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Infinite groups as geometric objects
(after Gromov)

Etienne Ghys and Pierre de la Harpe

Many ideas presented here ave due to M. Gromov, and our title above
is precisely that of his I.C.M. address in Warsaw {Gromov, 1984).
The notes of J. Cannon (Cannon, Chapter 11} discuss closely related
topics.

There are many geometric problemns which may be solved by al-
pebraic tools. Indeed, much of algebraic topology is best motivated
by geometric or topological problems {the introduction of Steenrod
(1972) is highly recommended). But the point of this chapter is to
show that the opposite move may also be fruitful: given an algebraic
problem, translate it into geometry to make it ‘visible’. The algebraic
problem of concern below is to understand finitely generated groups.
In this way, we hope to show how the geometric methods discussed
in this volume may also be important for algebraists,

10.1 The Cayley graph of a group and the notion of
quasi-isometry

Let T be a finitely generated group, with neutral element denoted by
€.

Choose a finite set S of generators for T'; for simplicity, we shall
always assume that e ¢ S and that $7! = S (namely s € T is in S iff
571 is in §). Define the length £5{7) of any ¥ € T' to be the smallest
integer n such that there exists a sequence {sy,. .., 8, ) of generators in
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S for which v = $182...5, and define the distanceds : T x I' = Ra
by dg{y1,v2) = L’s(’y{“lfyg). It is easy to check that ds makes I' a
melric space.

Since dg takes integral values, this metric space is discrete, and
this may impede geometric understanding. One way out (logically
useless but intuitively worthwhile) is to introduce the Cayley graph
G(T, 8): this is a graph with vertex set I in which two vertices v, 72
are the two ends of an edge if and only if v Ly, € S. (This gives
a non-oriented graph, without any loop or muitiple edge, which is
infinite whenever I' is infinite.) There is an obvious action from the
left of I" on this graph which is transitive on the set of vertices.

Fach edge of G(I', S) can be made a metric space isometric to
the segment [0,1], in such a way that the left action of T’ produces
isometries between the edges. One defines naturally the length of a
path between two points {not necessarily two vertices) of the graph,
and the distance between two points is defined to be the infimum of
the appropriate path-lengths. In this way G(T, 5) is made a melric
space which is arc-connected, and the natural inclusion I' C G(T', 5)
is an isometry.

Cayley diagrams of finite groups were introduced by Cayley (in
1878) and others, but the first use of infinite Cayley diagrams is due
ta Dehn (in 1918), for surface groups and for the group of the trefoil
knot. This is why one says also ‘Dehn Gruppenbild’ for *Cayley graph’
(Cannon, Chapter 11).

If T is the infinite cyclic group I and if S = {1,-1}, then G(T', S)
is tsometric lo the real line (Figure 1) and T € G(I', 5) is the usual
welusion £ C R,

IFT =2% and S = {(é), (?), (?), (—01)}’ then G{T', S) is isometric to
the standard square grid {(z,y) € R? : at least one of x,y s in Z} in
the Fuclidean plane.

Similarly, for any n > 3, the group 7™ produces a graph which embeds
in R".

Let T be the (non-Abelian) free group Fy on two generators a,b, and
set S = {a,a”1,b,b71}. Then G(F,,S) is a tree in which any vertex
has four neighbours, {Figure 2).

(The vertices shown on Figure 2 are those of a ball of radius 2.) There
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is no isometric embedding of this Cayley graph in a Euclidean plane
(though amateurs of curiosities may enjoy Kuiper {1955)}, but it is
easy to draw G(Fy, S) in the hyperbolic plane H? (see Section 1 in
Series (Chapter 5)). It is fascinating to look at classical pictures, such
as those reproduced in Magnus’ book {Magnus, 1974}); on Figure 19.a
of that book, the graph dual to the tesselation is a copy of G(F, S).

There is a similar example with the group Fp for each & > 2,
producing a tree where each vertex has 2k neighbours and which may
also be drawn in HZ.

T =7 and if S = {2,-2,3,-3}, then G(T, 8} is shown in Figure
3.

This shows that G(I', ) does indeed depend on both T' and S. The
last figure looks like that of Example 1 when looked at from far enough
away. This motivates the following definition.

