
Computing Krylov iterates in the time of matrix multiplication
Vincent Neiger

Sorbonne Université, CNRS, LIP6
F-75005 Paris, France

Clément Pernet
Univ. Grenoble Alpes, Grenoble INP

CNRS, LJK UMR 5224
Grenoble, France

Gilles Villard
CNRS, Univ. Lyon, ENS de Lyon, Inria,

UCBL, LIP UMR 5668
Lyon, France

ABSTRACT
Krylov methods rely on iterated matrix-vector products �:D 9 for
an = ⇥ = matrix � and vectors D1, . . . ,D< . The space spanned by all
iterates�:D 9 admits a particular basis — themaximal Krylov basis—
which consists of iterates of the �rst vector D1,�D1,�2D1, . . ., until
reaching linear dependency, then iterating similarly the subsequent
vectors until a basis is obtained. Finding minimal polynomials and
Frobenius normal forms is closely related to computing maximal
Krylov bases. The fastest way to produce these bases was, until
this paper, Keller-Gehrig’s 1985 algorithm whose complexity bound
$ (=l log(=)) comes from repeated squarings of � and logarithmi-
cally many Gaussian eliminations. Herel > 2 is a feasible exponent
for matrix multiplication over F. We present an algorithm comput-
ing the maximal Krylov basis in $ (=l loglog(=)) �eld operations
when < 2 $ (=), and even $ (=l) as soon as < 2 $ (=/log(=)2)
for some �xed real 2 > 0. As a consequence, we show that the
Frobenius normal form together with a transformation matrix can
be computed deterministically in $ (=l loglog(=)2), and therefore
matrix exponentiation�: can be performed in the latter complexity
if log(:) 2 $ (=l�1�Y), for Y > 0. A key idea for these improve-
ments is to rely on fast algorithms for< ⇥< polynomial matrices
of average degree =/<, involving high-order lifting and minimal
kernel bases.

1 INTRODUCTION
We present a new deterministic algorithm for the computation of
some speci�c Krylov matrices, which play a central role in deter-
mining the structure of linear operators. To a matrix � 2 F=⇥=
over an arbitrary commutative �eld F, a (column) vector D 2 F=
and a nonnegative integer 3 2 N, we associate the Krylov matrix
K3 (�,D) formed by the �rst 3 iterates of D through �:

K3 (�,D) =
⇥
D �D · · · �3�1D

⇤
2 F=⇥3 . (1)

More generally, to < vectors * = [D1 · · · D<] 2 F=⇥< and a
tuple 3 = (31, . . . ,3<) 2 N< , we associate the Krylov matrix

K3 (�,*) =
⇥
K31 (�,D1) · · · K3< (�,D<)

⇤
2 F=⇥ |3 | , (2)

where |3 | is the sum31+· · ·+3< . (Note that it will prove convenient
to allow< = 0 and 38 = 0.) Such matrices are used to construct
special bases of the �-invariant subspace

Orb(�,*) = SpanF ({�8D 9 , 8 2 N, 9 2 {1, . . . ,<}}) .

Indeed, for a given � and* there always exists a tuple 3 such that
the columns of K3 (�,*) form a basis of Orb(�,*) (Section 3.1.1).
In this paper, we focus on the computation of the unique such basis
of Orb(�,*) whose tuple 3 is the lexicographically largest one [11,
Sec. 5]. We call this 3 the maximal (Krylov) indices of Orb(�,*),
and the corresponding basis the maximal Krylov basis.

Our main result is a deterministic algorithm that computes the
maximal Krylov basis in $ (=l loglog(=)) �eld operations when
< 2 $ (=), where l > 2 is a feasible exponent for the cost of square
matrix multiplication over F [2, 23]. As soon as the number< of ini-
tial vectors in* is in$ (=/log(=)2) for some �xed 2 > 0, the bound
becomes simply$ (=l) (Theorem 4.1). This is an improvement over
the best previously known complexity bound $ (=l log(=)), for an
algorithm due to Keller-Gehrig [11]. In particular, to get down to
$ (=l), we avoid an ingredient that is central in the latter algorithm
and related ones, which is to compute logarithmically many powers
of � by repeated squaring (see Section 3.1.1).

Overview of the approach. The main idea is to use operations
on polynomial matrices rather than linear transformations. In this
direction, we are following in the footsteps of e.g. [26], where poly-
nomial matrix inversion is exploited to compute sequences of ma-
trix powers, and [15], where polynomial matrix normal forms and
block-triangular decompositions allow the e�cient computation of
the characteristic polynomial. A key stage we introduce consists in
transforming between left and right matrix fraction descriptions:

((G)) (G)�1 = (� � G�)�1* =
’
:�0

G:�:* , (3)

with (2 F[G]=⇥< and) 2 F[G]<⇥< . For < =, one may see
Eq. (3) as considering a compressed fraction description () �1 of
(� � G�)�1* , with larger polynomial degrees and smaller matrix
dimensions. The power series expansion of () �1, when suitably
truncated, produces a Krylov basis.

After some preliminary reminders on polynomial matrices in
Section 2, the �rst algorithms are given in Section 3. There, our con-
tribution is speci�cally adapted to the case where the compression
is fully e�ective, that is, when< is away from = (at least slightly,
see below). In this case, thanks to the kernel basis algorithm of [25]
and its analysis in [8, 15], appropriate (and) are computed using
$ (=l) arithmetic operations (Section 2.1).

