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ABSTRACT
In this paper we classify holomeorphic volume preserving locally free actions of
the complex affine group on compact complex 3-manifolds. The proof is a mixture
of complex analytic methods and of classical hyperbolic theory for dynamical
systems. Some examples come from automorphisms of 2-dimensional complex

tori that we describe them explicitly.

0. Introduction

Let us denote by Aff the affine group of the complex line, i.e. the group of
transformations z — az + b with a € C* and b € €. The purpose of this paper is to
classify locally free, holomorphic, and volume-preserving actions of Aff on compact
complex 3-manifolds. There are several motivations for such a study. The first is
that there are interesting examples obtained by arithmetical constructions and we
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believe that these examples deserve a careful analysis, especially from the dynamical
point of view. A second motivation is that the corresponding problem in the real
domain, i.e, actions of the real affine group on real 3-manifolds, has already been
studied in [Ghl], leading to rigidity results. As a general principle, real and complex
one dimensional dynamics should be very similar so that one could expect a good
understanding of holomorphic codimension one actions of complex Lie groups.

This paper is independent of [Gh3] but is closely related to it. In [Gh3], the
first author studies holomorphic Anosov flows on complex 3-manifolds and shows
that these flows have to preserve some volume form. In the present paper we make
the assumption that the action under consideration is volume-preserving but we
know of no example where this condition is not satisfied.

In section 1, we describe examples of actions of Aff on 3-manifolds. In
section 2, we prove our main theorem according to which any loeally free, holo-
morphic, voluine-preserving action of Aff is conjugate to one of the examples de-
scribed in section 1. Finally, the appendix contains a deseription of automorphisms
of 2-dimensional complex tori, basically known to algebraic geometers but which
might be useful to others.

The first author would like to thank his Japanese hosts, and especially
T. Tsuboi, for their warm hospitality in Tokyo.

1. Construction of examples

We shall in fact study actions of the covering spaces of Aff, so we will in-
troduce some notation for them. If k is a positive integer, we denote by Aff; the
group of pairs (e, b) with a € C* and b € C with multiplication:

{a,0)(d’, V') = (ad’, "V +b).

Of course Afly coincides with AIl aud the map (a,b) — (a* b) shows that
Affy is the A-fold cover of Aff. The center of Affy is cyclic of order k and consists
of elements of the form (a,0) with a* = 1. Similarly, we introduce the universal
cover, Aff, of Aff. This can be seen as the group of pairs (o, b) with o € C and
b € C and multiplication given by {a, b)(e/, ¥’} = (o + &', exp(a}b’ + b).

The center of Aff,, is infinite cyclic, generated by (2im,0).

The subgroup of Affy {respectively Aff,,) which consists of clements of
the form {a,0} (respectively {e,0)) will be called the a-subgroup (respectively a-
subgroup). Similarly the b-subgroup of Affy (respectively Aff..} consists of elements
of the form (1, b) (respectively (0, b}). This is the first commutator subgroup of Aff
(respectively Aff). It is important to note that these groups Aff), and Aff,, are
solvable.

Recall that an action of a Lie group is called locally free if all stabilizers are
discrete.
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1.1. Homogeneous spaces of SL{2,C)

First note that there is an embedding of Affs in SL{2, C) given by:

 alh
(a,b) € Affy (‘5 e

) € SL(2,C).
If T is a discrete co-compact subgroup of SL(2,C), we get a locally free action of
Aff, on the quotient manifold M = T\ SL(2,C) by considering right translations
on left cosets. This action is obviously volume preserving since the Haar measure
of 8L({2,C) is bi-invariant and yields an invariant volume form on M.

Similarly, we have an embedding of Aff in PSL(2,C) = SL(2, C}/{+ T}, given

b
(a,b) € Aff s & (‘f gﬁ) € PSL(2,C).

a

by:

The same construction as before gives examples of actions of Aff on I'\ PSL{2,C).

Before we proceed describing the dynamics of these actions, let us show that
there are no similar constructions for k # 1,2. First notice that SL(2,C) is simply
connected with center {31} so that PSL(2, C) is the only connected Lie group locally
isomorphic but not isomorphic to SL{2,C}. A nontrivial element in PSL(2,C) has
an abelian centralizer and this remark enables us to analyze homomorphisms from
Affy to PSL{2,C) by considering the center of Affy. The reader will easily prove
the following statements:

(1) Any locally injective homomorphism from Aff to PSL(2,C) is conjugate to
the one described above.

