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1 Tait and Kneser

The notion of osculating circle (or circle of curvature) of a smooth plane
curve is familiar to every student of calculus and elementary differential
geometry: this is the circle that approximates the curve at a point better
than all other circles.

One may say that the osculating circle passes through three infinitesi-
mally close points on the curve. More specifically, pick three points on the
curve and draw a circle through these points. As the points tend to each
other, there is a limiting position of the circle: this is the osculating circle.
Its radius is the radius of curvature of the curve, and the reciprocal of the
radius is the curvature of the curve.

If both the curve and the osculating circle are represented locally as
graphs of smooth functions then not only the values of these functions but
also their first and second derivatives coincide at the point of contact.

Ask your mathematical friend to sketch an arc of a curve and a few
osculating circles. Chances are, you will see something like Figure 1.

Figure 1: Osculating circles?

This is wrong! The right picture is Figure 2.
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Figure 2: This is what osculating circles look like.

The following theorem was discovered by Peter Guthrie Tait in the end
of the 19th century [9] and rediscovered by Adolf Kneser early in the 20th
century [4].

Theorem 1 The osculating circles of an arc with monotonic positive cur-
vature are pairwise disjoint and nested.

Tait’s paper is so short that we quote it almost verbatim (omitting some
old-fashioned terms):

When the curvature of a plane curve continuously increases or dimin-
ishes (as in the case with logarithmic spiral for instance) no two of the
circles of curvature can intersect each other.

This curious remark occurred to me some time ago in connection with
an accidental feature of a totally different question...

The proof is excessively simple. For if A,B, be any two points of the
evolute, the chord AB is the distance between the centers of two of the
circles, and is necessarily less than the arc AB, the difference of their
radii...

When the curve has points of maximum or minimum curvature, there
are corresponding . . . cusps on the evolute; and pairs of circles of cur-
vature whose centers lie on opposite sides of the cusp, C, may intersect:
– for the chord AB may now exceed the difference between CA and
CB.

See Figure 3 for a family of osculating circles of a spiral.1

1Curiously, the current English Wikipedia article on osculating circles contains three
illustrations, and none of them depicts the typical situation: the curve goes from one side
of the osculating circle to the other. The French Wikipedia article fares better in this
respect; the reader may enjoy researching other languages.
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Figure 3: Osculating circles of a spiral. The spiral itself is not not drawn:
we see it as the locus of points where the circles are especially close to each
other.

2 Evolutes and involutes

Perhaps a hundred years ago Tait’s argument was self-evident and did not
require further explanation. Alas, the situation is different today, and this
section is an elaboration of his proof. The reader is encouraged to consult
her favorite book on elementary differential geometry for the basic facts that
we recall below.

The locus of centers of osculating circles is called the evolute of a curve.
The tangent lines to the evolute are the normal lines to the original curve.
See Figures 4.

The evolute typically has cusp singularities, clearly seen in Figure 4. For
generic curves, these are the centers of the stationary osculating circles, the
osculating circles at the vertices of the curve, that is, the points where the
curvature has a local minimum or a local maximum.

Consider the left Figure 4 again. The curve γ is called an involute of
the curve Γ: an involute is orthogonal to the tangent lines of a curve. The
involute γ is described by the free end of a non-stretchable string whose
other end is fixed on Γ and which is wrapped around it (for this reason,
involutes are also called evolvents). That this string construction indeed
does the job is obvious: the radial component of the velocity of the free end
point would stretch the string.

A consequence of the string construction is that the length of an arc of
the evolute Γ equals the difference of its tangent segments to the involute γ,
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Figure 4: Left: the red curve is the evolute of the blue one; the tangent lines
to the former are the normals of the latter. Right: the evolute of an ellipse.

that is, the increment of the radii of curvature of γ. This is true as long as
the curvature of γ is monotonic and Γ is free of cusps.

Another curious consequence is that the evolute of a closed curve has
total length zero. The length is algebraic: its sign changes each time that
one passes a cusp. We leave it to the reader to prove this zero length property
(necessary and sufficient for the string construction to yield a closed curve
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Figure 5: Tait’s proof: r1 − r2 = | _z1z2 | > |z1z2|.

Tait’s argument is straightforward now, see Figure 5. Let r1 and r2 be
the radii of osculating circles at points x1 and x2, and z1 and z2 be their
centers. Then the length of the arc z1z2 equals r1−r2, hence |z1z2| < r1−r2.
Therefore the circle with center z1 and radius r1 contains the circle with
center z2 and radius r2.
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3 A paradoxical foliation

Let us take a look at Figure 3 again. We see an annulus bounded by the
smallest and the largest of the osculating circles of a curve γ with monotonic
curvature. This annulus is foliated by the osculating circles of γ , and the
curve “snakes” between these circles, always remaining tangent to them.
How could this be possible?

