AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

MR949007 (89i:58119) 58F18 (57R30 58F10) Ghys, É. (F-LILL); Tsuboi, T. [Tsuboi, Takashi] (J-TOKYOS)

Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1. (French. English summary) [Differentiability of conjugations between dynamical systems of dimension 1]

Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 215–244.

This is a neat treatment of the following very natural problem: under what conditions is a C^1 conjugacy between two C^r dynamical systems of dimension 1 automatically of class C^r ?

In the first half the authors consider codimension 1 C^r $(2 \le r \le \omega)$ foliated compact manifolds (M_i, \mathcal{F}_i) . The result is: if the holonomy of \mathcal{F}_1 is nontrivial and if there exists a C^1 diffeomorphism $\varphi: M_1 \to M_2$ such that $\varphi^* \mathcal{F}_1 = \mathcal{F}_2$, then φ is transversely class C^r on the open subset of all the noncompact leaves of \mathcal{F}_1 . This yields a rather natural new proof of the C^1 invariance theorem of G. Rabby of the Godbillon-Vey class.

The latter half of the paper is devoted to the study of C^{ω} endomorphisms f_i of S^1 (possibly with critical points). Suppose that f_1 has periodic points, that f_1 is not constant and that neither iterate of f_1 is the identity. Then a C^1 diffeomorphism of S^1 conjugating f_1 with f_2 is shown to be C^{ω} except on finite points. If further $|\deg f_1| \ge 2$, then it is C^{ω} on the whole S^1 . These results are shown by examples to be the best possible. C^{∞} endomorphisms are also dealt with in a completely satisfactory manner.

The authors also obtain a similar result about rational functions on the Riemann sphere.

Reviewed by Shigenori Matsumoto

© Copyright American Mathematical Society 1989, 2006