The next steps are to determine the maximal indices and to
compute a truncated series expansion of () �1. First we explain in
Section 3.1 that the maximal indices of Orb(�,*) are obtained by
working, equivalently to Eq. (3), from certain denominator matrices
of (G���)�1* (see Eq. (4)). The indices are computed as diagonal de-
grees if the denominator is triangular (Lemma 3.1). It follows that a
Hermite form computation allows us to obtain them e�ciently [12].
We then give in Section 3.2 an algorithm for computing a Krylov
matrix K3 (�,*) for an arbitrary given 3 , which we will apply af-
terwards with the maximal indices for 3 . According to Eq. (3) and
given a tuple 3 = (31, . . . ,3<) 2 N< , this Krylov matrix can be
obtained from the expansion of () �1 with column 9 truncated mod-
ulo G3 9 for 1 9 <. To deal with the unbalancedness of degrees
and truncation order, this expansion is essentially computed us-
ing high-order lifting [21], combined with the partial linearization

ar
X

iv
:2

40
2.

07
34

5v
1

 [c
s.S

C
]

12
 F

eb
 2

02
4

https://orcid.org/0000-0002-8311-9490
https://orcid.org/0000-0001-6970-0417

Vincent Neiger, Clément Pernet, and Gilles Villard

technique of [6]. (To keep things concise in Section 3, details about
this are deferred until Section 6.) If < 2 $ (=/log(=)2), then the
maximal indices and K3 (�,*) for any 3 such that |3 | = $ (=) can
be computed using $ (=l) arithmetic operations.

Our general algorithm computing maximal Krylov bases is given
in Section 4. The ability to reduce the cost for certain<, as seen
above, allows to improve the general case< = $ (=) and obtain the
complexity bound$ (=l loglog(=)). Algorithm MaxKrylovBasis is
a hybrid one, using the Keller-Gehrig strategy as well as polynomial
matrices. In the same spirit as the approach in [11, Sec. 5], we start
with the computation of a partial Krylov basis K̃(�,*) from the
whole* , but for only a few iterations, i.e. up to degree 3̃ ⇠ log(=)2 .
This allows us to isolate $ (=/log(=)2) vectors for which iterations
should be continued. A maximal basis is then computed only from
these vectors, based on polynomial matrix operations. The �nal
maximal basis is obtained by appropriately merging the short and
long sequences of Krylov iterates henceforth available, via fast
Gaussian elimination [11, Sec. 4].

Frobenius normal form and extensions. Krylov matrices are a fun-
damental tool for decomposing the space F= with respect to a linear
operator (see e.g. [5, 19] for detailed algorithmic treatments), or lin-
ear dynamical systems [9, 10]. The Frobenius normal form and the
Kalman decomposition are brie�y discussed in Section 5. The best
known deterministic algorithm for the Frobenius form can be found
in [19, Prop. 9.27]; the employed approach reveals in particular that
the problem can essentially be reduced to computing $ (loglog(=))
maximal Krylov bases. The cost for the Kalman decomposition is
bounded by that of the computation of a constant number of Krylov
bases. Thus our results reduce the complexity bounds for these two
problems. Matrix exponentiation is also accelerated, as a direct
consequence of the cost improvement for the Frobenius normal
form [5, Thm. 7.3].

Computational model. Throughout this paper, F is an e�ective
�eld. The cost analyses consist in giving an asymptotic bound on
the number of arithmetic operations in F used by the algorithm. The
operations are addition, subtraction, multiplication, and inversion
in the �eld, as well as testing whether a given �eld element is zero.
We use that two polynomials in F[G] of degree bounded by 3 can be
multiplied using$ (3 log(3) loglog(3)) �eld operations [4, Chap. 8].
On rare occasions, mostly in Section 6, we use a multiplication time
function 3 7! M(3) for F[G] to develop somewhat more general
results [4, Chap. 8]. This multiplication time function is subject to
some convenient assumptions (see Section 6.1), which are satis�ed
in particular for an $ (3 log(3) loglog(3)) algorithm.

Notation. For an< ⇥ = matrix �, we write 08 9 for its entry (8, 9).
Given sets � and � of row and column indices, �� ,� stands for the
corresponding submatrix of �; we use ⇤ to denote all indices, such
as in�� ,⇤ or�⇤,� . Wemanipulate tuples3 2 (N[{�1})< of indices
or polynomial degrees, and write |3 | for the sum of the entries of the
tuple. For a polynomial matrix � 2 F[G]<⇥= , the column degree
cdeg (�) is the tuple of its column degrees max18< (deg08, 9), for
1 9 =.

2 KERNEL BASIS, HERMITE NORMAL FORM
We recall the complexity bounds for two fundamental problems
which we rely on: kernel basis and Hermite normal form. The more

technical presentation of some of the other ingredients needed to
manipulate polynomial matrices, such as truncated inversion, is
deferred to Section 6.

2.1 Minimal kernel basis
A core tool in Algorithms 1 and 2 is the computation of minimal
kernel bases of polynomial matrices [9, Sec. 6.5.4, p. 455]. Thematrix
fraction description in Eq. (3) can indeed be rewritten as

⇥
� � G� �*

⇤
(
)

�
= 0.

For a matrix � 2 F[G]=⇥< , its (right) kernel is the F[G]-module
formed by the vectors ? 2 F[G]< such that �? = 0; it has rank< �
rank(�). A kernel basis is said to be minimal if it is column reduced,
that is, its leadingmatrix has full column rank [9, Sec. 6.3, p. 384]. An
e�cient algorithm for minimal kernel bases was described in [25],
and its complexity was further analyzed in the case of a full rank
input � in [8, App. B] and [15, Lem. 2.10]. We will use the following
particular case of the latter result:

L���� 2.1. ([25, Algo. 1], and analyses in [8, 15].) Let � 2
F[G]=⇥ (<+=) have rank= and degree 1, with< 2 $ (=). There is an
algorithm MinimalKernelBasis which, on input � , returns a min-
imal kernel basis ⌫ 2 F[G] (<+=)⇥< for � using $ (=l) operations
in F. Furthermore, |cdeg (⌫) | =.