Isn’t this similar to having a non-constant function with everywhere zero
derivative? Indeed, if the foliation consists of horizontal lines and the curve
is the graph of a differentiable function f(x), then f ′(x) = 0 for all x, and
f is constant. But then the curve is contained within one leaf.

The resolution of this “paradox” is that this foliation is not differentiable
and we cannot locally map the family of osculating circles to the family of
parallel lines by a smooth map. A foliation is determined by a function
whose level curves are the leaves; a foliation is differentiable if this function
can be chosen differentiable. A foliation may have leaves as good as one
wishes (smooth, analytic, algebraic) and still fail to be differentiable.

Theorem 2 If a differentiable function in the annulus is constant on each
osculating circle then this is a constant function.

For example, the radius of a circle is a function constant on the leaves.
As a function in the annulus, it is not differentiable.

To prove the theorem, let F be a differentiable function constant on the
leaves. Then dF is a differential 1-form whose restriction to each circle is
zero. The curve γ is tangent to one of these circles at each point. Hence dF
is zero on γ as well. Therefore F is constant on γ. But γ intersects all the
leaves, so F is constant in the annulus.

Thus a perfectly smooth (analytic, algebraic) curve provides an example
of a non-differentiable foliation by its osculating circles.

4 Taylor polynomials

In this section we present a version of Tait-Kneser theorem for Taylor poly-
nomials. It is hard to believe that this result was not known for a long time,
but we did not see it in the literature.

Let f(x) be a smooth function of real variable. The Taylor polynomial
Tt(x) of degree n approximates f up to the n-th derivative:

Tt(x) =
n∑

i=0

f (i)(t)

i!
(x− t)i.
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Assume that n is even and that f (n+1)(x) 6= 0 on some interval I.

Theorem 3 For any distinct a, b ∈ I, the graphs of the Taylor polynomials
Ta and Tb are disjoint over the whole real line.

To prove this, assume that f (n+1)(x) > 0 on I and that a < b. One has:

∂Tt
∂t

(x) =
n∑

i=0

f (i+1)(t)

i!
(x− t)i −

n∑
i=0

f (i)(t)

(i− 1)!
(x− t)i−1 =

f (n+1)(t)

n!
(x− t)n,

and hence (∂Tt/∂t)(x) > 0 (except for x = t). It follows that Tt(x) increases,
as a function of t, therefore Ta(x) < Tb(x) for all x.

The same argument proves the following variant of Theorem 3. Let n be
odd, and assume that f (n+1)(x) 6= 0 on an interval I.

Theorem 4 For any distinct a, b ∈ I, a < b, the graphs of the Taylor
polynomials Ta and Tb are disjoint over the interval [b,∞).

Theorems 3 and 4 are illustrated in Figure 6.

Figure 6: Quadratic Taylor polynomials of the function f(x) = x3 and cubic
Taylor polynomials of the function f(x) = x4

The same proof establishes more: not only the function Tb(x)− Ta(x) is
positive, but it is also convex. Furthermore, all its derivatives of even orders
are positive. Certain analogs of this remark apply to the variations on the
Tait-Kneser theorem presented in the next section, but we shall not dwell
on this intriguing subject here.

5 Variations

The Tait-Kneser theorem can be extended from circles to other classes of
curves. Let us consider a very general situation when a d-parameter family
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of plane curves is given; these curves will be used to approximate a test
smooth curve at a point. For example, a conic depends on five parameters,
so d = 5 for the family of conics.

Given a smooth curve γ and point x ∈ γ, the osculating curve from our
family is the curve that has tangency with γ at point x of order d−1; in other
words, it is the curve from the family that passes through d infinitesimally
close points on γ. The curve hyperosculates if the order of tangency is
greater, that is, the curve passes through d + 1 infinitesimally close points
on γ.

For example, one has the 1-parameter family of osculating conics of a
plane curve γ parameterized by the point x ∈ γ. A point x is called sextactic
if the osculating conic hyperosculates at this point. In general, a point of γ
is called extactic if the osculating curve hyperosculates at this point.

We shall now describe a number of Tait-Kneser-like theorems. Our dis-
cussion is informal; the reader interested in more details is refereed to [3, 8].
Let us consider the case of osculating conics.

Theorem 5 The osculating conics of a curve, free from sextactic points,
are pairwise disjoint and nested (see Figure 7).

Figure 7: Osculating conics of a spiral. The conics depicted in the figure
are pairwise nested ellipses, increasing from tiny ones in the center to large
ones on the periphery.

