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TOTALLY GEODESIC FOLIATIONS ON
4-MANIFOLDS

GRANT CAIRNS & ETIENNEGHYS

Abstract

We give a rather detailed description of the behavior of 2-dimensional totally

geodesic foliations on compact Riemannian 4-manifolds. In particular, we

obtain a complete characterization in the simply connected case.

0. Introduction

A foliation fF is "geodesible" if there exists a Riemannian metric that
makes IF totally geodesic. The problem of characterizing geodesible foliations
has been essentially solved in the 1-dimensional case [16]. There exists in fact
numerous geodesible flows; for instance, every compact 3-manifold admits
contact flows and such flows are geodesible [11]. Equally, the problem has
been solved in the codimension one case [10]. Here the situation is so rigid that
one can give a complete classification. The basic point is that, in codimension
1, the distribution fF ± , orthogonal to J*", is evidently integrable. In arbitrary
codimension, there is a global description of the qualitative behavior of
geodesible foliations that tries to take into account the nonintegrability of & ±

[2], [4], [6]. However, this method cannot give rise to a complete classification.
The first case where this analysis provides effective tools is that of 2-
dimensional foliations on 4-manifolds. This is the object of study of this paper.

We assume that the foliation J^ and the manifold M are oriented and C00

(for some general comments concerning the C° case, see [20]).

The following theorem has the advantage of splitting the problem into three
subproblems. Note that, for the present, we treat 2-dimensional foliations of
arbitrary codimension.
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Theorem A. Let & be a 2-dimensional geodesible foliation on a compact
manifold M. Then there exists a Riemannian metric g on M for which !F is
totally geodesic and such that the curvature of the leaves is the same constant K,
equal to + 1 , 0, or - 1 .

So there are three types of geodesible 2-dimensional foliations that we will
call respectively elliptic (K = + 1), parabolic (K = 0) or hyperbolic (K = -1).
The following three theorems treat these three cases.

Theorem B (elliptic case). Let Fbe a 2-dimensional foliation on a compact
manifold M. Then IF is elliptic geodesible if and only if the leaves of F are the
fibers of a fibration of M by spheres S2.

Theorem C (parabolic case). Let F be a parabolic geodesible 2-dimensional
foliation on a compact 4-manifold M. Then there exists an Abelian covering M of
M such that the lift & of IF to M can be defined by a locally free action of R2.

Further results concerning the parabolic case will be given in §4. In
particular, we describe the dynamics of IF when the leaves are dense (see
Theorem 4.1).

Theorem D (hyperbolic case). Let & be a totally geodesic 2-dimensional
foliation on a compact Riemannian 4-manifold M. If the leaves have constant
negative curvature, the orthogonal distribution IF L is necessarily integrable.
There are two possibilities:

(1) either !F is defined by a suspension of a representation of the fundamental
group of some surface of genus greater than one in the group of diffeomorphisms
of the sphere S2 , or

(2) the universal covering space M of M is diffeomorphic to R4, in such a way
that the leaves of F are covered by R2 X { * } and those of F ^ by {*} XR2.

These results enable us to deduce the following theorems:

Theorem E. Let M be a compact simply connected A-manifold. If there exists
a geodesible foliation !F on M, then M is one of the two fibrations by spheres S2

over S2, and the leaves of & are the fibers of this fibration.

Theorem F. Let IF be a 2-dimensional geodesible foliation on a compact
4-manifold M with negative Euler characteristic. Then M is a fibration by spheres
S 2 over a compact surface. Moreover, one can choose this fibration in such a way
that its fibers are either everywhere tangent or everywhere transverse to &.

This paper is organized in the following manner. In the first section we recall
the basic facts concerning geodesible foliations and we prove Theorems A and
B. §2 provides some examples. In §3, we introduce the notion of "transverse
curvature" which leads to the proof of Theorems C and D in §4. Finally, §5 is
devoted to Theorems E and F.
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1. Preliminary results: Proofs of Theorems A and B

There are several ways to characterize totally geodesic foliations (see [13] for

details). Roughly speaking, a foliation J** is totally geodesic if and only if the

" holonomy" of the orthogonal distribution & x consists of local isometries.