(2) Any locally injective homomorphism from Affy, k € NU {00}, to PSL(2,C)
factors through its quotient Aff,

(3) There is a locally injective homomorphism from Affy. to SL(2,C) if and only
if k is even (or c0). Any such homomorphism factors through Affy and is
conjugate to the one described above,

We now give a short deseription of the dynamics of the examples on
'\ PSL(2,C). Recall that PSL{2,L) is the group of orientation preserving isome-
tries of the hyperbolic 3-space H® and that it acts freely and transitively on the
positive orthonormal frames in the tangent bundle of H® (see, for instance [Th]).
I T is a discrete co-compact subgroup of PSL(2,C), one can consider the quotient
V = I'"\H% Due to the possible existence of elements of finite order in T', this
V might not be a manifold but is instead a so-called “hyperbolic orbifold”, In
any case, I' contains a torsion-free subgroup of finite index so that, up to finite
covers, we can restrict ourselves to the case where V is a manifold. The quotient
M = T\ PSL{2,C) is therefore the orthonormal frame bundle of the Riemannian
manifold V. The structure of the SO(3)-principal bundle of the projection Af — V
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is given by right translations by PU(2,C) ~ SO{3}. Also note that the unit tangent
bundle, T1{V}, of V fits into a sequence of bundles M — Ty (V) — V.

Orbits of the «-subgroup in M project to geodesics in V. The geodesic flow
of V, acting on Ty(V) is a quotient of the dynamies of the g-subgroup acting on
M. This action is ergodic, mixing, and with positive entropy, Recall that there
is exactly one closed geodesic in V for each conjugacy class of elements of T’ of
infinite order. Any element v of ', considered as an element of PSL(2, C), has two
eigenvalues wy and wy (defined up to sign) whose product is 1. The modulus of
both wy and wy is different from 1 if v is of infinite order; it is related to the length
of the corresponding closed geodesic. Correspondingly, we obtain a compact orbit
for the e-subgroup in M = [\ PSL(2,C}); it is an elliptic curve, quotient of C* by
the multiplicative group generated by w}. The union of these compact orbits is
dense in M. We were informed by Karl Oeljenklaus that it is unknown whether
the complex manifold A could contain compact holomorphie curves besides these
elliptic curves.

As for the orbits of the b-subgroup they project in V into horospherical orbits.
It is well known that they are dense in V. All orbits of the b-subgroup are dense
in M, the action being uniquely ergodic with zero entropy. One can consult [Gh2]
for a survey, more general statements, and a bibliography on this kind of dynamical
systems.

Observe that the case of I'\ SL(2, C) is very similar to that of T\ PSL(2,C):
one just has to replace the orthonormal frame bundle by the spin bundle, The
corresponding dynamical systems have the same properties as stated before

1.2, Holomorphic suspensions

Let A be a lattice in C? , i.c. a discrete co-compact subgroup (hence iso-
morphic to Z*). Let ¢ be a complex linear automorphism of C? that preserves A
and induces an automorphism of A, Assume that @ has an eigenvalue w of modulus
different from 1. Of course for a generic A there is no such linear map but we give
in the appendix a list of all possibilities, some being remarkably interesting.

Denote by Ta = C?/A the corresponding complex torus and by &; Ty, — Ty
the holomorphic diffeomorphism induced by . Let Y € €2 be an eigenvector such
that P(Y) = wY. Choose a positive integer k. On €2 x C* one has the following
right action of Aff):

((z,2), (a,b)) € C? x C* x Affy = (& + b2*Y, 2a) € C? x C*.

This action commutes with the action of A on €2 x C* by translations on the first
factor and therefore yields an action of Affy on Ty x C*, which obviously commutes
with the following diffeomorphism F of Ty x C*:

F(#,2) = (8(z),w*F2).
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where w!/* denotes some fixed k-th root of w. Since |w| # 1, the group generated
by F acts freely and properly on Ty % C* and the quotient A is a compact complex
manifold equipped with a helomorphic loeally free action of Affy. The manifold A
fibres over an elliptic curve with fibres isomorphic to the torus Ty, We call this
kind of example a holomorphic suspension.

Note that since @ is a diffeomorphism of Ty the determinant of & has to be
of modulus 1. Hence the volume form \/jflz|72dz AdF Adey AdET A deg AdT3 of
C? % C* descends to M and is invariant under the action of Afl.

As is well known, @ is an example of Anosov diffeomorphism of a torus. Tt
is ergodic, mixing, with positive entropy. Periodic points of & are rational points
{i.e. torsion elements) in Ty, For the dynamics of the a-subgroup of Affy on M
one has analogous properties: ergodicity and density of compact orbits. However,
the action is not mixing (i.e. the real flow corresponding to real values of a is
not mixing) since we have a holomorphic projection of M onto the elliptic curve
E = C*/fw™/*} which exhibits the nonmixing transitive action of C* on F as a
quotient of the action of the a-subgroup on Af.

Tt is very casy to describe the dynamics of the b-subgroup. Any orbit is dense
in one of the tori which are the fibres of the projection of M onto E.

The manifold M does not always admit a nonzere holomerphie 3-form. In-
deed, such a form lifts to C* x C* as u(xy,z2, 2)dxy A dsa A %’ and the invariance
under translations by A shows that u has to be a function u{z) of z alone. The
invariance condition becomes: u{w?/¥2) = pu(2) where p is the determinant of é.
Writing the Laurent expansion of u, one sees that this is only possible if u is a
constant multiple of z" where n € Z is such that p = w™/*. We have seen that
|p| = 1 and, by assumption, |w| # 1 so that the only possibility isn =0 and p= 1.
In the appendix we study the cases where p = 1 and we show that this is not always
the case. Hence, there are 3-manifolds with no nontrivial iwlomerphic 3-forms but
which admit a locally free action of Aff. In particular, these manifolds M are not
homogeneous spaces of a complex 3-dimensional Lie group so that the corresponding
actions are quite different from the actions we described on I'\ SL{2,C).

