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ABSTRACT
We present an interactive probabilistic proof protocol that certifies
in (logN )O (1) arithmetic and Boolean operations for the verifier the
determinant, for example, of an N ⇥ N matrix over a field whose en-
tries a(i, j) are given by a single (logN )O (1)-depth arithmetic circuit,
which contains (logN )O (1) field constants and which is polyno-
mial time uniform, for example, which has size (logN )O (1). The
prover can produce the interactive certificate within a (logN )O (1)

factor of the cost of computing the determinant. Our protocol is a
version of the proofs for muggles protocol by Goldwasser, Kalai
and Rothblum [STOC 2008, J. ACM 2015]. An application is the
following: suppose in a system of k homogeneous polynomials of
total degree  d in the k variables �1, . . . ,�k the coefficient of the
term �e11 · · ·�ekk in the i-th polynomial is the (hypergeometric) value
((i + e1 + · · · + ek )!)/((i!)(e1!) · · · (ek !)), where e! is the factorial
of e. Then we have a probabilistic protocol that certifies (projective)
solvability or inconsistency of such a system in (k log(d))O (1) bit
complexity for the verifier, that is, in polynomial time in the number
of variables k and the logarithm of the total degree, log(d).

1. INTRODUCTION
Our interactive protocols for certifying the output of a symbolic
computation are the nexus of four ideas: the first is the complexity
class NC for uniform parallel circuits of polylogarithmic depth and
the circuits that place linear algebra within the class. The second
is the concept of representing symbolic computation input data by
programs, among it Kaltofen’s and Trager’s [18] black box poly-
nomials, rational functions and matrices. The third is the theory of
probabilistically checkable proofs and Goldwasser’s, Kalai’s and
Rothblum’s [11, 12] (GKR) application to certifying that a high-cost
computation which was delegated to a server (the prover) was ac-
tually performed, which is done by an interactive protocol with a
verifier (GKR’s muggle) who checks the output by an exponentially
lower-cost computation, plus processing the input in linear time. The
fourth is that classical polynomial algebra, which is the underlying
mathematical method of solving systems of polynomial equations
in k variables, can be reduced to linear algebra by coefficient vector
shifts via multiplications by terms, for example, the Macaulay’s
matrices expressing the (multivariate) resultant.
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Polynomial system solving has motivated our work: those resul-
tant matrices have dimensions exponential in the number of vari-
ables k, and polynomial algebra in general has many algorithms
which run in time exponential in k . The computations are often high-
cost, which may be only doable by a server like a Google data center.
The input coefficients are often not of exponential information com-
plexity: the polynomial equations may be sparse in the number of
terms, or the coefficients may be implicitly given by a formula, as in
the example in the abstract above, or a program, say a determinant
of a matrix. Of course, large matrices with computable entries occur
outside polynomial algebra, see for instance [20].

The GKR interactive proof protocol is presented by Shafi Gold-
wasser, Yael Kalai and Guy Rothblum as a complexity result: compu-
tations on circuits of polylogarithmic depth with respect to the input
size N whose directed acyclic graph (DAG) structure can be repre-
sented by log-space algorithms on the integers labelling the nodes
are verified. Section 2 presents the GKR protocol in its entirety,
but without a propabilistic analysis. The verifier scans the input
once, in time N 1+o(1), and checks poly-logarithmically many inter-
active steps in poly-logarithmically many bit operations, including
flipping a public coin. The GKR protocol can be modified to arith-
metic circuits [25], such as the determinant circuits by Kaltofen and
Pan [17] (see Section 3). A saving is that arithmetic modulo a prime
p = NO (1) does not need to be expanded to bit-by-bit operations in
the protocol. Field arithmetic can be mixed with Boolean arithmetic
for computing values from binary input data, such as

�2(i+j�2)
i+j�2

�
, and

for selecting data according to Boolean predicates, e.g., (2). We call
circuits that perform Boolean arithmetic and operations on input
field elements a hybrid arithmetic circuit.

Our verifier checks a computation on a family of circuits of
size NO (1), or even 2(logN )O (1)

, for �N (fN (0), . . . , fN (N � 1)) in
(logN )O (1) bit communication and bit-operation complexity. Here
�N is a family of (logN )O (1)-depth circuits for a task such as the
determinant, and fN is a family of (logN )O (1)-depth circuits for
the scalars such as the hypergeometric terms above; fN can contain
(logN )O (1) input field constants. If the circuits fN for the scalars
are of size (logN )O (1), they are input for the verifier. The circuit �N
and in the general case fN are NO (1)-sized and cannot be built by
the verifier with poly-log complexity. The verifier rather accesses
the circuits via algorithms that probe the circuit structures, which are
called uniformity properties. The structures are input as (logN )O (1)

circuits of size (logN )O (1) that determine the DAG structure of �N
and fN . The circuit class NC used in GKR requires log-space al-
gorithms, but we have relaxed the uniformity to polynomial-time
and beyond (see Assumption 2.2). Because the input to the prover’s
circuit are the integers 0, . . . ,N � 1, the input scan in GKR is check-
able by the verifier in (logN )O (1) complexity (see (18)). Thus, the
protocol we present here is distinguished from our previous work
[9, 10, 16] whose communication and verifier complexity is at least
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linear in N , that is, exponentially worse.
Our guiding example is the resultant matrix for polynomial sys-

tems, which has dimensions exponential in the number of variables k
with entries being selected coefficients of the polynomials. There
are still exponentially many (in k and the degrees) such coefficients.
We assume the coefficients themselves are computed by circuits,
for example, by tests on the degrees of the i-th equation that, for
example, set all but polynomially many to zero, that is, represent a
sparse system. We emphasize that sparsity is not a requirement for
our polynomial-time certificates. In fact, the cost of verifying our
certificate is polynomial in log(degree), and we could, in analogy
to the notion of a supersparse polynomial [15], call our input sys-
tem a superstructured system. An example is that we can certify
in polynomial time that two univariate supersparse polynomials are
relatively prime.

To achieve this complexity, with have some restrictions.
1. The verifier probes the prover’s circuit structure using DAG
structure test functions that for an integer node labelling scheme
compute for each level ` if or if not a node of label � adds, or
multiplies, etc., the values of the nodes � and � on the previous level.
Circuit complexity refers to such tests as a uniformity condition.
Also the verifier’s circuits for the scalars can be represented by DAG
structure test functions instead of by their DAG. A multiplication tree
for N ! for instance, has exponential size O(N ) but O(logN )-sized
simple DAG structure tests (cf. (11) and Remark 2.6 thereafter).
2. In order to obtain exponentially smaller proofs, we restrict the
verifier to (logN )O (1) complexity in rounds and bit operations. Us-
ing the GKR level-by-level certificates, we thus require all circuits to
be of depth (logN )O (1). Our weakest uniformity condition for both
the circuit for the computed function and the circuit for the scalars
is given in Assumption 2.2. It covers polynomial-time uniformity,
that is that the DAG structure test functions are given by Boolean
circuits of size (logN )O (1). We recall that the node labels are inte-
gers of (logN )O (1) bit length, as a bounded fan-in circuit of depth
(logN )O (1) has width 2(logN )O (1)