The complexity bound in [15] uses a multiplication time function
with assumptions that are satis�ed in our case (see [15, Sec. 1.1]).
Apart from supporting degree > 1, the three listed references above
also consider the more general shifted reduced bases [1]. The non-
shifted case is obtained by using the uniform shift B = (1, . . . , 1) 2
N<+= , for which B-reduced bases are also (non-shifted) reduced
bases. This shift does satisfy the input requirement B � cdeg (�)
and it has sum |B | = < + =; [25, Thm. 3.4] then guarantees that ⌫
has sum of B-column degrees at most< + =, which translates as
|cdeg (⌫) | =.

2.2 Hermite normal form
A nonsingular polynomial matrix � 2 F[G]<⇥< is in Hermite
normal form if it is upper triangular, with monic diagonal entries,
and all entries above the diagonal have degree less than that of
the corresponding diagonal entry: deg(⌘8 9) < deg(⌘88) for 1
8 < 9 <. Given a nonsingular matrix) 2 F[G]<⇥< , there is a
unique matrix � 2 F[G]<⇥< in Hermite normal form which can
be obtained from) via unimodular column operations, meaning
)+ = � for some + 2 F[G]<⇥< with det(+) 2 F \ {0}. It is called
the Hermite normal form of) .

In fact, in this paper we are only interested in the diagonal
degrees of the Hermite form (see Section 3.1.2). By the uniqueness
of the form (o�-diagonal degrees can always be reduced relative
to the diagonal ones), these degrees are the same for all triangular
forms unimodularly right equivalent to) .

L���� 2.2. ([12, Prop. 3.3].) Let) be nonsingular in F[G]<⇥< .
There is an algorithm HermiteDiagonal which takes) as input and
returns the diagonal entries (⌘11, . . . ,⌘<<) 2 F[G]< of the Hermite
normal form of) using $ (<l�1= log(=)21) operations in F, where
= = max(<, |cdeg ()) |) and 21 is a positive real constant.

Computing Krylov iterates in the time of matrix multiplication

The algorithm as described in [12, Algo. 1] works with an equiv-
alent lower triangular variation of the form. It involves two main
tools: kernel bases, whose cost does not have dominant logarithmic
factors (Lemma 2.1), and column bases [24], for which there is no
analysis of the number of logarithmic factors in the literature, to
the best of our knowledge. In Lemma 2.2 we introduce the latter as
a constant 21 > 0, and this remains to be thoroughly analyzed.

3 KRYLOV BASIS VIA POLYNOMIAL KERNEL
The key ingredients in our approach for computing Krylov bases
transform the problem into polynomial matrix operations. In this
section, we present two algorithms which involve matrix fraction
descriptions as in Eq. (3), or equivalent formulations (see also Ap-
pendix B). In Section 3.1, given � 2 F=⇥= and * = [D1 · · ·D<]
formed from< vectors in F= , Algorithm MaxIndices computes the
maximal Krylov indices of Orb(�,*). It exploits the fact that these
indices coincide with the degrees of certain minimal polynomial re-
lations between the columns of

⇥
G� �� �*

⇤
, allowing the use of

polynomial matrix manipulation tools. In Section 3.2, we consider
the problem of computing the Krylov matrix K3 (�,*) for a given
tuple 3 2 N< . Based on Eq. (3), after computing a kernel basis to
obtain (and) , Algorithm KrylovMatrix proceeds with a matrix
series expansion, using the truncation orders given by 3 .

Joining both algorithms, from � and * one obtains the maximal
Krylov basis of Orb(�,*), at a cost of $ (=l) �eld operations as
soon as the number< of vectors forming* is in$ (=/log(=)2). This
will be done explicitly in Lines 1 to 5 of Algorithm MaxKrylovBasis
in Section 4.

3.1 Computing the maximal indices
We begin in Section 3.1.1 with a brief reminder of a useful charac-
terization of the maximal Krylov indices in terms of linear algebra
over F. We then show how to reduce their computation to opera-
tions on polynomial matrices, by explaining that they coincide with
the degrees of certain polynomials in a kernel basis (Lemma 3.1).

Linear dependencies between vectors in Krylov subspaces are
translated into polynomial relations using the F[G]-module struc-
ture of F= based on GD = �D for D 2 F= [7, Sec. 3.10]. Some of
these dependencies in Orb(�,*) are given by the coe�cients of
the entries of the triangular matrices � 2 F[G]<⇥< such that

(G� ��)�1* = !��1 (4)

with ! 2 F[G]=⇥< [9, Sec. 6.7.1, p. 476]. In particular, if ! and � are
(right) coprime then the maximal indices of Orb(�,*) are given by
the diagonal degrees of� . We explain this in Section 3.1.2, consider-
ing equivalently that

⇥
!T �T⇤T is a kernel basis of ⇥G� �� �*

⇤
.

The computation of the indices follows in Section 3.1.3, it is a com-
bination of the kernel algorithm of [25] with the Hermite form
algorithm of [12].

3.1.1 Keller-Gehrig’s branching algorithm. The most e�cient al-
gorithm so far for computing the lexicographically largest tuple 3
such that K3 (�,*) is a Krylov basis is given in [11, Sec. 5]. For a
general * (< 2 $ (=)), the associated cost bound $ (=l log(=)) is
mainly due to raising� to powers in order to generate Krylov vector
sequences. A characterization of the maximal indices 3 which we
will need (a proof can be found in Appendix A), is used in particular

by Keller-Gehrig: for 1 9 <, 3 9 is the �rst integer such that

�3 9D 9 2 Span(D 9 ,�D 9 , . . . ,�3 9�1D 9) + Orb(�,*⇤,1.. 9�1) . (5)

A recursive construction allows independent and increasingly
long Krylov chains D 9 ,�D 9 , . . . ,�;D 9 , ; � 0, to be joined together in
order to reach the maximal basis of Orb(�,*); with independence
guaranteed by Gaussian elimination [11, Sec. 4]. We will return to
this in our general Krylov basis method in Section 4.

