2 L1 P-~-*~ L0 = L .  

For f ELI  and r E ~*, we denote by o~. f the 1-jet of the map z H )7(coz) 
where )~ is any representative of f .  This describes Pl explicitly as a IE*- 
principal fibration. In the same way for (co,#) c ~* • IE and f E L2, we 

denote by (o9,p). f the 2-jet of  z ~ f ( ~ )  and this describes a structure 
/ 

of a principal fibration for Pl o P2 :L2 ~ L whose structure group is the affine 
r group Aft ,  parametrized by z ~ i - ~ "  The fibration P2 : L2 ~ L1 is also 

principal via the action of r given by (1,#)  �9 f .  

Lemma 3.2. There is a natural identification between affine structures on 
a holomorphic curve L and holomorphic sections a : L1 ~ L2 which are 
homogeneous in the following sense. For every o~ E ~* and f C L1, one has 
o(~ .  f )  = (oo, O). a ( f ) .  

Proof If L is equipped with an affine structure and if f C Ll there is a unique 
germ of an affine map .f defined in a neighbourhood of 0 C 112, with values 
in L, having f as its l-jet at 0. One defines or(f) as the 2-jet of )? at 0. The 
homogeneity condition is obviously satisfied. 

Conversely, suppose we are given such an equivariant section o. Let us 
consider local diffeomorphisms g from open sets of C to open sets of L such 
that for every z0 in the domain of 9, the 1 and 2-jets at 0 of the map z ~ y ( z -  
z0) satisfy j2(y)(zo) = o ( j l ( g ) ( z 0 ) ) .  It is clear that this second order differential 
equation has local solutions and the homogeneity condition guarantees that any 
two local solutions differ by an affine map. In other words, these solutions 
define an affine structure on L. [] 

Let us come back to our holomorphic Anosov diffeomorphism ~b of the 
compact complex manifold M. For p > 0, we denote by Mp the space of 
p-jets at 0 C �9 of holomorphic diffeomorphisms of a neighborhood of 0 into 
an open set in a leaf of ~ u .  Just as before, one has a chain of fibrations 

�9 . . ----*M2 P-~2 M1 P---~ M o = M .  

Moreover, q5 induces natural homeomorphisms qSp of Mp. 
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In order to prove Proposition 3.1, one has to show the following: 

Lemma 3.3. There is a unique section cr : MI --~ Mz o f  P2 such that: 
i) ~r is continuous and for  every leaf  L o f  ~ u ,  it is a holomorphic map 

f rom  Ll C M1 to L2 C M2 
ii) ~r is homogeneous, i.e., a(oo. f )  = (co, O). a ( f ) ,  

iii) a o ~bl = ~b2 o or. 

Proo f  Let us consider the space 5~" of  continuous sections cr : MI ~ M2 
which are homogeneous (i.e., satisfying ii)). This space is certainly nonempty 
since it can be naturally identified to the space of  sections of  a fibration with 
contractible fibres. I f  ~r and a r are two elements of  f one can use the structure 
of  the G-principal fibration, P2, to define c r -  cd as a continuous function from 
M1 to ~ .  Moreover, one can use the given hermitian metric on M to define 
the norm of  an element of  M1 (identified with a vector tangent to M). Then 
we set: 

x E M  I 

This is well defined since, by homogeneity, the quotient I(~-o')(x)l only depends Ilxll 
on the projection pl(x)  which lies in the compact manifold M. It is easy to 
check that (Ys is a complete metric space. 

We claim that the bijection q~k induced by q5 k on 5f is a dilatation for k 
large. Indeed: 

-_ {1 (o  } 
x~M, Ilxll 

> C-12kd(a ,a  t) 

since ~bl : M1 ~ Ml is identified with the action of  the differential of ~) 
on nonzero vectors tangent to ~ (C and 2 are the constants involved in the 
definition of  the Anosov property). Therefore, there is a unique element a of .• 
which is invariant under q~. 

Now, we show that for each leaf L of  o ~ "  the restriction of  a to LI C M~ 
is holomorphic. Let U i (i = 1 . . . . .  N )  be an open covering of  M by flowboxes 
for ~ .  This means that U i is homeomorphic to an open set of  �9 x 112 n-I by a 
homeomorphism which maps leaves of  ~ into �9 • {,}.  This homeomorphism 
can be assumed to be holomorphic on each leaf of  ~ "  (restricted to ui) .  In 
other words, one has nonnatural complex affine structures on the leaves of 5 ~ ~' 
restricted to U i. 

Let U~ and U~ be the open sets in MI and M2 corresponding to U i and Jet 
si : U[ ~ U~ be the homogeneous section associated with the non canonical 
affine structures that we have constructed. Let x be any point of  M1 and let 
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i(k) be a sequence of  integers such that c~k(x) E U(~k). It is clear that the 
unique invariant section a satisfies: 

a(x)  = lira (~]si(k)(Olk(X). 

Let V be a small open set in a leaf L of  ~ u  and let Vi be the corresponding 
open set of  L1 C M1. As ~ -k  is a contraction one can find a sequence i(k) such 
that for every x in VI, one has c~[k(x) E U~ (k). Hence, the above formula shows 
that the restriction of  g to VI is a uniform limit of  holomorphic functions. 
This shows that for every leaf L of  ,~-u the restriction of  ~ to L1 C M~ is 
holomorphic. 

Finally, we show that the affine complex structures that we have constructed 
on leaves of  ~ "  are complete. Recall that for every affine structure on a simply 
connected space L there is a developing map D : L ~ ~ which is a local 
diffeomorphism and such that the given structure is the pull-back by D of the 
canonical structure (see [Th] for instance). This map D is unique up to post- 
composition by an affine map and the structure is complete if  and only if D is 
a diffeomorphism. 

By compactness of  M, one knows that there is some e > 0 such that i f  
two points are in the same leaf L of  ~ u  and are at a distance less than s, 
then the images of  these points under the developing map are distinct. Since 

acts affinely on leaves of  ,~" and is expanding these leaves, it follows that 
the developing map is indeed injective for every leaf L of  Yu. 

In the same way, there is an s > 0 with the following property. Let p c M 
and choose a developing map D from the leaf L through p to �9 such that the 
norm of the differential of  D at p is 1. This fixes D up to post-composition by 
a rotation. Then the image of  D contains at least the disc of  radius r and center 
0. Since q~ is affine on leaves of  ~ "  and expands these leaves, one deduces 
that these developing maps D have images which cover arbitrarily large discs, 
i.e., they are onto. Therefore, the affine structures that we have constructed on 
leaves of  ~ are complete. [] 

4. A transversely projective structure for the stable foliation 

In this section, we establish the following proposition. 

Proposition 4.1. Let (~ be a holomorphic Anosov diffeomorphism of  a com- 
pact complex manifold. Assume that the unstable foliation ~ u  has complex 
dimension 1. Then the holonomy pseudogroup o f  the stable foliation ~ s  acts 
projectively with respect to the complex affine structures that we introduced 
on leaves of  ~,~". 

One could be tempted to adapt the arguments of  [Gh5]. However, we shall 
have to modify them a lot since an order structure is lacking in the complex 
liner 
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Let us fix a point x0 in the ambient manifold M and a vector v tangent 
to ~ u  at x0 and let us consider the leaf L of  ~ s  through the point x0. If x 
is another point of  L, there is a well defined germ of  a holomorphic diffeo- 
morphism h~0 ~ from a neighborhood of  x0 in the leaf ~ u  through x0 to a 

, x 0 

neighborhood of  x in the leaf ~ x  ~ through x: this is the holonomy of any path 
in a leaf of  ~-~ connecting x0 and x. Since leaves of  ~ are affine, one can 
compute the Schwarzian derivative of  hxo,~: this is a quadratic differential in a 
neighborhood of  x0 in ~ 0 "  At x0 we get a complex quadratic form qxo,x on 
the 1-dimensional complex vector space tangent to ~ u  at x0. Evaluating qxo,~ 
on the vector v we obtain a function: 

x E L H qxo,~(v) E C .  

A priori, this is only a continuous function of  x �9 L since we only know that 
the affine structures along the leaves of  ~ vary continuously. In order to prove 
the proposition, we have to show that all germs hxo,x are projective, which is 
equivalent to showing that their Schwarzian derivatives vanish. In other words, 
we want to show that qxo,x(V) = O. 