As a matter of fact, it is not difficult to check that if p # 1 the {uil group of
biholomerphisms of A coincides with Affy up to finite index.

If on the contrary, p = 1, then M is a homogeneous space. Indeed in this
case one has a nonzero vector Z in €2 such that $(Z} = w™!Z and one can consider
the 3-dimensional Lie group Gy which is a semi-direct product C? x C* given by
the multiplication: (by,by;a}(by’,b2’;a’) = (b1 + a*b’, by + a5/ aa’). Note that
G contains Affi and that ). acts on the right on €2 x C* by right translations
on itself. This action descends to a transitive action of Gy on M, making M a
homogeneous space and extending the action of Aff,.

If p is not a root of unity, M is not even a finite quotient of a homogeneous
space, the so-called “infra-homogeneous” spaces.

Finally, we indicate shortly how to modify these suspension examples by
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taking finite quotients. Consider a character y : A — C* which is invariant by &.
We can consider the quotient of C* x C* by the following action of A:

(A {(2,2)) €A XCEXC* e {m+ A, x(N)2) € CZ x C.

The quotient Tp x, C* is a C*-bundle over Ty which is nontrivial if y is nontrivial.
The diffecmorphism (2, 2) € C2 x C* = ($H{x), w!/*?) still descends to a diffeomor-
phism of Ty x, C* which yields a compact 3-manifold A/ admitting an action of
Affy provided x(A)* = 1 for any X € A. We shall call this kind of example a twisted
suspension.

Observe that x is trivial on a finite-index sublattice of A so that these twisted
suspensions are in fact finite quotients of the previous “untwisted” examples.

2. The classification

In this section we prove the following theorem:

Theorem. Any holomorphic action of Affy,, which is locally free and
voluine-preserving on a compact complex 3-manifold factors through Aff;, for some
{finite) integer k and is holomorphically conjugate to one of the examples described
in section 1.

Let us begin by some general comments and notations. Any locally free
action of a {connected) Lie group lifts to an action of its universal cover (the action
might not be faithful). This is why we restrict ourselves, with no loss of generality,
to actions of Aff,,. Suppose we have such a holomorphic right action of Aff,, on a
compact complex 3-manifold M preserving some volume form » (which is e priori
a 6-form of class C”). Since we have parametrized Afloc by pairs (o, b) with a € C
and b € €, the a-subgroup and b-subgroup generate two complex flows that we
denote by g* and h® (for“geodesic” and “horocyelic”’). The induced holomorphic
vector flelds on M are denoted by X and Y respectively. They satisfy the relation
[X,Y] =Y, defining the Lie algebra of Af,,. The assumption that the action is
locally free means that X and YV are linearly independent at each point of A{. Since
X and Y correspond to left invariant vector fields on Aff4,, they transform under
right-translations by the adjoint representation. One verifies easily that:

{g°)Y =expla)V  {g") X = X.

We shall equip M with a Hermitian metric, denoted by || || such that X and
Y are orthogonal, of norm 1, and whose volume form is precisely .

Lemma. Let B be the Banach space of continuous vector flelds on M
equipped with the sup-norm. The spectrum of the linear operator induced in B
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by the differential of the flow ¢* (a € C) is contained in the union of {1,exp{a)}
and the circle of radius | exp(—a}|.

Proof. Let B, C B be the closed subspace of vector fields which are tangent
to CX @ CY, ie., to the orbits of Afflo. According to the previous formulae,
the spectrum of (g}, acting on By is precisely {I,exp(e)}. Let B, = B/B; be
the quotient Banach space (of “normal” vector fields), with the quotient norm.
Since the Hermitian metric || || defines the invariant volume form v and that the
volume along the orbits of Aff, is multiplied by |e}cp(cf)|2 by g%, we deduce that
g™ contracts by | exp(a-)|2 the transversal volume. It follows that the action of (g°),
on B, contracts the norm exactly by |exp(a)] and this proves the lemma. O

Corollary. There is a unique continuous field of complex I-dimensional
tangent lines E° in M which is transversal to CX @ CY and invariant under (g*),
(ev € C). This F* is uniquely integrable and defines a continuous foliation 7* of Af
by holomorphic curves.

