
Knots and dynamics

Étienne Ghys

Abstract. The trajectories of a vector field in 3-space can be very entangled; the flow can
swirl, spiral, create vortices etc. Periodic orbits define knots whose topology can sometimes be
very complicated. In this talk, I will survey some advances in the qualitative and quantitative
description of this kind of phenomenon. The first part will be devoted to vorticity, helicity, and
asymptotic cycles for flows. The second part will deal with various notions of rotation and spin
for surface diffeomorphisms. Finally, I will describe the important example of the geodesic
flow on the modular surface, where the linking between geodesics turns out to be related to
well-known arithmetical functions.
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1. Flows

1.1. Vorticity. Let us start with some historical motivation. Consider a perfect in-
compressible fluid moving inside some bounded domain M in 3-space, with no ex-
ternal forces. At time t , the velocity is described by a divergence free vector field vt ,
tangent to the boundary of M , which evolves in time according to the classical Euler
equation: D

Dt
vt (= ∂

∂t
vt + vt · ∇vt ) is the (opposite) gradient−∇p of the pressure p.

Denote by φt the associated flow: the trajectory of a particle initially located at x ∈ M
is the curve t �→ φt (x). The curl ωt = ∇×vt is known as the vorticity vector field.
One of the earliest results in fluid dynamics is due to H. Helmholtz and W. Kelvin:

The vorticity ωt is merely transported by the flow, i.e. at any time t , one has
ωt = dφt (ω0).

This is not difficult to prove: take a closed loop c in M , and compute the time
derivative of the circulation of vt along the loop ct = φt (c).
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When c reduces to an infinitesimal loop, Stokes’ formula shows that dφ−t (ωt ) is
indeed constant in time.

A much more conceptual proof is due to V. Arnold who realized that Euler’s
equation can be seen as the geodesic flow on the infinite dimensional Lie group of
volume preserving diffeomorphisms of M , equipped with a natural right invariant
metric [3], [5], [55]. This right invariance implies a symmetry group for the equation,
which yields Helmoltz–Kelvin’s result as a special case of Noether’s general principle
that symmetries imply conservation laws.

If one can define quantities associated to divergence free vector fields, which are
invariant under conjugacies by volume preserving diffeomorphisms, these quantities
evaluated on the vorticity ωt will therefore be constants of motion. In this talk, we
will discuss some of these invariants, of topological origin.

One consequence seemed remarkable to W. Kelvin. Suppose that at time 0, the
vector field v0 possesses a vortex ring: a solid torus S1 × D embedded in M in such
a way that ω0 is tangent to its boundary. Then, this ring will survive as a vortex
ring under time evolution, preserving the same topology. This stability of vortices
was the starting point of the (now forgotten) theory of “vortex atoms”, trying to
explain elementary “atoms” as vortex rings in ether. Even though this turned out
to be physically incorrect, it represents one of the first attempts to use topology in
physics. In any case, it motivated P. Tait to start a systematic study of knots, therefore
creating knot theory. See [26] for a fascinating historical survey of this great moment
of interaction between physics and mathematics.

A similar phenomenon appeared much more recently in magneto-hydrodynamics:
the dynamics of electrically conducting fluids (like a plasma). If one assumes that
the fluid is perfect and has no resistance (ideal MHD), the magnetic (divergence free)
vector field is merely transported by the flow of the fluid [21]. For instance, if two
periodic orbits of the magnetic field are linked at time t = 0, these orbits will survive
for ever and remain linked. Again, an invariant of divergence free vector fields yields
conservation laws. See for instance [5], [15].

There are many wonderful examples of vector fields in 3-space whose phase
portraits exhibit a rich topology and which obviously deserve a topological study.
As a typical example, the Lorenz equation also originated from fluid dynamics:

dx

dt
= 10(y − x); dy

dt
= 28x − y − xz; dz

dt
= xy − 2.67z.

It has been extensively analyzed since the 1980s, and is now a paradigm of a “ro-
bust” dynamical system (see in particular the papers of J. Guckenheimer and R. Wil-
liams [48], [90], and the book [83]). Note that this vector field is not volume preserv-
ing, but admits many invariant measures.

Measure preserving flows do not only arise from physical considerations. Consider
for instance a discrete subgroup� of PSL(2,R). The 3-manifoldM = PSL(2,R) /�
can be endowed with a (Haar)-volume preserving flow φt given by left translations
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Figure 1. The Lorenz attractor.
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Figure 2. Some periodic orbits [17].

by diagonal matrices (
exp(t) 0

0 exp(−t)
)
.

The dynamics of this kind of flow has been widely investigated in particular because
of its strong links with number theory (see for instance [84], [68]). We will come
back to this key example in Section 3.

Finally, a huge source of examples of volume preserving vector fields comes from
the suspension procedure: any area preserving diffeomorphism f of a surface S
yields a volume preserving vector field on the 3-manifold obtained by gluing the
two boundary components of S × [0, 1] using f . We will discuss these examples in
Section 2.

1.2. Knots and periodic orbits. If a vector field in the 3-sphere or in a domain of
R3 has a periodic orbit, this defines a knot whose topology can be used to describe the
dynamics. Starting from H. Poincaré one century ago, the quest for periodic orbits
has been rewarding1. Here is a sample of results.

As for the existence question, after a long search around Seifert’s conjecture,
K. Kuperberg constructed a jewel. There exists a nonsingular real analytic vector
field in the 3-sphere with no periodic orbit [59] (see also [44]). Note however that
such a vector field is highly nongeneric.

H. Hofer showed that the Reeb vector field of any contact form in the 3-sphere has
at least one periodic orbit [50]. H. Hofer, K. Wysocki and E. Zehnder even showed
that at least one of these orbits is unknotted [51].

In between these two cases, the volume preserving case seems difficult:
Does there exist a volume preserving real analytic nonsingular vector field in the

3-sphere with no periodic orbit?
G. Kuperberg constructed examples of C1 nonsingular aperiodic volume preserv-

ing vector fields in the 3-sphere, but they are not C2 [58]! K. Kuperberg’s examples
are analytic, but not volume preserving!

1“Elles se sont montrées la seule brèche par où nous puissions pénétrer une place jusqu’ici réputée inabordable”
(H. Poincaré).
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In the opposite direction, there are vector fields in the 3-sphere with plenty of
periodic orbits. R. Ghrist constructed another jewel: an explicit real analytic vector
field in the 3-sphere whose periodic orbits represent all (isotopy classes of ) knots
and links! [41]. More recently, J. Etnyre and R. Ghrist even constructed an analytic
contact form whose Reeb vector field has the same property [28].

Some vector fields have many periodic orbits representing many knots, but not
all. J. Birman and R. Williams pioneered the subject and studied in great detail the
case of the Lorenz equation. The main tool is Birman–Williams’ template theory. In
Figure 3 (extracted from the original paper [17]), one sees a template: an embedding
of a branched surface � in R3, equipped with a semi-flow (ψt )t≥0. The inverse
limit �̂ of this semi-flow is the space of full orbits, i.e. curves c : R → � such that
ψt(c(s)) = c(s+ t) for all s ∈ R and t ≥ 0. This is a compact space equipped with a
flow (ψ̂ t )(t∈R) and an equivariant projection π : �̂→ � (i.e. π � ψ̂ t = ψt �π ). One
can embed the abstract space �̂ in a small neighborhood of � in R3 in such a way
that π−1(x) lies in a small neighborhood of x in R3 and that ψ̂ t is induced by some
smooth vector field in R3 preserving �̂. Any orbit of ψ̂ t stays close to a full orbit
of the original semi-flow ψt . This is the geometric Lorenz attractor which has been
shown recently to be conjugate to the original Lorenz attractor by W. Tucker [86].

v u u′ v′

1

0

Figure 3. The Lorenz template. Figure 4. The Ghrist template.

In their seminal paper [17], J. Birman and R. Williams were able to reduce the
topological study of the knots and links which are present in the Lorenz vector field to a
combinatorial study on the template. For instance, all Lorenz knots are prime [91], are
fibered knots, and have non negative signature. Hence, Lorenz knots are numerous,
but very peculiar. See also [34], [52].

Amazingly, Ghrist’s original example of a vector field exhibiting all knots and
links in the 3-sphere is “almost” the same as the Lorenz template (Figure 4)! See the
beautiful book [42] for more information.