Before going through the proof, let us note that i f  x~ is another point of 
L and if  v / = dhxo,x,o(v) is the corresponding vector tangent to ~ u  at x0, then 

the composition formula for Schwarzian derivatives yields: 

qx~o,x(V ')  = qx~o.xo(V') + qxo,x(V). 

Therefore, i f  O is a domain contained in L, the diameter of  the image of  the 
map 

x E 0 ~-~ qxo,x(V) E 

does not depend on the choice of  the base point x0 (if one changes the vector 
v accordingly). This will be used later. 

We shall also need a Markov partition for ~b. Let us recall some definitions 
and introduce some notations. For every E > 0, there is a q > 0 such that if 
two points x and y of  M are at a distance less than t/ then the discs in the 

~s  and ~u  of  centers x and y and radii e intersect in a single point leaves ~- x ~" y 
denoted by [x, y]. 

A rectanole is a compact connected set R in M, which is the closure of 
its interior, of  diameter less than q, and such that i f  x and y are in R so does 

Ix, y]. 
If  R is a rectangle and x E R, we set: 

R,,(x) = { [x , y ] , y  E R} 

RAx) = {[y, x], y �9 R} 

A Markov partition for ~b is a finite collection of  rectangles R 1 . . . . .  R N coveri1~g 
M, with disjoint interiors, satisfying the following property. I f  x belongs to the 
interior of  R i and ~b(x) belongs to the interior of  RJ then: 
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dp(Ri,(x)) D RJ(dp(x)) 

R~(x) c 4,-~(R~(4,(x)). 

595 

For the existence of Markov partitions, see [Bo], IF-J] or [Si]. 
For each rectangle R ~, we choose a base point x~ in the interior of R i and 

we shall simply write R~ and R~ instead of Ri(x~) and R~(xi) respectively. 
Sometimes, when we do not want to specify to which rectangle R ~ a point x 
belongs, we write R~(x) or Rs(x) instead of R~(x) and R~(x) respectively. 

Let o// be the disjoint union of the R / (i = 1 . . . . .  N).  Let x C Y/. If ~b(x) 
belongs to the interior of R j, we set ~b(x) = [x:, ~b(x)]. In this way, we get 
a partially defined expanding map r from an open dense subset of ~ to "//. 
We shall not try to define ~(x) for those points x such that ~b(x) belongs to 
two rectangles. However, we note the following. For each i = 1 . . . . .  N, there 
is a finite collection of holomorphic diffeomorphisms ~u~,..., 7,iN, from R,i to 
q/ which are the "branches of the inverse of r i.e., such that if r = y 
is defined and is in R~, then x is one of the points 7~](y), kui . . . .  N,(Y)" If the 
Markov partition is thin enough, one can always assume that for each i, the 
images of the 7J'l,.. ~ '  �9 , u, are contained in different R~. 

After these preliminaries, we can begin the proof of proposition 4.1. 
Let v be a vector tangent to OR, thought of as being a vector tangent to 

~u  at some point x in some R/. As explained before, one can consider the 
continuous map: 

y C R~(x)Hq~:(v) ~ .  

Let 6(v) be the diameter of the image of this map. Clearly, if 2 is any complex 
number, one has: 

6(~v)=l~126(v), 

Hence 6 has the tensorial character of an area form i.e., a 2-form of type 
(1, l). More precisely, let z be a holomorphic coordinate in a leaf ~'x,~" in a 
neighborhood of x. Then the measure 6 ( ~ )  dzdZ  does not depend on the 
choice of this parameter. In this way, we have constructed a natural measure 
6 on q/. 

Recall that we can always assume that the boundaries of R~ have zero 
(2-dimensional) Lebesgue measure (see [Man]). 

Lemma 4.2. The measure (5 is invariant under 4~. 

Proof Let v be a vector tangent to ~' at a point x belonging to R/. Consider 
the 4)-~.image of Rflx). It is the union of Rs(T](x) )  . . . . .  Rs(T~u,(x)). 

Taking into account that: 
i) q~ acts affinely on leaves of ~ u ,  

ii) R!~(x) is connected, 
iii) qx,y(V) = qr 

one gets: 
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6(v) = diam {qx.y(V) I Y e R~(x)} 

- 1  i = diam {q~_,~),~(d(p-l(v)) I z E 4 (Rs(x))} 

N, 
< ~ d i a m  {qr [z E R ~ ( ~ ( x ) ) }  

k = l  

N, 
< i = ~ 6 ( d % ( v ) ) .  

k = l  

t~. Ghys  

In other words, 3 is sub-invariant, i.e., for every Borel set 4 C ~?r one has: 

6 ( 4 )  _<_ 6 ( ~ - ~ ( 4 ) ) .  

It is now easy to deduce that 3 is invariant. If .4 is a Borel set in 0//, one has: 

6(~) = 6 ( ~ ) + 6 ( ~ - 4 )  < 6 ( ~ - I ( 4 ) ) + 6 ( ~ - ' ( ~ - 4 ) )  = 6 ( ~ - ' ( ~ ) )  = 6(~,). 

Hence, all inequalities are equalities and 3 is an invariant measure. [] 

Lemma 4.3. The measure 6 is the zero measure. 

Proof Assume by contradiction that 3 is nontrivial. Then q~ admits an ab- 
solutely continuous invariant measure and is therefore topologically transitive. 
This implies that ~ is also topologically transitive and that ~ is everywhere 
nonzero. 

We know that all inequalities in Lemma 4.2 are equalities. This means that: 

diam {q~-,(~),y(dq~-l(v)) [ y E qS-l(R~(x)} 

N, 
= ~-~diam {q~_,(x),y(ddp-i(v)) I Y E Rs(~ik(x))}. 

k = l  

We leave the proof of the following easy fact for the reader: 

Fact  I.  Let K be a connected compact set in C which is the union of  finitely 
many nonempty compact sets Kj. I f  the diameter o f  K is the sum of  the 
diameters o f  Kj, then one can find closed discs Dj containin9 Kj with disjoint 
interiors and whose centers are on the same line. In particular, if no Ki is 
reduced to a point then no point o f  K belongs to three distinct Kj. 

Since by hypothesis 6 is nowhere zero, no point of C = ~b-l(R~(x)) can 
belong to three distinct compact sets among the Rs(~] (x)) . . . . .  R~.(ku~v ' (x)). Of 
course, one can apply the same argument for iterates of q9 and we get arbitrarily 
thin covers of  C by finitely many compact sets C 2 such that no point of C 
belongs to three distinct Cj. However, this is in contradiction with the following 
topological fact. 

Fact  2. A compact set C in IR p (p  > 2) with nonempty interior cannot he 
covered by finitely many compact sets Cj with arbitrarily small diameters and 
such that no point o f  C belongs to three distinct Cj. 
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Indeed, let us denote by C ~ and C~ the E-neighborhoods of C and Cj in F,.p. 
By the classical definition of topological dimension, if the Cj have sufficiently 
small diameters and ~ is sufficiently small, there is at least one point in C ~ 
belonging to three distinct C~. Letting c go to zero and taking a limit, one 
deduces the assertion. 

This contradiction proves the lemma. [] 
We can now finish the proof of Proposition 4.1. Let x0 and x be two points 

in the same leaf L of ~ ,  hxo,x the corresponding holonomy and qxo,x the 
Schwarzian derivative of hxo,x. Of course hxo,xo is the identity so that qx0,~o = 0. 
Since we have shown that 6 vanishes, we know that qx, xo does not depend on x 
and therefore vanishes identically. In other words, the holonomy pseudogroup 
acts projectively with respect to the affine structures on the leaves of ~u .  

5. Proofs of Theorems A and B 

Let 4~ be a holomorphic Anosov diffeomorphism of a compact complex mani- 
fold M. Assume that the unstable foliation Z u has complex dimension 1. We 
have shown that the stable foliation ~ admits a transversely projective struc- 
ture. This implies that the lifted foliation ~-~ in the universal covering space ~r 
of M is defined by a global submersion: 

D :a,l --+ { ~ 1 .  