Proof. This is a simple application of the theory of stable manifolds as ex-
plained, for instance, in [HPS). We recall the main results of the theory. Let g be a
C°°-diffeomorphism of a compact manifold Af such that the spectrum of the linear
operator g, acting on B does not intersect some circle {|z] = #}. Then there is a
unique splitting of the tangent bundle of M as a sum of two continyous sub-bundles
F: and E; which are invariant by g, and have the following property. The spectrum
of g. acting on continuous sections of By (resp. F») lies inside (resp. outside} the
dise {iz} < r}. Moreover if r > 1 the sub-bundle F; is integrable and defines a
continuous foliation with C°° leaves,

We can apply these results to g where o has a negative real part and
1 < r < {exp(—a)|. Of course the bundle F; coincides with CX @ CY and E; is
a 2-dimensional real sub-bundle. By uniqueness and the fact that all g® cormnute,
Fy is invariant under all {g). (even if R(a) = 0}, Again by unigueness and since
g> is holomorphic, E; has to be invariant by multiplieation by +v—1 so that it is
actually a complex line sub-bundle of the tangent bundle. In particular the leaves of
the induced foliation are holomorphic curves. We denote E; by E° since it contains
vectors which are stable under {g®}. when the real part of o goes to +co. [

Note that we did not {yet) claim that E° is a holomorphic sub-bundle.

Remark. We used the existence of an invariant volume in the previous
lemma to get some contraction in the direction transversal to the orbits of Aff ..
This is the only place where we need this invariant volume so that the main theorem
would hold true under the weaker assumption that the spectrum of (g}, acting on
B, = B/B; lies inside the unit disc for R(a) > 0. Note also that it would suffice to
ask for a volume form invariant under the How g® {but it is easy to verify that such
a form is also necessarily invariant under the horocyclic flow h*).
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Corollary. Any volume-preserving locally free holomorphic action of Affa,
factors through one of its quotients Affy.

Proof. We shall establish that the real flow g** (¢ € R) must be a periodic
flow. This will imply that the action of Aff,, under consideration is not faithful. Its
kernel must be a discrete nontrivial normal subgroup of Aff,, necessarily contained
in the infinite center of Aff, and that implies the corollary.

Choose the hermitian norm || || such that the line field £* is orthogonal to
CX & CY. It follows from the invariance of E¥ under (¢®), and our previous
calculations that g% is an isometry of | ||. The closure C of this 1-parameter
subgroup in the compact open topology is therefore compact by Ascoli’s theorem.
Of course, ¢ is connected and Abelian. Moreover, it is a closed subgroup of the full
bihotomorphism group of M which is a complex Lie group. It follows that C is a
torus 7! == R'/Z! for some ! 2> 1 and we want to show that [ = 1. The Lie algebra of
T! gives rise to vector fields V on M which are obviously invariant by the elements
of the flow g®. By our previous description of the action of {g®}. on vector fields on
M it follows that V must be tangent to CX. Being invariant by (g®)., V actually
is a (complex) multiple of X. In other words, the compact group C is contained in
the complex 1-parameter group g* {a € C). We know that g° is an isometry only
if R(er) = 0 so that we have proven that C coincides with the real 1-parameter fow
g% which must therefore be periodic. This proves the corollary (1

In the terminology of [Gh3} we have established that g% is a holomorphic
Anosov flow. Of course, we could use the results of [Gh3] but we won’t do it because
that would not simplify much of the following discussion. However we shall borrow
the following lemma from [Gh3] but we present here a mare general proof.

Lemma. The plane field E§ = E* @ CX (of complex dimension 2) is a
holomorphic plane field.

Proof. By pushing the leaves of £ along the low g° one sees that E§ is inte-
grable and generates a foliation F§, of class C° with leaves of complex codimension
1. We want to show that this foliation is actually holomorphic.

Let us begin by a general remark coneerning this kind of foliation. In suitable
local holomorphic coordinates (x1, 22, 23} in C* (where [z;| < 1, Jz2] < 1, |2a] < 1)
the leaves have equations of the form: w3 = F(z1,22,¢), F(0,0,¢) = ¢ where cis a
constant depending on the leaf. Since the leaves are holomorphic and don’t intersect
two by two, for fixed 21, £2 we know that F(xy, 72, ¢) is an injective function of ¢ and,
fixing ¢, the function F{z1, 12, c) is holomorphic in 3, 3. This is the definition of
a so-called holomorphic motion (see for instance [Do} for an interesting discussion).
In particular, it follows that F{x;, s, ¢} is a quasi-conformal homeomaorphism in
the variable ¢ and that the quasi-conformal distortion on a small neighborhood of
0 goes to 1 as {xy,29) goes to (0,0).

Hence we have shown that a codimension one foliation on @ compact complex
manifold, with holomorphic leaves, is necessarily transversely quasi-conformal.
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Let us apply this to our situation. Let # and y be two nearby points in the
samme leaf of F§. Through x and y we can consider small pieces of orbits of the flow
hY, which can be considered as small holomerphic curves U/, and U, transversal
to F§ at @ and y. Consider the holonomy of a small path connecting @ and y
in their leaf of F5. As we have seen, this is a quasi-conformal homeomorphism
Yz,y from a neighborhood of 2 in U, to a neighborhood of y in U, sending x to
y. We have to show that these homeomorphisms are holomeorphic. If 2, y, z are
three nearby points in the same leaf, we obviously have vz . = ¥,,; o ¥z, Note
that if y = g®(x) for some small «, the holonomy <y, , is the restriction of g® to
U, and is therefore holomorphic. We can therefore assume that @ and y are two
nearby points in the same leaf of #*. By the compactness of A1 and the property
of holomorphic motions mentioned above, for every ¢ > 0 there is r > 0 such that
if the distance between z and y is less than r then v, is (1 + €)-guasi-conformal
in a neighborheod of &. OF course g%z yg™% = Ygo(0),go(y) 50 that taking o with a
sufficiently big real part, g®(z) and g*{y) are at a distance less than r in the same
leaf of F* and yga(y) gy i8 (1 + €)-quasi-conformal. Since the quasi-conformal
distortion is invariant under holomorphic conjugation, we get that v, is (1 4 €)-
quasi-conformal in a neighborhood of 2. Since this is true for every € > 0, we get
that v, is I-quasi-conformal, i.e. holomorphic. The lemma is established. €1

Lemma. The I-dimensional foliation F* is holomorphic.

