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1 Introduction

This paper is a complement to the preceding one by Marco Brunella [2]. Our
purpose is to complete the classification of transversely holomorphic flows on
closed 3-manifolds, avoiding the “rationality” assumption made in [2]. The
main tool is still the existence of a harmonic atlas established by M. Brunella
and we shall only add some simple ideas coming from the theory of complex
surfaces.

We follow the notations of [2]. As a matter of fact, our main result is the
following:

Theorem 1.1 Let ¥ be an orientable transversely holomorphic foliation on
a closed connected 3-manifold M. Assume that H*(M;0)%£0 where O de-
notes the sheaf of germs of functions which are constant along the leaves
and holomorphic in the transverse direction. Then, ¥ is riemannian, ie.
there is a riemannian metric on the normal bundle which is invariant under
holonomy.

Theorem 1 in [2] gives a complete description of the situation on closed
3-manifolds for which H?(M; (V) = 0. On the other hand, Y. Carriére obtained
in [3] a classification of riemannian foliations in dimension 3. Therefore, the
association of Theorem 1.1. and Brunella’s result gives a classification: the only
transversely holomorphic foliations on closed orientable connected 3-manifolds
are examples 1) to 6) described in [2].

I would like to thank Yves Carri¢re: I had the pleasure to make with him
the first attempts to classify these objects. As the reader will notice, the main
ideas are contained in Brunella’s paper; I wish to thank him for communicating
these ideas to me.
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2 General method

We fix a transversely holomorphic orientable foliation .# on a connected closed
3-manifold M. We first give a very simple criterium which guarantees that
the foliation is riemannian. We say that a differential form of degree 1, with
complex values, is a basic holomorphic 1-form if it is locally the pullback of
a holomorphic 1-form by the projection on a local leaf space.

Lemma 2.1 If there exists a non trivial basic holomorphic. 1-form, then &
is riemannian.

Proof. Let w be a basic holomorphic 1-form and assume first that o has
no singularity. We can define a hermitian metric g on the normal bundle
(of complex dimension 1) in such a way that the length of a vector v is
the modulus of w(v). Since w is basic, the same is true for g, i.e. & is
riemannian.

In general, the singular locus of @ is transversely isolated, i.e. is a finite
union of compact leaves Li,...,L, of & (which are of course circles). Again,
we can construct a hermitian metric g on the normal bundle but g vanishes
along these leaves L;. Consider the holonomy #4; of the leaf L;; this is the
germ of a holomorphic diffeomorphism in the neighborhood of a fixed point
in a small transverse disc D;. By choosing a suitable local coordinate in D;,
we can assume that the restriction of w to D; is z¢dz for some integer k > 0
in the neighborhood of 0. The invariance condition of @ by /; means that
hF(2)hi(z) = ZF so that AFT!(z) — ZF*! is a constant. Evaluating at the origin,
we see that this constant vanishes so that #; is actually the germ of a rigid
rotation of finite order. Therefore, . is riemannian in the neighborhood of L;,
i.e. we can find a saturated neighborhood of L; in which % admits a transverse
invariant (non degenerate) metric g;. We can now multiply ¢g; by a bump
function depending only on the modulus of z in order to obtain a transverse
invariant “metric” g} for % which is non degenerate in the neighborhood of L;
but vanishes outside of some other tubular neighborhood of L;. The sum of the
g; and g is therefore everywhere non degenerate and is a transverse invariant
metric. This shows that % is riemannian.

