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1 Introduction

This paper is a complement to the preceding one by Marco Brunella [2]. Our
purpose is to complete the classi�cation of transversely holomorphic 
ows on
closed 3-manifolds, avoiding the “rationality” assumption made in [2]. The
main tool is still the existence of a harmonic atlas established by M. Brunella
and we shall only add some simple ideas coming from the theory of complex
surfaces.
We follow the notations of [2]. As a matter of fact, our main result is the

following:

Theorem 1.1 Let L be an orientable transversely holomorphic foliation on
a closed connected 3-manifold M . Assume that H 2(M ;O)-0 where O de-
notes the sheaf of germs of functions which are constant along the leaves
and holomorphic in the transverse direction. Then; L is riemannian; i.e.
there is a riemannian metric on the normal bundle which is invariant under
holonomy.

Theorem 1 in [2] gives a complete description of the situation on closed
3-manifolds for which H 2(M ;O) = 0. On the other hand, Y. Carri�ere obtained
in [3] a classi�cation of riemannian foliations in dimension 3. Therefore, the
association of Theorem 1.1. and Brunella’s result gives a classi�cation: the only
transversely holomorphic foliations on closed orientable connected 3-manifolds
are examples 1) to 6) described in [2].
I would like to thank Yves Carri�ere: I had the pleasure to make with him

the �rst attempts to classify these objects. As the reader will notice, the main
ideas are contained in Brunella’s paper; I wish to thank him for communicating
these ideas to me.
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2 General method

We �x a transversely holomorphic orientable foliation L on a connected closed
3-manifold M . We �rst give a very simple criterium which guarantees that
the foliation is riemannian. We say that a di�erential form of degree 1, with
complex values, is a basic holomorphic 1-form if it is locally the pullback of
a holomorphic 1-form by the projection on a local leaf space.

Lemma 2.1 If there exists a non trivial basic holomorphic. 1-form; then L
is riemannian.

Proof. Let ! be a basic holomorphic 1-form and assume �rst that ! has
no singularity. We can de�ne a hermitian metric g on the normal bundle
(of complex dimension 1) in such a way that the length of a vector v is
the modulus of !(v). Since ! is basic, the same is true for g, i.e. L is
riemannian.
In general, the singular locus of ! is transversely isolated, i.e. is a �nite

union of compact leaves L1; : : : ; Ln of L (which are of course circles). Again,
we can construct a hermitian metric g on the normal bundle but g vanishes
along these leaves Li. Consider the holonomy hi of the leaf Li; this is the
germ of a holomorphic di�eomorphism in the neighborhood of a �xed point
in a small transverse disc Di. By choosing a suitable local coordinate in Di,
we can assume that the restriction of ! to Di is zkdz for some integer k ¿ 0
in the neighborhood of 0. The invariance condition of ! by hi means that
hki (z)h

′
i(z) = z

k so that hk+1i (z)− zk+1 is a constant. Evaluating at the origin,
we see that this constant vanishes so that hi is actually the germ of a rigid
rotation of �nite order. Therefore, L is riemannian in the neighborhood of Li,
i.e. we can �nd a saturated neighborhood of Li in which L admits a transverse
invariant (non degenerate) metric gi. We can now multiply gi by a bump
function depending only on the modulus of z in order to obtain a transverse
invariant “metric” g′i for L which is non degenerate in the neighborhood of Li
but vanishes outside of some other tubular neighborhood of Li. The sum of the
g′i and g is therefore everywhere non degenerate and is a transverse invariant
metric. This shows that L is riemannian.

Recall that M. Brunella proved the existence of a harmonic atlas. This
means that there is a covering of M by a �nite number of open sets Uj, whose
intersections are connected and simply connected, equipped with di�eomor-
phisms 	j : Uj → Vj = 	j(Uj) ⊂ D× R such that:
• In each Uj, the foliation L is the pull-back by 	j of the foliation of D× R
whose leaves are the lines {?} × R.