More precisely, let J^ be an arbitrary foliation on a compact Riemannian

manifold (M, g), and let γ: [0,1] -> M be an arc orthogonal to &. Then, if Vo

is a sufficiently small neighborhood of γ(0) in the leaf containing γ(0), one can

construct a unique mapping

(t,m) e [0,1] X F O H Ft(m) e M

such that

(i) Fo: Vo -» M is the natural injection,

(ii) /< (γ(0)) = γ(ί),

(iii) Ft\ Vo -> M is a diffeomoφhism onto a neighborhood of γ(ί) in the leaf

containing γ(/).

(iv) the curves t >-> Ft(m) are orthogonal to ^ \

The foliation J^ is totally geodesic for g if and only if all these local

diffeomorphisms Fr corresponding to the different choices of γ, are isometries

(see [2]).

As a simple application of this criteria, we have

Proposition 1.1 (see also [19]). A locally trivial fibration with compact fiber

is geodesible if and only if its structure group can be reduced to a group of

isometries.

We can now prove Theorem B.

Proof of Theorem B. If J^ is elliptic geodesible, then J^, being supposed

orientable, is obviously a foliation by spheres and therefore a fibration by the

Reeb stability theorem. Conversely, in view of Proposition 1.1, Theorem B

follows from Smale's theorem (see [8]) by which 0(3,R) = Isom(S2, can) is a

deformation retract of Diff(S2). q.e.d.

Before continuing, let us recall some notations and results from [2], [4], [5]. If

m is a point of Λf, the sheet S(m) through m is the set of points of M that can

be reached from m by piecewise smooth paths orthogonal to &. A totally

geodesic foliation & of dimension p is said to be tangentially parallelizable if

there exists p orthonormal vector fields, tangent to the foliation Xl9- , Xp9

whose flows preserve &L. If, further, the Xl9---9Xp generate a p-

dimensional Lie algebra ©, the foliation is called a tangentially %-Lie foliation.
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In this case, & can be defined by the action of the corresponding simply

connected Lie group. One has

Theorem 1.2 ([2], [4], [6]). Let & be a p-dimensional totally geodesic

foliation on a compact connected Riemannian manifold (M, g). The pull-back !F

of & to the principal SO(p)~bundle E of orthonormal oriented tangent p-frames

is canonically tangentially parallelizable (with respect to the canonical lift of g).

The sheets of & define a Riemannian foliation whose leaves project in M onto the

sheets of &. Moreover, the sheets of 3F, and their closures, define respectively

"singular foliations.'"

Theorem 1.3 ([5]). // & is a 2-dimensional totally geodesic foliation on a

compact connected Riemannian manifold (M,g), then there are four possibilities'.

(i) a sheet is dense, in which case all the leaves have the same constant

curvature,

(ii) a finite nonzero number of sheets are compact and of codimension 2,

(iii) all the sheets are compact and of codimension 2,

(iv) the closures of the sheets define a codimension 1 foliation, in which case,

up to a 2-fold cover, there is a Riemannian fibration of M onto S 1 transverse to

We can now begin the proof of Theorem A. Obviously, we need only

consider the cases (ii), (iii), and (iv) of the previous theorem, which will be

treated by the following three propositions.

Proposition 1.4. Let & be a 2-dimensional totally geodesic foliation of type

(ii). Then all the leaves of & are in fact spheres and, in this case, Theorem A

follows from Theorem B.

Proof. Let L be a leaf of J*\ The traces of the closures of the sheets on L

define a singular foliation &L. The singularities of &L correspond to the

codimension 2 compact sheets. One verifies easily that these singularities are

all centers; that is, around each singularity, ϊFL looks like a family of

concentric circles. Away from the singularities, the leaves of &L are circles.

The only surfaces admitting such a singular foliation, with at least one singular

point, are the sphere S 2 (two singular points) and the plane R2 (one singular

point). Then, as each leaf meets every sheet, &L possesses at least one singular

point, and therefore at most two. In order to establish the proposition, it

remains to show that L cannot be the plane. But if L were noncompact, it

would meet each sheet infinitely often, hence producing infinitely many

singular points, q.e.d.