3.1.2 Links with Hermite normal form. The following is to be com-
pared with known techniques for matrix fraction descriptions [9,
Sec. 6.4.6, p. 424], or to a formalism occasionally used to e�ciently
compute matrix normal forms [22; 19, Chap. 9].

L���� 3.1. Given � 2 F=⇥= and * 2 F=⇥< , let
⇥
!T �T⇤T be

a kernel basis of
⇥
G� �� �*

⇤
such that � 2 F[G]<⇥< is upper

triangular. The matrix � is nonsingular and its diagonal degrees are
the maximal Krylov indices of Orb(�,*).

P����. We �rst note that (G� ��)�1*% is a polynomial matrix
with % upper triangular in F[G]<⇥< if and only if we have

? 9 9 (�)D 9 +
9�1’
8=1

?8 9 (�)D8 = 0, 1 9 <. (6)

In fact, using the expansion (G� ��)�1 = Õ
:�0

�:

G:+1
at G = 1, we

see that the coe�cient of 1/G:+1 in the 9 th column of the expansion
of (G� ��)�1*% is

deg? 9 9’
;=0

? (;)9 9 �
;+:D 9 +

9�1’
8=1

deg?8 9’
;=0

? (;)8 9 �
;+:D8 = 0,: � 0.

Here we have denoted the coe�cient of degree ; of ?8, 9 by ?
(;)
8 9 , for

1 8 9 <. Then the “if” direction is obtained with : = 0 since
the coe�cient of 1/G in the expansion of the polynomial matrix
(G� � �)�1*% is zero. Conversely, if Eq. (6) holds then it can be
multiplied by any power �: with : � 0. Thus the corresponding
coe�cients of 1/G:+1 are zero in the expansion of (G� ��)�1*% ,
which is thus a polynomial matrix.

Now let 3 be the maximal indices tuple, and let 30 be the tuple
of the diagonal degrees of � . We have that � is nonsingular hence
30 2 N< . Indeed, since ! = (G� � �)�1*� , �D = 0 for D < 0
would lead to

⇥
!T �T⇤T D = 0, which is impossible by de�nition

of bases.
To conclude the proof, we �rst show that 3 is lexicographically

greater than 30, and then the converse. The characterization of 3
given by Eq. (5) leads to linear dependencies as in Eq. (6), hence to %
with diagonal degrees given by 3 . Since (G� � �)�1*% is a poly-
nomial matrix, say ', the columns of

⇥
'T %T

⇤T are in the kernel
of

⇥
G� �� �*

⇤
and we must have % = �& for some polynomial

matrix & . Here we have used that
⇥
!T �T⇤T is a basis of the ker-

nel. Since both % and � are triangular we conclude that 3 is greater
than 30. On the other hand, considering � , we get dependencies as
in Eq. (6) with polynomials given by the entries of� . Again, thanks
to the characterization of 3 and the fact that the 3 9 ’s re�ect the
shortest dependencies, we �nally get that 30 is greater than 3 . ⇤

Vincent Neiger, Clément Pernet, and Gilles Villard

3.1.3 Algorithm MaxIndices. Let + 2 F[G]<⇥< be unimodular
such that � =)+ is in Hermite form. The matrix

⇥
!T �T⇤T =⇥

(T) T⇤T+ is also a kernel basis of
⇥
G� �� �*

⇤
, and the cor-

rectness of the algorithm follows from Lemma 3.1.

Algorithm 1 MaxIndices(�,*)
Input: � 2 F=⇥=,* 2 F=⇥<
Output: The tuple in N< of the maximal indices of Orb(�,*)
1: ù minimal kernel basis [25, Algo. 1] û

[()] MinimalKernelBasis([G� �� �*])
where (2 F[G]=⇥< and) 2 F[G]<⇥<

2: ù diagonal entries of the Hermite normal form û
(⌘11, . . . ,⌘<<) 2 F[G]< HermiteDiagonal()) ù [12, Alg. 1]

3: return (deg(⌘11), . . . , deg(⌘<<))

For the complexity bound, the kernel basis at Line 1 is computed
using $ (=l) arithmetic operations thanks to Lemma 2.1 when
< 2 $ (=). From Lemma 3.1, the resulting matrix) is nonsingu-
lar because its Hermite form is. Using Lemma 2.1 again we also
know that |cdeg ()) | =. In combination with Lemma 2.2 we get
that Line 2 can be achieved using $ (<l�1= log(=)21) operations
in F. In particular, as soon as the number of columns of * is in
$ (=/log(=)21/(l�1)) the complexity bound becomes $ (=l).

3.2 Computing a Krylov matrix
Hereafter, for a column polynomial vector E =

Õ
9 E 9G

9 2 F[G]<
and an integer 3 2 N, we denote its truncation at order 3 by

E rem G3 = E0 + E1G + · · · + E3�1G3�1 2 F[G]<

and the corresponding matrix of coe�cients by

coe�s(E,3) = [E0 E1 · · · E3�1] 2 F<⇥3 .
We extend this column-wise for" 2 F[G]<⇥: and 3 = (3 9) 9 2 N: ,
that is," rem G3 = ["⇤,1 rem G31 · · · "⇤,: rem G3:].

Algorithm KrylovMatrix uses polynomial matrix subroutines
at Lines 2 and 3. They are handled in detail in Sections 6.2 and 6.3.

L���� 3.2. Algorithm KrylovMatrix is correct. Assuming< 2
$ (=) and |3 | 2 $ (=), it uses $ (<l�2=2 log(=)4) operations in F.

P����. Knowing by Lemma 3.3 that) (0) is invertible (hence)
is nonsingular), the correctness follows from the series expansion

() �1 = (� � G�)�1* =
’
:�0

G:�:*

mentioned in Eq. (3); here the �rst equality comes from the kernel
relation [� � G� �*]

⇥
(T) T⇤T = 0, by construction in Line 1.