Moreover, there exists a (holonomy) homomorphism 

H : rq(M) ~ PSL(2 ,~)  

such that for every s E/Q and ~, c zq(M) one has the following property of 
the developing map: 

D(y . s = H(7)(D(s ). 

(See for instance [Th]). 
Let ~,u be the lift of ~,~u toaTt and ~-~ be the leaf of o~,u through a point 

:~. We know that ~'~u is naturally equipped with a complete affine structure. 

~u  is a diffeomorphism from ~ to In other words, the restriction of D to ~ ' ,  
~?1~ l - {co(s where o)(s is some point of CIP 1. 

Let us begin with the proof of theorem B. Assume that q~ is topologically 
transitive so that ~ s  admits a transverse invariant measure/,  with full support 
(see [Pll]). 

Lemma 5.1. Let x and y be two points o f  M in the same leaf of  Z s and 
be a path connecting them and contained in that leaf. Then the holonomy o f  
i' is a global diffeomorphism of  the leaf ~x~ of  ~ u  through x to the leaf ~aZUy 
through y. 

Proof Each leaf of .~u is equipped with a measure /~, which is finite on 
COmpact sets. Each leaf of ~ u  is also equipped with a complete affine structure 
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so that closed discs in ~ "  have an intrinsic meaning. Since each leaf of ~ is 
dense and/~ has full support, for each K > 0 the set of  closed discs contained 
in some leaf of ~ and with measure less than or equal to K is a compact 
set. 

Let us consider the path, ~ : [0, 1] ~ M, the holonomy of which we want 
to study, and let B be a closed disc in ~ x  u, where x = y(0). Let to be the 
upper bound of the set of  t E [0, 1 ] such that the holonomy ht of ~ along 
the restriction of 7 to [0, t] is defined on all the disc B with values in ~u  ~" ~(t)' 
Since o ~  is transversely projective, we know that, for t < to, hi(B) is a closed 
disc in ~'r(o'~u Of course, all discs hi(B) have the same measure so that by the 
remark above, this family of discs hi(B) stay in a compact set. In particular, 
the diameters of ht(B) in o~(t) (measured with the auxiliary hermitian metric) 
are bounded, hence hto(B) is defined. If to < l,  it would be easy to extend ht 
beyond to, contradicting the definition of to. This shows that the holonomy of 

can be defined on all B. As the choice of B was arbitrary, this establishes 
the lemma. [] 

Proof of theorem B. The proof of the pr~eding  lemma shows that two leaves 
of  y u  meet exactly the same leaves of o ~ .  In other words, all leaves ~'i~u of 

o ~'u have the same image ~IP 1 - {a} under the developing map D. Choosing a 

as a point at infinity, one sees that ~,s is defined by a submersion D :&t -~ 
so that ~ s  is actually a transversely affine foliation. Moreover, since each leaf 
of  ~,u is mapped diffeomorphically onto ~ ,  it follows that D is a (trivial) 
fibration. Since leaves of ~ s  are simply connected, the global holonomy group 
H(~Zl(M)) is a group of affine transformations of C with no fixed point in 
C. Hence H is an injection of ~t(M) into the group of translations of r 
In particular, ~zl(M) is abelian and M has the homotopy type of a toms. If 
M has complex dimension 2 the fact that M is covered by ~:~4 implies that 
M is actually homeomorphic to a 4-torus. In higher dimension, it is known 
that a smooth manifold having the homotopy type of a torus is homeomorphic 
to a toms [H-S]( 1 thank A. Verjovsky for this argument). Theorem B now 
follows from Franks-Manning's theorem: ~b is topologically conjugate to an 
automorphism of a toms, [Fr], [Mann]. [] 

The proof of theorem A is more delicate. Observe that we do not as- 
sume that ~b is topologically transitive so that we cannot argue that there is 
a transversal invariant measure with full support for ~'~. Moreover, the proof 
that follows will be used again later. 

Since we now assume that ~ s  and ~ "  are one dimensional, we can apply 
the result of  section 4 for both foliations. Hence, M admits local coordinates 
in C F  l • C F  1 such that changes of coordinates are in PSL(2,•)  x PSL(2,~I-'). 
Let: 

D : M ~ C F  l x ~ l P  1 

and 

H : tel(M) ~ PSL(2,tE) x PSL(2,1I~) 
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be the developing map and holonomy corresponding to this structure on M 
respectively. 

Lemma 5.2. D is injective. 

Proof Let s be a leaf of  ~ s  and let U(s  be the union of  all leaves of  
, f  u intersecting s Choose a sequence of  leaves ([~i)i~ such that the open 
connected sets Ui = U(s satisfy: 

i) The Ui cover /Q.  

ii) For each k > 1, the union f2k = ~ik=~ U~ is connected. 
We shall prove the following assertion, stronger than Lemma 5.2, by induction 
on k. 

Assertion. The restriction o f  D to Ok is injective and the image D( f2k ) is the 
complement in CIP 1 x ~ F  ~ o f  the 9raph o f  a continuous map Jrom ~IP ~ to 
IEIP ~, or, o f  the union o f  vertical { , ) •  and o f  the 9raph o f  a continuous 
map from r ~ - { , ~  to r ~. 

Let us prove this assertion for k = 1. We know that the restriction of  D to 
a leaf s of  ~ s  is a diffeomorphism onto a set of  the form (IEIP ~ - {a}) • {b}. 
Each point x of  ~ l  _ {a} corresponds to a point of  [1, still denoted by x, 

and the leaf containing x of  ~ u ,  ~u  ~" x, is mapped diffeomorphically by D onto 
a set of  the form {x} x (~IP 1 - {~o(x)}). The map 09 : ~ 1  _ {a} --~ ~IP l is 
continuous since the complement of  its graph is the open set D(U1). Hence D 
restricted to U1 is injective and its image has the announced form. 

Assume the assertion has been proven up to k. Since we already know that 
D is injective on Qk and D(f2k), is the complement in IEIP 1 • ~IP 1 of  the 
graph of  some continuous map uk : ~ , l  --~ ~lp~, or, of  the union of  a vertical 
{ak} • ~IP 1 and of  the graph of  a continuous map Uk : r _ {ak} ~ II~IP 1. 

Moreover we know that D is injective on Uk+t and that D(Uk+I) is the 
complement of  the union of  {bk+l } • CIP 1 and of  the graph of  vk+l : 112]~ L -- 
{b~+l} ~ C ~  I (this is the case k = 1). 

It follows that D(Y2k)ND(Uk+! ) is connected since it is the complement in 
r 1 x r  1 of  a finite union of  real codimension 2 topological submanifolds. 

Let x and y be two points in f2k+l = f2k U Uk+l such that D(x) = D(y).  
Since we already know that D is injective on f2k and Uk+l, we can assume 
that x is in f2k and y in Uk+l. Let z be a point in Uk+| A I2k and ~ be a path 
in D(12k)ND(Uk+~) connecting D(z) and D(x) = D(y).  This path lifts in a 
unique way in f2k from z to x. 'In the same way, 7 lifts in a unique way as 
.a path in Uk+l from z to y. Sirice D is a local diffeomorphism, two lifts of  7 
ul M with the same origin are equal. In particular, the endpoints of  these lifts 
arc the same, i.e., x = y. Therefore the restriction of  D to f2k+l is injective. 

We still have to describe the image D(f2k+~). Let p be a point of  ~ l  
di'~.tinct from bk+! and ak (in case ak is defined). We claim that uk(p) = 
vk~l(p). Otherwise D(f2k+l) ----- D(f2k)UD(Uk+I) would contain a complete 
vertical {p} x CIP 1. This is of  course not possible since we would have an 
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embedding of 1121P 1 in D-l (12k+t  ) C/ht whose image would be in a leaf of ~ 
and we know that all leaves of  ~ "  are copies of ~ .  This implies that the open 
set D(12k+l) has the required form. 