Proposition 1.5. Theorem A holds for 2-dimensional totally geodesic folia-

tions of type (iii).

Proof. We use here a method employed in [7]. In our case, y ^ is clearly

integrable. The universal covering space M of M is diffeomorphic to the
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product LλX L2, where Lx (resp. L 2 ) is the universal cover of a leaf (resp.

sheet) of & (see [1]). The fundamental group Γ of M acts by isometries on the

(Lj, gx) factor, where gx is the natural metric on Lv We change gx conform-

ally to obtain a new metric g[ of constant curvature K, equal to - 1 , 0, or + 1 .

When K is - 1 , (L 1 ? g[) is identified with the Poincare disc D 2 and Γ acts by

conformal diffeomorphisms of D 2 , and hence by isometries. This enables us to

define, for K = - 1 , the required metric on M. For K = 0, (Ll9 g[) is identified

with the Euclidean plane E 2 , and Γ acts by conformal diffeomorphisms, that

is, by similarities. Every similarity which is not an isometry has necessarily an

attractive or repulsive fixed point. As this is not possible for a g risometry, we

conclude that Γ acts by isometries on (L 1 ? g[% and we obtain once again the

required metric on M. The last case, K= + 1 , was already resolved by

Theorem B. q.e.d

Proposition 1.6. Theorem A holds for 2-dimensional totally geodesic folia-

tions of type (iv).

Proof. First assume that the closures of the sheets define a Riemannian

fibration p: M -> S1. Let X be the vector field tangent to J*" that projects

onto 9/90 and which is orthogonal to the fibers of p. Let Y be the vector field

tangent to J*~ such that (X,Y) is an orthonormal frame, positive for the

orientation of J*". Clearly [X, Y] = /Y, where / is a function constant along the

sheets. Therefore, there exists a function h: S1 -> R such that f = h° p.

It is elementary to check that there is a function u: S 1 -> R such that

TΓ77W + h = Constant,
σc/

Then consider the vector field Y = exp(w ° p)Y. One has

(*) [X,Ϋ] = (f+X(u°p))Ϋ=kΫ,

where A: is a constant. We now redefine the metric on J^ such that (X, Y)

forms an orthonormal frame. It is clear & is still totally geodesic and the fact

that k is constant implies that #* has constant curvature (parabolic if k = 0,

and hyperbolic otherwise).

It remains to consider the case where the codimension 1 foliation defined by

the closures of the sheets is not orientable. In this case, there is a double cover

M, equipped with the standard involution T, for which the above construction

holds. One verifies that τ*X = -X, τ*Y = -Y, and τ*Ϋ = - 7 and so the

change of metric in M is τ-invariant. This completes the proof of the

proposition. Note that applying T to the relation (*), one obtains k = 0 and

so the latter case is necessarily parabolic, q.e.d.

This completes the proof of Theorem A.



246 GRANT CAIRNS & ETIENNE GHYS

Proposition 1.7. The properties of being elliptic, parabolic or hyperbolic

define a partition on the set of geodesible foliations on compact manifolds.

Proof. Since S 2 has no metric of constant curvature equal to 0 or - 1 , no

elliptic geodesible foliation can be parabolic or hyperbolic. Now, the leaves of

a parabolic foliation, being flat complete surfaces, are diffeomorphic to R2,

R X S1, or T 2 and have polynomial growth (cf. [15]). There is no metric on T 2

with curvature -1 and the complete metrics on R2 and R X S 1 with curvature

-1 have exponential growth. So a parabolic geodesible foliation cannot be

hyperbolic, q.e.d.

2. Examples

Let us first of all recall that the problem of the existence of 2-dimensional

foliations on 4-manifolds is completely understood. In fact, according to [17],

every 2-dimensional plane field is homotopic to a foliation and the existence of

plane fields is expressed by an algebraic condition involving the intersection

form, the signature, and the Euler characteristic [12].