.
3. Field elements, unlike the binary integers, cannot be tested to be
equal to zero. The restriction is not universal: the prover and verifier
have a simple protocol to certify that NO (1) elements are equal to
zero (cf. Section 3 for the matrix rank). But the positions of those
elements in the circuits must be testable, via their node labels, by
the verifier. In other words, pivoting cannot be done, as those node
labels depend on the input and would have to be communicated
by the prover to the verifier, and are thus restricted in number to
(logN )O (1).
4. Without zero tests, divisions by field elements are excluded.
Again, integer divisions in the Boolean part of the hybrid circuit are
doable, for instance, by Newton iteration. The restriction again is
not quite absolute. If all divisions are by non-zero field elements,
we can modify our protocol to implement them (cf. Remark 2.5).
For example, in processor-efficient parallel linear algebra, we have
used randomization to avoid pivot testing [17]. Those random ele-
ments are chosen by the verifier or with a public coin. We restrict
to (logN )O (1) many random field elements that the verifier com-
putes. We disallow O(N ), say, pseudo-random elements that the
prover computes from a verifier provided (logN )O (1)-bit seed by a
(logN )O (1)-depth circuit which the verifier confirms by the GKR
protocol, since then the probability of correctness would depend on
an additional hardness assumption.
5. The circuits can contain (logN )O (1) field constants. To reach
(logN )O (1) binary verifier complexity, we think of the field of scalars

as a finite field. Since N ⇥ N determinants of integer matrices can
have O(N (logN )) digits, we certify the determinant modulo a prime
number p. We can test whether the determinant is 0 by choosing a
random prime number with (logN )O (1) digits. Also, on verifier input
i = NO (1), the protocol can certify the i-th bit of the determinant in
verifier cost (logN )O (1). The prover cost would then be NO (1)-fold
higher, as the circuit is then purely binary.

Our prover complexity is NO (1), that is, exponential in the size of
the certificate. The complexity includes the circuit for the algorithm,
and the cost of evaluating the circuits for the scalars. In analogy
to processor-efficient NC circuits, we can call the protocol prover-

efficient if the certificate can be produced by the prover within a
(logN )O (1) factor of the width of the circuit for the algorithm. For
the matrix determinant problem our protocol is prover-efficient (cf.
Section 3). Restriction 4 has so far prevented us to have a prover-
efficient matrix rank and the NC theory is still lacking of a processor-
efficient circuit for the characteristic polynomial.

The soundness of the GKR protocol is based on the interaction be-
tween the exponential-time prover and the polynomial-time verifier.
With cryptography, one can remove the interaction by a Fiat-Shamir
heuristic, resulting in a static proof of polynomial system inconsis-
tency, say, that can be checked in polynomial time in the number of
variables and the logarithm of the degree. One cannot apply the pro-
tocol recursively to that check, exponentially reducing its size again,
because the binary verification algorithm has polynomial depth [we
thank Stephen M. Watt for the comment.]
2. CIRCUITS AS INPUTS
A problem in [11, 12], of which Thaler’s scheme [25] is an algebraic
implementation, is that the verifier cost is at least linear in the number
of input bits. A polynomial-time verification hence seems to be
ruled out for handling matrices with exponential dimensions such as
resultant matrices. Here is an approach to shrink the input size for
low complexity input scalars.

Our input scalars are in a finite field F, say F = Zp which denote
the integers modulo a prime number p, and our algebraic circuit
arithmetic for purpose of high probability of soundness of the verifier
check will be done in a finite algebraic extension K ◆ F. We assume
that 2n field elements fn (i) 2 K for 0  i  2n � 1 are represented
by the hybrid extension circuit in Figure 1. The circuit can contain
“passthru” nodes, which could have been emulated by arithmetic
nodes as � = � +w �w for any node w on the previous level. The
circuit on inputs �1, . . . , �n 2 {0, 1} ✓ F computes for the index
integer i = �1 + 2�2 + · · · + 2n�1�n , by interpreting the field elements
0, 1 as the integers 0, 1, the field element

f̃n (i)
def
= fn (i)

def
= f̃n (�1, . . . , �n ) 2 F. (1)

By e we indicate an algebraic extension function and circuit that
can be evaluated at both a bit vector and a vector of field elements.
In the definition (1) we have overloaded the e’ed algebraic exten-
sion functions by writing single integer arguments in addition to
vectors of field elements with the interpretation that the integers are
converted to vectors of bits. The verification protocols will evaluate
the extension circuits on random field elements x�  �� 2 S ✓ K
from a sufficiently large subset S . In summary, the fn (i) are the
exponentially many input scalars that the single algebraic extensions
circuit eCn represents via its algebraic extension function f̃n .

The input to our computational problems is a hybrid extension
circuit eCn . The circuit is represented as a directed acyclic graph
(DAG) in which each vertex is labelled by an integer and given an
attribute on its functionality, such as “multiplication node”. Here
there is a Boolean part that can perform integer operations on 0/1
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� +w ��w

x2 xnx1 · · ·x3 · · ·c1 = 0 c2 = 1
Bounded fan-in algebraic circuit operations

c2

eCn :
Output polynomial

Address bits input variables

+ passthruor

Simulated Boolean address arithmetic Regular field arithmetic

⇥

cm 2 F,m = nO(1)

Output f̃n(x1, . . . ,xn) 2 F

Input field constant scalars
� w � w �

�wand

not c2 ��

Figure 1: Hybrid extension circuit eCn that realizes fn (i)
inputs, such as computing

�i
5
�

which for i < 5 is = 0, by simulating
the Boolean operations on the field values 0 and 1. The output can
then be a selected bit of

�i
5
�
, or

�i
5
�

converted to a field element using
the radix 2 = c2 + c2. There is also an algebraic part that can supply
actual input field elements to the circuit. The first two constants
are the field elements 0 and 1. The zero element of the field can be
synthesized inside the circuit as x1 � x1 by a binary subtraction, but
field element 1 cannot, which is needed for wiring integer constants
into the circuit. Polynomially in n many additional field elements can
be supplied as input. Those elements could, for example, be output
by the circuit for the inputs for certain values of i by a synthesized
Boolean comparator and an arithmetic sum that is weighted by the
Boolean predicates, for instance

( (i > q1) and (i  q2) ) c3 + (i  q1) c4. (2)
Here the comparisons are Boolean comparator circuits simulated by
the field operations given in Figure 1, feeding the bits of the constants
q1 and q2 using c1 = 0 and c2 = 1 as the second argument. Note that
the input circuit can have unbounded fan-out. For arguments �,w 2
{0, 1} ✓ F, the following field operations simulate the Boolean
functions:

and or not xor equiv impl

�w � +w 1 �� � +w 1 + 2�w 1 ��
��w �2�w �� �w +�w

(3)