P r o o f  o f  Th eo r em  A. The previous lemma shows that D is injective and its 
image is the complement of the graph of a continuous map u : ~IP 1 ~ CIP 1 , or, 
of  the union of  a vertical {c} •  1 and of the graph o f u  : ~IP 1 - { a }  ~ r 1. 
Reversing the roles of ~ s  and ~ '" ,  one sees that only two possibilities can 
o c c u r ~  

i) D(M) is the complement of the graph of a homeomorphism u : ~ l  -~ 
r ~ , 

ii) D(/Q) has the form (11~ 1 - {a}) • ( ~ 1  _ {b}). 
Let us first consider case i) and let us show that it is not possible (even 

though it will be important for the study of Anosov flows; see section 7). Since 
leaves of ~ and ~ are simply conne~ed, a nontrivial element 7 of nl (M) 
is such that H(7 ) does not fix a leaf of ~'~" or ~ '" .  This excludes case i) since 
a nontrivial element of P S L ( 2 , r  has at least one fixed point in ~IP 1 and, in 
case i), this would give rise to a fixed leaf. 

In case ii), we can always assume that a = b = ~ and the same argument 
shows that H(TrI(M)) should consist of affine maps fixing no leaf of ~'~ or 
~ ,  i.e., of translations. Hence M is the quotient of II? by a lattice; it is 
a complex torus. A lift of  ~b to/Q has to be an affine transformation of r 
preserving vertical and horizontal lines and normalizing the lattice. Theorem A 
is proved. [] 

6. Some examples of holomorphic Anosov flows and of nonuniformizable 
foliations 

We first explain why we have chosen to define a holomorphic Anosov flow 
as being an action of C*. We could have considered holomorphic vector fields 
X on a compact complex manifold M generating a flow ~br(z E ~ )  for which 
there is a d~b ~ invariant splitting: 

T c M =  E ss | E uu | ff~X 

and constants C > O, 2 > 0 such that: 

Ild~b~(va)l[ < Cexp(-~(z) ) l iv~ 'H 

lld4~(v")ll > Cexp(2~(v))llv"[I 

for all v ~ E E ~s, v u E E ~u and z E C (where ~ is the real part). However, 
this is not more general than C*-actions. Indeed, the real flow ~it( t  E JR) ~s 
obviously uniformly equicontinuous so that its closure in the diffeomorphis~n 
group of M is a torus T t for some l > 1 commuting with the flow ~b ~. The 
above hyperbolicity assumptions imply that a vector tangent ot the orbits of 
T t has a zero component in E ~ s O  E uu and it easily follows that l = 1. In 
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other words, there is a real number 05 such that ~b ia = id. Normalizing, we 
can always assume that 05 = 2n so that q52'~ = id and the flow q5 ~ corresponds 
to a 117*-action of exp(z) EII;*. 

Closed orbits of ~*-actions have a richer structure than that in the real 
case; their "period" is an element ~o in ~* and the closed orbit is the elliptic 
curve I17"/{~o~}. In case of a holomorphic suspension, as described in the in- 
troduction, periods are precisely the powers of the complex number co used in 
the construction. 

We now describe with more details the examples mentioned in the intro- 
duction. Let F be a discrete cocompact subgroup in SL(2,117). Observe that, 
up to a Z/277-extension, SL(2,1r) is the isometry group of the real hyperbolic 
3-dimensional space ~I 3 so that F is the fundamental group of a hyperbolic 
3-dimensional orbifold. Many examples have nonvanishing first Betti number, 
i.e., are such that there exist nontrivial homomorphisms u : F -+ 112" (see [Th]). 

If u is such a homomorphism, we have considered the right action of F on 
SL(2,11?) defined by: 

(x,  7) E S L ( 2 ,  ff2) x F ~--~ x . 7 = 0 u(~) - I  xT" 

If this action is free, proper and totally discontinuous, we denote by 
S L ( 2 , 1 r ) / / u F  the quotient, and we say that u is admissible. We noted that 
there is a natural II~*-action on this quotient, coming from left translations by (: 0) 
matrices r -  ' ' 

Let H + and H -  be the right invariant holomorphic vector fields in SL(2,117) 

corresponding to the elements ( ~  ~ : ) a n d  (01 0~ of the Lie algebra of 

SL(2, ~ )  and denote by .~ff+ and ogt '~- the one-dimensional holomorphic folia- 
tions generated by H + and H - .  It is easy to check that the differential of the 
right action by 7 in S L ( 2 , ~ )  maps H + and H -  to u(7)2H + and u ( 7 ) - 2 H  - 
so that H + and H -  are not invariant (unless u 2 is trivial) but 9F + and ~ -  
are invariant. In other words, on the compact manifold SL(2 ,~ ) /uF ,  we have 
two natural foliations .~tt~+ and 9 ~ -  which are invariant under the C*-action. 
When u 2 is trivial, ~ +  and Jt ~-  are parametrized by vector fields H + and 
H-  which are expanded and contracted respectively by the action so that, at 
least in that case, the ~*-action is a holomorphic Anosov flow. 

In order to simplify our description of these examples, we shall assume that 
F is torsion-free (this can always be achieved by replacing F by a finite index 
subgroup by a theorem of Selbe'rg). In particular, F injects into PSL(2, ~ )  = 
S L ( 2 , 1 1 2 ) / { + i d } .  

Note that if  ~ : F -~ {4-1} is a homomorphism, the map z : 7 E F ~-+ 
~(',')7 E SL(2,112) is an injective homomorphism whose image is another dis- 
crete subgroup F '  of SL(2,1I;). In such a situation, we shall write F = 4-F'. 
This happens precisely when F and F '  have the same projection in PSL(2, IE). 
Of course, u : F -~ SL(2,112) is admissible if and only if e.u o z - l  : F '  --+ 117" 
is admissible and the corresponding actions of I1~* are conjugate. 
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Proposition 6.1. Let F be a discrete torsion-J~ee cocompact subgroup of 
SL(2, r  Then: 

i) homomorphisms u : F --+ (17.* which are close enough to the trivial 
homomorphism are admissible, 

ii) i f  u : F --~ 112" is admissible, the corresponding (lY-action on 
SL(2, C)/uF is a holomorphic Anosov flow. 

Let Fl and F2 be two discrete torsion-free cocompaet subgroups o f  SL(2, ~). 
Then SL (2, (E)//,t Fl  and SL (2, (U)/u2 I'2 are homeomorphic i f  and only i f  there 
is a continuous automorphism 0 o f  SL(2, (E) such that O( FI ) = + F2. In such a 
case, there is a C~176 between SL(2, ~ )//,~ F l and SL(2, C )//u2 F2 
sending orbits o f  the first (lY-action to orbits o f  the second (without neces- 
sarily commuting with the actions). 

Proof Property i) is a complex version of the analogous property in the case 
of S L ( 2 , ~ )  and can be proven exactly in the same way (see [Gh2] or [Gol] 
for details). 

Assume SL (2, C)//u~ F1 and SL (2, ~)//,2 F2 are homeomorphic. Then FI and 
F2 are isomorphic as abstract groups and it follows from Mostow's rigid- 
ity theorem that there is a continuous automorphism 0 of SL(2, (E) such that 
O(FI ) = zkF2. Note that, up to conjugacy, the only nontrivial continuous auto- 
morphism of  SL(2,C)  is given by O(x)= s 

We now show that if  F2 = • ) then SL(2, C)//,)FI and SL(2, ~)fu2F2 
are diffeomorphic. We can of course assume that 0 = id, and that FI =/72 = ft. 
Let us consider first of all the quotients 114,. = U(I) \SL(2,G)/ / ,Fi  (i = 1,2). 
These are manifolds since we assumed that F is torsion free. Note that if u, 
is trivial, then SL(2,(12)/Fi is the 2-fold (spin)-cover of the orthonormal frame 
bundle of the 3-manifold V which is the quotient of the hyperbolic 3-space by 
the action of F and Mi is the unit tangent bundle of V. 

On Mi, we have a real one-parameter flow f~ coming from the complex 
one-parameter flow on SL(2,(12)/u F. Of course when ui is trivial the flow f l  
is nothing but the geodesic flow of  V. 

The quotient ff~*\SL(2,1t2) of SL(2, C)  by the diagonal subgroup is isomor- 
phic to the complement of the diagonal in C F  l x r I. The universal cover/Q, 
of  Mi, naturally identified with U(1)\SL(2,  G), fibres over the complement of 
the diagonal A in ff;F 1 x r  

Di :J~i  ----+ {F]PI x ~ ]p l  _ z~ 

and this fibration is equivariant under the diagonal embedding: 

H : 7 E F ~-+ (7,~) E PSL(2,•)  • PSL(2,(I~). 

