MR790676 (87j:57014) 57R30

Ghys, Étienne (F-LILL)
Une variété qui n'est pas une feuille. (French) [A manifold that is not a leaf]
Topology 24 (1985), no. 1, 67-73.
The author gives a clever construction of a noncompact, connected n-manifold $L, n \geq 3$, that cannot be homeomorphic to a leaf in any compact, C^{0}-foliated $(n+1)$-manifold. In this construction, L has one end and, as this end is approached, a generator of p-torsion in $\pi_{1}(L)$ appears for each successive prime p. Roughly, the idea is to show that L, if a leaf, would be asymptotic to a leaf having intrinsically contradictory topology.
It should be remarked that a similar construction has been given by T. Inaba et al. [Kodai Math. J. 8 (1985), no. 1, 112-119; MR0776712 (86f:57024)]. They assumed C^{2} smoothness, which makes the asymptotic behavior of L much easier to manage. Finally, if $n=2$, the case left open in these papers, the exact opposite is true. All orientable surfaces can be leaves in suitable C^{∞} foliations of all closed 3-manifolds and all nonorientable surfaces in all closed, nonorientable 3-manifolds [J. Cantwell and the reviewer, "Every surface is a leaf", Topology, to appear].

Reviewed by Lawrence Conlon
© Copyright American Mathematical Society 1987, 2006