The hybrid sum of field values weighted by Boolean values (2) is a
main ingredient in the GKR protocol, but we use it for representing
structure and sparsity of our input matrices: in the above polynomial
systems the input could be polynomially many (in the number of
variables k) non-zero coefficients, that is a sparse polynomial system.
We would have n = dlog(

�d+k�1
k�1

�
)e and the cµ in eCn in Figure 1 for

f̃ in (22) would hold those coefficients, which would be individually
selected according to their equation index and term exponents (cf.
(2)). Because the circuits are nO (1)-size, they need not be uniform
and can be the input. Note that the Boolean comparators compute
a value in K for field inputs x�  �� 2 K, which is the basis of the
sum-check protocol [21].
REMARK 2.1. Discussion of input circuit model (Part 1): Our
input circuits can have bounded fan-in ( 2) but unbounded fan-out.
We suppose that the circuit is layered, that is each arithmetic node
draws inputs from the layer directly above. In order to access values
in earlier layers we therefore use passthru nodes with a single input.
The node for the Boolean or thus occupies 2 layers, although one
could introduce “super”nodes with 2 inputs and a fixed sized circuit
with a single output in the GKR protocol. We will require the lay-
ering restriction when processing the GKR iteration over possibly
exponentially many copies of our input circuits. All our circuits are
hybrid arithmetic circuits and not pure Boolean circuits as in GKR.
The GKR protocol can then be improved to fewer rounds of interac-
tion as the circuits have smaller size. A limitation in the arithmetic
version of GKR is that one cannot incorporate field element equality
tests in the circuits and thus has to exclude divisions, all of which

would be possible in the Boolean model. One can, of course, choose
F = Z2, in which case the field arithmetic is Boolean arithmetic,
and the arithmetic version specializes to GKR’s Boolean protocol.
We note that if without checking the divisor the circuit on a given
input does not divide by zero, divisions by field elements can be
incorporated in the protocol; see Remark 2.5. ⇤

An example of such a circuit would be the binomial coefficient�i
5
�
, which is = 0 for i < 5. Note that one has integer Boolean

division circuits of depth O(log(i)) [1].
Our version of GKR is an interactive proof to certify the value of

a exponential sized formula or circuit with fn (i) inputs; note that
there are 2n indices i. We begin with the simplest but most important
building block, the above mentioned sum-check protocol [21] for

�n =
Õ2n�1
i=0 f̃n (i). (4)

To use sumcheck protocol of Lund et al., we must restrict our input
circuit eCn in Figure 1 to have depthO(log(n)); eCn no longer needs to
be layered. The logarithmic depth restriction has two consequences:
1. Because in eCn each layer has at most twice as many nodes as

the layer below, circuit depth O(log(n)) implies circuit size nO (1).
The verifier can evaluate f̃n with nO (1) field operations.

2. The total degree in x1, . . . ,xn for the polynomial computed in
each node at most doubles in the layer immediate below, so
deg( f̃n ) = nO (1).

Now we can perform the sum-check protocol for �n in (4) for the
function f̃n . In the sum-check interactive proof, the prover sends the
verifier the polynomials

�µ (xµ )
def
=

’
�� 2{0, 1}, µ+1� n

f̃n (r1, . . . , rµ�1,xµ , �µ+1, . . . , �n ), (5)

for 1  µ  n, and the verifier sends inter-leaved uniformly se-
lected random elements r1, r2, . . . , rn�1 2 S from a finite subset
S ✓ K. The exchange is: prover: �1(x1) �! verifier, verifier: r1 �!
prover, prover: �2(x2) �! verifier, verifier: r2 �! prover, . . . , ver-
ifier: rn�1 �! prover, prover: �n (xn ) �! verifier. The soundness
check by the verifier is 1. for all µ with 2  µ  n check �µ (0) +
�µ (1) = �µ�1(rµ�1); 2. for a uniformly selected random rn 2 S check
�n (rn ) = f̃n (r1, . . . , rn ). If all checks succeed, then with high proba-
bility�1(0)+�1(1) =

Õ
�� 2{0,1}, 1� n f̃n (�1, . . . , �n ) =

Õ2n�1
i=0 f̃n (i).

Since deg(�µ ) = nO (1) by Consequence 2 and the input circuit eCn
has nO (1) arithmetic gates by Consequence 1, the verifier runs in
nO (1) field operations in K. For K = Zp with log(p) = nO (1) the
verifier uses nO (1) bit operations to verify the summation �n with
2n terms in (4).

Next, we demonstrate GKR on a product-check protocol for
�n =

Œ2n�1
i=0 f̃n (i). (6)

At the same time, we shall remove the logarithmic depth restriction

on

eCn . Our example encompasses all of the GKR protocol and
all uniformity conditions on the arising circuits. The value �n is
computed by the exponential-sized hybrid extension circuit ePn of
Figure 2. The bottom part of the ePn is a perfect binary tree with
multiplications in its nodes. The DAG corresponding to the tree has a
highly uniform structure: see (11) below. On the leaves of the binary
tree are connected 2n identical copies of the hybrid input extension
circuit eCn . Each of the n + m inputs is connected to 2n (n + m)
identical copies of hybrid input “decoder” circuits eDn . The detailed
input lines are shown in the bottom left inset of Figure 2. Here
bm+n = d log2(n +m)e is the minimum number of bits required
to represent � in the range 0  �  n +m � 1. The idea is that
the decoder selects the appropriate input values as output whose
positions are given in the � input portion of the decoder, which is
then appropriately set on input. The decoder also can select an input
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Level n + d

⇥ ⇥

⇥

xnx1 cm

f̃n(0) f̃n(1) f̃n(2n � 1)

Level n � 1

Level n

eCn

eDn

�n

Input bits see text

n

eDn

�̃n(i,�)

i �=µ+��1

c1, . . . , cm bits
bm+n many

Level 0

Figure 2: Hybrid extension circuit ePn that realizes �̃n
constant cµ , which is a node of that value inside eDn with fan-in zero.
Note that the circuit eDn is no longer layered in the way that each
node receives data from the immediate previous layer as was the
case for eCn and is the case for the binary multiplication tree. We give
a hybrid Boolean-arithmetic sum (cf. (2)) for the algebraic extension
function e�n :

e�n (i,�) = ⇣Õn
�=1(� < n and � + 1 = � ) ��

⌘
+
⇣Õm

µ=1(� � n and � � n + 1 = µ) cµ
⌘
.

(7)

In (7) �� is the �-th bit of i. In the extension function, the bits of i
and � will be set to field elements with �� the corresponding input
element, which the comparator circuits, Boolean circuits and binary
arithmetic circuits process “blindly” according to circuit structure.
Note that

e�n (i,�) def
=

8>><
>>:

��+1 for 0  �  n � 1,
c��n+1 for n  �  n +m � 1,
0 for � � n +m.

(8)

Now we can set the inputs to our computation. The input to the
(� + 1)’st circuit eDn of the (i + 1)’st copy of eCn is the pair (i,�)
represented by the n + bm+n input bits, with bn+m = dlog2(n +m)e.
Note that only the prover will actually use those inputs.