The fibres of  Di are the orbits of the lifted flow f~. We therefore observe 
that both flows f~ and f~ have the same transverse structure, i.e., equivalent 
holonomy pseudogroups. It follows from [Ha] (see also [Gr], [Ba]) that there 
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is a C~-diffeomorphism between MI and M2 sendin9 orbits of  f {  to orbits 
of H2 and, in particular, that Ml and M2 are diffeomorphic. 

We claim that the circle fibrations SL(2, ~)/~,/" --+ M, are trivial fibrations. 
This follows from the fact that orientable closed 3-manifolds are parallelizable 
and from the fact that the space of homomorphisms from/" to ~7" is connected. 
Indeed, choose a path ut (t E [0, 1]) connecting the trivial homomorphism to 
ul and consider the right action of /~ on SL(2, ~ )  • IH 3 (where IH 3 is the 
hyperbolic 3-space) given by: 

( x ' p ) ' t ? = ( ( u t ~  y) ut(?)-'O ) x y , ? _ , ( p ) )  E S L ( 2 , C ) •  

The second factor has been introduced in such a way that the action is free, 
proper, and totally discontinuous for each t E [0, 1]. The quotient spaces are 
homotopy equivalent to SL(2,1F)/F and SL(2,tE)/utF for t = 0 and t = 1. 
Moreover, for each t, the right-action of F commutes with left translations 
by U(1 ) so that each quotient space is the total space of circle bundle. Since 
we noticed that this circle bundle is trivial for t = 0, we deduce that it is 
also trivial for t ---- 1. Hence the circle bundles SL(2,C)~'~ F --~ Mi are trivial 
and the diffeomorphism between M~ and M2 sending orbits of  f ]  to orbits of 
f~ can be lifted to a diffeomorphism between SL(2, ~)//u~ F and SL(2, C) / , 2F  
sending orbits of  the first IE*-action to orbits of the second one. 

It is well known that the Anosov property is invariant under time reparamet- 
rization, i.e., if  there is a C~ sending orbits of  a (real) flow 
ft  I to orbits of another flow ft2 and if f ]  is Anosov, so is f~  (see, for instance 
[Gh4]). The same fact applies (with the same proof) in the holomorphic case. 
Since we have already observed that when u : Y + ~* is trivial the IF*- 
action on SL(2 ,~) /F  is Anosov, it follows that ~*-actions on SL(2,1F)/~F 
are Anosov for admissible u. This completes the proof of proposition 6.1. [] 

Proposition 6.2. I f  u : F --~ ~E* is an admissible homomorphism such that u 2 
is non trivial, then the space of  holomorphic vector fields on SL(2, ~)//,F has 
complex dimension 1 and is generated by the vector field corresponding to 
the ~*-action. 

Proof We have already noticed that there are two holomorphic one dimensional 
foliations ~ +  and ~f~- on V = SL(2,~)/ /uF which are invariant under the 
r and which provide, together with the tangent bundle to the orbits of 
~1"*, a splitting of TcV as a sum of three line-bundles. In order to show the 
proposition, it is enough to show that there is no nonzero holomorphic vector 
field in V tangent to ~ +  (or to ~r if u 2 is nontrivial. Assume there is such 
a vector field ~. Using the fact that the C*-action preserves A,e + and that the 
space of holomorphic vector fields is fni te  dimensional, one can choose r such 
that the IE*- action ~b(T) (T E C*) satisfies, for some k E Z: 

dga(T)(~) = Tk~ for all T E ~* .  
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If one lifts ~ to SL(2,1E), one gets a vector field ~ which is of the form f . H  + 
where f is holomorphic on SL(2,IE). Taking into account the invariance of 
under the action of F and the non-invariance of  H + already observed, we get: 

(1) f ( x . 7 )  = u(7)-2f (x)  for ), E F and x E S L ( 2 , ~ ) .  

Moreover, we have: 

((: 0)) 
(2) f T_ 1 .x = Tkf (x )  for all T E IE* and x c SL(2,1E) 

Assume first that k = 0 so that f actually defines a function f on 

112*\SL(2,1U) ------- ~IP ) • IE• 1 - A. 

Then, by (1), f is invariant under the action of the first commutator group F t 
of  F (on which u is obviously trivial). Now this action of F' on IEIP l • IEIP l is 
topologically transitive. This is equivalent to the fact that the geodesic flow of 
the homology cover of a compact hyperbolic manifold is topologically transi- 
tive. Indeed all non trivial normal subgroups of a discrete group of isometrics 
of a hyperbolic space have the same limit set and all non elementary groups act 
topologically transitively on the square of their limit set (see [Th] and [G-H] 
page 123). Therefore f is constant--but  this is impossible if u 2 and f are not 
trivial. 

Now, assume that k 4:0. Consider the function f :  V I = SL(2, ~) /F  t ~ r 
According to (2), f has to vanish on periodic orbits of  the C*-action on 
V t. But, on any compact hyperbolic manifold the union of closed geodesics 
homologous to zero is dense (as follows also from [G-HI). This shows that 
the union of closed orbits of the C*-action on V' is dense in Vq It follows 
that f is zero. [] 

Corollary 6.3. Let F be a discrete torsion free cocompact subgroup of 
SL(2 ,C)  and Ul,U2 : F --~ C* be two admissible homomorphisms. Then 
the compact complex manifolds S L ( 2 , ~ ) / u F  (i = 1,2) are holomorphi- 
cally diffeomorphic only i f  there is an automorphism 0 of  F such that 
U2 :t:l = U l  o0.  

Proof If u 2 is trivial, then SL(2,tE)/ul F is a homogeneous space of SL(2,IF) 
and therefore admits three linearly independent holomorphic vector fields. Ac- 
cording to 6.2, on deduces that u~ is also trivial if SL(2,tE)[u2F is holomor- 
phically diffeomorphic to SL(2, IE)/u~ F. The corresponding complex manifolds 
are therefore of the form SL(2,~) /Fi  (i = 1,2) and F1 = +F2. Any holo-. 
morphic diffeomorphism between these two homogeneous spaces induces ,qn 
isomorphism between the Lie algebras of holomorphic vector fields which aie 
themselves isomorphic to the Lie algebra of SL(2,IE). The corollary follows 
in this special case. 

Now, assume that u 2 and u 2 are nontrivial and that there is a holom(~r" 
phic diffeomorphism F between the corresponding compact complex manifolds. 
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two eigenvalues. 
orbits containing 
and 2-1(7)ui(?). 
equal or inverse. 

Proposition 6.2 implies that F conjugates the ~*-actions or one with the inverse 
of the other. Let y be a nontrivial element of F and denote by 2(7), 2(?) -1 its 

The C*-action on SL(2, ~)~u,F contains precisely two closed 
a loop freely homotopic to 7 • whose "periods" are 2(7)ui(y ) 
Note that periods of closed orbits related under F should be 
If 0 denotes the automorphism of F (defined up to conjugacy) 

induced by F ,  it follows that either u2 = ul o 0 or u21 = ul o 0. [] 

Corollary 6.4. Let F be a discrete torsion free cocompact subgroup o f  
SL(2,~) and Ul,U2 : F ---* ~* be two admissible homomorphisms. Then the 
r on SL(2, C)//u,F are conjugate by a homeomorphism only i f  there 
is an automorphism 0 o f  F such that u2 = ul o O. 

Proof This is the same proof as that of Corollary 6.3 since we only used 
preservation of periods of closed orbits. [] 

It would not be difficult to give a sufficient condition in 6.3. and 6.4. 
We can now prove theorem D. 

Theorem 6.5. Let F be a discrete torsion-free cocompact subgroup ofSL(2,  ~ )  
and u : F --+ 112" be an admissible homomorphism such that [u[ : F 
~*+ is nontrivial. Then the holomorphic one-dimensional Joliation Yf+ on 
SL(2, ~)//uF has the following properties: 

i) all leaves o f  ,~f~+ are dense with polynomial growth, 
ii) every leaf o f  o~+ is conJormally equivalent to 112, 

iii) there is no hermitian metric on the tangent bundle o f  9f ~+, continuous 
on the maniJold and smooth along the leaves, Jor which all the leaves 
are flat. 