Let {X,d) and (X', d") be two metric spaces. A map f: X — X' isa
quasi-isometry if there ezist constants h > 0,C > 0 such that

Sd@,y) = C < d(f(@), f()) < M(z,9) + C

forall z,y € X. The spaces (X,d) and (X', d'} are quasi-isometric if
there exists a quasi-isometry [ : X — X' and a constant D > 0 such
that d'{f(X),&") < D for all 2" € X'.
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Observe that f is not necessarily continuous. For example, R and
7 are quasi-isometric, as one may check with the map f : R — Z which
takes a number to its integral part. More generally, given a group T’
and a finite generating set S, the Cayley graph G{T", S) defined above
and the metric space (I', dg) are quasi-isometric; the case of R and 7
is just the particular case of Example 1.

(i) Two metric spaces (X, d) and (X', d'} are quasi-isometric if and
only if there exist two maps f : X —» X' and g: X' - X as
well as fwo constants A > 0,C > 0 such that

d'{f(z), f(y)} < M(z,y) + C
d(g(a), 9(y")) S M (@', y') + C
d'(f(g{z'}),2") < C
d(g{f(z)),®) <C

forallz,ye X andz',y' € X'.

{ii) Quasi-isometry is an equivalence relotion between metric spaces.

Let 8 and 8' be two finite sets of generators of a group I, and let d, d'
be the distances defined on T by S and S’ respectively. Then (T',d)
and (T',d') are quasi-isometric.

Proof. Let f denote the identity transformation of I', viewed as
a map from (I',d} to (l",d.’). Set Ay = max{d'(s,e} : s € §} and
A = max{d(s',e) : s € §'}. For all z,y € T', it is easy to check
(by induction on d{x,y)) that &'(f{z), f(¥}) < Md(z,y). Smnlarly
d{f 1 (x), 1 {y)) € Aad'(z,y). The proposition follows.

Though (T, ds) does depend on § and is not well defined as a
metric space by the group I alone, it follows from Proposition 7 that
(T, dg) is well defined up to quasi-isometry by the group I' alone. Thus
any property invariant by quasi-isometry of the metric space (I', ds}
is a property of the group I,

In particular, given two finitely generated groups I' and I”, one
may ask whether they are quasi-isometric or not. The question makes
sense even though one has not chosen finite generating sets in I' and
|

10.2 Examples of quasi-isometric groups

The first example is obvious:
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A metric space is quasi-isometric to a point if and only if its diameter
is finite. In particular, the metric space G{I', S) defined in Section
1 is quasi-isometric fo a point if and only if the group T is finite.
Otherwise said, the quasi-isomelry class of the group {e} is precisely
the class of finile groups.

Other examples will come after a proposition for which we intro-
duce some vocabulary.

A metric space X is a geodesic space if, for every pair (z,y) of
points of X, there exists an isometry g : [0,d(z,y)] —» X such that
g(0) = = and g(d(z,y)) = y. (We do not ask that this isometry be
unique.}) Examples of geodesic spaces: Cayley graphs as above, and
complete Riemannian manifolds {by the Hopf-Rinow Theorem).

A metric space is proper if all its closed balls are compact, A
proper space is locally compact and complete (and the converse holds
for geodesic spaces, see Theorem 1.10 in Gromov {1981a)).

A discrete group I' acting by homeomorphisms on a locally com-
pact topological space X is said to act properly if, for every compact
subspace K of X, the set {A € T : AK N K # @} is finite, (There are
equivalent definitions, e.g. in Bourbaki 1971, chap. III, §4); see in
particular the remark on page 34. For an action of a discrete group,
one says also ‘discontinuously’ instead of ‘properly’ : see Section 3 of
Beardon (Chapter 1).

Let X be a metric space which is geodesic and proper. Let T' be a
group acting (say from the left) isometrically and properly on X.
IfT\X is compact, then T is a finitely generaied group which is quasi-
isomelric to X.