Proof. Let 1 be the holomorphic I-form which vanishes on E§ = E* @ CX
and is equal to 1 on the vector field Y. Since 7 is integrable, there is a unique
holomorphic 1-form £ such that:

dp=nng  EY)=0.
Evaluating on {X,Y), we find:

dy(X,Y) = Xn(Y) = Yn(X) - n([X, Y]}
= p(X)E(Y) — n(Y)E(X)
- _‘S(X) - _}-s

so that £(X)=1.

Of course 5 satisfies (g*)*n = exp(a)n so that £ is invariant under (g*)*.
Therefore the kernel of £ is a holomorphic plane field transverse to €X which is
invariant under (g°),; it must coincide with E° @ CY. It follows that £° is the
intersection of B* @ CX =kery and E® @ CY = ker € which are both holomorphic
plane fields. Hence E* is a holomorphic line field. (7

Corollary. There are only two possibilities:
I- E* @ CY is integrable,
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I1- there is a holomorphic vector field Z, everywhere independent of X and
Y,such that (X, 2] = -Z; ¥, Z] = X (and [X,Y]=Y).

Proof. Consider the holomorphic 1-form £ vanishing on E* @ CY and such
that (X} = 1. We have seen that £ is invariant under (g®)* so that the holomorphic
3-form £ A d¢ is also invariant under (9®)*. We distinguish several cases:

I- £ A d€ vanishes everywhere, so that E* @ CY is integrable.

I1- The form £ A d£ is not identically zero.

In case I, we consider the zero set ¥ of £ A df and we shall show that 3 must
be empty. The space of holomorphic 3-forms on M is a finite dimensional space
equipped with a natural positive definite Hermitian form given by integration. The
group Aff; acts on this space by isometries and by complex automorphisms. Since
a complex Lie group of GL(n,C) which is relatively compact is necessarily trivial,
we see that Aff must act trivially on holomorphic 3-forms. In particular £ A d€
is invariant under Affi and ¥ is a 2-dimensional analytic set invariant under the
action. Since all the orbits of Affy are 2-dimensional, the singular set of %, being
of dimension 0 or 1, must be empty. Hence ¥ is a finite union of orbits of Affy.
This shows that ¥ is empty since the action of Aff, has no compact orbits {discrete
subgroups of Aff; are Abelian and not co-compact).

Let Z be the holomorphic vector field tangent to E° such that £ A
df(X,Y,Z) = 1. Then (g°).Z = exp{—a)Z so that [X,Z] = ~Z. The Jacobi
identity then yields [[V, Z], X] = 0. We have already noticed that a vector field
commuting with X must be a constant multiple of X so that multiplying Z by a
suitable constant we have, as required:

X, Zi=-2, [V,Z]=X, [X,)Y]=VY
This proves the Corollary. O

Of course, in case 1], the vector fields X, Y, Z generate a Lie algebra which
is isomorphic to the Lie algebra of SL{2,C) so that we get a locally free action of
SL(2,C) on M. This case corresponds to the examples described in section 1.1.
Therefore, in order to prove the theorem we are left with case 1.

Lemma. In case I, the line field E® is invariant under the action of Affy.
Proof. Recall that we have holomorphic forms 5 and £ such that:
CX & E° =kery, Hyy=1
CY & E° = ker€, EXY=1
dn=nAE
Chaoose a locally defined holomorphic vector feld Z tangent to E°. We have:
dn(Y, 2} = Yn(Z) — Z2p(Y) - o{[Y, Z]) = —n{[Y’ Z])
=Y )§(Z2) —n{Z}(Y} =0.
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Hence [Y, Z] lies in the plane CX @ E°. If we assumie, as in case I, that CY @ E°
integrable, [Y, Z] lies in CY & E° so that both conditions imply that [Y, Z} is parallel
to Z, i.e., the flow (h"), preserves I%. Since we already know that {g°). preserves
E? we deduce that FS is indeed invariant under the action of the full group Affy,. O

We are ready to reconstruct M.

Lemma. In case I, there is a regular covering M of M which is bilwlomor-
phic to C x Affy in such a way that:

(1) the action of Afly lifts to M to the action by right translations on the second
factor.