The reason for the hybrid address decoder circuits eDn above theeCn is that they can be implemented by (7) with depth O(log(n))
and therefore can be used in a sum-check protocol. Integer addition,
subtraction, and comparison is done by parallel prefix look-ahead
circuits [2]. We will need the algebraic extension circuit for equality
testing below and give the formula now. The test has as input two
bit vectors �1, . . . ,�b and �1, . . . , �b and returns 1 if each pair of bits
in the vectors are equivalent, else it returns 0:

˜equ(�, i) def
=

Œb
�=1(�� equiv �� )

=
Œb

�=1(1 + 2���� � �� � �� ),
(9)

where deg�1, ...,�b ( ˜equ) = b. Below in, for example, (11), as above
in (7), we also write (� = i) for ˜equ(�, i).
REMARK 2.2. One does not need the decoder circuits eDn if the cir-
cuits eCn have depthO(log(n)), in which case one may then use eCn di-
rectly. The verifier then evaluates the hybrid extension circuits eCn at
a vector of random field elements, and the only uniformity condition
required is that the verifier can perform the evaluation in nO (1) arith-
metic steps (cf. Consequence 1 above). Therefore, the logarithmic-
depth integer division circuits and multiple integer product circuits
in [1] can be incorporated into eCn . However, our version of the GKR
protocol will place the constant B for depth(eCn )  B log(n) in the ex-
ponent of the verifier cost, because deg( f̃n )  2depth(eCn )  nB . With
decoder circuits eDn , the depth of eCn is only restricted to nO (1) andeCn can even be of exponential size with the uniformity in structure
(see Remark 2.6). ⇤

We now assume that at level ` of ePn in Figure 2 the nodes are
labeled � = 0, 1, . . . ,L` � 1, where � is represented as an s`-bit
integer with s` = d log2(L`)e. Note that s` = ` for ` = 0, . . . ,n in
the levels of the perfect binary tree in ePn of Figure 2. At level n+d we
have sn+d = n+bm+n , which is the number of bits on the labels to all
(n +m)2n inputs of the 2n copies of eCn in ePn . The heart of the GKR
protocol is the recursive property of the algebraic extension functioneV`(z1, . . . , zs` ) for each level ` in (13) below, where eV`(z1, . . . , zs` )
is defined as

eV`(z1, . . . , zs` ) def
=

Õ2s`�1
�=0 ˜equ(z1, . . . , zs` ,�)W`,� , (10)

whereW`,� is the field element value of node � at level ` when eval-
uating the circuit on the given inputs, andW`,� = 0 for � � L` , that
is when the node label � is out of range. We thus have eV`(�) =W`,� ;
note in both ˜equ(z1, . . . , zs` ,�) and eV`(�) the overloaded usage of �
for the vectors of bits in � . We will discuss the node labeling further
in the Remark 2.4 below. Furthermore, the prover and verifier in
the protocol must be given algebraic extension circuits ˜add` , m̃ul`
and ˜thru` , and preferably also have circuits for ˜sub` , õr` , ˜not` , ˜xor` ,
˜equiv` and ˜impl` , that implement the following DAG structure test

functions on their binary inputs representing the bits of a node label
� on level ` and two node labels � and � on level ` + 1:
1. ˜add`(� , � ,� ) is 1 if node � on level ` is an addition node with

nodes � and � as inputs, and is 0 otherwise; ˜sub` and m̃ul` (for
multiplication and Boolean and) are defined accordingly.

2. õr`(� , �,� ) is 1 if node � on level ` is a Boolean or “super”node
with nodes � and � as inputs, and is 0 otherwise; ˜xor` , ˜equiv` ,
and ˜impl` are defined accordingly. By not emulating those nodes
by their arithmetic equivalents (3) the functions should be easier
to implement on the Boolean parts of the hybrid circuits.

3. ˜not`(� , �,� ) is 1 if node � on level ` is a not node with node � as
input and � = � , and is 0 otherwise; ˜thru` is defined accordingly
for passthru. We do not emulate the Boolean not by a subtraction
and do not require the field constant 1 via pass thru.
We require the following property.

ASSUMPTION 2.1. Log-depth. All algebraic extension circuits for
˜add` , ˜sub` , m̃ul` , . . ., ˜thru` are for all levels ` of depth O(log(n)),

hence of degree and size nO (1), which the verifier is able to evaluate
at field elements as inputs in polynomial time in n.
For example, in ePn for levels ` = 0, . . . ,n � 1 we have ˜add` , ˜sub`
and ˜thru` always return 0 and

m̃ul`(� , � ,� ) = (� = 2� and � = 2� + 1). (11)
REMARK 2.3. If the circuits eCn are of size nO (1) represented by
their DAGs, the DAG structure functions can be built by the prover
and the verifier as a tree of comparisons, e.g.,

˜add`(u,�,w) =
’
�̄, �̄,�̄

˜equ(ū, �̄, w̄, �̄ , �̄ , �̄ ) ˜add`(�̄ , �̄ , �̄ ). (12)

Here the ū, . . . �̄ refers to the portions of the inputs bits of the node
labels that lie within eCn (see also Remark 2.4 below) and the bits
representing i in the i-th copy of eCn are not tested. The verifier can
compute the vector of values ˜add`(�̄ , �̄, �̄ ) by traversing the DAG
for eCn and evaluate (12) in nO (1) field operations. It is here that the
input becomes logarithmic in the size of ePn . ⇤

Finally, we can express eV`(z1, . . . , zs` ) 2 K[z1, . . . , zs` ] recur-
sively in terms of eV`+1 as a sum of the form (4):

eV`(z[` ]) =
2s`�1’
�=0

2s`+1�1’
�=0

2s`+1�1’
�=0

˜equ(z[` ],�)eF`(� , � ,� ), (13)

where z[` ] = [z1, . . . , zs` ], and (compare with (3))

eF`(� , �,� ) def
= ˜add`(� , � ,� )

�eV`+1(�) + eV`+1(� )�
+ m̃ul`(� , �,� ) eV`+1(�) eV`+1(� )
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+ õr`(� , � ,� )
�eV`+1(�) + eV`+1(� ) � eV`+1(�) eV`+1(� )�

+ . . . [terms for ˜sub` , ˜xor` , ˜equiv` , ˜impl` , cf. (3)]
+ ˜not`(� , �,� )

�
1 � eV`+1(�)� + ˜thru`(� , � ,� ) eV`+1(�). (14)

Note that the constants in (14) are not pass thru constants. The fact
that the triple sum in (13) for eV`(z[` ]) equals its definition (10)
follows easily: for a node label � on level ` we have

W`,� =
Õ2s`+1�1
�=0

Õ2s`+1�1
�=0 eF`(� , � ,� ), (15)

because by the definition (10) for level ` + 1 we have eV`+1(�) =
W`+1,� and eV`+1(� ) = W`+1,� . If the node label � is out of range
the rights side of (15) returns the field element of 0, as is required,
since all DAG structure test functions return 0. We give the formula
corresponding to the definition of eV`(z[` ]) in (10) for the top level
n + d in (18) below. On level n + d we have that eVn+d (�) = 0 for
node labels out of range, namely for � � Ln+d = (n +m)2n , from
the third case of (8).