Recall that M. Brunella proved the existence of a harmonic atlas. This
means that there is a covering of M by a finite number of open sets U;, whose
intersections are connected and simply connected, equipped with diffeomor-
phisms ¥, : Uy — V; = ¥;(U;) C D x R such that:

e In each U}, the foliation % is the pull-back by ¥; of the foliation of D x R
whose leaves are the lines {*} x R.
e Changes of coordinates 1;; = ; o Yt

J
main of definition V;; = y;(U N U)):

Wi 1 (z,t) € Vij = (dij(2),t + hij(z)) € Vi,

where ¢;; is holomorphic and h;; is harmonic.

have the following form on their do-
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Let Hj; be a holomorphic fonction whose real part is /4;;. Define:

0
|

Vix RCDxRxR~DxC

V; = V;xRCDxRxR~DxC.

qll‘]' N (Z,t —+ lS) e /V\l] = ((}’)U(Z),[ + 1.5 +I‘]l](Z)) S /V\;l .

Unfortunately, the ¥;; do not necessarily define a cocycle, i.e. ¥;; o ¥ does not
necessarily coincide with Wy. Therefore, we cannot in general define a complex
surface X like M. Brunella in the “rational case”. The main idea which will
guide our discussion is that when one glues the open sets V; together using
the ¥;;, one gets however some kind of “singular object” X which projects
naturally onto M and which is not a complex manifold “only in the direction
of 0/0s”. We shall not try to give a precise meaning to the previous sentence
(in a suitable category...). We shall only recall that tensors on the “surface”
X which are invariant under the translations along 0/0s can be defined with
no ambiguity. In the next section, using this heuristic idea, we shall give the
precise definitions of these tensors on X invariant by d/0s.

3 Some sheaves on M

We first define a fibre bundle .7 with fiber C* on M. Consider the complex
tangent bundle of each 171 This is a holomorphic vector bundle with fiber c?
on which there is a natural action of the translations 7, (for ¢ € R) that we
shall call vertical:

Ts: (2t +1s) € 17, —(z,t+i(s+0))€ 17,
The quotient of /V; by the free action of these translations can be canonically
identified with V; so that we get a natural fiber bundle on V;, with fiber Cc’.
Since the ¥;; define a cocycle “up to vertical translations”, we get therefore
a fibre bundle on M (which is obtained from the V; by gluing with the ;).
This is the announced bundle 7.

We shall show that, although M is not a complex manifold, most properties
of the cohomology of complex manifolds can be generalized to M. We follow
the notations of [4] of which we quickly survey Sect. 15 and point out the
modifications which are necessary in our situation.

We denote by T the dual bundle to .7 and by T the conjugate bundle
of T. If p and g are two integers (smaller than or equal to 2), we consider
the vector bundle A7(T) ® A9(T), tensor product of exterior powers. Sections
of this bundle are called forms of type (p,q) on M. Local sections define a
sheaf denoted by .o/ 79,

Locally, a form w of type (p,q) defined on V; is identified with a form @

of type (p,q), in the usual sense, of the complex surface /I_/\,-, invariant under
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vertical translations. Since the decomposition d = 0 + 0 of the exterior differen-
tial is of course invariant under vertical translations, and since these operators
commute with the biholomorphisms ¥;, we get well defined operators, 0 and ¢

0 of P4 oyPtha
0 P s gyPatl

The sum of the .o/77 with p+q =r is denoted by .o/". The kernel of
0:./P0 — /P! is the sheaf Q(A?(T)) of germs of holomorphic p-forms
on M. Since a holomorphic function on I7j invariant under vertical translations
is in fact a function which depends only on the variable z and is holomorphic
in this variable, the sheaf of germs of holomorphic 0-forms is identified with
the sheaf (@ of functions on M which are constant along the leaves and which
are transversely holomorphic.

If we consider each 17] and a version of Dolbeault’s theorem which is equiv-
ariant under the action of vertical translations, we get the following resolution
analogous to the classical one:

0 — QAP(T)) — AP0 — Pl — .. o P — ...

Hence, Dolbeault’s theorem holds in our context. More precisely, the g-th
cohomology group H?9(M) of M with values in the sheaf Q(A?(T)) can be
identified with:

Zp,q/a(&/p,qfl) ,

where, of course, Z#¢ denotes the global forms of type (p,g) which are
0-closed. The dimension of H”?(M) will be denoted by 4”9 (we shall see
that it is finite). Note that H>(M; ©) = H*2(M).