{2} let T be the Galois group of this cover. There are two homomorphisms
o: T — Aff and 7 : T — Afh such that the action of y € T on A is given

by:
v, g) = (o (v)(@), 7{1){g))-

Proof. Let L be a leaf of F° and recall the classical argument from Anosov
theory that shows that L is homeomorphic to a plane. Fix a peint xin Land e > 0
sifficiently small such that all balls of radii € in leaves of F*° are homeomorphic to
discs in the plane. Then L can be considered as the increasing union of the images
by ¢~" (n € N) of the balls of radii € in the leaf of F* passing through g"(x). This
shows that L is homeomorphic fo a plane and we shall see in a moment that L is
actually isomorphic to C, as a Riemann surface.

Using the action of Aff, (lifted from Affy and non-faithful), we get a holo-
morphic map:

Lo Aff o — M.

We claim that this is the universal cover of M. Of course,  is a local diffeomorphism
and it is enough to show that paths in M can be uniquely lifted to L x Aff,. Ifz
is a point in L, the restriction of 7 to {x} x Aff,, is a covering onto the orbit of ©
in Af. Hence any path contained in an orbit can be lifted. By the previous lemma,
if g is in Aff, the image of L by g is a leaf of J*. Therefore any path contained in
a leaf of F* can be hifted. Using the connectivity of M (that we tacitly assumed),
any path in M can be arbitrarily approximated by a path made of a succession of
paths alternatively tangent to F° and to the orbits of Aff,. This shows that 7 is
indeed the universal cover of Af.

Of course, the lifted action of Aff,, is by right translations on the second
factor. As for the action of the fundamental group, it must respect the splitting
and cominutes with right Aff., translations. Hence we have two homomorphisms &
and 7 from the fundamental group of M to Aut{L) and A, such that the action

has the form:
- (x, g) = (@(v) (=), F(v)(9)}-

We know that L is isomorphic to € or to the Poincaré disc. The latter case is
impossible since Aut{L) would be a group of isometries {of the Poincaré metric} so
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that the action of Afly that we study on M would respect a Riemannian metrie,
transversely to its orbits which is a contradiction with the normal contraction of
4%, Therefore, we can identify L with C and its automorphism group Aut{C} with
Aff.

The action of Aff, on M is not faithful since (2izk, 0) acts trivially. In other
words, there is an element 4 in the fundamental group of M such that 5{-y) = (1,0)
and T(vo) = (2iwk,0). Such an element is central in the fundamental group and the
quotient of C x Aff . by this central subgroup {75} is C x Affy. We get the regular
covering space M whose existence is claimed by the lemma. The Galois group I' s
the quotient of the fundamental group by {v5} and & and 7 are induced by & and
F. The lemma is proved. [

We now analyze the two homomorphisis:

oy € P (ar{y),hi(y)) € AR
iy el (ax{y), ba(v)) € Aflx.

Let 'y and A be respectively the kernel and image of the homomorphism:
7€ (mly) ea(y)*y € € x €.
Finally, let A be the image of the homomorphism:

7 €Ty (b {7), ba()) € C%

Lemma. A is a lattice in C? and A contains an infinite cyclic subgroup of
finite index.

Proof. If v € T'y, its action on € x Affy has the form

(zrz,y) = {2+ bi(vy); aa{v)x, y + b))

Of course the action of T'y on € x Affy is discrete so that A is a discrete subgroup of
C2. Note that I'; contains the first commutator group of [ so that if A were trivial,
I’ would be Abelian and would be isomorphic to a discrete subgroup of C* x C*.
This is impossible sinee the quotient of € x Ay, by I' is compact. Hence ‘A is a non
trivial discrete subgroup of €2,

The group A acts by diagonal matrices in C? preserving A. Moreover, A is
not contained in € x {0} or {0} x C since, otherwise, there would be a codimension
one subspace of C x Affy which is invariant by T, contradicting the compactuess of
the quotient. Therefore, it is a discrete subgroup of €* x €* which cannot contain
an element of the form (wy,ws) with |wy] < 1 and |wyi < I It follows that A is a
discrete subgroup of a group isomorphic to B x §' x §1. Hence A either contains
an infinite cyclic subgroup of finite index or is finite. The latter case is not possible
since otherwise the quotient of C x Affy by T would not be compact.
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1t remains to show that A is a lattice, i.e., that C*/A is compact. We know
that M is the quotient of C2/A x €* by the action of A/A; = A, Since M is
compact and A contains an infinite cyelic subgroup of finite index, it follows that
C?/A is compact, as claimed by the lemma. 0O

The end of the proof of the theorem is now easy. Choose a generator @ of a
direct summand of the torsion part of A. The action of @ on C2/A x C* is exactly
as in the suspension case, described in section 1.2, The quotient of C*/AXC* by &
is a finite cover of A7, To get the exact structure of M, one has to take into account
the torsion subgroup of A which gives rise to the twisted suspension. O

Appendix
Automorphisms of 2-dimensional complex tori

Let us introduce some notations. If A is a lattice in C* (n > 1), we define:

End(A) = {f € M(n,C) | f(A) C A}
Aut(A) = {f € M(n,C) | f(A) = A}
End(A2Q)={f e Mn,C)] flAeQ)C A Q}.