The prover and verifier perform an interactive protocol recursively
for ` = 0, 1, . . . ,n + d where at each level `, for a then given s`-
dimensional vector of random field values Ær [` ] 2 Ss` , they perform
a sum-check protocol for eV`(Ær [` ]) defined by (13). By the defini-
tion (10) for level `+1 and (9), degz[`+1] (eV`+1(z[`+1]))  s`+1, where
s`+1 is the number of bits in the node labels at level `+ 1 and the “”
accounts for the fact that all nodes at level ` + 1 could evaluate to 0
on input. If for all ` we have s` = nO (1), which is certainly the case if
size(eCn ) = nO (1), then we have degu,�,w

�
˜equ(Ær [` ],u) eF`(u,�,w)

�
=

nO (1), because by the log-depth Assumption 2.1 the degrees of the
algebraic extensions circuits for ˜add` , ˜sub` , m̃ul` , . . ., ˜thru` are thus
bounded. The prover and verifier exchange �µ of (5) and random
field elements, until the verifier completes the sum-check of eV`(Ær [` ])
by testing

�s`+2s`+1 (�
[3]
s`+1 )

?
== ˜equ(r [` ], Æ� [1]) eF`( Æ� [1], Æ� [2], Æ� [3]), (16)

with Æ� [1] 2 Ss` , Æ� [2] 2 Ss`+1 and Æ� [3] 2 Ss`+1 verifier chosen
random vectors whose entries were communicated one after an-
other, the last one being �

[3]
s`+1 . By (9) the verifier can compute

˜equ(r [` ], Æ� [1]) in polynomial time in n, as well as, by the Assump-
tion 2.1, ˜add`( Æ� [1], Æ� [2], Æ� [3]), ..., ˜thru`( Æ� [1], Æ� [2], Æ� [3]).

The verifier, however, cannot compute eV`+1( Æ� [2]) and eV`+1( Æ� [3])
in polynomial time in n, as that requires all values of the nodes on
level ` + 1. To verify those two values, the protocol ingeniously
recurses to level ` + 1. A clever (“standard” by [12]) subprotocol is
used to reduce the check of 2 values of eV`+1 to a single value [25,
Remark 2]. The prover first communicates the univariate polynomial
in �,

�`(�) = eV`+1( (1 � �) Æ� [2] + � Æ� [3]) 2 K[�], (17)
where deg(�`)  s`+1, after which the verifier communicates a
random field element r⇤ 2 S and the protocol recurses to level
` + 1 to certify eV`+1(Ær [`+1]) with Ær [`+1] = (1 � r⇤) Æ� [2] + r⇤ Æ� [3].
Finally, the verifier compares the certified value with �`(r⇤), and
uses�`(0) = eV`+1( Æ� [2]) and�`(1) = eV`+1( Æ� [3]) for completing the
computation of eF`( Æ� [1], Æ� [2], Æ� [3]) for the final step (16).

The recursion for verifying ePn stops at level n + d , where d is the
depth of eCn . At that level we define

eVn+d (z[n+d ]) def
=

2n�1’
i=0

2bn+m�1’
�=0

˜equ(z[n+d ], i,�)e�n (i,�), (18)

where z[n+d ] = [z1, . . . , zn+bn+m ]. Note that the integers i + 2n�
are assumed to be the labels � on level n + d of the output nodes
in eDn that are the inputs to the copies of eCn in ePn of Figure 2. The
� part of the bit representation corresponds to �̄ and �̄ in (12) of

Remark 2.3. By (7) and (9) we have degx,� ( ˜equ(z[n+d ],x ,�) ⇥
e�n (x ,�)) = nO (1). The verifier can in polynomial time in n evalu-
ate ˜equ(Ær [n+d ], Æ� [1], Æ� [2]) e�n ( Æ� [1], Æ� [2]) at vectors of random field
elements Ær [n+d ] 2 Sn+bn+m , Æ� [1] 2 Sn and Æ� [2] 2 Sbn+m . A sum-
check protocol for eVn+d (Ær [n+d ]) stops the recursion.

The recursion begins at level 0. There is a single node, so eV0
has no argument, and is in ePn equal to eV0=eV1(0)eV1(1). In the case
of ePn in Figure 2 we have z[1]=z1 and eV1(z1)=Õ1

�=0 ˜equ(� , z1)eV2(2�)eV2(2�+1), having evaluated the DAG structure test functions
(11) explicitly for (14,13). The recursion begins with the prover
communicating the (at most linear) polynomial�0(�)=eV1(�) and the
verifier choosing a random r⇤ 2 S and asking for a proof of eV1(r⇤)
by recursion. Finally, if the comparison with �0(r⇤) succeeds, the
verifier computes �n=�0(0)�0(1)=eV1(0)eV1(1).
REMARK 2.4. Node labels. We have used the perfect tree for com-
puting the product (6) so that the DAG structure test functions ˜add` ,
etc., can be easily described; see (11) and Remark 2.3. For the prod-
uct tree, one could incorporate (11) directly in the definition of eV` :
see [25, Section 5.3.1]. In Section 3 we will place determinant cir-
cuits below the copies of input circuits eCn . For those circuits, we
wish to structure the bits in the labels of the arithmetic nodes on
level ` according to their role in the algorithm. We can encode that
role in blocks of bits of the node label � on level `, and not have
all bit patterns correspond to actual nodes. The reason was already
stated above: nodes corresponding to a label � out of range haveeV`(�) = 0. For example, we could have labeled the nodes on level
n + d with integer triples (i,� , µ) instead of the pairs (i,�) and used
in place of (7) the hybrid algebraic extension circuit for

e�n (i,� , µ) = ⇣Õn
�=1(µ = 0 and � = � ) ��

⌘
+
⇣Õm

�=1(� = 0 and � = µ) cµ
⌘
. (19)

Each node label on level n + d then has either µ = 0 or � = 0, and
we have �n (i,� , µ) = 0 for any invalid node label with both � , 0
and µ , 0, by (19). The circuit for (19) has a smaller depth than the
circuit for (7), hence the polynomials in the sum-check protocol have
smaller degrees. However, there are more bits in the representation
of (i,� , µ) than of (i,�), hence the sum-check protocol would then
have more rounds. ⇤
REMARK 2.5. Division nodes. If the verifier knows that no di-
visions by zero occur, which may be accomplished by inputting
random elements among the cµ , the protocol can be amended. One
can push the divisions to the very last arithmetic node, by simulat-
ing rational number arithmetic in each node. Every field element
c 2 K in the circuit is represented by a pair of elements (c 0, c 00), a
formal numerator and denominator, with c 00 , 0 and c = c 0/c 00. We
implement the arithmetic operations as unreduced rational number
operations: c1 ± c2 as (c 01c 002 ± c 02c

