MR949007 (89i:58119) 58F18 (57R30 58F10)

Ghys, É. (F-LILL); Tsuboi, T. [Tsuboi, Takashi] (J-TOKYOS)
Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1. (French. English summary) [Differentiability of conjugations between dynamical systems of dimension 1]
Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 215-244.
This is a neat treatment of the following very natural problem: under what conditions is a C^{1} conjugacy between two C^{r} dynamical systems of dimension 1 automatically of class C^{r} ?
In the first half the authors consider codimension $1 C^{r}(2 \leq r \leq \omega)$ foliated compact manifolds $\left(M_{i}, \mathcal{F}_{i}\right)$. The result is: if the holonomy of \mathcal{F}_{1} is nontrivial and if there exists a C^{1} diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ such that $\varphi^{*} \mathcal{F}_{1}=\mathcal{F}_{2}$, then φ is transversely class C^{r} on the open subset of all the noncompact leaves of \mathcal{F}_{1}. This yields a rather natural new proof of the C^{1} invariance theorem of G. Rabby of the Godbillon-Vey class.

The latter half of the paper is devoted to the study of C^{ω} endomorphisms f_{i} of S^{1} (possibly with critical points). Suppose that f_{1} has periodic points, that f_{1} is not constant and that neither iterate of f_{1} is the identity. Then a C^{1} diffeomorphism of S^{1} conjugating f_{1} with f_{2} is shown to be C^{ω} except on finite points. If further $\left|\operatorname{deg} f_{1}\right| \geq 2$, then it is C^{ω} on the whole S^{1}. These results are shown by examples to be the best possible. C^{∞} endomorphisms are also dealt with in a completely satisfactory manner.
The authors also obtain a similar result about rational functions on the Riemann sphere.
Reviewed by Shigenori Matsumoto
(C) Copyright American Mathematical Society 1989, 2006