1.3. Asymptotic cycles. Consider a vector fieldv on a compact manifoldM , possibly
with boundary, preserving some probability measureμ, and generating a flow φt . Al-
though there might be no periodic orbit,μ-almost every pointx is recurrent (Poincaré’s
recurrence theorem): there is a sequence tn→∞ such that φtn(x) converges to x; the
long arc of trajectory from x to φtn(x) is therefore “almost closed”. Choose some aux-
iliary generic Riemannian metric onM and, for any point x and time T , consider the
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closed loop k(T , x) obtained by concatenation of the arc of trajectory from x to φT (x)
and some shortest geodesic from φT (x) to x. Denote by [k(T , x)] ∈ H1(M,R) the
homology class of this loop. In the late 1950s, S. Schwartzman observed (in essence)
that the limit S(φ; x) = limT→∞[k(T , x)]/T exists in the first homology group
H1(M,R) for μ-almost every point x, and that this limit is independent of the auxil-
iary metric used to close the arcs [82]. The average value S(φ) = ∫

M
S(φ; x) dμ is

the Schwartzman asymptotic cycle of the flow. Proofs are variations around Birkhoff’s
ergodic theorem.

As in the classical ergodic theorem, the actual value of S(φ) can be computed as
a space average. For each point x, consider the trajectory γx from x to φ1(x) as a
de Rham 1-current on M , whose boundary is the difference between a Dirac mass at
φ1(x) and a Dirac mass at x. The integral

∫
M
γx dμ(x) is a 1-cycle since the integral

of boundaries vanishes (thanks to the invariance of μ). The homology class of this
Schwartzman cycle is indeed equal to the above limit S(φ).

In other words, a measure preserving flow defines a canonical homology class
which can be considered as an “infinitely long knot”. Schwartzman’s point of view
has been greatly generalized by D. Sullivan and W. Thurston among others [85].

1.4. Helicity. A typical application of this kind of ideas has been carried out by
V. Arnold [4]. Suppose for simplicity that M is the 3-sphere, and that the measure
of periodic orbits is zero. Consider two distinct points x1, x2 in M , and two times
T1, T2 > 0. The two closed loops k(T1, x1) and k(T2, x2) are disjoint for almost every
choice of x1, x2, T1, T2 (at least if the metric is generic), and one can consider the
asymptotic behavior of their linking number link(k(T1, x1), k(T2, x2)) as T1 and T2
tend to infinity. Again, as a consequence of Birkhoff’s ergodic theorem, V. Arnold
proved that for μ-almost every choice of x1, x2, the limit

link(x1, x2) = lim
T1,T2→∞

1

T1T2
link(k(T1, x1), k(T2, x2))

exists (see also [23], [36], [88]).
If μ is a volume form, V. Arnold identified the integral

∫∫
M×M

link(x1, x2) dμ(x1) dμ(x2)

that he called the asymptotic Hopf invariant as the helicity, which had been introduced
previously by J.-J. Moreau [67] and K. Moffatt [62], [63], [64], [65], [66] and that
we now recall. Since φt preserves a volume form μ, the inner product ivμ is a closed
2-form, hence can be written dα for some 1-form α. The helicity Hel(v) is equal to
the integral of α ∧ dα over M (which is easily seen to be independent of the choice
of the primitive α). Note the analogy with the usual definition of Hopf’s invariant for
maps from the 3-sphere to the 2-sphere. See also [87] for an interesting definition of
helicity in the spirit of Witten’s approach to Jones’ polynomial.
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The helicity Hel(v) defines a quadratic form on the Lie algebra of divergence free
vector fields, which is invariant under the adjoint action of smooth volume preserving
diffeomorphisms. V. Arnold suggests that Hel(v) is some “Killing form” for this Lie
algebra.

The main open question concerning helicity has been raised by V. Arnold [4]:
Suppose two smooth volume preserving flows are conjugate by some volume pre-

serving homeomorphism (which is orientation preserving). Does it follow that the
two flows have the same helicity?

The qualitative description of helicity as a limit of linking numbers suggests a
positive answer, but one should be cautious that a homeomorphism might entangle
the small geodesic arcs that were used to close the trajectories. However, we will
see in Section 2 that helicity is indeed a topological invariant for flows with a cross
section.

Similarly, V. Arnold asked for a definition of helicity for volume preserving topo-
logical flows: this problem seems to be wide open.

1.5. Digression: the Gordian space. For almost every point x, the curve k(T , x) is
a knot, i.e. has no double point. However, since we are using some auxiliary metric
to close the trajectory arc, this knot does depend on the metric. The idea behind the
previous constructions is that these knots are “approximately well defined” when T
tends to infinity. This suggests looking at the space of knots, as a rough metric space,
à la Gromov.

Denote by K the (countable) set of (isotopy classes of) knots in 3-space. There
is a natural Gordian distance dGordian on K that we now define. Given two knots
k0, k1 : S1 ↪→ R3, one considers homotopies (kt )t∈[0,1] : S1 � R3 which connect
the two knots and are such that for each t ∈ [0, 1], the curve kt is an immersion
with at most one double point, this double point being generic (the two local arcs
that intersect have distinct tangents at the intersection). Denote by D((kt )t∈[0,1]) the
total number of double points of this family of curves. The Gordian distance between
the two knots k0 and k1 is the minimum of D((kt )t∈[0,1]) for all such homotopies
connecting the knots.

The global geometry of this (discrete) metric space is quite intriguing and probably
very intricate. Note for instance that this space is not locally finite (an infinite number
of knots can be made trivial by allowing one crossing). We propose two kinds of
“dual” questions.

One could try to prove (or disprove) that a given metric space (E, d) can be
embedded quasi-isometrically in (K, dGordian). Recall that a map u : E → K is a
quasi-isometric embedding if there are constants C,C′ > 0 such that

C−1d(x, y)− C′ ≤ dGordian(u(x), u(y)) ≤ Cd(x, y)+ C′

for all x, y. For instance, we proved in [39] that every Euclidean space can be
embedded quasi-isometrically in (K, dGordian) and J. Marché showed that a countable
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tree such that every vertex has countable valency can also be quasi-isometrically
embedded [61].

Can one embed quasi-isometrically the Poincaré disk (or some higher rank sym-
metric space) in the Gordian space?

In a second approach, one could try to find maps I : (K, dGordian) → (E, d)

which are quasi-Lipschitz: d(I (x), I (y)) ≤ CdGordian(x, y) + C′ for some suitable
metric space (E, d). Any such invariant I would be a candidate for an adaptation to
vector fields since I (k(T , x))would not be very sensitive to the choice of the auxiliary
Riemannian metric, and the ambiguity could disappear in the asymptotic behavior of
I (k(T , x)) as T tends to infinity. Very few examples of such invariants I seem to be
known. The most trivial one is of course the unknotting number, Gordian distance
to the unknot, but this invariant is hard to compute. Equally hard to compute is the
genus, i.e. the smallest genus of a Seifert surface. A very interesting (and easy to
compute) classical invariant is the signature of knots sign : K → Z which is 2-
Lipschitz for elementary reasons, as well as its twisted versions signω, associated to
complex numbers of modulus 1 (see [37], [38], [39], [53]).

In [37], we consider a measure preserving vector field v in a bounded domain M
of R3, and we prove that the limit sign(v; x) = limT→∞ sign(k(T , x))/T 2 exists for
almost every point x. Its average sign(v) = ∫

M
sign(v; x) dμ(x) is the signature of

the vector field. When v is ergodic with respect to the invariant measure, this signature
coincides (surprisingly?) with (one half of) the helicity.

Some other “new” invariants have this Lipschitz property, like the τ invariant of
P. Ozsváth and Z. Szabó, and the s invariant of J. Rasmussen. Do they lead to new
dynamical invariants for flows?

In a similar vein, it would be interesting to get some information on the rough
geometry of the space of (homeomorphism types of ) closed 3-manifolds where the
distance between two manifolds is defined as the minimum number of Morse surgeries
which are necessary to transform one into the other.

2. Diffeomorphisms of surfaces

Braids are useful to study knots and links mainly because they form a group. In the
same way, surface diffeomorphisms are useful to study flows, and also form a group,
so that we can use algebraic tools.

If f is a diffeomorphism of a surface S, its suspension is obtained by identifying
(x, 0) and (f (x), 1) in the cylinder S × [0, 1]. The corresponding manifold Sf is
equipped with a flow and a cross section on which the first return map is precisely f .
If f preserves a measure or an area form, the suspension preserves a natural measure
or volume form. In this section, we describe many invariants measuring some kind
of twisting in surface diffeomorphisms.
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2.1. The Calabi homomorphism. Denote by G = Diff(D, ∂D, area) the group of
area preserving diffeomorphisms (say of class C∞) of the closed disk, which are the
identity near the boundary. E. Calabi defined a homomorphism

C : Diff(D, ∂D, area)→ R

in the following way [19]. Choose a primitive α of the area form in the disk. For each
element f of G, the form f 
α − α is closed and is therefore the differential dH of a
unique functionH on the disk which is zero near the boundary. Then C(f ) is defined
as the integral of H .