Since) (0) is invertible, Lines 2 and 3 compute % = (& rem G3 =
() �1 rem G3 , according to Propositions 6.3 and 6.4. The above
equation yields coe�s(%⇤, 9 ,3 9) = [D 9 �D 9 · · · �3 9�1D 9], hence
the correctness of the output formed at Line 4.

We turn to the complexity analysis. We assume< |3 | without
loss of generality: the columns of * corresponding to indices 9
with 3 9 = 0 could simply be ignored in Algorithm KrylovMatrix,
reducing to a case where all entries of 3 are positive.

Algorithm 2 KrylovMatrix(�,* ,3)
Input: � 2 F=⇥= ,* 2 F=⇥< , 3 = (31, . . . ,3<) 2 N<
Output: the Krylov matrix K3 (�,*) 2 F=⇥ (31+···+3<)

1: ù minimal kernel basis [25, Algo. 1] û
[()] MinimalKernelBasis([� � G� �*])
where (2 F[G]=⇥< and) 2 F[G]<⇥<

2: ù column-truncated inverse) �1 rem G3 , detailed in Section 6.2 û
& 2 F[G]<⇥< TruncatedInverse() ,3)

3: ù column-truncated product (& rem G3 , detailed in Section 6.3 û
% 2 F[G]=⇥< TruncatedProduct((,&,3)

4: ù linearize columns of % into a constant matrix and return û
return [coe�s(%⇤,1,31) | · · · | coe�s(%⇤,<,3<)] 2 F=⇥ |3 |

By Lemma 2.1, Line 1 uses $ (=l) operations in F and ensures
|cdeg () | =. In particular, |cdeg (() | = and |cdeg ()) | =.

The latter bound ensures that the generic determinantal degree
�()) is in $ (=) (see Lemma 6.1), hence we can use the second cost
bound in Proposition 6.3: Line 2 computes & =) �1 rem G3 using

$

✓
<l M

⇣ =
<

⌘ ✓
log(=) +

⇠ |3 |
=

⇡
log(<) log(|3 |)

◆◆
(7)

�eld operations. The second cost bound in Proposition 6.4 states that
Line 3 computes (& rem G3 using$ (<l�2=M(=+ |3 |)) operations
in F. Summing the latter bound with that in Eq. (7) yields a cost
bound for Algorithm KrylovMatrix when the only assumption on
3 is< |3 |. Now, assuming further |3 | 2 $ (=), the latter bound
becomes $ (<l�2=M(=)), whereas the one in Eq. (7) simpli�es as
$ (<l M(=<) log(=) log(<)). The claimed cost bound then follows
from M(=) 2 $ (= log(=) loglog(=)). ⇤

L���� 3.3. For) as in Line 1 of Algorithm 2,) (0) is invertible.

P����. Let ⌫ =
⇥
(T) T⇤T. As a kernel basis, ⌫ can be com-

pleted into a basis of F[G]<+= [13, Lem. 7.4, p148]: there is ⇠ 2
F[G] (<+=)⇥= such that det([⌫ ⇠]) = det([⌫(0) ⇠ (0)]) = 1. We
conclude by deducing that any vector E 2 F< such that) (0)E = 0
must be zero: from [� � *]⌫(0) = 0 we get ((0)E = 0, hence
⌫(0)E = 0, which implies E = 0 since [⌫(0) ⇠ (0)] is invertible. ⇤

4 PREPROCESSING OF SMALL INDICES
In this section we consider the case where the number< of vectors
to be iterated can be large, typically< = ⇥(=). In such a situation,
terms with logarithmic factors of the form $ (<l�1= log(=)21) or
$ (<l�2=2 log(=)4) in the cost of Algorithms 1 and 2 become dom-
inant.

Algorithm MaxKrylovBasis computes the maximal Krylov basis
of Orb(�,*). It involves a preprocessing phase based on the Keller-
Gehrig branching algorithm [11, Thm 5.1], which is terminated after
a small number ✓ of iterations. This ensures that after this phase,
no more than < = =/2✓ vectors still need to be iterated further,
which can then be performed by the algorithms of the Section 3.
Therefore setting 2 = max(4/(l � 2), 21/(l � 1)) ensures that with
✓ = d2 loglog(=)e and< = =/log(=)2 , Algorithms 1 and 2 will run
in $ (=l).

Computing Krylov iterates in the time of matrix multiplication

A direct call to the algorithms of Section 3 is made if< is su�-
ciently small, otherwise the for-loop at Line 11 performs the prepro-
cessing phase: ✓ loop iterations of the type used in [11, Sec. 5]. At
the end of this loop, the vectors to be further iterated are identi�ed
at Line 24. Since there are at most =/2✓ such vectors, we use our
polynomial matrix techniques to continue iterating on them. After
merging “long” (indices in �) and “short” (indices not in �) tempo-
rary sequences of iterates, the maximal basis is �nally obtained.

Algorithm 3 MaxKrylovBasis(�,*)
Input: � 2 F=⇥= ,* =

⇥
D1 . . . D<

⇤
2 F=⇥<

Output: the maximal Krylov basis of Orb(�,*)
1: 2 max(4/(l � 2), 21/(l � 1))
2: C log2 (=)2
3: if < =/C then
4: 3 MaxIndices(�,*)
5: KrylovMatrix(�,* ,3); return
6: end if
7: ✓ dlog2 (C)e
8: + (0) * ; X (1, . . . , 1) 2 Z<
9: ⌫ �
10: ù Preprocessing phase in a Keller-Gehrig fashion [11] û
11: for 8 0, . . . , ✓ � 1 do
12: Let + (8) =

h
+ (8)
1 + (8)

2 . . . + (8)
<

i
where

+ (8)
9 = KX 9 (�,*⇤, 9) 2 F=⇥X 9 .

