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A ruler, a pencil, cardboard, scissors and glue:
one doesn't need more to give a mathematician pleasure,

and present interesting problems whose study often turns out
to be useful in other areas, in totally unexpected ways.

let us build a card-
board pyramid... One
starts by cutting out
the design SABCDE in
a sheet of cardboard
as indicated in figure
1, then one folds
along the dotted
lines and, finally, one
glues the sides AS
and ES.

The result is a kind
of cone whose vertex is the point and whose
base is the quadrilateral ABCD. This object is
flexible. If held in the hand, the quadrilateral
ABCD can be deformed and opened or closed
a little: the construction is not very solid. To
complete the pyramid we need to cut out a
square from the cardboard and to stick it onto
the quadrilateral to form the base. After this
operation the pyramid is sturdy and rigid. If
one puts it on a table it does not collapse. If
one takes it in hand and tries to deform it

(softly!), one is unable to do it without deform-
ing the cardboard face.

In the same way, a cardboard cube is rigid,
as everyone must have observed at one time.
What about a more general polyhedron, hav-
ing perhaps thousands of faces? Is the Géode,
a dome at La Villette in Paris, rigid? This last
question suggests that the subject of rigidity
or flexibility is perhaps not only a theoretical
one!

Figure 1. The construction of a pyramid from a piece of cardboard. If the base ABCDA is removed, the
object is flexible.



A problem going back to Antiquity,
but which is still relevant

The problem of rigidity of these type of
objects is very old. Euclid probably was aware
of it. The great French mathematician Adrien-
Marie Legendre became interested in it
towards the end of the 18th century and
talked to his colleague Joseph-Louis Lagrange
about it, who in turn suggested it in to the
young Augustin-Louis Cauchy in 1813. It was
to be the first major result of baron A.-L.
Cauchy, who went on to become one of the
greatest mathematicians of his century

Cauchy was interested in convex poly-
hedra, i.e., polyhedra which do not have any
inward-pointing edges. For example, the
pyramid that we built or the surface of a
football are convex, while the object drawn

on the right of figure 2 is not.

The theorem established by Cauchy is the
following: any convex polyhedron is rigid.
That means that if one builds a convex poly-
hedron with indeformable polygons (made
of metal, for example) adjusted by hinges
along their edges, the overall geometry of
the object prevents the play of joints. The
cone that we built is flexible, but that does
not contradict the theorem: a face is miss-
ing, and it is the last face which makes the
pyramid rigid...

Doing mathematics means proving what
one claims! It so happens that Cauchy's proof
is superb (even if it was pointed out later that
it is incomplete). There is unfortunately no ques-
tion of giving an idea of this proof in this short
article, but I would like to extract from it a
``lemma”, i.e., a step in the proof.

Let us place on the ground a chain made
up of some metal bars joined at the ends, as in
figure 3. At each angle of this polygonal line,
let us move the two bars in order to decrease
the corresponding angle. Then the two ends
of the chain come closer. Does that seem obvi-
ous to you? Try to prove it...

For a long time many mathematicians won-
dered whether nonconvex polyhedra were also
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Augustin-Louis Cauchy (1789-1857), one of the great mathemati-
cians of his time. (Photo Archives de l'École polytechnique)

Figure 2. A convex polyhedron and a star-shaped, non-convex, poly-
hedron.
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rigid. Can one find a proof of
the rigidity which would not
use the assumption of con-
vexity? Mathematicians like
statements in which all the
assumptions are necessary to
obtain the conclusion. One
had to wait more than 160
years to know the answer in
this particular case.

In 1977, the Canadian
mathematician Robert
Connelly created something
surprising. He built a (quite
complicated) polyhedron,
which is flexible, and, of course, nonconvex
not to contradict Cauchy! Since then the con-
struction has been somewhat simplified, in
particular by Klaus Steffen. In figure 4, I‚ve
given a design which will allow the reader to
build the ``flexidron” of Steffen. Cut it out
and fold along the lines. The solid lines rep-
resent edges pointing outward, and the bro-
ken lines correspond to edges pointing inward.
Stick the free edges in the obvious way. You
will obtain a kind of Shadok and you will see
that it is indeed flexible (a little...).

Does the volume of a polyhedron
change when it is deformed?

At the time, mathematicians were
enchanted by this new object. A metal model
was built and put in the tea room of the
Institut des Hautes Études Scientifiques, at
Bures-sur-Yvette, near Paris, and one could
have fun making this thing move; to tell the
truth, it was not very pretty, and squeaked a
little. The story goes that Dennis Sullivan had
the idea of blowing some cigarette smoke
into Connelly's flexidron and he noticed that
while the object moved, no smoke came out...
So he got the idea that when the flexidron is
deformed, its volume does not vary! Is this
anecdote true? Whether true or not, Connelly
and Sullivan conjectured that when a poly-
hedron is deformed, its volume remains con-
stant. It is not difficult to check this property
in the particular case of the flexidron of
Connelly or for that of Steffen (through com-
plicated and uninteresting calculations). But
the conjecture in question considers all poly-
hedra, including those which have never been
built in practice! They called this question the

Figure 3. If one decreases the angles which the segments form with
each other, the ends of the chain of segments come closer.