Proof Property i) follows from the fact that the holomorphic Anosov flow is 
not a suspension (the proof of the density of stable leaves of transitive Anosov 
flows which are not suspension, as given in [Pll], immediately generalizes to 
the complex case). 

Property ii) also follows from the Anosov property. Indeed, by compactness 
of the ambient manifold, one can find e > 0 in such a way that for every point 
x, there is a holomorphic map f x  from the disc of center 0 and radius e in 

to the leaf of  ~vt~+ through x sending 0 to x and such that the norm of the 
derivative of f x  at 0 is 1. Using the C*-action qS(T), we get holomorphic maps 
qS(T)oJ'~T-kx)) from a disc of radius e to the leaf of ar163 + through x with an 
arbitrarily large derivative at 0. This implies that the leaf of J r+  through x is 
parabolic, i.e., conformally equivalent to IlL 

We now prove the crucial property iii). Assume by contradiction that there 
is such a hermitian metric g and let ~ be its lift to SL(2 ,~) .  Consider the 
function p : SL(2,tlT) --~ ~,~_ which is the ~-length of the vector field H +. By 
invariance of ~ and non-invariance of H + we get for every 7 in F and x in 
SL(2,~): 

p ( x  �9 ~ )  = p ( x ) l u ( ~ ) l  2 . 
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{ ( 1  ~ S ) . x }  parametrized Now, consider, an orbit of H + in SL(2 ,~) ,  i.e., 1 

b y s E  r  It is equipped with the eomplete fiatmetric p((10 ~ ) ' x ) l d s ]  2 

(completeness follows from the fact that it is isometric to a leaf of a compact 
manifold). Hence p is constant on orbits of H + and defines a function fi on the 

left quotient o f S L ( 2 , ~ ) b y  { ( 1  ~ ' : ) } , n a t u r a l l y  identified to ~ 2 - { ( 0 , 0 ) }  

(via the natural linear action of SL(2, ~) ) .  This continuous function fi : r _ 
{(0, 0)} ~ ~ _  satisfies: 

(3) f i ( i (7 ) (p) )  = lu(7)12(fi(p)) 

for every 7 in F and p in r _ {(0,0)} where i(7) = /~ (7 - t )  ' t7 c GL(2,~).  
Fix 09 C r and consider the following function on ~2 _ {(0,0)}: 

p ~ r _ {(0,0)} ~ F a ( p )  = P(02 P ~ )  
fi(P) 

This function Fa  is invariant under the action of i (F)  on C 2 - {(0,0)} which 
has dense orbits (this is a way of expressing minimality of the horocyclic 
foliation 3r So, there is a constant ca such that F a ( p )  = Ca. Of course, 
Ca~a2 = CaeCa2 so that there is an a E ~ such that for every 02 E r and 
p E r _ {(0, 0)} one has: 

t~(02 p)  = 1021~(p). 

Assume that a 4=0. Then the equation fi < 1 would define a domain in r  
{(0, 0)} bounded by a topological sphere transversal to real straight lines going 
through the origin. This domain should be invariant by elements 7 in the first 
commutator group F '  of F. This is impossible since a non trivial element of 
F / is a hyperbolic matrix in SL(2 , r  and its action on r cannot preserve a 
topological sphere. 

Now, if a = 0, the function fi is constant on rays and, being continuous, 
is bounded. This is obviously in contradiction with (3) since we assumed that 
]u[ is a nontrivial homomorphism in IR~_. This contradiction shows that there 
is no fiat hermitian metric on ~t ~+. [] 

It is probable that theorem 6.4 can be strengthened in the following way: 
there should not exist a measurable Riemannian metric on the tangent bundle 
of 3r +, smooth along the leaves, such that almost all leaves are fiat. 

7. Classification of holomorphic Anosov flows on compact complex 
3-manifolds 

In this section, we prove theorem C. Let ~b(T) be a holomorphic Anosov flow on 
a compact complex 3-dimensional manifold M and let X be the corresponding 
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holomorphic vector field whose flow is qS(exp(s)), (s E ~) .  By definition, there 
is a splitting: 

T~ M = E ss | E uu | ~ . X 

as a sum of  three line bundles. Since the action of  qS(T) is hyperbolic in the 
normal direction to the (complex) one-dimensional orbits, it follows, as in the 
usual real case, that E s = E ss @ CX and E u = E uu @ IEX are integrable and 
generate foliations ~'~ and ~ u  called the central stable and unstable foliations 
respectively. 

Note that the action of  the circle group S 1 C ~* is locally free on M so that 
the quotient of  M by this action is a 5-dimensional real orbifold M ~ equipped 
with a real flow f t  coming from the action of  ~* on M. This real flow f t  
is Anosov (if  one generalizes appropriately the classical definition to orbifolds, 
which is not a problem). As a matter of  fact, most of  what follows could be 
stated for Anosov flows on 5-manifolds generating a transversely holomorphic 
1-dimensional foliation. 

Many results from sections 2 to 5 generalize to flows: 

Proposition 7.1. The central foliations ~ s ,  ~.~ are transversely projective. 
More precisely, there is a holomorphic fibration D from the universal covering 
space M o f  M to some open set in ~IP 1 x ~IP 1 and a homomorphism H from 
the fundamental 9roup 7q(M) o f  M to P S L ( 2 , ~ )  x PSL(2,ff~) such that: 

i) the lifts o J J  ~S and ~ to ~1 are the inverse images o f  horizontal and 
vertical fibrations o f  ~ l  x C ~  1 by D respectively. The fibres o f  D 
are liftedorbits o f  the Anosov .flow, 

ii) for  Fn E M and y E hi (M) ,  one has D(7'- ~ )  = H(7)D(r~ ) where, o f  
course, H(~)D(ff~) denotes the action o f  the pair H(7) o f  elements o f  
PSL(2,ff~) on the pair D(ffl) o f  points o f  ~IP I. 

Proof The existence of  a transverse invariant projective structure for ~ s  and 
. ~  is obtained exactly in the same way as in sections 2 through 4: one simply 
constructs affine structures on strongly stable and unstable leaves and uses a 
Markov partition for the associated Anosov flow f t .  So, we get the existence 
of a global holomorphic submersion D from M to some open set in ~IP 1 x ~IP 1 
and a holonomy homomorphism H : ~I(M) --~ P S L ( 2 , ~ )  x PSL(2 ,~ ) .  

The method of  proof  of  theorem A generalizes in this case and shows that 
D is a locally trivial fibration over its image. Moreover the image of  D is 
either: 

l )  ( ~ "  - {a} )  x (Cn '~ - {b} )  
II) the complement of  the graph of  some homeomorphism of  ~IP I. 
In case I, one can of  course assume that a and b are points at infinity so 

that the image of  D is ~ x IIL In this case, the holonomy H has its image 
contained in Aft • Aft  where Aft is the complex affine group of  IE. This will 
eventually correspond to the suspension case. 

Let //1 and H2 denote the two components of  H.  We will show that in 
case II we can assume that H1 = H2 and that the image of  Ht : n l (M)  --~ 
PSL(2,C) is a discrete cocompact subgroup / ' .  Indeed, let 7 E 7~I(M) and let 
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2(H1(7)), (,2.(HI(T))) -1 be the two eigenvatues of HI(7) (defined up to +l ) .  
If  )~(Hl(7))=l= ~: 1, one produces a closed orbit of the associated Anosov flow 
f t  for which the eigenvalue of the corresponding Poincar6 map on the stable 
manifold is 2(H1(7)) • From the obvious fact that an Anosov flow has a finite 
number of periodic orbits of period less than a given bound, one deduces that, 
for every K > 0, there is a finite number of conjugacy classes of elements 
y in g l (M) such that ~ < 12(H~(~))I < K and 2(H1(7))4: + 1. This easily 
implies that the identity component of the closure of Hl( rq(M))  in PSL(2, ~)  
contains only parabolic elements. It follows that HQq(M))  is discrete unless 
it is conjugate to a subgroup of Aft. The latter case is impossible since the 
inverse image by D of {oo} • ~ F  l (which is nonempty in case II) would 
be a leaf of the lift of ~ u  toM, invariant by all rq(M), and would therefore 
produce a closed leaf for ~-u in M. Hence Hi (gl (M)) is discrete in PSL (2, II~) 
and, of course, the same arguments show that H2(gt(M)) is also discrete. 

