Previous | Up | Next Article
MR1753461 (2001i:32048) 32S65 (37F75)
Ghys, Étienne (F-ENSLY)
À propos d'un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes. (French. English summary) [On a theorem of J.-P. Jouanolou concerning the closed leaves of holomorphic foliations]
Rend. Circ. Mat. Palermo (2) 49 (2000), no. 1, 175-180.
This paper presents an amazing proof of a result generalizing a theorem of J.-P. Jouanolou about closed leaves of holomorphic foliations. More precisely, in [Math. Ann. 232 (1978), no. 3, 239245; MR0481129 (58 \#1274)] Jouanolou considered a holomorphic codimension one foliation \mathcal{F} on a compact, connected, complex manifold X and addressed the problem of finiteness of closed leaves of \mathcal{F}. By assuming that all holomorphic 1-forms on X are closed and that a certain morphism associated to the Hodge spectral sequence vanishes, Jouanolou showed that \mathcal{F} has a finite number of closed leaves except when it admits a meromorphic first integral, in which case all leaves are closed (H. Cartan showed that the hypothesis concerning the 1 -forms is unnecessary). In this paper Ghys drops all hypotheses in Jouanolou's result and proves the following: If \mathcal{F} is a codimension one (possibly singular) holomorphic foliation on a compact, connected complex manifold, then \mathcal{F} has only a finite number of closed leaves except when \mathcal{F} admits a meromorphic first integral, in which case all leaves are closed. The proof is a very nice simplification of Jouanolou's original proof. The paper ends with some interesting and useful remarks, examples and questions on this subject.

Reviewed by M. G. Soares
(C) Copyright American Mathematical Society 2001, 2006