Example 2.1: Suspension of a geodesible flow. Let Y be a vector field

defining a flow by geodesies on a Riemannian 3-manifold M3. Let φ be a

diffeomorphism of M 3 such that φ*Y = λY for some positive constant λ.

Consider the 4-manifold M 4 defined by:

There exists a natural 2-dimensional foliation on M4 which is geodesible if φ

preserves the plane field orthogonal to Y.

Recalling that any 3-manifold admits a geodesible flow and choosing

φ = id, we see that any product M3 X S 1 admits a geodesible 2-dimensional

foliation. Another typical example is obtained when M3 is a flat torus T 3 . In

this example, φ can be chosen as being the linear automorphism of T 3

corresponding to a matrix of SL(3, Z) and Y is the linear vector field corre-

sponding to an eigenvalue of this matrix.

Example 2.2: Linear foliations. Let G32 denote the Grassmannian of

2-planes in R3, and let ψ: S1 -> G32 be any smooth map. Consider the flat

torus T 4 equipped with the following 2-dimensional foliation &\ All the leaves

of & are contained in T 3 X {* } and the restriction of & to T 3 X { * } is the

usual linear foliation of T 3 by planes parallel to ψ(*) . This foliation is

obviously parabolic geodesible.

Example 2.3: Suspensions. Let Σλ and Σ 2 be two compact orientable

surfaces, and let h be a representation of w1(Σ1) in Diff + (Σ 2 ). Then one

constructs, in a well-known manner, a Σ2-bundle over Σ x with a "suspended"
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foliation & transverse to the fibers. Noting that we can choose a metric such
that this fibration is Riemannian, it is clear that & is geodesible. The foliation
& is elliptic, parabolic, or hyperbolic, according to whether the genus of Σx is
zero, one, or greater than one.

Example 2.4: Local products of totally geodesic foliations. According to [3],

there exists an irreducible lattice Γ in PSL(2, R) X PSL(2, R) with compact
quotient. The irreducibility of Γ means that there is no subgroup of finite
index in Γ which is a product of two lattices of PSL(2, R). Moreover, by [3], we
can assume that Γ is torsion free. Regarding PSL(2, R) as being the isometry
group of the Poincare disc D2, we obtain an action of Γ on the Riemannian
product D 2 X D 2 which is free because Γ is torsion free. The quotient of
D 2 X D 2 by this action is a 4-manifold M equipped with two orthogonal
totally geodesic hyperbolic foliations J ^ and J^2 . The sheets of J ^ (resp.
J^2) are the leaves of J*"2 (resp. J^).

We claim that the leaves of J ^ (resp. J^2) are dense in M. Let prx and pr2

denote the two projections of PSL(2, R) X PSL(2, R) on PSL(2, R). We have to
show that prj(Γ) and pr2(Γ) are dense in PSL(2,R). If one looks closely at the
construction of Γ, one sees that prx and pr2 are injective when restricted to Γ.
Note that a subgroup of PSL(2, R) is either dense, solvable, or discrete and that
a lattice in a semi-simple group is never solvable. So, it suffices to show that
pr^Γ) (resp. pr2(Γ)) is not a discrete subgroup of PSL(2, R). But, the cohomo-
logical dimension of Γ is obviously four, so Γ cannot be isomorphic to a
discrete torsion free subgroup of PSL(2, R).

3. Transverse curvature

Let G be a simply connected Lie group and © its Lie algebra of left
invariant vector fields. Suppose J^ is a tangentially ©-Lie foliation on a
compact manifold M. One can regard J^ as a principal G-bundle, with the
exception that there is no base: there is a locally free right action of G on M
and the orthogonal distribution !F ^ is the analogue of a connection. Follow-
ing P. Molino [14], we define the transverse curvature Ω as the element of
Λ 2 ( ^ ~L, ©) which measures the nonintegrability of 3F ̂  . More precisely, if X
and Y are two vector fields tangent to & L and m is a point in M, then
Ώm(X,Y) is the orthogonal projection of [Y, X]m into Tm&, seen as being
isomorphic to ©. The following lemma is standard.