Proof. (See e.g. Lemma 2 in Milnor (1968); see also Cannon {Chap-
ter 11)). Let w : X — I'\X be the canonical projection. The space
I\X has a canonical metric defined by d{p,q) = inf{d(x,y)} : = €
7~ 1(p) and y € 77 (g)}. As I'\X is compact, its diameter

R =sup{d(p,q) : p,g € [\X}
is finite. Choose a base point xg € X and set
B ={z € X :d{z,x) < R}.
Observe that {vB), . is a covering of X. Set
S={yel:y#e and yBNB+# T}

Observe that S7! = S, and that S is finite because the action is
proper. Finally, set

r =inf{d{B,yB): vy ' = (Su{e}}}.
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As the infimum is achieved over a finite set (e.g. over those v €
I — (S U {e}) such that d(zg,yxe) > 5R) and as B is compact, one
hasr > 0.

We claim firstly that S generates I' and that, for every v € T', one
has ds(e,v) < Ld(wo,ywe) + 1.

Indeed, consider an element v € I, Let k be the smallest integer
such that d{we,vze) < kr + R. As X is geodesic, one may choose

points @1, 2g, ..., Tre1 = Yo so that d(wg, 1) < R and d(w;, @i41) <
rfori = 1,...,k. As (aB)aer is a covering of X, one may also
choose y1,%2,..., Va1 € L so that z; € B fori = 1,...,k+ 1,
with moreover 13 = e and Y4 = 7. Set 8 = v, L4iv1, so that

4 = 5183 ...5;. As we have on the one hand
d{y; 'mg, v i) <1
and on the other hand

vilzi € B 47 'mip = siviwin € siB

it follows from the definitions of r and S that s; € SU {e} for i =
1,...,k, so that ds(e,y) < k. But (k ~ 1)r + R < d(xe,v2o) by
definition of k, so that

1 R
ds{e, v} < ;d(&‘oi’vwo) +1 - e

We claim secondly that d(zg, vize) < Adg(e,~) for all v € T, where
A = sup{d(wp, sz¢) : s € §}. This claim is straightforward, by induc-
tion on dg{e,v).

Consider now the map

f:{I‘————»X

Y B Y-

The first claim implies that

1
ds{m1, 1) < ;d(f('n), fleh +1
for all 4, € I'. The second claim implies that

ds(f(n), f(12)} £ Ms(n,v2)

for all v1,v2 € I". One has finally

d(f{T)z} < R
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for all & € X because (aB)aer is a covering of I'. The proposition

follows. 01
Corollary
10.10 . . . '
(i) Let ' be a finitely generated group and let I be a subgroup
of finite index in T'. Then I is finitely generated and quasi-
tsometric to T
(i} Let 1 = T" — T — T — 1 be a short exacl sequence of groups
with T finite and T,T" finitely generated. Then T' and T are
quasi-isometric groups.
(iii}) Let T be the fundamental group of a closed orientable surface of
genus g > 2. Then T is quasi-isometric to the hyperbolic plane
HZ2.
Proof.
(i) Choose a finite set S of generators of I' and apply Proposition
9 to the natural action of I on the Cayley graph G(T', §).
(i) Choose a finite set S§” of generators of I'' and consider the
natural action of [' on G{I'", §").
(iii) Choose a Riemanunian metric of constant curvature —1 on the
surface and consider the associated action of I' on H?. O
Observe that claim (iii) carries over to any cocompact Fuchsian
group (see Beardon, Chapter 1).
Example For each integer k > 2, denote by Fy. the free group on k generators.
10.11 Then Fy, and Iy are quasi-isomelric.

To check this, it is enough to show that Fu has a subgroup of finite
index isomorphic to Fy. But consider the graph H which has one
vertex of degree four and two edges (the figure eight), and a connected
regular covering 7 : G — H with k — 1 sheets. The connected graph
G has k — 1 vertices and 2{k — 1) edges, thus its Euler characteristic is
1 — k and its fundamental group is isomorphic to F¢. It follows that
7 induces an inclusion of Fy onto a subgroup of Fy = m{H} of index
k — 1. Figure 4 shows the situation for k = 3.

Exercise Check thot Fy is quasi-isometric {o the modulor group PSLy(Z). Hint:
10.12 the image§ in PSLy(2) .of the matrices (éf) and (;?) generate a sub-
group of finite index which is isomorphic to Fs.

From the point of view of quasi-isometries, the examples in this
section show that finite groups are irrelevant. For this reason, it is
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convenient to introduce the following terminology.