There is an intuitive description of Calabi’s homomorphism which is due toA. Fathi
(unpublished), expressing it as an “average amount of rotation”. The group G is
contractible. Choose some isotopy (ft )t∈[0,1] connecting f0 = id and f1 = f . If
x1, x2 are distinct points in the disk, the argument of the nonzero vector ft (x1)−ft (x2)

in R2 \ {(0, 0) } rotates by some angle Angle(f ; x1, x2) when t goes from 0 to 1 (as a
unit for angles, we use the full turn). It is easy to see that this definition is independent
of the chosen isotopy. It turns out that

C(f ) =
∫∫

D×D

Angle(f ; x1, x2) dx1 dx2.

This interpretation enables a proof of topological invariance for Calabi’s invariant [36]:
If f and g are two elements of G which are conjugate by some area preserv-

ing homeomorphism h of the disk, which is the identity near the boundary, then
C(f ) = C(g).

Indeed, even though h is not assumed to be smooth, one can define the number
Angle(h; x1, x2), and it is obvious that

Angle(f ; x1, x2)− Angle(g;h(x1), h(x2))

= Angle(h; x1, x2)− Angle(h; f (x1), f (x2)).

Note that Angle(h;−,−) is a continuous function on the complement of the diagonal
in D×D, and could be nonintegrable if h is not smooth (there could be an unbounded
local twist). However, the left hand side of the previous equality is bounded since f
and g are assumed to be smooth. As for the right hand side, it is easy to see that its
integral, which is defined, has to vanish (for instance approximating Angle(h;−,−)
by a sequence of bounded functions). Hence C(f ) = C(g).

Observe that Calabi’s definition extends to more general symplectic manifolds
on which the symplectic form is exact. However, no analogous interpretation as an
average rotation is known.

The suspension of a diffeomorphism f in G defines a flow f̂ on a solid torus
D × S1. If one embeds this solid torus in R3 in a standard way, one can compute
the helicity of the suspended flow. In [36], we proved that this helicity is equal to
(an explicit multiple of) Calabi’s invariant of f . (One has to be slightly careful with
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definitions in nonsimply connected manifolds, see [36]). This follows rather easily
from Fathi’s interpretation of Calabi’s invariant andArnold’s interpretation of helicity.

As a consequence of the topological invariance of Calabi’s number, we get the
topological invariance of helicity for flows which are suspensions of area preserving
diffeomorphisms of the disk. This is a positive answer to a special case of V. Arnold’s
question mentioned above.

2.2. Some algebraic properties of diffeomorphism groups. The kernel of Calabi’s
homomorphism C is a simple group [8], [9]. However, the following fundamental
question remains open:

Is the group Homeo(D, ∂D, area) of area preserving homeomorphisms of the disk
which are the identity near the boundary a simple group?

One could try to extend Calabi’s homomorphism to this group of homeomor-
phisms, but the obvious idea of using the integral of Angle(h;−,−) does not work!
If one assumes some rather low regularity for the homeomorphisms, one can never-
theless use this idea, as in the quasi-conformal case [49].

Consider now a closed surface S, equipped with some area form ω (say of total
area 1), and let Diff0(S, ω) denote the identity component of the group of smooth
(say of class C∞) diffeomorphisms preserving ω. The question of the simplicity of
these groups has been settled in the early 1980s (see [7], [9]).
• The group Diff0(S

2, area) of area (and orientation) preserving diffeomorphisms
of the 2-sphere is a simple group. As above, the question of the simplicity of the
group of area preserving homeomorphisms of the sphere is open.
• If S is a compact oriented surface of genus at least 2, there is a flux homomor-

phism F : Diff0(S, area)→ H1(S,R) � R2g whose kernel is simple, as proved by
A. Banyaga. The definition of F , due to E. Calabi, is in the spirit of Schwartzman [19].
Let f ∈ Diff0(S, area), and choose some isotopy (ft )t∈[0,1] connecting the identity
to f . For each point x ∈ S, the curve γx : t ∈ [0, 1] �→ ft (x) ∈ S can be considered
as a 1-current, and the integral

∫
S
γx d area(x) is a 1-cycle whose homology class

F (f ) is independent of the choice of the isotopy (this follows from the contractibility
of Diff0(S, area)). The kernel of F consists of Hamiltonian diffeomorphisms of S.
• Diff0(T

2, area) is not contractible, but retracts to the subgroup of translations,
isomorphic to T2. It follows that the flux is well defined on the universal cover or, bet-
ter, is defined as a homomorphism F : Diff0(T

2, area)→ H1(T
2,R)/H1(T

2,Z) �
R2/Z2. Again, the kernel of the flux is the simple group of Hamiltonian diffeomor-
phisms of the torus.

Note that these flux homomorphisms can easily be extended to the groups of area
preserving homeomorphisms which are homotopic to the identity. In particular, these
fluxes are invariant under topological area preserving conjugacy.

2.3. Dynamical quasi-morphisms. A map F from a group G to R is a quasi-
morphism if |F(g1g2)−F(g1)−F(g2)| is uniformly bounded (see for instance [57]).
One says that F is homogeneous if F(gn) = nF(g) for every n ∈ Z and g ∈ G. For
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every quasi-morphism, the limit F(g) = limn→∞ F(gn)/n exists, and this homoge-
nization defines a quasi-morphism such that |F − F | is bounded.

Some quasi-morphisms have a dynamical flavor. Let H̃omeo(S1) be the universal
cover of the group of orientation preserving homeomorphisms of the circle, seen
as the group of homeomorphisms of R commuting with integral translations. The

map f ∈ H̃omeo(S1) �→ f (0) ∈ R is a quasi-morphism whose homogenization is
precisely Poincaré’s rotation number (see for instance [46]).

Given a group G, the existence of quasi-morphisms which are nontrivial (i.e. not
at a bounded distance from a homomorphism) is related to the second bounded coho-
mology group of G (see [47]). In turn, this is related to the commutator length. If an
element g belongs to the first derived group [G,G], it can be written, by definition, as
a product of commutators. Let us denote by comm(g) the smallest length of such a
product, and set comm(g) = limn→∞ comm(gn)/n. It turns out that nontrivial quasi-
morphisms exist if and only if comm does not vanish identically on [G,G] [12]. For
instance, if � is a nonelementary Gromov hyperbolic group, the space of homoge-
neous quasi-morphisms is infinite dimensional [27]. In the opposite direction, if � is
a uniform lattice in a simple Lie group of real rank at least 2, then every homogeneous
quasi-morphism is trivial: a strong improvement of the now classical vanishing of the
first Betti number of such lattices [18].

Since we know all homomorphisms from Diff0(S, area) to R (and they are not so
numerous), it is tempting to try to understand nontrivial quasi-morphisms, in the spirit
of Poincaré’s rotation number, as an attempt to measure some amount of “twisting”,
or “rotation”, or “braiding”, contained in some area preserving diffeomorphism. In
the next subsections, we will sketch several constructions showing that:

For every closed oriented surface S, the space of homogeneous quasi-morphisms
from Diff0(S, area) to R is infinite dimensional [38].

Hopefully, such invariants could be numerous enough to provide a precise de-
scription of the topological dynamics, as in the case of circle homeomorphisms (see
for instance [46]). As a motivation, let us recall a (generalization of a) conjecture of
R. Zimmer which attracted a lot of attention [93]:

Suppose that a lattice in a simple Lie group of real rank r acts faithfully by
homeomorphisms on some compact manifold M of dimension d. Does it follow that
d ≥ r?

Some very special cases of this conjecture are known to be true:
• In dimension d = 1, the conjecture is settled for smooth actions of general

lattices [18], [29], [45], and even for groups with Kazdhan’s property T [69]. It is open
for topological actions of general lattices. It has been proved for topological actions
for some specific lattices (typically lattices commensurable to SL(n,Z) (n ≥ 3)) [60],
[92].
• In dimension 2, the conjecture is open in full generality. However, it has been

proved by very different techniques for specific lattices (for instance lattices commen-
surable to SL(n,Z) with n ≥ 3) under some additional assumptions: in [32], [33]
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for smooth area preserving actions; in [76] for smooth area preserving actions on a
closed oriented surface of genus at least 1; in [43] for real analytic actions on closed
surfaces different from the torus, and in [79] for the torus case.
• In higher dimension, not much is known, unless one adds strong conditions on

the action, like assuming that the action preserves a connection [31], or is holomorphic
on a Kaehler manifold [20], or for specific lattices acting analytically on 4-manifolds
with non zero Euler–Poincaré characteristic [30] etc.

