MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

MR880511 (88b:57032) 57R30 Ghys, Étienne (F-LILL)

Classe d'Euler et minimal exceptionnel. (French) [Euler classes and exceptional minimal sets]

Topology 26 (1987), no. 1, 93–105.

Let Σ be a compact, oriented surface of nonpositive Euler characteristic. Each representation $\varphi: \pi_1(\Sigma) \to \text{Diff}_k^+(S^1)$ defines a foliated circle bundle over Σ , many properties of which are related directly to the dynamics of $\varphi(\pi_1(\Sigma))$ on S^1 . In particular, the foliation has an exceptional minimal set if and only if there is a $\varphi(\pi_1(M))$ -invariant Cantor set $K \subset S^1$, each orbit of which is dense in K.

The author studies the relationship between the Euler number $eu(\varphi)$ of the circle bundle and the existence of such a minimal Cantor set K. His main results are that, if $k \ge 2$, a necessary condition for the existence of K is that $|eu(\varphi)| < |\chi(\Sigma)|$ and that, if $k = \omega$, it is necessary that $eu(\varphi) = 0$. It is a well-known result of Milnor and Wood that, in any case, $|eu(\varphi)| \le |\chi(\Sigma)|$. A C^{∞} construction due to the author and V. Sergiescu exhibits a representation φ with an exceptional minimal set, having $eu(\varphi) = 1$ and $\chi(\Sigma) = -22$ [Comment. Math. Helv. **62** (1987), no. 2, 185–239].

Reviewed by Lawrence Conlon

© Copyright American Mathematical Society 1988, 2006