00
1 , c
00
1 c
00
2 ), c1c2 as (c 01c 02, c 001 c 002 ) and

c1/c2 as (c 01c 002 , c 02c 001 ). If there is no division by zero in the circuit,
the c 00 will be non-zero throughout the evaluation, which is proven
by induction on the levels. The final node is the single division,
�0(0)/�0(1) = eV1(0)/eV1(1), where eV1(0) is the formal numerator andeV1(1) the formal denominator value of the output (see the paragraph
immediately above Remark 2.4). By assumption of no zero divisions
we have�0(0) , 0, but�0(0) , 0 does not guarantee that there is no
earlier division by zero: dividing (1, 1) by (0, 1) and then (1, 1) by
the resulting (1, 0) results in (0, 1). ⇤
REMARK 2.6. Discussion of input circuit model (Part 2). In or-
der to have verifier complexity nO (1) we require d = depth(eCn ) =
nO (1). In Remark 2.3 we have shown how the DAG structure test
functions ˜add` , etc., of depth O(log(n)) can be built from a DAG
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of polynomial size. In the GKR protocol, the verifier evaluates the
DAG structure test functions, but not eCn . Instead, the verifier runs
the protocol up the levels of the DAG for eCn and then evaluates
the decoder circuits eDn . Therefore, the input circuits eCn can have
exponential size and be represented by their ˜add` , ˜sub` , m̃ul` , . . .,
˜thru` that must satisfy the log-depth Assumption 2.1.
An example would be a circuit eCn that computes f̃n (i) =

�2i
i
�

for
i = 0, 1, . . . , 2n � 1 in the field F, say F = Zp with p an nO (1)-digit
prime number, so that the field arithmetic is also polynomial time in
n, and p > 2n so that there are no divisions by zero. In eCn we shall
compute

�2i
i
�

as a hypergeometric sequence
�2i
i
�
=

(2i�1)(2i)
i2

�2(i�1)
i�1

�
.

Our example thus demonstrates the circuit construction for all hy-
pergeometric sequences. We now describe eCn . We first initialize
on a certain level 2n blocks Æ�j of n nodes (0  j  2n � 1) that
represent the values 0, 1, . . . , j, . . . , 2n � 1 as n-bit binary integers.
We can achieve those values in O(n log(n)) depth by a parallel prefix
circuit for Æ�j =

Õj
�=1 1 with j � 1, where 1 is represented as a

binary n-bit integer using the inputs c1 = 0 and c2 = 1 as the bit
values, and where the prefix operation is binary look-ahead addition
of depth O(log(n)) on n bit integers. Note that inputs for c1 and c2
now have fan-out exponential in n. The nodes Æ�0 are initialized by
passing thru c1 = 0. In the next layers we filter all Æ�j , whose value
is Æ�j = j in binary representation, into 2n nodes �[num]

j and �[den]
j

(0  j  2n � 1) of field elements, containing
�[num]
j =(Æ�j=0 or

Æ�j>i)+(Æ�j,0 and

Æ�ji)(2Æ�j�1) 2Æ�j ,
�[den]
j =(Æ�j=0 or

Æ�j>i)+(Æ�j,0 and

Æ�ji)Æ�2
j .

Here i is an input to eCn as an n-bit integer, which also has been
passed thru. In the above circuits for �[num]

j ,�[den]
j the Boolean

tests are performed by binary integer arithmetic on the values repre-
sented by Æ�j and i, yielding as output values a single field element
of value 0 or 1. The values (2Æ�j � 1) 2Æ�j and Æ�2

j are computed
by field arithmetic after converting the binary integer representa-
tions Æ�j to field elements of that value from their 0/1 bit values �� ,
namely

Õn
�=1 �� 2

��1. Finally, we compute
�2i
i
�
= (Œ2n�1

j=0 �[num]
j )/

(Œ2n�1
j=0 �[den]

j ) via two trees of height n. The last operation intro-
duces a division, and the remaining circuitry can use the formal
numerators and denominators introduced in Remark 2.5.

The single hybrid extension circuit eCn for
�2i
i
�
, as an element in

the field F, has width O(n2n ) and depth O(n log(n)). However, the
circuit has a regular structure because of the regularity of parallel
prefix, which is also used in look-ahead addition [2], where the
xor “super”nodes are useful. The O(n log(n)) DAG structure test
functions ˜add` , ˜sub` , m̃ul` , . . ., ˜thru` , which manipulate the node
labels of O(n) bits, possibly by modular arithmetic using division
circuits of O(log(n)) depth [1] and integer constants with O(n) bits,
can satisfy the requirements of the log-depth Assumption 2.1. Note
that the circuits need not be log-space uniform, only polynomial-time
uniform: the prover and verifier evaluate them.

In summary, we have constructed a GKR protocol that can verify,
for instance, �n,p =

Õ2n�1
i=0

�2i
i
�
mod p for a prime number p with

log(p) = nO (1) in bit complexity nO (1). ⇤
REMARK 2.7. Discussion of input circuit model (Part 3). We
now show how to relax the log-depth Assumption 2.1 in our pro-
tocol. This will allow us to consider circuits with structure test
functions of degree possibly exponential, whilst keeping a protocol
with communication and verifier complexity nO (1). If the structure
test degree is exponential then the polynomials �µ of (5) in the cor-
responding sumchecks cannot be sent by the prover. We use an idea

similar to the one used in [12, Section 4.2], where the evaluation
of the structure test functions itself is delegated to the prover and
proved using an interactive sub-protocol. Here we use a sub-protocol
recursively that is not limited to the test functions. We address the
evaluation of (13) globally by delegating it to the prover, and proving
it thanks to a sub-protocol analogous to the one used for the tree of
Figure 2.

The following uniformity condition is sufficient for a protocol of
verifier complexity nO (1).
ASSUMPTION 2.2. Polynomial-depth. All algebraic extension cir-
cuits for the DAG structure test functions ˜add` , ˜sub` , m̃ul` , . . .,
˜thru` are for all levels ` of depth nO (1) and possibly exponential size

(or even size 2nO (1)
), which are given by their own DAG structure

test functions of depth O(log(n)), hence degree and size nO (1), which
the verifier is able to evaluate at field elements in nO (1) time. If
some (or all) circuits for the DAG structure test functions ˜add` , etc.,
for the initial input circuit are given by DAGs of size nO (1), then
the required DAG structure test circuits of depth O(logn) for those
DAGs can be constructed in nO (1) time by the prover and verifier as
in Remark 2.3.