13: Let � = { 9 2 {1, . . . ,<} | X 9 = 28 } = { 91 < · · · < 9B }
14:

h
, (8)
91

. . . , (8)
9B

i
 ⌫

h
+ (8)
91

. . . + (8)
9B

i
such that 91 < · · · < 9B 2 � .

15: , (8)
9 [] 2 F=⇥0 for 9 8 �

16: /
h
+ (8)
1 , (8)

1 . . . + (8)
< , (8)

<

i
17: C ColRankPro�le(/)
18: X (X1, . . . , X<) s.t. X 9 is maximal with

KX 9 (�,D 9) = /⇤,C\{1 ..1+X 9�1} for some 1.

19: + (8+1)
h
+ (8+1)
1 . . . + (8+1)

<

i
where

each + (8+1)
9 KX 9 (�,D 9) is copied from /

20: ⌫ ⌫2

21: end for
22: ù Here,+ (✓) = KX (�,*) and X = (X1, . . . ,X<) 2 {0, . . . , 2✓ }< is

lexico. maximal s.t. KX (�,*) has full rank. û
23: ù Further iterations for selected vectors, using polynomial matrices û
24: Let � = { 9 2 {1, . . . ,<}, X 9 = 2✓ } and B #�
25: 3 MaxIndices(�,*⇤,�)
26:

⇥
 91 . . . 9B

⇤
 KrylovMatrix(�,*⇤,� ,3)

27: ù Final merge û

28: 9 + (✓)
9 for all 9 8 �

29:
⇥
 1 . . . <

⇤
30: return ⇤,ColRankPro�le()

T������ 4.1. Algorithm MaxKrylovBasis is correct. If< = $ (=),
it uses $ (=l loglog(=)) operations in F, and if< = $ (=/log(=)2)
for the constant 2 > 0 in Line 1, it uses $ (=l) operations in F.

P����. As in Keller-Gehrig’s branching algorithm [11], the loop
invariant is + (8) = KX (�,*) with X 2 {0, . . . , 28 }< lexicographi-
cally maximal such that+ (8) has full rank. By induction, it remains
valid upon exiting the loop, as stated in Line 22. At this point, B = #�
is the number of vectors left to iterate. Indeed, 9 8 � means that a
linear relation of the type

�X 9D 9 2 Span(D 9 ,�D 9 , . . . ,�X 9�1D 9) + Orb(�,*⇤,1.. 9�1). (8)

has already been found.
A maximal Krylov basis for the subset of vectors given by �

is then computed using the algorithms of Section 3: the maxi-
mal indices are computed and then used as input to Algorithm
KrylovMatrix. All the Krylov iterates that form the matrix at
Line 29 are considered at higher orders than the �nal maximal ones,
because relations of the type Eq. (8) have been detected for all 9 . A
�nal column rank pro�le computation allows to know the maximal
indices and to select the vectors for the maximal basis.

The choice for the parameter C ensures that the for-loop is exe-
cuted using $ (=l loglog(=)) �eld operations. On the other hand,
Algorithms 1 and 2 are called with< = B =/2✓ =/log(=)2 , and
therefore run in $ (=l) �eld operations. ⇤

In addition, Algorithm MaxKrylovBasis can be adapted to com-
pute any Krylov basis K3 (�,*) where the indices 3 are additional
input to the algorithm. This only requires the two following modi-
�cations:

(1) Lines 17 and 18 should be replaced by
for all 9 2 � do

X 9 min(2X 9 ,3 9)
end for

(2) Line 30 should be replaced by
return

(3) remove Lines 4 and 25

C�������� 4.2. Given � 2 F=⇥=,* 2 F=⇥< and 3 2 N< with
<, |3 | in $ (=), the Krylov matrix K3 (�,*) can be computed us-
ing $ (=l loglog(=)) �eld operations, or $ (=l) operations if < =
$ (=/log(=)2) where 2 is a positive real constant.

5 FROBENIUS AND KALMAN FORMS
In this section, as a result of our new algorithms for Krylov bases,
we discuss some improved complexity bounds for problems imme-
diately related.

5.1 Frobenius normal form
Generically, the Frobenius normal form of an = ⇥ = matrix can be
computed using $ (=l) operations in F [11, Sec. 6; 17], and the ap-
proach in [17] mainly provides a Las Vegas probabilistic algorithm
in$ (=l). It is still an open question to obtain the same complexity
bound with a deterministic algorithm, and to also compute an asso-
ciated transformation matrix. Our results allow us to make some
progress on both aspects.

Since this is often a basic operation for these problems, we can
already note that from Lemma 3.1 and its proof, the minimal poly-
nomial of a vector D 2 F= can be computed in$ (=l). The minimal
polynomial is actually the last entry (made monic) of the kernel
basis vector of

⇥
G� �� �D

⇤
.

Vincent Neiger, Clément Pernet, and Gilles Villard

Our algorithms make it possible to obtain $ (=l) for the Frobe-
nius form with associated transformation matrix in a special case.
The general cost bound $ (=l loglog(=)) is achieved in [18, Theo-
rem 7.1] with a probabilistic algorithm. To have a transformation,
we can �rst compute the Frobenius form alone using $ (=l) op-
erations. If it has < non-trivial blocks and * 2 F=⇥< is chosen
uniformly at random, then we know that a transformation matrix
can be computed from the maximal Krylov basis ofOrb(�,*) using
$ (=l) operations [5, Thm. 2.5 & 4.3]. So we have the following.

C�������� 5.1. Let � 2 F=⇥= with #F � =2, and assume that its
Frobenius normal form has< 2 $ (=/log(=)2) non-trivial blocks. A
transformation matrix to the form can be computed by a Las Vegas
probabilistic algorithm using $ (=l) �eld operations.

The fastest deterministic algorithm to compute a transformation
to Frobenius form is given in [20] (see also [19, Chap. 9]), with a cost
of $ (=l log(=) loglog(=)). This cost is essentially $ (loglog(=))
computations of maximal Krylov bases, plus $ (=l) operations.