One of the first nontrivial open cases of this conjecture is the following.
Can a uniform lattice in a simple Lie group of real rank at least 2 act faithfully

on a compact surface by area preserving diffeomorphisms?
Suppose a group � embeds in Diff0(S, area), and let F be a quasi-morphism

on Diff0(S, area). This produces a quasi-morphism on �. For instance, if � is
a uniform lattice in SL(n,R) (n ≥ 3), we already mentioned that such a quasi-
morphism has to be trivial. If one could construct a wealth of quasi-morphisms on
Diff0(S, area)with strong dynamical content, this vanishing result could lead to strong
dynamical restrictions on possible actions of lattices on surfaces, by area preserving
diffeomorphisms.

The previous comments on quasi-morphisms imply that it might be relevant to
search for quasi-morphisms on Diff0(S, area). The next few sections will survey
some recent progress in this direction.

2.4. Ruelle’s rotation numbers. The following construction is due to D. Ruelle
(in a higher dimensional symplectic situation [80]), and was placed in the setting of
bounded cohomology in [11].

Let f be an element of Diff(D, ∂D, area), and choose an isotopy (ft )t∈[0,1] be-
tween f0 = id and f1 = f . For each point x in the disk, consider the differential
dft (x). Using the natural trivialization of the tangent bundle of the disk, we can
consider this differential as a 2 × 2 matrix, element of SL(2,R). The first column
vt (x) of dft (x) is a non zero vector in R2. Denote by Angle(f ; x) ∈ R the variation
of the angle of this curve vt (x) of nonzero vectors when t runs from 0 to 1. This
number does not depend on the choice of the isotopy ft since Diff(D, ∂D, area) is
contractible. Let us define

r(f ) =
∫

D

Angle(f ; x) d area(x).

Consider now two elements f and g of Diff(D, ∂D, area), and choose two isotopies ft
and gt as above. Using the concatenation of these isotopies, one sees that

|Angle(fg; x)− Angle(g; x)− Angle(f ; g(x))| < 1/2.

It follows that r is a quasi-morphism. After homogenization, we get Ruelle’s homo-
geneous quasi-morphism

RD(f ) = lim
n→+∞

1

n
r(f n).
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It is not difficult to check on simple examples that RD is indeed nontrivial. For
instance, letH : D→ R be a (Hamiltonian) function on the disk which vanishes near
the boundary, and suppose for simplicity that the critical points ofH consist of a finite
number of nondegenerate critical points xi , together with some annular neighborhood
of the boundary (on whichH = 0). Denote byXH the symplectic gradient ofH , and
by H(1) the time 1 diffeomorphism defined by XH . Then

RD(H
(1)) =

∑
i

εiH(xi),

where εi = +1 if xi is a local extremum and −1 if it is a saddle point (up to some
irrelevant multiplicative constant, compare [36]).

This construction can readily be extended to Diff0(T
2, area). Indeed, since the

tangent bundle of T2 is trivial, the differential dft (x) can still be considered as a matrix.
One has to be careful since the isotopy is not unique up to homotopy, but any loop in
Diff0(T

2, area) is homotopic to a loop in the translation subgroup and this guarantees
that Angle(g; x) is indeed well defined. Hence, we get a Ruelle quasi-morphism RT2

on Diff0(T
2, area).

The case of closed surfaces of higher genus S is more subtle since the tangent
bundle is nontrivial! However, one can proceed in the following way [38]. Choose
a hyperbolic Riemannian metric on S, and let f ∈ Diff0(S, area). Choose as usual
some isotopy ft from the identity to f , a point x in S, and a unit vector u tangent
at x. Consider the curve dft (u) in the tangent bundle of S, and lift it as a curve
˜dft (u) to the tangent bundle of the Poincaré disk. Every nonzero tangent vector in

the Poincaré disk defines a geodesic ray which converges to some point at infinity,
so that one gets a curve in the circle at infinity. We denote by Angle(f ; u, x) the
number of full turns made by this curve at infinity. This is independent of the choices
of the hyperbolic metric, of the isotopy ft , and of the lift. Moreover, Angle(f ; u, x)
changes by at most 1 when one changes u, keeping f and x fixed, so that one can
now define Angle(f ; x) to be the minimum value of Angle(f ; u, x). As before, we
now define r(f ) = ∫

D
Angle(f ; x) d area(x), and finally RS(f ) by homogenization

of r .
The definitions of Ruelle’s quasi-morphisms on the disk and the torus use the

triviality of the tangent bundle of these surfaces, and the definition on higher genus
surfaces uses some kind of “quasi” triviality of the tangent bundle given by the circle
at infinity. We now give a definition in the case of the sphere [38]. Instead of using
the action on tangent vectors, we use the action on pairs of tangent vectors. Denote
by T2(S

2) the space of pairs of nonzero tangent vectors (δx1, δx2) at distinct points
x1, x2 of the sphere. Observe that the fundamental group of T2(S

2) is isomorphic
to Z × (Z/2Z), so that it does make sense to say that a curve in T2(S

2) turns. In
order to give a quantitative statement, we identify the sphere with the Riemann sphere
C ∪ {∞}. The complex differential form

θ = dx1dx2

(x1 − x2)2
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can be seen as a holomorphic form on the space of pairs of distinct points on CP 1, or
as a function on T2(S

2). Note that this form is invariant under the projective action
of PGL(2,C), and in particular θ is well defined and nonsingular when x1 or x2 is at
infinity. As for the geometrical meaning of θ , observe that θ is the cross ratio of the
four points “x1, x1+δx1, x1, x2+δx2”. Given a curve c : [0, 1] → T2(S

2), we define
Angle(c) ∈ R as the variation of the argument of the complex number θ(c). This is
invariant under homotopies fixing the endpoints.

We can proceed as in the case of the disk. Start with a diffeomorphism f in
Diff0(S

2, area). Choose an isotopy (ft )t∈[0,1] and an element v = (x1, δx1; x2, δx2)

of T2(S
2). We can consider the image vt of v by the differential of ft . This gives

a curve in T2(S
2) and therefore defines some Angle(f ; x1, δx1; x2, δx2). Fixing x1

and x2 and changing the tangent vectors δx1, δx2 changes this rotation angle by
at most 2 full turns. We can therefore define Angle(f ; x1, x2) as the minimum of
Angle(f ; x1, δx1; x2, δx2) over all choices of δx1, δx2. We now define r(f ) as the
double integral of Angle(f ; x1, x2) and RS2 as the homogenization of r . Clearly
this defines a homogeneous quasi-morphism on Diff0(S

2, area) that we call Ruelle’s
quasi-morphism on the sphere.

All these Ruelle quasi-morphisms turn out to be topological invariants:
Two elements of Diff0(S, area) which are conjugate by some area preserving

homeomorphism, respecting orientation, have the same Ruelle invariants [38]. Can
one extend their definitions to homeomorphisms?

Note that one can also define a Ruelle invariant for a nonsingular flow on a 3-
manifold with trivialized normal bundle (for example on the 3-sphere). One looks at
the rotation action of the differential of the flow on a plane field containing the flow.
Similar methods imply its topological invariance.

2.5. Quasi-fluxes, quasi-translation numbers. Let S be a closed surface equipped
with a metric with curvature−1. Let f ∈ Diff0(S, area), and choose some isotopy ft
from the identity to f . For each point x in S, consider the unique geodesic arc γ (f ; x)
connecting x and f (x) which is homotopic to the curve t �→ ft (x). If one considers
γ (f ; x) as a 1-current, the integral t (f ) = ∫

S
γ (f ; x) d area(x) is a 1-cycle, and

the homogenization T (f ) = lim t (f n)/n exists in the space of 1-cycles with the
weak topology. Indeed, let f, g denote two elements of Diff0(S, area) and, for x
in S, denote by�(x, g(x), fg(x)) the (immersed) geodesic triangle whose boundary
consists of γ (g; x), γ (f ; g(x)) and γ (g−1f−1; fg(x)). For any 1-form α on S, one
can compute

(t (fg)− t (f )− t (g))(α) =
∫
S

(∫
�(x,g(x),fg(x))

dα

)
d area(x)

which is bounded by π times the supremum of the norm of dα since the areas of
triangles in the Poincaré disk are bounded by π . Hence, for every 1-form α, the
evaluation t (f )(α) is a quasi-morphism, so that the homogenization is indeed well
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defined. In other words, we defined a quasi-flux with values in the space Z1(S) of
1-cycles:

TS : Diff0(S, area)→ Z1(S).

Of course, the homology class of TS reduces to Calabi’s flux homomorphism. In [38],
we proved that the image of TS does not lie in a finite dimensional subspace. It is
not difficult, using methods from [10], to show that the image of TS actually spans a
dense subspace of the space of cycles.

Note that this construction obviously extends to area preserving homeomorphisms.