Let () be a property of discrete groups. A group T is said to
have wirtually the property (P) if T has a subgroup of finite index
which has property (P). In particular, T is virtually Abelian if it has
an Abclian subgroup of finite index (examples: the infinite dihedral
group, or crystallographic groups 4 la Bieberbach (Buser, 1985)); vir-
tually nilpotent if it has a nilpotent subgroup of finite index {(examptles:
products of a nilpotent group and a finite group); virtually free if it
lias a free subgroup of finite index (examples: the modular group of
Exercise 12, or indeed any Fuchsian group which is not cocompact).
Ohserve however that some propertices are not interesting for this *vie-
tualification’; for example, a group is obviously ‘virtually finite’ if and
only if it is finite.

To conclude this section, let us mention without proof that there
are pairs of guasi-isometric groups (T, T') for which there is not any
group T, which is isomorphic to a subgroup of finite index in both T
and T {the groups T" and T are not ‘commensurable’}. An example
is given by T = m; (M) and IV = (M), where A and AL" are 3-
dimensional compact Riemannian manifolds of constant curvature —1
such that the ratio of the Riemannian volumes “Lj&%}l is irrational.
For the existence of such pairs, see Thurston’s notes (Thurston, 1978).

10.3 Growth, and examples of non-quasi-isometric groups

In order to give examples as in the title, we introduce the following
growth invariant.

Let I' be a group generated by a finite subset § (alwayswithe ¢ S
and §7! = S, as in Section 1). For each integer k£ > 0, denote by
bs{k) the cardinal of the finite ball {y € T": d{e,v) € k}. Define the
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degree of polynomial growth

log bs(k)

Tog € [0, 00].

d{T") = Hm sup
Rt 0
If T is another finite set generating I', it is easy to check that
br(k) < bs(Ak) for all k > 0, with A = max{ds(e,t) : t € T} It
follows that d(T') depends only on T’ and not on the choice of S.

With the above notation, one has the following properiies of the degree
of polynomial growth.

(i) IfT is finite, d(T') = 0.

() IfT is infinite, bs(k+1) > bg(k)+1 for allk > 0, and d(I') > 1.
(i) IfT" is a quotient of T, then d(T'") < d(T).
(iv) If I is a finitely generated subgroup of I', then d(I") < d(T').

(VY Ift =T - T - T" — 1is ashort exact sequence of finitely
generated groups, then d(T') > d(I") + d(I'"}; if moreover I is
the direct product T x TV, equality holds.

These properties are straightforward to check. As a digression let
us mention a few others:

If I is a finitely generated subgroup of infinite index in I, then
d(T") < d(I') — 1. This is the ‘Splitting Lemma’ of Gromov {1981b);
see also Tits (1981).

If T is such that d(I') < co, then d(I'} is an integer. The only
proof we know of this uses the full strength of Gromov (1981b).

In property (v} above, equality does not hold in general. Say first
that a group I' has exzponential growth if, notations being as above,
there exist constants u > 0 and v > 1 such that bg(k) > uv* for all
k > 0. Then, a semi-direct product of the form Z?x,Z associated to

a matrix
o oy Qg
r = ( P ) c GLz(Z)

has exponential growth if and only if « has an eigenvalue y such that
l4] > 1. In particular, one may have d{Z*x,7) = co.

For each integer n > 1, one has d(Z™) = n. For each integer k > 2,
the non-Abelian free group Fy on k generators has exponential growth;
in particular, d{F}.) = co.

Two finitely generated groups which are guasi-isometric have the same
degree of polynomial growth.
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Proof. Let I'; be a group generated by a finite set §;, and let d;
be the associated distance on I'; (j = 1,2). Let us assume that there
exists a quasi-isometry f :T'; — I'z such that

1

Adl(:r;,y) —C <do{f(z), (1)) € Ady(z, )+ C forall =zyel

for some constants A > 0, C > 0. We shall show that d(T2} > d(T'1},
and the proposition will follow.

For each k > 0, dencte by B;(k) the ball of radius k around e in
[; and by b;(k) its cardinal {(j = 1,2). Set D = C + do(f(e), e). If
v € By(k), then do{f(e), f(7)) < M+ C; this shows that f{By{k)) C
By(Ak+ D). If~v,+' € I'y are such that f{v) = f(+v'), then di{(7,v') <
AC'; this shows that two points in Iy with the same image by f are
m some common ball of radius AC. Consequently

by (k)
: > ¥ : > 0.
bo(Mk + D) > (M) forall k>0
This implies clearly that d(I'z) > d{I'1). 0

(i) The free Abelian groups I"™ and E" are quasi-isometric if and
only if m = n.