We now sketch how to modify our protocol to account for the
weaker log-depth Assumption 2.2 for the DAG structure test func-
tion. Instead of performing a sumcheck protocol for eV`(Ær [` ]) defined
by (13) and (14), the prover and verifier engage in a tree evalu-
ation protocol for a tree analogous to Figure 2: the nodes in the
large perfect binary tree are addition nodes, adding up the 2s`+2s`+1
values ˜equ(Ær [` ],�) eF`(� , � ,� ). The function f̃s`+2s`+1 has inputs
� , � ,� ,�1,�2, z[` ] and is represented by a hybrid circuit eCs`+2s`+1
for f̃s`+2s`+1 (� , �,� ,�1,�2, z[` ]) =
˜equ(z[` ],�)

� ˜add`(� , � ,� )(�1+�2)+···+ ˜thru`(� , � ,� )�1
�
, (20)

which implements (13) for inputs �1 = eV`+1(�) and �2 = eV`+1(� ).
Here the inputs �1, �2 and the components of z[` ]� take the role of
the constants c1, . . . , cm in the function f̃n in Figure 2. We have
s` + 2s`+1 as n in our special summation tree protocol for the func-
tion fs`+2s`+1 in (20). Finally, the decoder circuits eDs`+2s`+1 have
inputs � , � ,� ,� , µ, µ 0 and implement the hybrid algebraic extension
function (cf. (19)) e�(� , � ,� ,� , µ, µ 0) =�Õs`+2s`+1

�=1 (µ=0 and µ 0=0 and �=� ) ��
�
+(�=0 and µ 0=0

and µ=0) eV`+1(�) + (�=0 and µ 0=0 and µ=1) eV`+1(� )
+
�Õs`

�=1(�=0 and µ=0 and �=µ 0) r [` ]�
�
, (21)

where �� is the variable corresponding to the �-the bits of the
combined bit vector for � , � ,� . Note that µ is a single bit/variable
input, which selects which of the two values eV`+1(�) or eV`+1(� ) is
output by the decoder. The circuit eCs`+2s`+1 for f̃s`+2s`+1 (20) has by
the polynomial-depth Assumption 2.2 for its embedded circuits for
the DAG structure test functions ˜add` , etc., itself DAG structure test
functions that satisfy the log-depth Assumption 2.1, and Remark 2.6
applies for the tree summation protocol. The decoder circuit e� of
(21) has depth O(logn), which the verifier can evaluate for random
field element inputs for the bits of � , etc., by the subprotocol (17)
and a certificate for eV`+1(Ær [`+1]). ⇤
REMARK 2.8. Space complexity for the prover. As the sum-check
protocols involved move from level ` to level ` + 1, but the circuit
evaluation from level `+1 to level `, the required circuit node values
either need to be stored or re-computed when needed. This trade-off
is well-studied in the field of automatic differentiation [13]. ⇤
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3. LINEAR ALGEBRA CIRCUITS
For certifying linear algebra computations, poly-log-depth uniform
circuits for linear algebra replace the binary tree in Figure 2. Many
classical problems, such as determinant, rank, linear system solu-
tion, etc., are in NC2. The determinant is for 0 or large charac-
teristic verifiable with a prover efficient protocol of complexity
N� (logN )O (1), where � is the matrix multiplication exponent. One
uses the processor-efficient circuits from [17], but with the precon-
ditioner from [10], which uses two verifier-selected random field
elements. The rank protocol uses the parallel algorithm in [23] and
parallel algorithms for the characteristic polynomial [5, 7]. Possibly
O(N ) trailing coefficients �i are certified to be zero by verifying
0 = w =

Õ
i �ir

i�1 with a verifier-selected random r of (logN )O (1)

bit-size. The leading � coefficients of the characteristic polyno-
mial can be computed by log-squared-depth uniform circuits with
�1/2N� (logN )O (1) work, for characteristic 0 or � � + 1 [7]. For
� = N one has the characteristic polynomial, and � ⌧ N is used
for the resultant in Section 4. No processor-efficient circuit for the
characteristic polynomial or prover-efficient protocol for the rank,
with a fixed number of verifier-selected random elements, are known
to us.

4. THE MULTIVARIATE RESULTANT
We will use the Macaulay matrices [4, 22] for our determinant cir-
cuits to compute the resultant. There exist smaller matrices which
also lead to proof protocols, of possibly smaller prover complexity.
Candidate matrix constructions are Dixon matrices [6, 19] and ma-
trices for sparse systems [8, 14], to name a few of many. Here we
use Canny’s simple formulation as an illustration of the power of the
GKR protocol and our variant.

We consider a system of k homogeneous polynomials in k vari-
ables over a field F,
fi (�1, ...,�k )=

’
ei,1+· · ·+ei,k=di

f̃ (i, ei,1, ..., ei,k , c1, ..., cm )⇥

�
ei,1
1 ···�ei,kk 2F[�1, ...,�k ], 1ik ; (22)

note that we now use i for the i-th polynomial, not the input i. Let
dmax = max1ik (di ). In (22) the single function for the coefficients
f̃ ( ÆX , ÆE1, . . . , ÆEk , ÆC) represents a (k log(dmax))O (1)-depth algebraic
extension circuit, whose inputs are the binary digits of i, the binary
digits of the term exponents ei,1, . . ., ei,k , andm = (k log(dmax))O (1)

constants cµ from a field F (cf. Figure 1). If needed for the computa-
tion of f̃ , a subsequence of the constants could contain the bits of
the binary representation of k, d1, . . ., dk . From that subsequence
of constants one can then from the input i to f̃ compute the binary
representation of di by the circuit for

di = d̃(i, c1, . . . , cm ) = Õk
�=1 ˜equ(�, i)d� , (23)

In (23) the bits of all � are wired into d̃ from the input constants
c1 = 0 and c2 = 1, as are the bits of d� . The DAG structure test
functions are computable by the prover and verifier for the agreed
positions of the bits of d1, . . ., dk in c1, . . . , cm . Note that k is
implicit in the node labels of the circuit d̃.

We assume that f̃ evaluates to 0 if one or more of the ei,� <
0, as we will evaluate f̃ with such values in (27) below. In our
evaluations we will always have di = ei,1 + · · · + ei,k . An example
for coefficients which are representable by such circuits f̃ was given
in the abstract: f̃ (i, ei,1, . . . , ei,k , c1, . . . , cm ) = (i + ei,1 + · · · ei,k )!
/ (i! ei,1! · · · ei,k !); see Remark 2.6 how to achieve circuit depth
(k log(dmax))O (1).

Macaulay gives a matrixA[num] 2 FD⇥D and a submatrixA[den] 2
FD
0⇥D0 A[num] with entries the symbolic coefficients of (22) such that

the resultant of (22) is the polynomial det(A[num])/det(A[den]) (in
the symbolic coefficients) evaluated at the actual coefficient values.
The fundamental property is that the system (22) has a (projective)
zero, which is a common root , (0, . . . , 0), if and only if the resultant
is zero. Canny handles the difficulty that det(A[den]) may evaluate
to zero at the actual coefficient values by dividing the characteristic
polynomial of A[num] by the one of A[den], which correspond to the
resultant of the polynomial system for fi (�1, . . . ,�k ) � ��dii . We
have:
�

def
= 1 +

Õk
i=1(di � 1), D

def
=

��+k�1
k�1

�
,

D 0
def
= D � �, �

def
=

� Õk
i=1

Œ
i0,i di0

�
. (24)

Again, D are the dimensions of A[num], D 0 the dimensions of A[den]

and � the degree of the resultant in the coefficients of (22).
Our determinant protocol can certify the resultant in verifier com-

plexity O((logD)2), that is, (k log(dmax))O (1). We first describe a
circuit that computes the determinant of the larger matrix A[num].
We can wrap the circuits f̃ for the coefficients by circuits that with
input I , � return a

[num]
I, � , but then the verifier constructs the Macaulay

matrix for each input pair (I , � ). Instead, we construct a single cir-
cuit that at a certain level has D2 nodes with the values of a[num]

I, �
for f̃ for the larger Macaulay matrix A[num]. One can consider that
preparatory circuit as one decoder circuit in the sense of Figure 2.

