MR1332108 (96d:32019) 32G05 (57M99 58F15)
Ghys, Étienne (F-ENSLY)

Some examples of deformations of complex manifolds.

Singularities of holomorphic vector fields and related topics (Japanese) (Kyoto, 1993).
Sūrikaisekikenkyūsho Kōkyūroku No. 878 (1994), 108-112.
The paper (which is an extract from a longer paper by the author [Invent. Math. 119 (1995), no. 3, 585-614; MR1317651 (95k:58116)]) studies holomorphic dynamical systems corresponding to the action of discrete co-compact subgroups $G \subset \operatorname{SL}(2, \mathbf{C})$ on $\operatorname{SL}(2, \mathbf{C})$. Its purpose is to describe explicit examples of non-trivial deformations of the complex manifolds $\mathrm{SL}(2, \mathbf{C}) / G$. The dimension $n=2$ is special because, due to a result of M. Raghunathan, similar complex manifolds $\mathrm{SL}(n, \mathbf{C}) / G$ are rigid as complex manifolds if $n \geq 3$.
We note another possible point of view on such deformations which is linked with the Teichmüller space of a 3-manifold with $\widetilde{\mathrm{PSL}_{2} R}$-geometry [see K. Ohshika, Topology Appl. 27 (1987), no. 1, 75-93; MR0910495 (88k:57014)]. Namely, $\widetilde{\mathrm{PSL}_{2} R}$ is the universal covering of the group of orientation preserving isometries of the hyperbolic plane \mathbf{H}^{2}, while $\mathrm{SL}(2, \mathbf{C}) / G$ is the group of orientation preserving isometries of the hyperbolic space \mathbf{H}^{3}. It is an interesting question whether the space of holomorphic deformations (containing the author's deformations) is non-connected, that is, whether a situation similar to the real case occurs.

Reviewed by B. N. Apanasov
© Copyright American Mathematical Society 1996, 2006