We now show how to extend Serre’s duality and Hodge’s theory in our
context. The main point is to define a “fundamental class”, i.e. to be able to
“integrate” a (2,2)-form. So, let us consider such a form w. In an open set V;,
this form corresponds to a (2,2)-form @; in the classical sense of I7j, invariant
under vertical translations. The interior product of @; by the vector field d/ds
is a 3-form on I7j, basic for 0/0s, i.e. which is a pull-back of some 3-form &;
on V;. Clearly, these 3-forms @; are compatible on the intersections of the V},
i.e. they define a global 3-form & on M. By convention, we define the integral
of m, denoted by fw, as the integral of & on M.

The simple (but crucial) observation is that Stokes’ theorem can be ex-
tended with no difficulty:

Lemma 3.1 If o is a form of type (2,1) and if ® = du(= du), when [w
vanishes.

Proof. We can assume that o has a compact support contained in some 7;. We
consider the corresponding 3-form @; in I7j, invariant under vertical translations,
and whose differential is the form ;. Since I7j = V; x R, we can embed V; in
I7j as V; x {so}. By definition, the integral of do is equal to the integral of the
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interior product izes0; on V; x {tx} (which is indeed independent of s9). As
o; is invariant under vertical translations:

igjasdoty + digjos0; = 0,

so that iz, dd; is an exact form. On the other hand, the support of the restric-
tion of iz, ddt; @ V; x {so} is compact since o has a compact support contained
in V;. Hence, the lemma follows from usual Stokes’ theorem.

Therefore, the integration of the exterior product defines linear maps:
1 HPIYM) @ H* P27 9(M) — C.

Let us now introduce some hermitian metric on T. This enables us to define,
as usual, anti-isomorphisms:

#: A7(T)® AYT) — A>~P(T)® A>I(T)
R A

and the operator:
V= —40%: /P — P17

The operators ¥ and ¢ are adjoint for the scalar product:

(o0, B) = [(aN%B)

because of 3.1 and for the same reason as in the classical case. The Laplace
operator =190+ 0¢ is elliptic since, locally, it coincides with the usual
Laplace operator acting on forms which are invariant under vertical transla-
tions.

Therefore, we get the finite dimensionality of cohomology groups H”¢ and
Hodge decomposition:

AP = 0./ P9 @ Y/ PT @ BRI

where B#¢ denotes the space of -harmonic forms, i.e. the intersection of the
kernels of 1) and 0. According to Dolbeault’s theorem, mentioned above, B¢
is identified with H”9(M). In the same way we get Serre’s duality, i.e. the
isomorphism between H”9(M) and H>~P»2>~9(M).

4 Proof of the theorem

We can now prove the theorem. We assume now that ¥ is not riemannian
and we shall prove that H>(M; () = 0.

According to Serre’s duality, we know that h%? = #>? and therefore it
suffices to show that #>° =0, i.e. that there is no non trivial holomorphic
2-form on M.

Let us start by observing that any holomorphic 1-form on M is closed. This
is a well known fact for any holomorphic 1-form in the classical sense on a
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complex compact surface (see [1] page 115) and the proof only uses Stokes’
theorem, for which we have proved the analogous version 3.1.
Let o be a holomorphic 2-form on M and @; be the corresponding holo-

morphic 2-form on I7j By contracting with the vertical holomorphic vector

field in I7j, we get a holomorphic 1-form @; in I7j In other words, we construct
a holomorphic 1-form « on M. By construction, d/ds is in the kernel of ;.
Since we observed that « is necessarily closed, the forms @; are obtained by
pull-back of some forms o; in V; which are basic for . (a closed form, van-
ishing on the leaves of a foliation, is a basic form). Hence, these forms o;
define a global basic holomorphic form for #. Since we assumed that & is
not riemannian, there is no non trivial form by 2.1. Hence  vanishes.
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