If these discrete subgroups of PSL(2 ,~)  were not cocompact, they would 
be of virtual cohomological dimension less than or equal to 2, i.e., they would 
contain finite index subgroups of cohomological dimension less than or equal 
to 2. This follows from the fact that the quotient of hyperbolic 3-space by 
a torsion-free not cocompact discrete subgroup of PSL(2 ,~)  retracts to its 2- 
skeleton and it is an Eilenberg-MacLane space. Consider now the 5-dimensional 
real orbifold M'  that we described above. We know that its universal covering 
spaceM'  is a trivial IR+ fibration over the complement of the graph of some 
homeomorphism of ~IP 1 so that it has the homotopy type of the 2-sphere. This 
is a contradiction since a group of virtual cohomological dimension less than 
or equal to 2 cannot act cocompactly on a 5-manifold homotopy equivalent to 
a 2-sphere (by an elementary spectral sequence argument). Hence HI(nj(M)) 
and H2(~1(M)) are both discrete cocompact subgroups of PSL(2, ~) .  

Let us consider the homeomorphism h of ~ F  1 whose graph is not in the 
image of D. Clearly h conjugates H1 and/ /2  so that it follows from Mostow's 
rigidity theorem that h is actually an element of PSL (2, IE). Finally, conjugating 
D by id x h, one sees that H1 = 1t2 and that the image H1(~I(M)) = 
H2(z~I(M)) = F is a discrete eocompact subgroup o f  PSL(2,~) .  

We shall now prove theorem C in case I, where D(M)  = ~ • IE. 

Proposition 7.2. In case I, up to a finite cover, the holomorphic Anosov flow 
is holomorphically conjugate to a holomorphic suspension o f  some linear au- 
tomorphism o f  a torus •2/A. 

Proof  Passing to a finite cover, we can assume that the holonomy group 
F = H(n l (M) )  is torsion-free. It follows that the Sl-action is a free action so 
that the associated real Anosov flow f t  is a flow on a manifold M'  (not only 
an orbifold). According to [P12], any Anosov flow admitting a transverse affinc 
structure has a global transversal section (note however that in our special case 
it is much easier to prove this than to use the full strength of [P12]). This globat 
section inherits a complex affine structure and the first return map is Anosow 
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So, it is a complex torus ~2/A and the first return map is a ~-l inear mapping 
A E GL(2 ,~ ) .  

In other words, there is a cyclic covering ~t  of M which is a II~*-fibration 
over ~2/A and the Galois group of this fibration is generated by an auto- 
morphism inducing A on 11~2/A. Recall that II~*-fibrations over tori r are 
topologically classified by their first Chem class in H2(~2/A, 7Z), which is 
described by the imaginary part of a hermitian form on ~2, taking integral 
values on A. Note that the hyperbolic matrix A does not preserve any nontriv- 
ial hermitian form on C 2 so that the ~*-fibration/Q ~ C2/A is topologically 
trivial. These topologically trivial ~*-fibrations are characterized by a homo- 
morphism u : A --~ C* which should be invariant by A. Consider log lul and 
note that d being hyperbolic, no nontrivial homomorphism from A to ~-, is 
invariant under d. It follows that u takes its values in S l, i.e., defines an ele- 
ment of the dual torus~quotient  of the dual of ~2 by the dual lattice. Once 
again the hyperbolicity of A implies that its transpose has finitely many fixed 
points on the dual torus, i.e., that u is trivial on a finite index sublattice of 
A. Hence, passing once again to a finite cover of M, one can always assume 
that the ~*-fibration ~Q --* 1172/A is holomorphically trivial, i.e., isomorphic to 
~2/A • ~*. 

The generator of the Galois group should act by 

(x, T) E r x ~* H (A(x), ~o(x). T) c r x IU* 

where o~ : ff~2/A -~ ~* is holomorphic, hence does not depend on x. We 
recover the definition of a holomorphic suspension. [] 

We now study holomorphic Anosov flows of type II for which the image 
of the developing map D is the complement of the diagonal A in ~IP I x r t. 

Recall that ~rlP 1 x ~ , 1  _ A is a Stein manifold and can be identified with 
the affine quadric Q = {(a,b,c) E ff~3 ] b 2 _ 4ac = 1} via the map: 

( ~+f l  ~fl l 
(~, f l )  ~ r x c F  ~ - ~ ~ ~ I f l ' -~--- f l '  ~ - -  fl ~ Q .  

This identification is such that the action of PSL(2 ,C)  on ~ F  l x q~F l - A 
corresponds to the restriction to Q of the natural linear irreducible representation 
of PSL(2, ~ )  on ~3, considered as the space of homogeneous polynomials of 
degree 2, aX 2 + bXY + eY 2. 

Let ~'~ be the space of holomorphic functions on ~IP ~ • 1 - A ,  isomorphic 
to the space of holomorphic functions on ~3 modulo the ideal generated by 
b2 - 4ac - 1. One can find irrediacible finite dimensional subspaces ~ k  C ~r 
(k _> 0) invariant under the action of P S L ( 2 , ~ )  such that: 

i) ~ 0  = ~ consists of constant functions, 
ii) ~ )k~0~k  consists of polynomial functions on Q c IE 3 and is therefore 

dense in ~ (in the topology of uniform convergence on compact sets 
in O). 

Note also that the embeddings Jt~k ~ Yr split in a PSL(2,r  
way. Indeed, one can project the space of holomorphic functions on ~3 to the 
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space of  polynomials by considering finite jets at the origin; this is PSL(2, ~)- 
equivariant and it suffices then to use the complete reducibility of  finite dimen- 
sional representations of  PSL(2, ~) .  

Let ~ E 7 7 -  {0} and denote by E~ the quotient (77/~77)\SL(2,r where 
77/~77 consists of  diagonal matrices of  order I~1. On E~-, one has a natural free 
r 

( :  o ) 
( e ) , x ) C I E *  x E ~ - - ~ c o . x =  (o -7  x E E t  

where e = sign ( [ )  and the right hand side does not depend on the choice of 
the E th root. Of  course, the orbit space is the same as the quotient of  SL(2, C) 
by the left action by diagonal matrices, i.e., IIYlP 1 • II?IP' - A. 

We shall denote by E0 the product (II?IP 1 • IE~ l - A) • 112" considered as a 
trivial ~*-fibration. Note that on each El ,  there is a natural action of  SL(2,11~) 
commuting with the ~*-action. 

Lemma 7.3. A n y  C*- f ibra t ion  over  IEIP 1 x IEIP 1 - A is i somorphic  to E / f o r  

s o m e  f E 77. 

P r o o f  Since IE~ 1 • IUIP 1 - A is a Stein manifold, any Ir*-fibration is cha- 
racterized by its first Chem class in H2(IISIP . • I1;~ I - A,77) ~ 77. The lemma 
follows from the fact that the first Chem class of  E~ is precisely f.  [] 

After these preliminaries, we consider a holomorphic Anosov flow of type II 
on M. We assume that the 112*-action is effective and we consider the holonomy 
cove r /O  of  M, with Galois group F C PSL(2,1E) and the fibration: 

D : .'Q ~ C I P  l • IEIP L - A .  

The C*-action on M lifts to a free action on JQ. Hence by Lemma 7.3, there 
is an f E 77 such that the two II~*-fibrations Ee and ~Q are isomorphic. Choose 
such an isomorphism. By going to a finite covering space, we can assume that 
F is torsion-free so that the embedding of  F in P S L ( 2 , ~ )  lifts to SL(2 ,~)  
(this follows from the fact that orientable closed 3-manifolds have a trivial 
second Stiefel-Whitney class [Mi]). Choose such a lift and consider F as a 
subgroup of  SL(2 ,C) .  

We know that F acts in two ways on Ee ~ A~r The first action comes fron~ 
A 

the action of  SL(2, IE) on Ee and the second from the action of  F on M. Both 
actions commute with the II~*-action so that, comparing the two actions of 1', 
we get for each ? E F a holomorphic map 

f~ : I r F  1 x ~21P J - A ---+ Ir*. 