2.6. Braiding. We have seen that Calabi’s invariant of a diffeomorphism of the disk
measures the average rotation on pairs of points. It is natural to look at the action
on n-tuples of points [40]. Recall that the braid group Bn is the fundamental group
of the space Xn(D) of unordered n-tuples of distinct points in a disk. We choose n
distinct base points (x0

1 , . . . , x
0
n) in the disk so that a braid can be visualized as a

union of n disjoint arcs in D× [0, 1] transversal to each disk D× {
} and connecting
{x0

1 , . . . , x
0
n} × {0} to {x0

1 , . . . , x
0
n} × {1}. By closing these arcs in R3 in a canonical

way outside D× [0, 1] ⊂ R3, we see that every braid β defines a link β̂ in R3.
Suppose f is an element of Diff(D, ∂D, area), and choose some isotopy (ft )t∈[0,1]

connecting f0 = id to f1 = f . For every n-tuple of distinct points (x1, . . . , xn) in
the disk, we get a curve (ft (x1), . . . , ft (xn)) in Xn(D). Of course, this curve does
not define a braid since it is not a loop, but one can easily construct a braid as we did
when we closed trajectories of flows by short geodesics. More precisely, for each i
we concatenate three curves; the first (resp. third) connects x0

i to xi (resp. f1(xi)

to x0
i ) in an affine way, and the second is the curve ft (xi). These curves now define

a closed loop in the space of n-tuples, which is contained in the space of n-tuples of
distinct points for almost every (x1, . . . , xn). In other words, we get a (pure) braid
β(f ; x1, . . . , xn) inBn. As before this is independent of the choice of the isotopy, and
this provides a cocycle, i.e. for f, g in Diff(D, ∂D, area) and almost every n-tuple,
one has

β(fg; x1, . . . , xn) = β(g; x1, . . . , xn)β(f ; g(x1), . . . , g(xn)).

Consider now some quasi-morphism F : Bn → R. One can average the value of
F(β(f ; x1, . . . , xn)) over the space of n-tuples of distinct points if this is integrable.
This strategy is valid for the signature quasi-morphism. Indeed, the map which
associates to each braid β the signature of its closure β̂ is a quasi-morphism. This
follows from the Lipschitz property of the signature in the Gordian space, that we
mentioned earlier (see also [39] for a description of the coboundary of this quasi-
morphism). As in the case of Calabi’s homomorphism, it is not difficult to check that
sign(β(f ; x1, . . . , xn)) is indeed an integrable function. After integration over the
space of n-tuples and homogenization, we get for each n ≥ 2 a quasi-morphism:

Signn,D : Diff(D, ∂D, area)→ R.
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Although it is not defined for homeomorphisms, one can also prove its topological
invariance.

One can compute explicitly these invariants on simple examples. For instance,
let h : [0, 1] → R be a smooth function, which is equal to 0 in a neighborhood of 1,
define a Hamiltonian function H on the disk by H(x) = h(‖x‖2), and consider the
associated time 1 diffeomorphism H(1). Then one has

Signn,D(H
(1)) =

∫ 1

0
h(u)(un−2 + 1) du

(up to some explicit multiplicative constant [38]). Of course, the case n = 2 reduces
to (a constant multiple of) Calabi’s invariant (B2 � Z). Note that these numbers
determine all moments of h and therefore the function h itself. This is a (small) hint
that these quasi-morphisms give a good description of the dynamics.

One can proceed in a similar way with diffeomorphisms of the sphere except
that we now get a cocycle with values in the pure braid group of the sphere Pn(S2)

(fundamental group of the space of ordered n-tuples of distinct points on S2). It is
not difficult to express Pn(S2) as a central extension of the standard pure braid group
Pn−1(D) (i.e. the pure braid group of the disk):

0→ Z→ Pn−1(D)→ Pn(S
2)→ 1.

In this exact sequence, the central Z is generated by a “double full turn” in SO(2)
(which is homotopically trivial in SO(3)). The projection from Pn−1(D) to Pn(S2)

consists in “adding a strand at infinity”. On Pn−1(D), we have a nontrivial homo-
morphism lkn−1 onto Z given by the total linking number of the strands, and a quasi-
morphism given by the signature. A suitable linear combination signn−1 − cn lkn−1
descends to a quasi-morphism on Pn(S2) that we simply called the signature of a
spherical braid in [38]. As before, we can use these spherical signatures to define
quasi-morphisms Signn,S2 on Diff0(S

2, area) which are again topological invariants.
If we think of S2 as the unit sphere in R3, and we consider some Hamilto-

nian function only depending on the third coordinate z through a smooth function
h : [−1, 1] → R, the invariant of the associated time 1 diffeomorphismH(1) is given
by the following formula (up to some irrelevant multiplicative constant and for n
even):

Signn,S2(H
(1)) =

∫ +1

−1

(
(n− 1)un−2 − 1

)
h(u) du.

The first interesting case is n = 4 and deserves special attention. Let us give some
interpretation of Sign4,S2 as an “amount of braiding”. Given four distinct points z1,
z2, z3, z4 of the sphere, seen as the Riemann sphere, their crossratio [z1, z2, z3, z4] =
(z3−z1)
(z3−z2)

(z4−z2)
(z4−z1)

is in C \ {0, 1,∞}. The universal cover of a sphere minus three points

can be identified with the Poincaré disk D. More precisely, there is a covering map
from D onto C \ {0, 1,∞} and the inverse images of points of R \ {0, 1,∞} define a
tesselation of D by ideal triangles.
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Figure 5. Lifting the crossratio of 4 moving points to the disc.

Let ft be some isotopy of the sphere from f0 = id to some area preserving
diffeomorphism f . Choose four distinct points z1, z2, z3, z4 in the sphere, consider
the path [ft (z1), ft (z2), ft (z3), ft (z4)] in the sphere minus three points, lift it to the
disk, and finally consider the geodesic arc connecting the end points of this lift. Each
time this geodesic enters and exits one of the ideal triangles, the exit may be the left
or the right side of the triangle, as seen from the entrance side. Counting the number
of left exits minus the number of right exits, one gets an integer t (f ; z1, z2, z3, z4)

that one can integrate on the space of 4-tuples. After homogenization, one produces
a quasi-morphism on Diff0(S

2, area) which turns out to be (a constant multiple of)
Sign4,S2 [38], [39]. We will meet again this left-right exits count in the last section,
in relation with the so-called Rademacher function. See also [13], [14].

2.7. Calabi quasi-morphisms on surfaces: Py’s construction. Consider a closed
connected surface S equipped with an area form, and denote by Ham(S, area) the
group of Hamiltonian diffeomorphisms of S. Let D ⊂ S be some open set diffeo-
morphic to a disk. One can consider the group Diffc(D, area) of area preserving
diffeomorphisms ofD with compact support as a subgroup of Ham(S, area), extend-
ing by the identity outside D. Note that Ham(S, area) is a simple group, but that
Diffc(D, area) is not simple since it surjects onto R by Calabi’s homomorphism.

M. Entov and L. Polterovich suggested looking for Calabi quasi-morphisms,
i.e. homogeneous quasi-morphisms F : Ham(S, area)→ R which restrict to Calabi’s
homomorphisms on subgroups of the form Diffc(D, area) if D is “small enough”.
They proved the remarkable result that such a Calabi quasi-morphism does exist
when S is the sphere (and for many other higher dimensional symplectic manifolds)
where “small enough” means “of area less than one half of the area of the sphere”.
P. Py succeeded with the same task when S is of genus at least 2 andD is any disk [77].

It is unknown if there exists a Calabi quasi-morphism in the case of the torus.2

We begin with a description of Py’s invariant since it is more elementary and more
in the spirit of the previous discussion.

Choose a Riemannian metric with curvature−1 on S, and denote by p : T 1S → S

its unit tangent bundle, seen as a principal SO(2) bundle with a natural connection.

2Note added in proof. P. Py constructed recently such a quasimorphism: Quasi-morphismes de Calabi et
graphe de Reeb sur le tore. C. R. Math. Acad. Sci. Paris 343 (5) (2006), 323–328.
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Denote by ∂/∂θ the vector field generating the SO(2) action. Note that the map
which associates to any vector field X on S its horizontal lift X in T 1S is not a Lie
algebra homomorphism since the connection is not flat. However, if H : S → R is a
Hamiltonian with zero integral,XH its symplectic gradient, and X̂H = XH +H �p ·
∂/∂θ , the mapH �→ X̂H is a Lie algebra homomorphism from the Poisson algebra to
the Lie algebra of vector fields on T 1S commuting with the SO(2) action. Integrating
this homomorphism, we get a homomorphism f �→ f̂ from Ham(S, area) (which is
simply connected) to the group of diffeomorphisms of T 1S commuting with SO(2).
This construction is due to A. Banyaga [7].

