AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

MR572582 (81k:57022) 57R30 Ghys, E.; Sergiescu, V.

Stabilité et conjugaison différentiable pour certains feuilletages. (French)

Topology **19** (1980), *no.* 2, 179–197.

Let M^3 be a torus bundle over S^1 with hyperbolic glueing map, i.e. the glueing map is a linear map A of the 2-torus T with |tr A| > 2. Let $\mathcal{F}_s[\mathcal{F}_u]$ be the suspension to M^3 of the stable [unstable] foliation of the Anosov map A of T. The authors show that if det A = 1 and tr A > 2 (i.e. M^3 is orientable and $\mathcal{F}_s, \mathcal{F}_u$ are transversely orientable), then every transversely orientable C^r foliation $(r \ge 2)$ of M^3 without compact leaves is C^{r-2} -conjugate to one of the foliations $\mathcal{F}_s, \mathcal{F}_u$. From this they conclude that a C^1 -perturbation of such a foliation is C^{r-2} -conjugate to the original one if $r \ge 3$. As applications, they obtain a classification of transversely orientable codimension-one C^2 -foliations without Reeb components on orientable 3-manifolds with solvable fundamental group [see also J. F. Plante, Invent. Math. **51** (1979), no. 3, 219–230; MR0530629 (80i:57020)]. They discuss real analytic foliations of 3-manifolds with solvable fundamental group. They also note that the foliations $\mathcal{F}_s, \mathcal{F}_u$ can be obtained as the orbits of a locally free action of the 2-dimensional solvable (nonabelian) Lie group G and show that every C^r -foliation obtained from a locally free action of \mathcal{F}_u or \mathcal{F}_s ($r \ge 2$).

Reviewed by Elmar Vogt

© Copyright American Mathematical Society 1981, 2006

Citations