The “géode de la Vilette” in the Cité Des Sciences in Paris, is a convex polyhedron of 1730 tri-
angular faces. The rigidity of this structure of joined polyhedra gives rise to an interesting math-
ematical problem which was solved only in 1997. (Photo Cosmos/R. Bergerot)



``the bellows conjecture”: the bellows at the
corner of the fireplace eject air when they are
pressed; in other words, their volume decreases
(besides, that is what they are meant for). Of
course, true bellows do not provide an answer
to the problem of Connelly and Sullivan: they
are made of leather and their faces become
deformed constantly, in contrast to our poly-
hedra with rigid faces.

In 1997, Connelly and two other mathe-
maticians, I Sabitov and A. Walz, finally suc-
ceeded in proving this conjecture. Their proof
is impressive, and once more illustrates the
interactions between different areas of math-
ematics. In this eminently geometrical ques-
tion, the authors have used very refined meth-
ods of modern abstract algebra. It is not a proof
that Cauchy ``could have found”: the mathe-
matical techniques of the time were insuffi-
cient. I would like to recall a formula which
one used to learn at secondary school at one
time. If the sides of a triangle are a, b and $ in
length, one can easily calculate the area of the
triangle. For that, one calculates first the semi-
perimeter p=(a+b+c)/2 and then one obtains
the area by extracting the square root of p(p-

a)(p-b)(p-c). This pretty formula bears the name
of the Greek mathematician Hero and its ori-
gins are lost in antiquity. Can one calculate, in
a similar way, the volume of a polyhedron if
the lengths of its edges are given? Our three
contemporary mathematicians have shown
that one can.

They start from a polyhedron built from
a certain design having a certain number of
triangles, and they call l1, l2, l3, etc. the lengths
of the sides of these triangles (possibly very
many). They then find that the volume V of
the polyhedron must satisfy an equation of
the nth degree, i.e. an equation of the form
a0 + a1V + a2V2+ ... + anVn = 0. The degree n
depends on the design used, and the coeffi-
cients (a0, a1, etc.) of the equation depend
explicitly on the lengths l1, l2, l3, etc. of the
sides. In other words, if the design and the
lengths of the sides are known, the equation
is known. If the reader remembers that an
equation has in general one solution if it is of
the first degree, two solutions if it is of the
second degree, he will be able to guess that
an equation of degree n cannot have more
that n solutions. Conclusion: if one knows the

design and the lengths, one does
not necessarily know the vol-
ume, but it is at least known that
this volume can take on only a
finite number of values. When
the flexidron is deformed, its vol-
ume cannot vary continuously
(otherwise the volume would
take on an infinity of successive
values); this volume is ̀ `blocked”
and the bellows conjecture is
established...

26 L’explosion des mathématiques

Figure 4. The model for the flexidron of Steffen.
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Yes, the bellows problem is worthy of
interest!

Is this problem useful, interesting? What
is an interesting mathematical problem?
That's a difficult question, which, of course,
mathematicians have been contemplating for
a long time. Here are some partial answers,
some indicators of ``quality”. The history of
a problem is the first criterion: mathemati-
cians are very sensitive to tradition, to prob-
lems stated a long time ago, on which math-
ematicians of several generations have
worked. A good problem must also be stated
simply, its solution must lead to surprising
developments, if possible connecting very dif-
ferent fields. From these points of view, the
problem of rigidity, which we have just dis-
cussed, is interesting.

The question as to whether a good prob-
lem must have useful practical applications is
more subtle. Mathematicians answer it in a
variety of different ways. Undoubtedly, ̀ `prac-
tical” questions, arising for example from
physics, are very often used as a motivation
for mathematics. Sometimes it is a question
of solving a quite concrete problem, but the
relationship is often less direct: the mathe-
matician uses the concrete question only as a
source of inspiration and the actual solution
of the initial problem is no longer the true
motivation. The problem of rigidity belongs
to this last category. The physical origin is
rather clear: the stability and the rigidity of
structures, for example metallic structures.
For the moment, Connelly‚s examples are of
no use to engineers. However, it is clear that
this kind of research will not fail, in an inde-
terminate future, to provide a better overall
understanding of the rigidity of vast struc-
tures made up of a large number of individ-

ual elements (macromolecules, buildings, etc.).
It is thus a purely theoretical ``disinterested”
kind of research, but which has a good chance
one day of being useful ...
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