Now, consider an element f in Ham(S, area), written as time 1 of a Hamiltonian
isotopy (ft )t∈[0,1]. For each point x in S, and each unit vector v tangent at x, one

gets a curve f̂t (v) in T 1S which can be lifted as a curve in the unit tangent bundle
of the disk. As we did before, we can now project this curve to the boundary of the
Poincaré disk, so that we get a curve in a circle, giving a certain number of full turns,
as t goes from 0 to 1. Fixing f and x, this integer changes by at most 2 when one
changes v, so that we can consider its minimum A(f ; x). As usually, we can define
π(f ) = ∫

S
A(f ; x) d area(x), and homogenize to produce a homogeneous quasi-

morphism � : Ham(S, area)→ R. When the support of f lies in a disk D ⊂ S, the
invariant�(f ) coincides with the value of Calabi’s invariant C(f|D) of the restriction
of f to D. In other words, � is indeed a Calabi quasi-morphism.

The computation of this invariant is especially interesting for a diffeomorphism
H(1) which is the time 1 of some autonomous HamiltonianH : S → R with zero inte-
gral. Denote by ν the genus of S and assume for simplicity thatH is a Morse function
with only 2ν+2 critical points x1, x2, . . . , x2ν+2, such thatH(x1) < H(x1) < · · · <
H(x2ν+2). In this case, it turns out that

�(H(1)) =
2ν∑
i=3

H(xi).

(up to some irrelevant multiplicative constant). For a general Morse functionH with
distinct critical values, the invariant �(H(1)) is the sum of the values of H on the
2ν − 2 saddle points xi which are such that the fundamental group of the connected
component of H−1(H(xi)) containing xi embeds in the fundamental group of the
surface.

2.8. The Entov–Polterovich quasi-morphism. We briefly sketch the construction
by M. Entov and L. Polterovich of a Calabi quasi-morphism on the sphere (and
on many other symplectic manifolds) using elaborate tools from symplectic topol-
ogy [25]. We will restrict our description to the 2 dimensional case, and refer to [16],
[25], [72] for higher dimensional examples.3

3Note added in proof. G. Ben Simon recently proposed a new approach to such Calabi quasimorphisms: The
nonlinear Maslov index and the Calabi homomorphism, to appear in Commun. Contemp. Math.; arXiv:math.
SG/0604190, 2006.
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The free loop space of the 2-sphere is not simply connected. Let us denote by� its
universal cover, that one can consider as the space of pairs (γ,w) where γ : S1 → S2

is a loop and w : D→ S2 is a disk with boundary γ , where one identifies (γ,w) with
(γ,w′) if w and w′ are homotopic relative to their boundary.

Fix some time dependent Hamiltonian H : S2 × S1 → R, normalized in such a
way that for each time t ∈ S1 the integral of H(−, t) over the sphere is zero. Denote
by H(1) the Hamiltonian diffeomorphism of the sphere which is the time 1 of the
isotopy defined by H . The action is a functional defined on � by

AH : (γ,w) ∈ � �→
∫ 1

0
H(γ (t), t) dt − area(w) ∈ R.

The critical points of AH correspond to the fixed points ofH(1). The Floer homology
is a tool to analyze these critical points. One considers a differential complex freely
generated by critical points, whose differential is defined using connecting orbits
for the gradient flow of the action functional, which can be interpreted as pseudo-
holomorphic cylinders (see [73], [71], [70] for many more “details”). The main point
is that the corresponding Floer homologyHF(�) is independent of the choice of the
Hamiltonian H . In our case, HF(�) is some simple quantum deformation of the
homology of the sphere.

However, the chain complex used to compute the Floer homology does depend on
the choice of the Hamiltonian. One defines a spectral invariant for a HamiltonianH :
the infimum of the set of z ∈ R such that the sub-level {AH < z} contains a Floer
cycle representing the fundamental class in HF(�). It turns out that this infimum
only depends on the Hamiltonian diffeomorphism H(1), and defines therefore a map
ep : Ham(S2)→ R. M. Entov and L. Polterovich prove that ep is a quasi-morphism
and define their Calabi quasi-morphism EP by homogenization. They also prove that
the restrictions of EP to the subgroups Diffc(D, area), where D is a disk with area
less than one half of the sphere, coincide with Calabi’s homomorphisms. The key
point is that such a disk D is displaceable, which means that there is a Hamiltonian
diffeomorphism h such that h(D) and D are disjoint.

The computation of the Entov–Polterovich Calabi quasi-morphism on time 1 maps
of autonomous Hamiltonians is very interesting. Assume for simplicity that H is a
Morse function on S2. It is not difficult to see that there is a unique “median” value
zH ∈ R such that the complement of one of connected component of H−1(zH ) is a
disjoint union of open disks with areas less 1/2. Then

EP(H(1)) =
∫

S2
H d area−H(zH ).

(The total area of the sphere is normalized to 1). Hence, Entov–Polterovich’s invariant
is the difference between the “average” and the “median” values of the Hamiltonian.

The uniqueness of such a Calabi quasi-morphism on Ham(S2, area) is an open
question.
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Remarkably, this Entov–Polterovich Calabi quasi-morphism provides a natural
example of a quasi-measure on the sphere. A quasi-measure μ on a compact spaceK
is a map μ : C(K) → R defined on the algebra of continuous functions, which is
linear on subalgebras generated by one element, and monotonic (f ≤ g implies
μ(f ) ≤ μ(g)). Such a quasi-measure does not need to be a measure, i.e. does not
need to be linear (see [1], [24], [56], [81]). If H is a Morse function on S2, one may
set

μ(H) = H(zH ).
It is not difficult to check that μ extends to continuous functions on the sphere as a
quasi-measure.

3. An example: geodesics on the modular surface

3.1. The unit tangent bundle. The following is well known:
The quotientM = PSL(2,R) /PSL(2,Z) is homeomorphic to the complement of

the trefoil knot in the 3-sphere.
An explicit homeomorphism is given by classical modular functions. Observe

that M can be identified with the space of lattices � ⊂ C such that the area of the
quotient torus C/� is 1. For any lattice �, one defines

g2(�) = 60
∑

ω∈�\{0}
ω−4; g3(�) = 140

∑
ω∈�\{0}

ω−6

(see for instance [2]). Conversely, a pair (g2, g3) of C2 such that� = g3
2 −27g2

3 �= 0
determines a unique lattice �. Note that the unit sphere S3 ⊂ C2 intersects the
algebraic curve {� = 0} along a trefoil knot � ⊂ S3. Given (g2, g3) in S3 \ �, the
associated lattice is not necessarily of co-area 1, but has a unique “rescaling” of co-
area 1. This provides a homeomorphism from the complement of the trefoil knot to
the space M .

We have already mentioned that M is equipped with a flow φt which is given by
left translations by diagonal matrices

δ(t) =
(

exp(t) 0
0 exp(−t)

)
.

If one thinks ofM as a space of lattices in C � R2, the action of φt is simply induced
by the action of δt on R2.

The space M can also be seen as the unit tangent bundle of the modular orbifold
� = D/PSL(2,Z). Indeed, the group of positive isometries of the Poincaré disk D

is isomorphic to PSL(2,R) and acts freely and transitively on the unit tangent bundle
of the disk. From this point of view, φt appears as the geodesic flow of the modular
orbifold (rescaled by a factor of 2).
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Periodic orbits of this geodesic flow φt have a long mathematical tradition. Note
that an element P ∈ PSL(2,R) defines an element in PSL(2,R) /PSL(2,Z) which
is fixed by φt if δ(t)P = ±PA for some A in PSL(2,Z), which means that PAP−1

is diagonal. One deduces that there is a natural bijection between periodic orbits of
φt and conjugacy classes of hyperbolic elements in PSL(2,Z).

These periodic orbits are also related to indefinite integral quadratic forms in Z2,
or to the structure of ideals in real quadratic fields (Gauss, see for instance [22]).
Of course, one could also say that periodic orbits correspond to closed geodesics
on � = D/PSL(2,Z), or to free homotopy classes of closed curves in � (with the
exception of parabolic and elliptic elements).

Summing up, any hyperbolic matrixA ∈ PSL(2,Z) defines a periodic orbit of φt ,
hence a knot kA in the complement of the trefoil knot.

In this section, we describe the topology of these knots that we call modular knots.

3.2. The Rademacher function. Our first task will be to relate the linking number
between kA and the trefoil knot � to a classical arithmetical invariant that we now
recall.

