Previous | Up | Next Article
MR766280 (86c:57025) 57R30 (53C12 58F17)
Ghys, Étienne (F-LILL)

Feuilletages riemanniens sur les variétés simplement connexes. (French. English summary) [Riemannian foliations on simply connected manifolds]

Ann. Inst. Fourier (Grenoble) 34 (1984), no. 4, 203-223.
In this brilliant paper, the author gives important properties of Riemannian foliations on simply connected closed manifolds.
His first result (Theorem A) says that, if (M, \mathfrak{F}) is such a foliation, there exists an arbitrarily near Riemannian foliation with all leaves compact ("generalized Seifert fibration"); moreover, if the Euler-Poincaré characteristic $\chi(M)$ is nonzero, then \mathfrak{F} admits a compact leaf. The demonstration involves general structure theorems for Riemannian foliations, and the fact that $\pi_{1}(M)=0$ implies that the "structural Lie algebra" of (M, \mathfrak{F}) is abelian. A special proof is necessary in the case of codimension 2, because one uses the lifted foliation in the bundle of transverse orthonormal frames, and $\pi_{1}(\mathrm{SO}(q, \mathbf{R}))$ is infinite if $q=2$.
The second result (Theorem B) asserts that such a foliation is minimalizable. This property is obtained by using Rummler's characteristic [H. Rummler, Comment. Math. Helv. 54 (1979), no. 2, 224-239; MR0535057 (80m:57021)], and a generalization of Moser's lemma [J. Moser, Trans. Amer. Math. Soc. 120 (1965), 286-294; MR0182927 (32 \#409)].
Finally (Theorem C), in the case where M is a sphere, either \mathfrak{F} is a generalized Seifert fibration, or \mathfrak{F} is an isometric flow, and admits a compact orbit. If M is a complex or quaternionic projective space, then \mathfrak{F} is a generalized Seifert fibration. The argument used here involves the Wang sequence of a fibration over a sphere.

Reviewed by P. Molino
© Copyright American Mathematical Society 1986, 2006