(if) A free Abelian group Z" cannot be quasi-isometric to a non-
Abelian free group Fy,  {k > 2).
Proof. See Example 14 and Proposition 15. O

In fact, the next section will hopefully convince the reader that
two groups cannot be quasi-isometric unless they are, algebraically
speaking, ‘very similar’.

10.4 Geometric properties, and open problems

A property (P) of finitely generated groups is said to be a geometric
property if, whenever I'; and I's are quasi-isometric finitely generated
groups, I'y has property {P) if and only if I's has property {(P).

It is remarkable that there is an abundance of geometric prop-
erties, so that quasi-isometry is a very interesting relation between
groups ; though it ignores finite details {Section 2}, it preserves a lot
of distinct properties. As a trivial example, finiteness is a geometric
property (Example 8). Our first genuine example is a reformulation
of Proposition 15:
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The degree of polynomial growth is a geometric property.

For the following examples, we give only sketches of arguments,
or just references.

Being of finite presentalion is a geomelric property.

Proof. Let G be a Cayley graph of the group I'. Given an integer
k > 1, denote by L(k) the set of loops in G of the form i~ !, where
 is a path from e to some vertex x in G and where ¥ is a loop
starting at x of length at most k. Then I is finitely presented if and
only if the following holds :

{(x) L(k) generates the fundamental group m (G} for k large enough.

One may check that () is a geometric property. d

To be virtually cyclic is a geomelric property.

The proof has two steps : given a finitely generated group I' which
is quasi-isometric to 7, one shows firstly that ' has an element «
of infinite order, and secondly that the quotient set I'/4* is finite.
Though this proof can be made completely elementary (see Chapter
1 in Ghys and de la Harpe, 1990}, details make the arguments longer
than we would wish. Of course Proposition 19 follows also from rather
casy growth estimates and from the spectacular result of Gromov
{1981h); see alse Tits (1981).

To be virtually nilpotent 1s a geometric property.

To be virtually Abelian is a geometric property.

1t is an open problem to find a proof of Theorem 21 which does not
use the full strength of Theorem 20. For example, it would be nice to
have a rather short proof of the following: a finitely generated group
which is quasi-isometric to 72 has a subgroup of finite index which is
isomorphic to T2.

Amenability is a geometric property.
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Proof. See Fgluer (1955) or for a more recent proof pages 446-448
of Connes (1976); see also Chapter 6 in Gromov (1981a). a

Before stating other open problems, let us recall the following
notions (see e.g. Kargapolov and Merzliakov, 1985). Let T be a
group. A (finite) space matriochka in T' is a nested sequence

€3] fe}=T,clyc...cT, =T

where each I'; is a subgroup of I'. A matriochka is subnormal if each
T';..1 is a normal subgroup of I';; when this holds the quotient groups
I';/T;_1 are the guotients of the matriochka. The matriochka (%) is
normal if each I'; is normal in I'. It is central if it is normal and
if [T,T] € Fj_¢, namely if T';/T';_; lies in the centre of I'/T";_; for
J = 1,...,n. Subnormal matriochkas are also called ‘composition
sequences’.

A group is nilpotent if it has a central matriochka, pelyeyelic if it
has a subnormal matriochka with cyclic quotients (finite or infinite},
and solvable if it has a subnormal matriochka with Abelian quotients,

For example, a group of upper triangular matrices with ones on
the diagonal is nilpotent. A finitely genmerated nilpotent group is
polycyclic {see Theorem 17.2.2 in Kargapolov and Merzliakov, 1985),
The semi-direct product Z%2x,7 associated to the action of Z on 2?
via powers of a = (%1} is polycyclic, but is not nilpotent. A group
which is either nilpotent or polycyclic is obviously solvable. A group
which is finite, or which is more generally a subgroup of GL,(Z) for
some integer n, is polycyclic if and only if it is solvable (see Theorem
21.2.1 in Kargapolov and Merzliakov, 1985). For any group T, let DT
denote the subgroup of I' generated by the commutators xyxzfy !,
with z,y € T'; recall that Iy denotes the free group on two generators;
then Fb/D{DF,} is an example of a finitely generated solvable group
which is not polycyclic (because its subgroup DF2/D{DF} is not
finitely generated and in particular is not polycyclic, whereas any
subgroup of a polycyclic group is again pelycyclic).