If A; and A, are two lattices, they are isomorphic if there is f € GL(n, C) such that
J(A1) = Ap and isogenous if there is f € GL(n,C) such that f(A4) is a sublattice
{hence of finite index) in As. If Ay and A, are isogenous, Aut(A;) and Aut(A2) are
commensurable, i.e., contain subgroups of finite index which are conjugate.

The purpose of this appendix is to list explicitly all lattices A in C? for
which Aut(A) is infinite and to give a description of the possible groups Aut(A).
Al this discussion will be made up to isogeny and commensurability, in order to
avoid lengthy lists.

Most of this appendix can be extracted from classical books, like for instance
[Mu}, but we believe that this explicit description might be useful.

First recall the elementary facts concerning the case n = 1.

For a generic A < C, one has Aut{A)} = {+id} and End{A) =~ Z

Aut{A) is always finite; it is nontrivial only if A is isomorphic to the lattice
Z{/~1] of Gaussian integers or the lattice Z[ /—1] of Eisenstein integers.

End{A) is not isomorphic to Z if and only if A is isogenous with the lattice
of integers in some imaginary quadratic field,

We shall now describe five families of lattices in €? whose automerphism
group is infinite and then sketch the proof of the fact that this is the complete list
up to isogeny, We order the examples by decreasing “size” of Aut(A).

Example 1. Let p and g be two positive integers, Cousider the quaternion
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algebra Hp , over @ generated by 4, j, k with:

i“=p Ji =y k* = pg
ij=k=—ji jk=qi=—kji  ki=-pj=—ik

As is well known, H,, @R is isomorphic to the algebra A(2,R) via the embedding:
1 0 , ve U
=0 0) (0 )
. 0 1 0 P
j— , k— .
! (—q 0) (fh/ﬁ 0 )
The norm of an element &g + 21 + 22j + 23k of Hy , @R is xi — pal + qrl — pgxl
and the group of unitary quaternions in Hy , ® R is isomorphic with SL(2,R).
Right multiplication by j/./g gives a complex structure on M (2, R} which
can therefore be considered as C2. Left multiplication by elements of H, , ® R act
complex linearly on C2. Let A be the lattice of quaternions of H, , with integral
coordinates, considered as a lattice in C2. Let G, 4 be the group of integral quater-
nions of norm 1; it acts on €? by complex linear mappings, preserving the lattice
A.
The groups (7, are examples of arithmetical Fuchsian groups (see for in-
stance [Ka]). They are always discrete subgroups of finite co-volume in SL{2, R)
and are co-compact if the equation —pa? + qz2 — pgz = 0 has no nontrivial integral

solution (%1, T2, ws). In any case, these groups Gp; are quite big in the sense that,
for instance, they contain nonabelian free subgroups.

Example 2. Let Ag be a lattice in € and consider the lattice A = Agx Ap in
C?. The automorphism group of A is GL{2, End{A¢)). It contains at least GL(2,Z)
and, therefore, a free nonabelian group.

Example 3. Let K be a degree 4 number field which is totally imaginary,
i.e., admitting two embeddings iz, i3 in € which are distinct and nonconjugate. Let
i={iy,is) : { — CxC. Let & C K be the ring of integers of K and A = i{0); it is
a lattice in C? (see for instance [BS]). By Dirichlet’s theorem, the group of units of
( has the form Z x F where I is the finite group of roots of unity contained in K.

“g") ig((}u}) preserving the lattice A.
Hence this construction produces examples of lattices whose antomorphism group
contains an infinite subgroup of finite index. L

Note that the four conjugates of i;(u) are i, (u}, i1 (1), i2(w}, iz{w). We have
noticed that since the lattice A is invariant, one has }iq (u}ia(u)| = 1. I |[{;{u)} and
[i2{u}| were equal to 1, the four conjugates would be of modulus 1 and » would be
of finite order according to Kronecker's theorem. Therefore, if « is a unit of infinite
order, the corresponding automorphism of A has no eigenvalue of modulus 1 and
can therefore be used in the construction of a holomorphic suspension.

Any unit u acts in C? by the diagonal matrix (
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We discuss now the question mentioned in section 1.2 concerning the product
p = i1(u)iz{u) which is the determinant of the linear operator of C? preserving A.
We want to describe in which cases it is equal to 1. Consider the characteristic
polynomial of the unit u {considered as an integral 4 X 4 matrix acting on A) it
has the form:

P(T) =T +n3T% + noT? + T+ 1 where n; € Z.

Conversely, any such polynomial, if irreducible over Q, defines a quartic field
Q[T]/P(T) and a unit u =T in its ring of integers. The condition expressing that
this field is purely imaginary is expressed by finitely many polynomial inequalities
in the n;'s. OFf course, the four roots of this polynomial P are the four conjugates of
i1(u) that we denote, for better symmetry, by wy, we, wg, wg. We have to decide if
one of the products w;w; (i # 7) is equal to 1. Apply the usual method for solving
quartic equations, i.e., let us define:

0 = wiwe twawy Qo = wiws + way 13 = Wiy + waws.