C�������� 5.2. Given � 2 F=⇥= , a transformation matrix to
Frobenius normal form can be computed using $ (=l loglog(=)2)
�eld operations.

Finally, once the Frobenius form is known and given an integer
: � 0, computing �: costs$ (=l) plus$ (log(:)M(=)) �eld opera-
tions (see e.g. [5, Cor. 7.4]). (As mentioned in the introduction of the
paper, 3 7! M(3) is a multiplication time function for F[G].) So the
cost is $ (=l loglog(=)2) if log(:) 2 $ (=l�1�Y). The evaluation of
a polynomial ? 2 F[G] at � can also be considered in a similar way,
using, for example, the analysis of [5, Thm. 7.3].

5.2 Kalman decomposition
The study of the structure of linear dynamical systems in control
theory is directly related to Krylov spaces and matrix polynomial
forms [9]. For example, the connection we use between maximal
indices and degrees in the Hermite form originates from this corre-
spondence.

Our work could be continued to show that the complexity bound
$ (=l loglog(=)) in Theorem 4.1 could be applied to the computa-
tion of a Kalman decomposition [10; 9, Sec. 2.4.2, p. 128]. This is
beyond the scope of this paper, so we will not go into detail about it
here. However, we can specify the main ingredient. Given � and *
with dimOrb(�,*) = a , we want to transform the system (�,*)
according to [9, Sec. 2.4.2, Eq. (11), p. 130]:

%�1�% =

�2 �1
0 �2

�
, %�1* =

*2
0

�
,

where �2 is a ⇥ a ,*2 is a ⇥<, and % is nonsingular in F=⇥= . The
matrix % can be formed by a Krylov basis of Orb(�,*) and a matrix
with = � a independent columns not in Orb(�,*). The general
decomposition is obtained by combining a constant number of such
transformations and basic matrix operations to decompose (�,*).

6 POLYNOMIAL MATRIX SUBROUTINES
We now detail the subroutines used in Algorithm KrylovMatrix.
Section 6.1 introduces some convenient notation for complexity
bounds. Section 6.2 combines high-order lifting [21] and partial
linearization [6] to compute truncated inverse expansions, while

Section 6.3 focuses on truncated matrix products. In both cases,
the di�culty towards e�ciency lies in the presence of unbalanced
degrees and unbalanced truncation orders.

6.1 Complexity helper functions
In this section, we brie�y recall notation and assumptions about cost
functions; for more details, we refer to [4, Chap. 8] for the general
framework, and to [21, Sec. 2] and [15, Sec. 1.1] for polynomial
matrices speci�cally.

In what follows, we assume �xed multiplication algorithms:

• for polynomials in F[G], with cost functionM(3) when the
input polynomials have degree at most 3 ;

• for matrices in F<⇥< , with cost $ (<l);
• for polynomial matrices in F[G]<⇥< , with cost function

MM(<,3) when the input matrices have degree at most 3 .

To simplify our analyses and the resulting bounds, we make the
same assumptions as in the above references. In particular, l > 2,
M(·) is superlinear, andMM(<,3) 2 $ (<l M(3)).

We will also use the function MM(<,3) from [21, Sec. 2]; as
noted in this reference, the above-mentioned assumptions imply
MM(<,3) 2 $ (<l M(3) log(3)).

6.2 Polynomial matrix truncated inverse
In Algorithm KrylovMatrix, Line 2 asks to compute terms of the
power series expansion of %�1, for an< ⇥< polynomial matrix %
with % (0) invertible. Customary algorithms for this task, depending
on the range of parameters (<, deg(%), truncation order), include
a matrix extension of Newton iteration [14; 4, Chap. 9], or matrix
inversion [26] followed by Newton iteration on the individual en-
tries.

Here, a �rst obstacle towards e�ciency comes from the het-
erogeneity of truncation orders: one seeks the �rst 3 9 terms of
the 9th column of the expansion of %�1, for some prescribed 3 =
(3 9) 9 2 N< which may have unbalanced entries. In the extreme
case 3 = (31, 0, . . . , 0), the task becomes the computation of many
initial terms of the expansion of %�1 [1 0 · · · 0]T, the �rst col-
umn of %�1. This is handled e�ciently via high-order lifting tech-
niques [21, Sec. 9]. Our solution for a general tuple 3 is to rely on
cases where the high-order lifting approach is e�cient, by splitting
the truncation orders into subsets of the type { 9 2 {1, . . . ,<} |
2:�1 |3 |/< < 3 9 2: |3 |/<}, for only logarithmically many values
of : . Observe that this subset has cardinality less than </2:�1:
higher truncation orders involve fewer columns of the inverse.

A second obstacle is due to the heterogeneity of the degrees in
the matrix % itself. In the context of Algorithm KrylovMatrix, %
may have unbalanced column degrees, but they are controlled to
some extent: their sum is at most = (the dimension of the matrix �).
Whereas such cases were not handled in the original description
of high-order lifting, the partial linearization tools described in [6,
Sec. 6] allow one to deal with this obstacle. For example, this was
applied in [16, Lem. 3.3], yet in a way that is not e�cient enough
for the matrices % encountered here: this reference targets low
average row degree for % , whereas here our main control is on the
average column degree. Here, following this combination of [21,

Computing Krylov iterates in the time of matrix multiplication

Sec. 9] and [6, Sec. 6], we present an algorithm which supports a
more general unbalancedness of degrees of % .

In the next two lemmas, we summarize the properties that we
will use from the latter references.

L���� 6.1 ([6, S��. 6]). Let % 2 F[G]<⇥< be nonsingular. Con-
sider its so-called generic determinantal degree �(%),

�(%) = max
c2S<

’
18<
�8,c8 <0

deg(�8,c8) |cdeg (%) |.