The Dedekind η function defined for �τ > 0 by

η(τ) = exp(iπτ/12)
∞∏
1

(1− exp(2iπnτ))

“is one of the most famous and well-studied in mathematics” [6]. Its 24th power is a
modular form of weight 12, which means that

η24
(
aτ + b
cτ + d

)
= η24(τ )(cτ + d)12

for every matrix A = ± ( a bc d ) in PSL(2,Z) (see for instance [2]). Since η does not
vanish, there is a holomorphic determination of log η defined on the upper half plane.
Taking logarithms on both sides of the previous identity, we get

24(log η)

(
aτ + b
cτ + d

)
= 24(log η)(τ )+ 6 log(−(cτ + d)2)+ 2iπR(A)

for some function R : PSL(2,Z) → Z (the second log in the right hand side is
chosen with imaginary part in (−π, π)). The numerical determination of R(A) has
been a challenge, and turned out to be related to many different topics, in particular
number theory, topology, and combinatorics. The inspiring paper by M. Atiyah [6]
contains an “omnibus theorem” proving that seven definitions of R are equivalent!
In [11], we proposed an approach to understand better these coincidences, based on
the more or less obvious fact that R is a quasi-morphism. It is difficult to choose
a name for this “ubiquitous” function: Arnold, Atiyah, Brooks, Dedekind, Dupont,
Euler, Guichardet, Hirzebruch, Kashiwara, Leray, Lion, Maslov, Meyer, Rademacher,
Souriau, Vergne, Wigner? For simplicity, we will call it the Rademacher function [78].
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3.3. Linking with the trefoil. We now state a result relating modular knots with the
Rademacher function.

For every hyperbolic element A in PSL(2,Z), the linking number between the
knot kA and the trefoil knot � is equal to R(A), where R is the Rademacher function.

We will give three proofs, connecting link(kA, �) to three different aspects of
this ubiquitous function R (thus providing new proofs of the identifications of these
various versions of R). The third proof will give an extra bonus, and will allow a
precise description of the topology of modular knots.

Our first proof relies on the definition of R based on the Dedekind η function.
The trefoil knot is a fibered knot. The map �/|�| : S3 \ � → S1 ⊂ C is a locally
trivial fibration whose fibers are punctured tori. Given a closed oriented curve γ in
the complement of the trefoil knot, the linking number link(γ, �) is the topological
degree of the restriction of � to γ (en passant, this defines an orientation for �).
Jacobi established a connection between � and the Dedekind η function (see [2]). If
we denote by�(ω1, ω2) the� (= g3

2−27g2
3) invariant of the lattice Z·ω1+Z·ω2 ⊂ C

(with �(ω2/ω1) > 0), then

�(ω1, ω2) = (2π)12ω−12
1 η

(
ω2

ω1

)24

.

Consider the periodic orbit of period T > 0 associated to a hyperbolic element A =
± ( a bc d ) in PSL(2,Z). One can describe it as a closed curve of lattices Z·δtω1+Z·δtω2

(t ∈ [0, T ]) such that

δT (ω2) = aω1 + bω2; δT (ω1) = cω1 + dω2.

We wish to compute the variation VarArg� of the argument of �(δtω1, δ
tω2) as t

goes from 0 to T . To fix notation, given a curve q(t) in C
 (t ∈ [0, T ]), written as
exp(2iπτ(t)) for some continuous τ(t), the variation of the argument VarArg q is
defined as �(τ (T )− τ(0)). By Jacobi’s theorem, VarArg�(δtω1, δ

tω2) is equal to:

−12 VarArg(δtω1)+ 24
1

2π
�
(
(log η)

(
δT ω2

δT ω1

)
− (log η)

(
ω2

ω1

))
.

Note that δT ω2/δ
T ω1 = (a ω2

ω1
+ b)/(cω2

ω1
+ d), so that we can use the definition of

the Rademacher function using the logarithm of η. We get:

−12 VarArg(δtω1)+ 6

2π
� log

(
−
(
c
ω2

ω1
+ d

)2)+R(A).

Observe that the curve δtω1 is contained in a quadrant, so that VarArg(δtω1) belongs

to the interval (−1/4, 1/4) and is therefore equal to 1
2

1
2π� log

( − ( δT ω1
ω1

)2). Recall
that log denotes the determination with imaginary part in (−π,+π). Hence two terms
cancel, and we get that link(kA, �) is indeed equal to R(A), as claimed.
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3.4. A topological approach. Let us sketch a purely topological computation of
link(kA, �), related to another approach to the Rademacher function.

Consider a compact oriented surface S with fundamental group � equipped with
a hyperbolic metric. For each element γ in �, denote by γ the closed geodesic which
is freely homotopic to γ . This defines a periodic orbit kγ of the geodesic flow in the
unit tangent bundle T 1S of S. If γ1, γ2 are in �, there is an obvious singular 2-chain
c(γ1, γ2) in S whose boundary is γ1γ2−γ1−γ2. The obstruction to lift c(γ1, γ2) to a
2-chain in T 1S with boundary kγ1γ2 − kγ1 − kγ2 is an integer eu(γ1, γ2) ∈ Z. In other
words, one can find a 2-chain in T 1S whose boundary is kγ1γ2−kγ1−kγ2+eu(γ1, γ2)f
where f denotes one fiber of T 1S, and which projects on c(γ1, γ2). This defines a
2-cocycle on � whose cohomology class is the Euler class of the circle bundle. This
construction generalizes to the noncompact modular orbifold � = D/PSL(2,Z)
with a little care. One has to adapt the definition of kA for elliptic and parabolic
elements. Since the second rational cohomology of PSL(2,Z) is trivial, there is a
map� : PSL(2,Z)→ Q such that�(γ1γ2)−�(γ1)−�(γ2) = eu(γ1, γ2). Note that
this defines uniquely � since there is no nontrivial homomorphism from PSL(2,Z)
to Q. It turns out that 6� and R agree on hyperbolic elements of PSL(2,Z) (see [6],
[11]): this is the topological aspect of R.

Let us temporarily denote link(kA, �) by λ(A). In order to show that λ(A) =
6�(A), it is enough to show that λ(AB)− λ(A)− λ(B) = 6 eu(A,B). Let DA,DB
and DAB be singular disks in S3 with boundaries kA, kB , kAB respectively. By
definition of the linking number, the intersection numbers of these disks with � are
λ(A), λ(B), λ(AB). Choose a singular surface in T 1� � S3 \ � with boundary
kAB−kA−kB+eu(A,B)f . Glue this surface toDA,DB ,DAB along the boundaries
and cap the result with a disk in S3 with boundary eu(A,B)f , with intersection number
6 eu(A,B) with �. Note that the linking number between � and f is 6. The resulting
boundaryless (singular) surface in S3 has an intersection number 0 with � since the
homology of the sphere is trivial. Putting things together, we get

λ(AB)− λ(A)− λ(B)− 6 eu(A,B) = 0

as required.

3.5. Lorenz and modular knots. We now turn to a dynamical proof which will lead
to a topological description of these modular knots.

Recall that a Lorenz knot is a knot isotopic to a periodic orbit of the Lorenz
differential equation. We will establish a close connection between the Lorenz knots
and the modular dynamics:

Isotopy classes of Lorenz knots and modular knots coincide.
We first deform the embedding of PSL(2,Z) in PSL(2,R) in order to produce a

discrete subgroup of infinite covolume. Recall that PSL(2,Z) is isomorphic to a free
product of Z/2Z and Z/3Z corresponding to the elements of order 2 and 3:

U = ±
(

0 1
−1 0

)
; V = ±

(
1 −1
1 0

)
.
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Consider two points x, y in the Poincaré disk at distance ρ ≥ 0. This defines a
homomorphim iρ : PSL(2,Z)→ PSL(2,R) sendingU to the symmetry with respect
to x, and V to the rotation of angle 2π/3 around y. Note that, up to conjugacy, iρ only
depends on ρ, and that the canonical embedding corresponds to some explicit value ρ0
(the hyperbolic distance between

√−1 and (−1+√−3)/2 in Poincaré’ s upper half
plane). When 0 < ρ < ρ0, the image is a dense subgroup. When ρ > ρ0, the image
of iρ is a discrete subgroup with infinite covolume: “the cusp has been opened”. The
quotient �ρ of D by iρ PSL(2,Z) is a noncompact orbifold with a “funnel”.

Figure 6. Deforming the modular surface.

Of course, for ρ ≥ ρ0, all the quotients Mρ = PSL(2,R) /iρ PSL(2,Z) are
homeomorphic to the complement of the trefoil knot.