Lemma 3.1. The transverse curvature is pseudo-tensorial\ that is, for all

g G G, one has g*Ω = Ad(g - 1)fi, where g*Ω is the pull-back of Ω by the action

of G, and Ad(g) is the standard adjoint representation.
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From now on, we assume that J*" is of codimension 2 and that © is
unimodular. Let w be a field of 2-vectors tangent to J^-1 that defines an
orientation of J^ -1. Then we define two maps:

(1) For all g e G, /g: M -> R* is the "Jacobian" defined by / g (m)uv g =
(g*w)w , where g*w is the push-forward of w by g.

(2) Φ: M -* @, defined by Φ(m) = Ω J w J .
Lemma 3.2. For all g ^ G and m ^ M, we have:

. Indeed,

/ g(m)Φ(m g) = / g(m)Ωm . g(wm . g) = Ωm.g((g*w)m.g)

= Ad(g-1)(Φ(m)). q.e.d.

Denote by p the dimension of @, and choose a G-invariant field v of
/7-vectors tangent to ϊF and positive for the orientation of J*\ Such a field
exists because © is unimodular. Now let vol be the volume form on M such
that vol(w Λ v) = 1. As M is compact, and since its total volume is preserved
by the action of G, we have:

Lemma3.3. Ifg^G, then jMJg\o\ = /Λ/VOI.

We now introduce:
Definition 3.4. If © is an arbitrary Lie algebra, the approximative center Ή

of © is the complement of the set of points x of © for which there exists a
neighborhood U of x in © and an element y of © such that the maps

Ad(exp(θ>))|ι,:t/->®

converge uniformly towards infinity as / goes to positive infinity.
Observe that # contains the center of ©. Rougly speaking, # consists of the

elements that commute, up to "bounded terms," with all one-parameter
subgroups.

The key result for the next section is the following.
Proposition 3.5. Let & be a tangentially %-Lie foliation of codimension 2 on

a compact manifold M and suppose that © is unimodular. Then the image of the

transverse curvature Ω lies in the approximative center Ή of @.

Proof. First note that, as Ή is a closed cone, it suffices to show that the
image of Φ lies in #. Suppose that, for some point m0 of M, we have
Φ(m0) £ %\ Then by definition, there exists an open neighborhood U of
Φ(m 0) in © and an element y in © such that the maps

tend to infinity as / goes to + oo.
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Let V be the inverse image of U by Φ. Then, by Lemma 3.2, we have

Φ(m cxp(ty)) = (y e x p ( ί v )(m))"1Ad(exp(-^))(Φ(m)).

As M is compact, the left side of this expression is bounded (as t tends to

-oo). By hypothesis, Ad(exp(-(y))Φ(m)) goes uniformly to infinity on V (as /

tends to -oo) and so we conclude that Jexp(tv)(m) S o e s a ^ s o uniformly to

infinity on V. In particular,

exp(rv)Vθ1 ~* + °° a S t ~^ ~°°

But, this is impossible in view of Lemma 3.3. q.e.d.

4. Proof of Theorems C and D
We begin by some general comments. Let ^ be a totally geodesic 2-

dimensional foliation on a compact connected Riemannian manifold (M, g),
and let & be the pull-back of & to the bundle E of orthonormal 2-frames
tangent to & and positive. By Theorem 1.2, & is tangentially parallelizable.
Indeed, if the leaves have constant curvature K, the commutator coefficients of
the vector fields defining the canonical tangential parallelism are constants.
Thus, IF is tangentially Lie. It is obvious that, when K = -1 , the correspond-
ing Lie group is the universal cover SL(2, R) of SL(2, R) and, when K = 0, the
corresponding Lie group is the universal cover of the group of isometries of the
Euclidean plane E2. Note as well that & ± is integrable if and only if & *~ is
integrable.

Proof of Theorem D. Suppose that IF is hyperbolic. By Proposition 3.5, in
order to show that IF ± is integrable, it suffices to prove that the approxima-
tive center V of sl(2, R) is {0}.