This theorem is better understood in the projective plane where all non-
degenerate conics are equivalent, and there is no difference between ellipses,
parabolas and hyperbolas. In particular, a non-degenerate conic divides the
projective plane into two domains, the inner one which is a disc, and the
outer one which is the Möbius band.
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Here is a sketch of a proof.2 Give the curve a parameterization, γ(x),
and let Cx be the osculating conic at point x. Let Fx = 0 be a quadratic
equation of the conic Cx.

It suffices to establish the claim for sufficiently close osculating conics,
so consider infinitesimally close ones. The intersection of the conics Cx and
Cx+ε (for infinitesimal ε) is given by the system of equations

Fx = 0,
∂Fx

∂x
= 0.

Both equations are quadratic so, by the Bezout theorem, the number of
solutions is at most 4 (it is not infinite because x is not a sextactic point).
But the conics Cx and Cx+ε already have an intersection of multiplicity 4 at
point x: each is determined by 5 “consecutive” points on the curve γ, and
they share 4 of these points. Therefore they have no other intersections, as
needed.

Another generalization, proved similarly, concerns diffeomorphisms of
the real projective line RP1. At every point, a diffeomorphism f : RP1 →
RP1 can be approximated, up to the second derivative, by a fractional-linear
(Möbius) transformation

x 7→ ax+ b

cx+ d
.

It is natural to call this the osculating Möbius transformation of f . Hyper-
osculation occurs when the approximation is finer, up to the third derivative;
this happens when the Schwarzian derivative of f vanishes:

S(f)(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

= 0

(see [6, 7] concerning the Schwarzian derivative).

Theorem 6 Let f : [a, b]→ RP1 be a local diffeomorphism whose Schwarzian
derivative does not vanish. Then the graphs of the osculating Möbius trans-
formation are pairwise disjoint.

Of course, these graphs are hyperbolas with the vertical and horizontal
asymptotes.

Can one generalize to algebraic curves of higher degree? The space of
algebraic curves of degree d has dimension n(d) = d(d+3)/2. The osculating
algebraic curve of degree d passes through n(d) infinitesimally close points

2A similar argument applies to osculating circles as well.
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of a smooth curve γ. Two infinitesimally close osculating curves of degree d
at point x ∈ γ have there an intersection of multiplicity n(d) − 1, whereas
two curves of degree d may have up to d2 intersections altogether. For d ≥ 3,
one has d2 > d(d+3)/2−1, so one cannot exclude intersections of osculating
algebraic curves of degree d.


Figure 8: Two types of cubic curves.

However, one can remedy the situation for cubic curves. A cubic curve
looks like shown in Figure 8: it may have one or two components, and in
the latter case one of them is compact. The compact component is called
the oval of a cubic curve. Two ovals intersect in an even number of points,
hence one can reduce the number 9 = 32 to 8 if one considers ovals of cubic
curves as osculating curves. This yields

Theorem 7 Given a plane curve, osculated by ovals of cubic curves and free
from extactic points, the osculating ovals are disjoint and pairwise nested.

See Figure 9 for an illustration.

6 4-vertex theorem and beyond

This story would be incomplete without mentioning a close relation of vari-
ous versions of the Tait-Kneser theorem and numerous results on the least
number of extactic points. The first such result is the 4-vertex theorem dis-
covered by S. Mukhopadhyaya in 1909 [5]: a plane oval 3 has at least four
vertices. In the same paper, Mukhopadhyaya proved the 6-vertex theorem:
a plane oval has at least six sextactic points. Note that these numbers, 4 and
6, are one greater than the dimensions of the respective spaces of osculating
curves, circles and conics.

3Closed smooth strictly convex curve
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Figure 9: A spiral (in blue) osculated by ovals of cubic curves: the ovals
are shown in red, and the outer-most osculating cubic is shown with the
unbounded component, in green.

A similar theorem holds for Möbius transformations approximating dif-
feomorphisms of the projective line: for every diffeomorphism of RP1, the
Schwarzian derivative vanishes at least four times [2].

And what about approximating by cubic curves? Although not true for
arbitrary curves, the following result holds: a plane oval, sufficiently close
to an oval of a cubic curve, has at least 10 extactic points [1]. Once again,
10 = 9 + 1 where 9 is the dimension of the space of cubic curves. We refer
to [6] for information about the 4-vertex theorem and its relatives.

By the way, the reader may wonder whether there is a “vertex” coun-
terpart to Theorem 3. Here is a candidate: if f(x) is a smooth function of
real variable, flat at infinity (for example, coinciding with exp(−x2) outside
of some interval), then, for each n, the equation f (n)(x) = 0 has at least n
solutions. The proof easily follows from the Rolle theorem.

One cannot help wondering about the meaning of this relation between
two sets of theorems. Is there a general underlining principle in action here?
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