For ρ > ρ0, there is also a flow φtρ on Mρ given by left translations by diagonal
matrices; this is the geodesic flow on the orbifold �ρ of infinite area. The limit
set Kρ ⊂ ∂D of the Fuchsian group iρ(PSL(2,Z)) is a Cantor set. The action of

iρ(PSL(2,Z)) on the convex hull K̂ρ ⊂ D is cocompact: the quotient is a compact
orbifold�conv

ρ ⊂ �ρ with one geodesic boundary component and two singular points.
Geodesics in D whose two limit points are inKρ define a compact set�ρ in T 1�ρ =
PSL(2,R) /iρ PSL(2,Z) which is invariant under φtρ : this is the nonwandering set.
Of course, this invariant set is hyperbolic in the sense of dynamical systems, and the
now classical hyperbolic theory of Hadamard–Morse–Anosov–Smale implies that the
restrictions of φtρ to �ρ are all equivalent by some homeomorphisms (sending orbits
to orbits, respecting their orientations, but of course not respecting time). Periodic
orbits of φtρ are contained in �ρ so that, in particular, all flows φtρ in S3 \ � carry
the same (isotopy classes of) links (as soon as ρ > ρ0). Clearly, the original flow
φt = φtρ0

is not topologically conjugate to φtρ (for ρ > ρ0) since most orbits of φt

are dense, and this is not the case for φtρ (ρ > ρ0). However, when ρ decreases
to ρ0, closed orbits of φtρ , which correspond to closed geodesics in�conv

ρ , converge to
periodic orbits of φt , with the exception of (the multiples of) the geodesic boundary
of �conv

ρ which “escapes at infinity in the cusp”.
In other words, with the exception of boundary geodesics, corresponding to

parabolic elements in PSL(2,Z), the periodic knots associated to φtρ (ρ > ρ0) are
(isotopic to) the modular knots we want to describe. We are therefore led to give a
description of the topology of periodic orbits of φtρ (ρ > ρ0).
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Look at Figure 7. Consider a geodesic u : R → D with endpoints u(−∞) in
the interval I and u(+∞) in the interval J . It intersects the central hexagon on a
compact arc, and the union of these arcs defines an embedding j of I × J × [0, 1]
in T 1D � PSL(2,Z). Projecting this parallelepiped in PSL(2,R) /iρ PSL(2,Z),
one gets an embedding of I × J × (0, 1) in T 1�ρ , but the top and the bottom
faces do intersect in the projection. Figure 8 describes the projected parallelepiped
P ⊂ PSL(2,R) /iρ PSL(2,Z), which is a compact manifold with boundary and
corners.

I

x

y

Jright

J

Jleft

Figure 7. Universal cover of �ρ . Figure 8. Parallelepiped.

The maximalφtρ invariant set contained inP is of course the nonwandering set�ρ .
The restriction ofφtρ to�ρ is therefore conjugate to the suspension of a full shift on two

symbols {left, right}. A nonwandering geodesic travels in the convex hull K̂ρ ⊂ D,
intersects successively PSL(2,Z)-translates of the hexagon, and might exit by the
right or left exit, as seen from the entrance side. Any bi-infinite sequence is possible
and the sequence characterizes the geodesic.

We now use the main idea of Birman–Williams’ template theory. In each of
the rectangles j (I × Jleft × [0, 1]), and j (I × Jright × [0, 1]), collapse the strong
stable manifolds. This produces two rectangles forming a branched manifold which
is embedded in Mρ � S3 \ �.

We still have to explain why it is embedded in the way described in Figure 9.
Assuming this for a moment, we recognize the Lorenz template, which carries Lorenz
knots and links. The process of collapsing the stable manifolds can be done in a
smooth way, so that the periodic orbits move by some isotopy (note that a periodic
orbit intersects a strong stable manifold in at most one point, so that the collapse does
not introduce double points). In other words, the periodic links of φtρ are precisely
the periodic links on the template, i.e. the Lorenz links.

We briefly explain why the template is indeed embedded as in the picture. We
basically have to prove that the two Mickey Mouse ears represent a trivial two com-
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Figure 9. Modular template. Figure 10. Cusp neighborhood.

ponent link, and that the ears are untwisted. The template consists of two rectangles
(symmetric with respect to the involution v �→ −v in T 1�ρ). Each consists of the
periodic orbit corresponding to (one orientation of) the boundary of�conv

ρ and a piece

of the unstable manifold of this orbit. This rectangle projects in �conv
ρ as a neighbor-

hood of the boundary curve. In the original modular surface, the rectangle projects
as in Figure 10, that one can push as close as one wants towards the cusp.

From the lattice point of view, the first rectangle consists of (rescaled) lattices of
the form Z+ Z · τ with �τ > 1. The Weierstrass invariants (g2, g3) of such lattices
are given by the classical formulas

g2(q) = 4π4

3
(1+ 240q + · · · ); g3(q) = 8π6

27
(1− 504q + · · · )

where, as usual, q = exp(2iπτ). This means that the rectangle sits inside (a rescaling
of) the holomorphic disk q �→ (g2(q), g3(q)) ∈ C2 which is an embedding for
|q| small enough, and intersects transversally the curve {� = 0} since �(q) =
(2π)12(q − 24q2+ · · · ) for small q. One concludes first of all that the periodic orbit
corresponding to the boundary of the rectangle is unknotted in the sphere since it
can be isotoped in this embedded disk. Second of all, it implies that the rectangle is
untwisted, since it can also be pushed in an embedded disk. Finally, this implies that
the linking number between the boundary curve and the trefoil knot is 1.

The second rectangle is the image of the first one by the symmetry v �→ −v
(which, from the lattice side, corresponds to one quarter turn). One has to consider
now lattices of the form i(Z +Z · τ) with �τ > 1 for which the invariants are g2(q),
−g3(q). The situation is exactly the same as before except that the boundary geodesic
is now described with the other orientation, and has a linking number −1 with the
trefoil. Moreover, we see that the two boundary periodic orbits define a trivial two
component link (since they bound disjoint embedded disks). From this information,
one can deduce that the template is indeed embedded as in Figure 9.

This finishes the sketch of proof that (isotopy classes of) Lorenz and modular
knots coincide. To be precise, we should be careful with the two boundary trivial
knots that we just discussed, which appear on the template, but not in the modular
surface (since they were pushed to infinity). However, since some modular knots are
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trivial knots, one can state that modular knots and Lorenz knots coincide. Of course,
one does not have to restrict to knots, and we could also discuss links as well. The
same proof shows that all modular links are isotopic to Lorenz links and, conversely,
that a Lorenz link with no exceptional component is isotopic to a modular link.4

Figure 11 represents the simultaneous position of the template and the trefoil knot
(easy to prove). This picture provides a third computation of link(kA, �). Indeed, up
to conjugacy, any hyperbolic element A in PSL(2,Z) can be written as a product

A = UV ε1UV ε1 . . . UV εn

where each εi is equal to ±1. From the dynamical point of view, this means that the
corresponding closed geodesic follows the template, turning left or right successively

Figure 11. Trefoil wearing modular glasses.

according to the signs of the εi’s. Since we know that the trefoil knot has linking
number +1 with the first ear and −1 with the second, we obviously get:

link(kA, �) =
n∑
1

εi .

This is a third version of the Rademacher function [6], [11]! The reader will no-
tice some analogy between this left-right count and the signature invariant that we
discussed earlier. This is not surprising since it turns out that the spherical braid
group B4(S

2) is isomorphic to SL(2,Z), and that the signature is (a multiple of) the
Rademacher function [39].

As a corollary of the description of modular knots and links, we get the following:
Modular links are fibered links and have nonnegative signature. Modular knots

are prime. The knot kA is trivial if and only if A is conjugate to a word of the form
(UV )a(UV −1)b (a, b ≥ 1).

Indeed, these properties hold for Lorenz knots [17], [91]!
It would be nice to understand those fibrations from the modular side: for instance,

can one find some “arithmetical” description of the fibrations of the complements

4Note added in proof. The reader may look at the AMS feature Column by É. Ghys and J. Leys: Lorenz and
modular knots, a visual introduction,AMS Feature Column, November 2006, http://www.ams.org/featurecolumn/
archive/lorenz.html
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of kA? In [17], the authors suggest that there could be some “natural limit” to the
fibrations of S3 \ L as L describes all Lorenz links. Maybe the modular point of
view will answer this question, and build a bridge between Riemann’s ζ function and
dynamical ζ functions (see for instance [89]).

Another question would be to give an arithmetical or combinatorial computation
of the linking numbers of two knots kA and kB as a function of A,B in PSL(2,Z)
(compare [54]). One could also try to understand more sophisticated link invariants
for these modular links.

Final remorse. Many interesting questions should have been discussed in this survey,
like energy bounds and asymptotic crossing numbers, Hofer metric, global geometry
of groups of symplectic diffeomorphisms etc. This is a good excuse to suggest [35],
[74], [75] as additional reading!

Acknowledgment. It is a pleasure to thank Jean-Marc Gambaudo for his friendly
collaboration.
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