Is polycyclicity a geometric property ? Is solvability o geometric prop-

erty ?

These two questions constitute the beginning of a list that one
may extend at will,

10.5 Hyperbolic groups

Let X be a geodesic metric space (the definition is just after Example
8). A geodesic segment between two points 2,y € X is the image of an
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isometry g : [0,d{z,y)] — X such that g(0) = x and g(d{x,y)) = v;
such a segment is often denoted by fx, y], though there are in general
several segments between two given points. A geodesic triangle in X
is a subset

A= {ml,ﬂtz] U [1‘2,2:3} U [11?3,:1)1]

where the x;’s are points in X and where [2;, x;] denotes some segment
between x; and ;.

The geodesic space X is hyperbolic if there is a constant § > 0 such
that the following holds: for any geodesic triangle A = [z, 29} U
[x2, 23] U [x3,zs] in X ome has d(y, [z1,22] U [w2,23]) < & for all
y € {xy, 23]

See Cannon (Chapter 11} for more on this notion.

The following result is far from being obvious. See Gromov (1987)
and Ghys and de la Harpe {1990).

Let X, X' be two geodesic metric spaces which are quasi-isomelric.
The space X is hyperbolic if and only if X' is hyperbolic.

A finitely generated group " is hyperbolic if the associated Cayley
graphs G(I', S} are hyperbolic,

To check whether a group is hyperbolic or not, it is enough by
Theorem 26 and Proposition 7 to consider one set of generators only.

For example, it is easy to check that the hyperbolic plane H 2
is hyperbolic in the sense of Definition 25. One shows by standard
methods (comparison theorems) that any simply connected complete
Riemannian manifold of sectional curvature bounded above by some
constant k < 0 is a hyperbolic space. It follows from Proposition 9
that the fundamental group of a closed Riemannian manifold of neg-
ative curvature is a hyperbolic group. Gromov indicates in Gromov
(1987) many more examples of hyperbolic groups, and indeed claims
that a finitely presented group ‘is hyperbolic with probability one’.

Hyperbolic groups should be thought of as negatively curved groups.
One of the main problems in extending the theory is that one does
not have, so far, a good definition of groups of non-positive curvature.

Hyperbolicity for groups is a very fine notion: on one hand it
covers so fnany groups, but on the other hand it allows remarkably
precise results, of which the next theorem indicates just a sample.
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10.6

Let T" be a hyperbolic group. Then
(i) T is finitely presented.

(i) T has finite cohomelogical dimension over the rationals, namely
HE(I', Q) = {0} for k large enough.

(iii) Any virtuelly solvable {or more generally any amenable) sub-
group of I' is virtually cyclic.

{iv) Let S be any finite set of generators of ', and denote by o(n)
the cardinal of the sphere {v € I' : ds{e,v) = n}. Then the
formal power series 3 . a{n)}t" is a rational function of the
variable 1.

The rational function of (iv) does depend on S. How do its proper-
ties {zeros, poles,...} depend on S 7 How do they relate to properties
of I' 7 {See Parry 1988, and references therein.) Problems concerning
this rational function are related to the material of Lalley (Chapter
8) and Pollicott {TChapter 6).

The theory of hyperbolic groups solves problems which were for-
mulated long before this theory. Without entering any detail, let us
quote two more results of Gromov.

Let T be the fundamental group of a compact Biemannian maenifold
of negative curvature. Then I' has infinite quotient groups in which
all elements have finite orders.

There ure countable groups which have property {T') of Kazhdan and
which are not finitely presented.

Theorem 29 gives natural constructions of finitely generated in-
finite torsion groups, and answers problems about amenable groups
going back to von Neumann (1929). For previous answers, see Grig-
orchuk (1983) and Ol'shanskii {1980); see also Grigorchuk {1985).
Theorem 30 answers a guestion from Kazhdan (1967).
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