• Changes of coordinates  ij =  i ◦  −1j have the following form on their do-
main of de�nition Vij =  j(Ui ∩ Uj):

 ij : (z; t) ∈ Vij 7→ (�ij(z); t + hij(z)) ∈ Vji ;

where �ij is holomorphic and hij is harmonic.
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Let Hij be a holomorphic fonction whose real part is hij. De�ne:

V̂j = Vj × R ⊂ D× R× R ' D× C

V̂ij = Vij × R ⊂ D× R× R ' D× C :

	ij : (z; t + i:s) ∈ V̂ij 7→ (�ij(z); t + i:s+ Hij(z)) ∈ V̂ji :
Unfortunately, the 	ij do not necessarily de�ne a cocycle, i.e. 	ij ◦	jk does not
necessarily coincide with 	ik . Therefore, we cannot in general de�ne a complex
surface X like M. Brunella in the “rational case”. The main idea which will
guide our discussion is that when one glues the open sets V̂j together using
the 	ij, one gets however some kind of “singular object” X which projects
naturally onto M and which is not a complex manifold “only in the direction
of @=@s”. We shall not try to give a precise meaning to the previous sentence
(in a suitable category: : :). We shall only recall that tensors on the “surface”
X which are invariant under the translations along @=@s can be de�ned with
no ambiguity. In the next section, using this heuristic idea, we shall give the
precise de�nitions of these tensors on X invariant by @=@s.

3 Some sheaves on M

We �rst de�ne a �bre bundle T with �ber C2 on M . Consider the complex
tangent bundle of each V̂j. This is a holomorphic vector bundle with �ber C

2

on which there is a natural action of the translations �� (for � ∈ R) that we
shall call vertical:

�� : (z; t + i:s) ∈ V̂j 7→ (z; t + i:(s+ �)) ∈ V̂j :

The quotient of V̂j by the free action of these translations can be canonically
identi�ed with Vj so that we get a natural �ber bundle on Vj, with �ber C

2.
Since the 	ij de�ne a cocycle “up to vertical translations”, we get therefore
a �bre bundle on M (which is obtained from the Vj by gluing with the  ij).
This is the announced bundle T.
We shall show that, although M is not a complex manifold, most properties

of the cohomology of complex manifolds can be generalized to M . We follow
the notations of [4] of which we quickly survey Sect. 15 and point out the
modi�cations which are necessary in our situation.
We denote by T the dual bundle to T and by T the conjugate bundle

of T. If p and q are two integers (smaller than or equal to 2), we consider
the vector bundle �p(T)⊗ �q(T), tensor product of exterior powers. Sections
of this bundle are called forms of type (p; q) on M . Local sections de�ne a
sheaf denoted by Ap; q.

Locally, a form ! of type (p; q) de�ned on Vj is identi�ed with a form !̂
of type (p; q), in the usual sense, of the complex surface V̂j, invariant under
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vertical translations. Since the decomposition d = @+ @ of the exterior di�eren-
tial is of course invariant under vertical translations, and since these operators
commute with the biholomorphisms 	ij, we get well de�ned operators, @ and @

@ :Ap; q →Ap+1; q

@ :Ap; q →Ap; q+1 :

The sum of the Ap; q with p+ q = r is denoted by Ar . The kernel of
@ :Ap;0 →Ap;1 is the sheaf 
(�p(T)) of germs of holomorphic p-forms
on M . Since a holomorphic function on V̂j invariant under vertical translations
is in fact a function which depends only on the variable z and is holomorphic
in this variable, the sheaf of germs of holomorphic 0-forms is identi�ed with
the sheaf O of functions on M which are constant along the leaves and which
are transversely holomorphic.
If we consider each V̂j and a version of Dolbeault’s theorem which is equiv-

ariant under the action of vertical translations, we get the following resolution
analogous to the classical one:

0→ 
(�p(T))→Ap;0 →Ap;1 → · · · →Ap; q → · · · :
Hence, Dolbeault’s theorem holds in our context. More precisely, the q-th
cohomology group Hp;q(M) of M with values in the sheaf 
(�p(T)) can be
identi�ed with:

Zp;q=@(Ap; q−1) ;

where, of course, Zp;q denotes the global forms of type (p; q) which are
@-closed. The dimension of Hp;q(M) will be denoted by hp;q (we shall see
that it is �nite). Note that H 2(M ;O) = H 0;2(M).
We now show how to extend Serre’s duality and Hodge’s theory in our

context. The main point is to de�ne a “fundamental class”, i.e. to be able to
“integrate” a (2; 2)-form. So, let us consider such a form !. In an open set Vj,
this form corresponds to a (2; 2)-form !̂j in the classical sense of V̂j, invariant
under vertical translations. The interior product of !̂j by the vector �eld @=@s
is a 3-form on V̂j, basic for @=@s, i.e. which is a pull-back of some 3-form !̃j
on Vj. Clearly, these 3-forms !̃j are compatible on the intersections of the Vj,
i.e. they de�ne a global 3-form !̃ on M . By convention, we de�ne the integral
of !, denoted by

∫
!, as the integral of !̃ on M .

The simple (but crucial) observation is that Stokes’ theorem can be ex-
tended with no di�culty:

Lemma 3.1 If � is a form of type (2; 1) and if ! = d�(= @�); when
∫
!

vanishes.

Proof. We can assume that � has a compact support contained in some Vj. We
consider the corresponding 3-form �̂j in V̂j, invariant under vertical translations,
and whose di�erential is the form !̂j. Since V̂j = Vj × R, we can embed Vj in
V̂j as Vj × {s0}. By de�nition, the integral of d� is equal to the integral of the
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interior product i@=@s!̂j on Vj × {t0} (which is indeed independent of s0). As
�̂j is invariant under vertical translations:

i@=@s d�̂j + di@=@s �̂j = 0 ;

so that i@=@s d�̂j is an exact form. On the other hand, the support of the restric-
tion of i@=@s d�̂j �a Vj × {s0} is compact since � has a compact support contained
in Vj. Hence, the lemma follows from usual Stokes’ theorem.

Therefore, the integration of the exterior product de�nes linear maps:

� : Hp;q(M)⊗ H 2−p;2−q(M)→ C :

Let us now introduce some hermitian metric on T. This enables us to de�ne,
as usual, anti-isomorphisms:

] : �p(T)⊗ �q(T) → �2−p(T)⊗ �2−q(T)
] :Ap; q → A2−p;2−q

and the operator:
# = −] @ ] :Ap; q →Ap; q−1 :

The operators # and @ are adjoint for the scalar product:

(�; �) =
∫
(� ∧ ]�)

because of 3.1 and for the same reason as in the classical case. The Laplace
operator = #@+ @# is elliptic since, locally, it coincides with the usual
Laplace operator acting on forms which are invariant under vertical transla-
tions.
Therefore, we get the �nite dimensionality of cohomology groups Hp;q and

Hodge decomposition:

Ap; q = @Ap; q−1 ⊕ #Ap; q+1 ⊕ Bp;q ;
where Bp;q denotes the space of -harmonic forms, i.e. the intersection of the
kernels of # and @. According to Dolbeault’s theorem, mentioned above, Bp;q

is identi�ed with Hp;q(M). In the same way we get Serre’s duality, i.e. the
isomorphism between Hp;q(M) and H 2−p;2−q(M).

4 Proof of the theorem

We can now prove the theorem. We assume now that L is not riemannian
and we shall prove that H 2(M ;O) = 0.

According to Serre’s duality, we know that h0;2 = h2;0 and therefore it
su�ces to show that h2;0 = 0, i.e. that there is no non trivial holomorphic
2-form on M .
Let us start by observing that any holomorphic 1-form on M is closed. This

is a well known fact for any holomorphic 1-form in the classical sense on a
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complex compact surface (see [1] page 115) and the proof only uses Stokes’
theorem, for which we have proved the analogous version 3.1.
Let ! be a holomorphic 2-form on M and !̂j be the corresponding holo-

morphic 2-form on V̂j. By contracting with the vertical holomorphic vector
�eld in V̂j, we get a holomorphic 1-form �̂j in V̂j. In other words, we construct
a holomorphic 1-form � on M . By construction, @=@s is in the kernel of �̂j.
Since we observed that � is necessarily closed, the forms �̂j are obtained by
pull-back of some forms �j in Vj which are basic for L (a closed form, van-
ishing on the leaves of a foliation, is a basic form). Hence, these forms �j
de�ne a global basic holomorphic form for L. Since we assumed that L is
not riemannian, there is no non trivial form by 2.1. Hence ! vanishes.
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