Symmetric polynomials of the {;'s can be explicitly expressed in the n;'s so that the
{1;’s satisfy a cubic equation {Galois resolvent). If one uses the fact that wiwswawy =
+1, one finds:

OF — o0 + (nyng F AN + (Hng £2n, —nf) =0

A product wiw; (i # j)} is equal to 1 if and only if the previous cubic has 2
{or 0) as a solution. We therefore find the necessary and sufficient condition in the
n;'s so that p = 1.

In particular, we find many examples where p = 1 and many examples where
p # 1 (one has also to check that the condition is compatible with the polynomial
inequalities mentioned above but this is an easy exercise}, Note also that in any
case pis of degree 1, 2, 3, 4 or 6 over Q so that, if p is a root of unity, its order is a
priori bounded (by 18) and the sum p+1/p = (1 can take only finitely many explicit
values. In other words, we find analogous conditions in the n;’s for p to be a root of
unity. Therefore most holomorphic suspensions do not lead to infra-homogeneous
manifolds (see section 1.2).

Observe finally that if p = I, the previous cubic equation has to split over
Q so that Q; and £, belong to a (real) quadratic field. Hence in this case, K is
a purely imaginary quadratic extension of a real quadratic field. In this case the
complex torus C2/A is algebraie, but we shall not focus here on the algebraicity of
our examples (see [Mu}).

Example 4. Let K be a real quadratic field, O its ring of integers, and u
a unit in © of infinite order. The action of u on () gives rise to a matrix U in

GI.{2,Z) which is diagonalizable over the reals. The 4 x 4 matrix (I; g) preserves
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Z* and has two invariant subspaces in R*, both of dimension 2, on which it js a
homothety. Choose any complex structure on each one of these subspaces so that
R’Y is now identified with €2 in such a way that the matrix acts complex linearly
and preserves the lattice A = Z* ¢ R* ~ C?. Once again, we found lattices with
infinite automorphisins groups. Note that, unlike examples 3, this construction
produces uncountably many examples since we have a lot of freedom for the choices
of complex structures on the 2-dimensional invariant subspaces.

Example 5. We now come to a very degenerate case. Let Ag ¢ C he a

lattice and let A € €C? = R? be the image of Ag x Ag by a linear map whose matrix
I A
]

{0} x C is the only complex line in C? that intersects A on a lattice (i.e., isomorphic

wy b
8 w2

finite group Aut(Ag) and b is in the ring End{Ag). In particular, Aut(A) contains
an Abelian group of finite index, consisting only in unipotent elements. Hence these
examples cannot be used in the holomorphic suspension construction of section 1.2,

has the form ( ) where 4 is a 2 x 2 matrix. For a generic choice of A, the line

to Z%). Auntomorphisms of A have the form ( ) where wy and wy are in the

Proposition. Up te isogeny, all lattices in C? whose automorphism group
is infinite are described in examples 1 to 5.

Proof. We give a sketch of the proof, leaving details to the reader. Let A be
a lattice in C* such that Aut{A) is infinite. We distinguish several cases:
A) There are at least two complex lines in C? intersecting A on a lattice. In this
case, A is isogenous to a product of two lattices of C. These two lattices must be
isogenous since Aut{A) is supposed to be infinite; we are in the example 2 case.
B) There is a unique complex line in €2 that intersects A on a lattice Ag. It is not
difficult to see that A/Ap must be isogencus to Ag and that we are in the case of
example 5.
C) There is no complex line intersecting A on a lattice. In this case D = End(A®Q)
is a division algebra since the image and the kernel of an element of End(A ® Q)
are complex subspaces of €* which are rational with respect to the lattice A, i.e,
the kernel and image are either trivial or 2. Of course A @ Q ~ Q* appears as a
vector space over [J so that one has;

4 = dimp (A ® Q) dimg D.
Let K be the center of D so that K is a number field and:
dimg D = dimg K dimg D.
As is well known dimg D is a square so that one has three possibilities:

C-1) K = Q, dimgD = 4 and A ® Q is I-dimensional over D). By Erobenius’
theorem, D is a guaternion algebra over Q. We are in example 1.
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C-2) D =K, dimg K = 4 and A ® Q is 1-dimensional over K. In this case, A is
commensurable with the ring of integers of K and Aut{A) with the group of units.
It follows from the fact that K has to act by complex linear maps that K is purely
imaginary. This is example 3.
C-8) D = K, K is a quadratic field and A ®  is a 2-dimensional /(-veetor space.
This is example 4.

This finishes the sketch of the proof of the proposition. (1

We have described Aut{A) up to commensurability but it would not be diffi-
cull to give a complete description. We shall not do it, in order to avoid long lists,
and we only mention an interesting example of a finite subgroup of Aut(A).

Let A be the Hurwitz lattice in €? ~ R* consisting of points {1, 22, 23, 4)
whose coordinates are all integers or all half an odd integer. Then Aut(A) contains
a subgroup with 96 elements. Actually, the complex torus C2/A is the Jacobian
of the algebraic curve which is the 2-fold cover over the Riemann sphere, branched
over the G vertices of a regular octahedron. This Riemann surface has the biggest
automorphism group among genus-2 Riemann surfaces; it contains 48 elements,
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