The orbits of the adjoint representation of SL(2,R) look like Figure 1. As
the only compact orbit is {0}, this suggests the result. Explicitly, let { X, Y, Z)
be a basis of the algebra sl(2, R) such that:

For this basis, one has

Ί 0 0

Ad(exp(/ΛΓ)) = 0 exp(0 0

\0 0 exp(-ί)

Consequently, V is contained in R X θ RZ. By considering Ad(exp(-ίX)) one

has ffc RX θ R7, and so if c RX Then, as if is invariant by Ad(g) for all

g e SL(2, R), and as RX is not invariant by Ad(exp(/7)), we conclude that if

equals {0}. This proves the first part of Theorem D.
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FIGURE 1

In [1], it is shown that if & ^ is integrable, then the universal covering
space M of M is a product Lx X L2, where Lλ (resp. L2) is the universal cover
of the leaf (resp. sheet) of &. In our case, Lx is diffeomorphic to R2. As well,
ϊF ^ is 2-dimensional, and so L, is diffeomorphic to either S2 or R2. In the
first case, J*" -1 is a fibration by spheres (case (1) of Theorem D), and in the
second case, M is diffeomorphic to R4 (case (2) of Theorem D).

Proof of Theorem C. Now suppose that & is parabolic. Let us first
compute the approximative center of the Lie algebra of the group of isometries
of E2. This Lie algebra is generated by the basis { X, 7, Z}, where

[X,7] = 0, [J f ,Z]= Y, [Y,Z] = -X.

Here X and Y correspond to translations and Z to a rotation. The picture of
the orbits of the adjoint representation is shown in Figure 2. The only bounded
orbits are those contained in R l θ RY. The reader can readily verify that
indeed * = R I Θ R 7 .

We now return to E, the SO(2, R)-bundle of positive orthonormal tangent
2-frames of &. Recall that {X,Y,Z} defines a tangential parallelism of # .
Clearly, Z is tangent to the fibers of the bundle E. By Proposition 3.5, the
transverse curvature of # has values in R I Φ RY. In other words, the
distribution # ± Θ R I Θ RY is integrable. Any leaf M of the associated
4-dimensional foliation is transverse to Z and so covers M. The group of deck
transformations is contained in RZ and is hence Abelian. It is now clear that
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FIGURE 2

the lift of & to M is defined by the locally free action of R2 generated by X

and Y. q.e.d.

As promised in the introduction, we now give further information con-

cerning parabolic geodesible foliations.

Theorem 4.1. Let & be a 2-dimensional totally geodesic parabolic foliation

on a compact Riemannian manifold M. If all the leaves are dense, then there are

two possibilities:

(1) either IF ± is integrable, in which case the lifted foliation in the universal

covering space of M is a product, or

(2) & is defined by the suspension of a geodesible flow, as in Example 2.1.

q.e.d.

Proof. Because of Lemma 3.2, the map Φ is everywhere or nowhere zero,
since the leaves of # are also dense. Case (1) corresponds to Φ being
identically zero. Suppose then that Φ is nowhere zero. Let ξ be the unit vector
field tangent to # such that the image of Φ lies in R|. From the density of the
leaves, and Lemma 3.2, we conclude that the flow of | preserves # ±. In
particular, # x ®Rξ defines a codimension 2 foliation. Evidently the leaves of
this foliation are the sheets of # . One verifies that | is invariant by the action
of SO(2, R) on E and defines a vector field £ on M. Obviously, the sheets of &
are the leaves of a foliation Jί, tangent to & λ ΘRξ. and so JΓ is defined by
a closed 1-form ω. According to Tischler's theorem [18], there exists a fibration
of M onto S1 whose fibers approximate Jf. So this fibration is transverse
to ϊF. It is easy to verify that the trace of & on the fibers define a geodesible
flow and & can be constructed by suspension of this flow, as in Example
2.1. q.e.d.
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5. Applications

This section is devoted to the proof of Theorems E and F. Let us begin by

the following preliminary result.

Lemma 5.1. Let M be a compact 4-manifold. If there exists a parabolic

geodesible foliation !F on M, then the Euler characteristic χ(M) of M is zero.