The Macaulay construction labels the D rows of A[num] by all
terms ��11 · · ·��kk of total degree � . The columns are labeled by pairs
(i,��11 · · ·��kk ) with �1 + · · · + �k = � � di and �i0  di0 � 1 for all
1  i 0  i � 1 (Canny calls the terms “reduced in �1, . . . ,�i�1”).
There are exactly D such pairs, which we obtain as follows: for each
term �

�1
1 · · ·��kk with �1 + · · · + �k = � compute

i = min{i 0 | 1  i 0  k and �i0 � di0} (25)
(because of the value of � the set is non-empty) and the following
corresponding term:

�
�1
1 . . .�

�k
k = �

�1
1 · · ·��i�1i�1 �

�i�di
i �

�i+1
i+1 · · ·��kk . (26)

Note that the same vector [�1, . . . , �k ] may be associated with dif-
ferent i’s. We give an example for k = 3, d1 = 2, d2 = 2, d3 = 1 with
� = 3, D =

�3+2
2
�
= 10 (see [3, Resultant Example]).

Æ� [3,0,0] [2,1,0] [2,0,1] [1,2,0] [1,1,1]
(i, Æ� ) (1,[1,0,0]) (1,[0,1,0]) (1,[0,0,1]) (2,[1,0,0]) (3,[1,1,0])
Æ� [1,0,2] [0,3,0] [0,2,1] [0,1,2] [0,0,3]

(i, Æ� ) (3,[1,0,1]) (2,[0,1,0]) (2,[0,0,1]) (3,[0,1,1]) (3,[0,0,2])
The entry in A[num] for rows and columns labeled in the above
manner is then a

[num]
[�1, ...,�k ], [i, �1, ..., �k ] =

f̃ (i,�1 � �1, . . . ,�k � �k , c1, . . . , cm ). (27)
Our preparatory circuit has inputs d1, . . ., dk , which are represented
in binary, and the constants c1, . . . , cm . In the hybrid version those
constitute s`inp = k dlog2(dmax + 1)e +m input variables. In our GKR
protocol, the function eV`inp can then be evaluated by the verifier in
complexityO(k log(dmax))O (1). We first generate on a certain level a
block of D exponent vectors of all ��11 · · ·��kk with �1 + · · ·+�k = � .
1. Compute the individual exponent lists [0, . . . ,� ].
2. Combine the list to exponent vectors [�1, . . . , �k�1] with 0 
�i  � . There are (� + 1)k�1 such vectors which are produced by
passthru wiring in the circuit, whose DAG structure test functions
are computable by the prover and verifier.
3. Sort the vectors via a Batcher sorting network of log-squared
depth, with the comparison being the circuit for comparing the total
degrees �1 + · · · + �k�1 in binary.
4. Truncate the sorted list at the first D nodes via wiring and DAG
structure test functions.
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5. Append in an additional block of binary nodes for each vector
the exponent of the k-th variable �k = � � �1 � · · · � �k�1.

Note that we could have sorted the array [�1, . . . ,�k�1] of node
blocks with respect to a graded lexicographic order, which only
would affect the sign of the computed resultant.

The column labels (i, [�1, . . . , �k ]) are computed in a second
array of D node groups by filtering the first group by (25) and (26).
For that, the values di are required as circuits with input i, which
are constructed from the input values, which are made available by
passthru nodes, by an expression analogous to (23). At this point
one again could sort the pair of column indices lexicographically.
Leaving the column labels unsorted again only affects the sign of
the resultant. The entries in A[num] are then computed in D2 nodes
on a certain level by (27) pairing each of the nodes for [�1, . . . ,�k ]
with each of the nodes for (i, [�1, . . . , �k ]) by circuit wire. Note that
f̃ receives the arguments i and �� � �� from internal nodes and the
cµ from the input nodes by passthru. Those D2 nodes constitute the
input nodes to a determinant circuit of depth O((logD)2).

The submatrix A[den] of A[num] is constructed by deleting rows
and columns. The rows with labels [�1, . . . ,�k ] which are deleted are
those which have labels that are reduced for all but one component,
that is, for all those labels

91ik (dep. on the label) 81i 0k, i 0,i : �i0di0�1. (28)
By � in (24) we then have �i � di . It is easy to see that there are
� in (24) many such labels. For each deleted row, a corresponding
column is deleted, namely the column with the label matched to
the row label as above, that is, (i, [�1, . . . , �k ]) = (i, [�1, . . . , �i�1,
�i � di , �i+1, . . . , �k ]). In A[num], we have placed the coefficient of
�dii of fi , namely, f̃ (i, 0, . . . , 0,di , 0, . . . , 0, c1, . . . , cm ) in the entry
in the row and column thus identified. In the example above, there
are D 0 = 2 = 10� (2 · 2+ 2 · 1+ 2 · 1) remaining rows labeled [2,0,1]
and [0,2,1] and two remaining columns labeled by the corresponding
pairs (1,[0,0,1]) and (2,[0,0,1]) that constitute A[den]. For k = 2 we
have � = d1 + d2 � 1, D =

��+1
1
�
= d1 + d2, and � = d1 + d2, which

means that all rows and columns are removed and there is no A[den]

matrix. The matrix A[num] then is the classical matrix associated
with the Sylvester resultant. Our protocol is still remarkable in that
it certifies the Sylvester resultant, that is relative primeness of two
univariate polynomials, in (log(d1 + d2))O (1) verifier complexity.

We can compute an array of row labels of the submatrix A[den] by
filtering the list of row labels of A[num] by condition (28), placing a
high degree label where the condition fails, and then sorting the list.
The column labels for A[den] are computed exactly as for A[num] and
the entries a[den]

I, � the same way as well.
Following Canny [4], the resultant is found as the constant coeffi-

cient of the polynomial h(�) = det(A[num] � �I )/det(A[den] � �I ) of
degree �. We compute h using the NC circuits of Section 3 for the
characteristic polynomials, then perform a division [24]. Canny [4]
suggests to compute h from the � + 1 higher degree coefficients of
above characteristic polynomials. As seen in previous section this
can be achieved with circuits of sizeO(� 1

2D� ) if F has characteristic
0 or � � + 1. For the field F = Q and entries of bit length DO (1), as
is the case for our example in the abstract, the verifier first selects
a random prime p of length (logD)O (1) and executes the interactive
protocol in F = Zp . The initial constants cµ of f̃ in that situation
must be computable modulo p in (logD)O (1) bit complexity.
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