Note that these maps satisfy a cocycle condition, i.e., for 71,~2 E F and ~ C 
II~F 1 x 1121P 1 - A, one has: 

f?l ~2 (X) = f~'l (72'  x ) f r 2  (X).  
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If one denotes by ~ *  the multiplicative group of  holomorphic functions from 
r  x CIP 1 - A to ~* on which F acts naturally we obtain an element of  

A 

//I(F,Sr Clearly, changing the identification between M and EE amounts 
to the choice of  some element f in J~f* and f~ changes accordingly by the 
coboundary of f .  

Lemma 7.4. Any 1-cocycle f ~ of F with values in Jr* is cohomolo(tous to a 
I-cocycle with values in the subgroup C* c ~ *  of constant functions. 

Before we prove the lemma, let us show how it settles theorem C easily. 
We first show that the case d = 0 cannot occur. A 1-cocycle of  F with 

values in ~* is nothing but a homomorphism u : F ~ IE* and, in particular, 
vanishes on the first commutator subgroup F r C F. Therefore, if  d = 0, there 
would be an identification between M and (~IP t x CIP 1 - A) x ~* such that 
F ~ acts trivially on the second factor. If  F is a discrete cocompact subgroup 
of SL(2 ,~ ) ,  the action of  F r on r  l x CIP l - A is not free. Since the action 
of F on M is of  course free this shows that d cannot be zero. 

Therefore, Lemma 7.4 shows that there is an identification between )Q and 
E~ ~ (71 /EZ) \SL(2 ,~ )  as ~*-fibrations and a homomorphism u : F ~ ~* 

such that F acts on M in the following way: 

0)x, u(~)-~ 
This is precisely the description of  the examples of  flows given in the intro- 
duction. This proves theorem C. [] 

We now prove Lemma 7.4. We begin by two elementary remarks. 
The first is that it suffices to show that the embedding C ~ Yg induces an 

isomorphism HI(F,C)  --, Hl(F, Jg). Indeed, noting that ~IP 1 x 1121P l - A is 
simply connected, the exact sequences: 

0 ~ ~E - - ~  112 ~ ~* ~ 1 

1 l l 
0 - - ~  7Z - - ~  ~,~ ~ ~ *  ~ 1 

give: 

H~(F,~) ~ HI (F ,~  *) ~ H2(iv,2g) , H 2 ( F , C )  

1 1 1 l 
HI(F,~,~) ~ H I ( F , ~  *) ~ H2(F, TZ) ~ n2(F,~f'). 

The last vertical map is injective since the injection ~ ~ oeg splits as a map 
of/ '-modules. So, by a classical diagram chasing argument, we can deduce the 
surjectivity of  the second vertical map from the surjectivity of  the first. 

The second preliminary remark is that Hi(F, ~ )  is finite dimensional. In- 
deed, let us consider the sheaf f2 on M of  germs of  holomorphic functions, 
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constant on the orbits of the tE*-action, and let ~ be its inverse image in M. 
Since ~ is also the inverse image by D of the sheaf of germs of holomorphic 
functions on the Stein manifold ~ l  • ~ l  _ A we have HI(/Q, ~ )  = 0. It 
easily follows (see [Mu, p. 22]) that the natural map: 

HI(F,H~ ~ HI(M,(2) 

is an isomorphism. Of course, the left hand side is precisely Hl(F, ffg). Con- 
sider the sheaf (5' of germs of holomorphic functions on M. The Lie derivative 
along the ~*-action gives an exact sequence of sheaves: 

0 --* E2 --~ C9 --~ (9 --~ 0, 

so that the finite dimensionality of HI(M, (2) follows from that of HI(M, C9). 
Recall the following theorem of Raghunathan [Ra]. 

Theorem. Let F be a discrete cocompact subgroup of a simple noncompact Lie 
group G and let p : G ~ GL(N, R )  be a nontrivial irreducible representation. 
Then, the cohomology group Hi(F, ff~r of the F-module ~N (defined by p) 
vanishes unless G is locally isomorphic to SO(n, 1 ) or SU(n, 1) and the highest 
weight of p is a multiple of the highest weight of the canonical representation. 

In our case, PSL(2,~E) is isomorphic to the identity component SO0(3, 1) 
of SO(3, 1). If one considers an irreducible finite dimensional complex rep- 
resentation p : PSL(2,~E) ~ GL(N,r considered as a real representation, 
SO0(3,1) ~ GL(2N, IR), then the highest weight has the form k(el +e2), 
whereas the highest weight of the natural representation is el. Here, el and 
e2 denote the standard basis of the dual of the standard Caftan subalgebra of 
the complexification of  sl(2,~E). Therefore, one deduces from Raghunathan's 
theorem that for any nontrivial irreducible representation p : PSL(2 ,~)  -~ 
GL(N,~) ,  the cohomology Ht(F;P, zN) vanishes and hence H I ( F ; C  N) also 
vanishes. 

Consider now a cocycle f~ in HI(F, fig). Using the F-equivariant projection 
~ ff~, we get a cocycle c~ in HI(F,~E). Let us show that g~ = f7 - c~: is 

cohomologous to 0. Indeed, projecting on each irreducible finite dimensional 
submodule Jt~k c Jg, and using Raghunathan's result, one gets that 91, is 
cohomologous to a cocycle whose projections on arbitrarily many octck vanish. 
This implies that g~ is cohomologous to arbitrarily small 1-cocycles. The finite 
dimensionality of  HI(F, ~tg) implies that g~ is cohomologous to zero. 

This proves Lemma 7.4, and therefore, theorem D. [] 

We mention two corollaries of theorem D. 

Corollary 7.5. For any holomorphic Anosov flow on a compact complex 3. 
manifoM the stable and unstable bundles are holomorphic sub-bundles of the 
complex tangent bundle of the ambient manifold. 

Proof We know that this is true for the lift in some finite covering space 
of the ambient manifold. The result follows from the fact that the stable and 
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unstable bundle of the lifted flow is the lifted stable and unstable bundle of 
the flow. [] 

Corollary 7.6. A holomorphic Anosov flow on a compact complex 3-maniJbld 
preserves a volume Jbrm. I f  it is o f  type II, it actually preserves a nonvanishing 
holomorphic 3-form. 

Proof Holomorphic suspensions and flows on SL(2, ~)luF are obviously vol- 
ume preserving. It follows that this is also the case for flows which are finite 
quotients of these. This proves the first part of the corollary. 

Consider the holomorphic 1-form q on SL(2,112) which vanishes on H + 
and H -  and equals 1 on the vector field corresponding to left translations by 

0 r -~ . It is clear that t/ naturally defines a 1-form, still denoted by v/, in 

SL(2,1r)fuF (for any admissible u : F --~ 112") which is invariant under the 
corresponding Anosov flow q~(T). One easily checks that t] A dr/ is a nonsin- 
gular holomorphic 3-form. Any holomorphic diffeomorphism of SL(2,11~)//uF 
commuting with 4~(T) preserves both t/ and t/A dtl so that any finite quotient 
of ~b(T) also preserves a nonsingular holomorphic 3-form. [] 

Let us remark that the second part of corollary 7.6 cannot be generalized 
to type I Anosov flows, i.e., to suspensions. Indeed, let B E SL(4,7Z) be 
a matrix whose spectrum is {pe'~ -i~ 1 to t 1 --IO'l ~;e , s e  t with p < 1. This B 

is conjugate in GL(4,1R) to A = (p~  ~ 0 ) ~,d0, E GL(2 ,G)  C GL(4,F,) .  

Hence A preserves a lattice A C G2. Since det d = e '(~176 if  el(~176 1, 
the diffeomorphismA- of G2/A does not preserve any holomorphic 2-form. If 

e '(~176 is not a root of unity, the same is true for any lift of / [  to any finite 
covering space. By considering the holomorphic suspension of A, one produces 
examples of holomorphic Anosov flows which do not preserve any nontrivial 
holomorphic 3-form, even after lifting to finite covering spaces. The canonical 
bundles of these 3-manifolds are nontrivial. Therefore these 3-manifolds are 
not complex homogeneous spaces (see [G-V] for more details). 
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