Proof. The Pfaffian of the curvature of a metric making J*" parabolic is

identically zero. So, the Gauss-Bonnet-Chern theorem gives us the lemma,

q.e.d.

Note that the Euler characteristic of a simply connected 4-manifold M is

positive since it is equal to 2 4- dim H2{M). Therefore, Theorem E will be a

corollary of the following slightly more general theorem.

Theorem 5.2. Let M be a compact 4-manifold with positive Euler character-

istic and A be Han fundamental group. If there exists a geodesible foliation IF on

M, then M is one of the two fibrations by spheres S 2 over S 2 and the leaves of ^

are the fibers of this fibration.

Proof. As χ ( M ) is nonzero, there is no odd dimensional foliation on M.

According to the previous lemma, any geodesible 2-dimensional foliation J^

on M has to be hyperbolic or elliptic.

Suppose J^ is hyperbolic. Then case (1) of Theorem D cannot occur since

the Euler characteristic of a sphere bundle over a surface of genus greater than

1 is negative. So, the universal covering space M of M is a product D 2 X R2

and the fundamental group Γ of M acts by isometries on D 2 . In other words,

we obtain a homomorphism h from Γ to Isom(D2) = PSL(2,R). The compact-

ness of M implies that PSL(2,R)//z(Γ) is compact. But Γ being supposed

Abelian, Λ(Γ) is an Abelian subgroup of PSL(2,R) and so is contained in a

1-parameter subgroup of PSL(2, R). This contradicts the fact that

PSL(2,R)/h(T) is compact. So, !F cannot be hyperbolic and hence has to be

elliptic.

By Theorem B, the leaves of J^ are the fibers of a fibration by spheres. The

base of this fibration must be S 2 because χ ( M ) is positive. There are two such

fibrations by virtue of the fact that ^(Diff + (S 2 )) = Z/2Z. q.e.d.

The proof of Theorem F is a consequence of Theorems A and B, Lemma 5.1

and the following:

Proposition 5.3. Let & be a geodesible hyperbolic foliation on a compact

4-manifold M. Then χ(M) is nonnegative unless the leaves of IF are transverse

to a fibration of M by spheres S 2 .

Proof. By Theorem D, the distribution ϊF ± is integrable and defines a

foliation Jί. Suppose that J*" is not transverse to a fibration by spheres (case

(1) of Theorem D). Then, the universal covering space M of M is a product
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D 2 X R2 and the fundamental group Γ of M acts by isometries on D 2. In
particular, no leaf of Jί is diffeomorphic to S2.

Let ω be the volume 2-form on the Poincare disc D 2. By pull-back, we
obtain a Γ-invariant 2-form on M and hence a closed 2-form on M, still
denoted by ω. This form can be interpreted in two ways. On the one hand, ω
naturally defines a transverse invariant measure for Jί. The cohomology class
associated to this transverse measure (cf. [15]) is obviously the cohomology
class [ω] of ω in i/2(M, R). On the other hand, since the curvature of D 2 is
- 1 , the Chern-Weil theorem implies that the Euler class of the tangent bundle
of 3? is -[ω]. Let e be the Euler class of the tangent bundle of Jί. The cup
product e U (-[ω]) is the Euler class of the Whitney sum of the tangent
bundles of Jί and J*\ that is the Euler class of the tangent bundle of M.
Consequently, the evaluation of e U [ω] on the fundamental class [M] of M is
the opposite of the Euler characteristic χ(M) of M. In order to prove the
proposition, that is, to show that χ(M) is nonnegative, it suffices now to apply
the following theorem of [9]. Let Jί be an oriented 2-dimensional foliation on
an oriented compact manifold M. Suppose that no leaf of Jί is diffeomorphic
to S 2 and that Jί admits a transverse invariant measure ω. Let [ω] be the
cohomology class associated to ω and let e be the Euler class of the tangent
bundle of Jί. Then the evaluation of the cup product e U [ω] on the
fundamental class [M] of M is nonpositive. This concludes the proof of
Proposition 5.3 and, hence, of Theorem F. q.e.d.
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