One can build, without using �eld operations, a matrix %̄ 2 F[G]<̄⇥<̄
of degree d�(%)/<e and size < <̄ < 3<, which is such that
det(%) = det(%̄) and %�1 is the principal< ⇥< submatrix of %̄�1.

L���� 6.2 ([21, S��. 9]). Algorithm SeriesSol [21, Alg. 4] takes
as input % 2 F[G]<⇥< of degree C with % (0) invertible,+ 2 F[G]<⇥= ,
and B 2 Z>0, and returns the expansion (%�1+) rem GBC using

$
⇣
log(B + 1)

lB=
<

m
MM(<, C) +MM(<, C)

⌘

operations in F. The term MM(<, C) comes from a call to [21, Alg. 1]
which is independent of+ , namely HighOrderComp(%, dlog2 (B)e�1).

P����. There is no operation needed when C = 0, i.e., for a
constant matrix % . For C > 0, this follows from [21, Prop. 15] and
the paragraph that precedes it, applied with - = GC . Indeed this
is a valid choice since - has degree deg(%) and is coprime with
det(%). The corresponding algorithm in [21] has two requirements
on B , which are easily lifted: it should be a power of 2 (one can
compute with the next power of 2, i.e. 2dlog2 (B) e , and then truncate
at the desired order) and it should be at least 4 (the case B 2 $ (1) is
handled in $ (d=/<eMM(<, C)) via a direct Newton iteration). ⇤

P���������� 6.3. Let % 2 F[G]<⇥< with % (0) invertible, and
let 3 = (3 9) 9 2 N< . Let C be the degree of the partially linearized
matrix %̄ as in Lemma 6.1, thus with C d�(%)/<e. Algorithm
TruncatedInverse uses $ (<l) operations in F if deg(%) = 0, and

$

✓
MM(<, C) +

⇠ |3 |
<C

⇡
MM(<, C) log(<) log

✓
< + |3 |

C

◆◆

operations in F if deg(%) > 0 (which implies C > 0). It returns
%�1 rem G3 , the power series expansion of %�1 with column 9 trun-
cated at order 3 9 . If = is a parameter such that< and �(%) are both
in $ (=), the above bound is in

$

✓
<l M

⇣ =
<

⌘ ✓
log(=) +

⇠ |3 |
=

⇡
log(<) log(< + |3 |)

◆◆
.

P����. When 3 = (0, . . . , 0), the algorithm performs no �eld
operations and returns the zero matrix (see Line 2). When 3 < 0 and
deg(%) = 0 (hence C = 0), Line 3 correctly computes %�1 rem G3 in
complexity $ (<l), which is within the claimed cost since<l 2
$ (MM(<, 0)). From here on, assume 3 < 0 and deg(%) > 0.

The sets �1, . . . , �< built at Line 6 are disjoint and, sincemax9 3 9
|3 | 2✓X , they are such that �1 [· · · [�< = {1, . . . ,<}. Note also
that the cardinality =: = #�: is less than</2:�1. We claim that at
the end of the :th iteration of the main loop, &⇤, 9 is the column
9 of the sought output %�1 rem G3 for all 9 2 �1 [· · · [�: , which
implies the correctness of the algorithm. This claim follows from
Lemma 6.1. Indeed, writing C = deg(%̄), since the principal< ⇥<

submatrix of %̄�1 is %�1, Line 20 computes, in the top< rows of � ,
all columns 9 2 �: of %�1 truncated at order d2:X/CeC , which is at
least the target order 3 9 . The subsequent Line 21 further truncates
to shave o� the possible extraneous expansion terms, and also se-
lects the relevant rows of � . Note that C > 0: if %̄ was constant, then
the principal< ⇥< submatrix of %̄�1 would be constant, i.e. %�1
would be constant, which is not the case since deg(%) > 0.

As noted in Lemma 6.2, the :th call to SeriesSol involves a
call to HighOrderComp, which does not depend on the matrix ⇢
at this iteration and which will re-compute the same high order
components as the previous iterations, plus possibly one new such
component. To avoid this redundancy, we pre-compute all required
high-order components before the main loop at Line 16.

As for complexity, only Lines 16 and 20 use arithmetic oper-
ations. The construction of %̄ in Lemma 6.1 implies det(%̄ (0)) =
det(%̄) (0) = det(%) (0) < 0, hence we can apply Lemma 6.2. Here,
%̄ is <̄ ⇥ <̄ with< <̄ < 3<, and C = deg(%̄) d�(%)/<e.

Hence, using notation B: = d2:X/Ce, the complexity is within

$

MM(<, C) +

✓’
:=1

log(B: + 1)
lB:=:
<

m
MM(<, C)

!
.

One can then use the upper bounds log2 (B: +1) ✓+1+log2 (dX/Ce)
and dB:=:/<e dB:/2:�1e = d2X/Ce to obtain

✓’
:=1

log(B: + 1)
lB:=:
<

m
2 $

⇣
dX/Ce

⇣
✓2 + ✓ log(dX/Ce)

⌘⌘
.

To obtain the claimed general cost bound, it remains to note that

✓2 + ✓ log(dX/Ce) 2 $ (log(<) log(<dX/Ce)) ,
with<dX/Ce 2 $ (< + |3 |/C). For the simpli�ed bound, we �rst use
C � 1 to bound log(< + |3 |/C) by log(< + |3 |). The assumptions on
the introduced parameter = allow us to write C 2 $ (=/<). In par-
ticular,MM(<, C) is in $ (<l M(=/<) log(=/<)), which is within
the claimed bound. It remains to observe that⇠ |3 |
<C

⇡
MM(<, C) 2 $

✓✓
1 + |3 |

<C

◆
<l M(C)

◆

✓ $
✓
<l M

⇣ =
<

⌘
+ |3 |
<
<l

M(C)
C

◆

✓ $
✓
<l M

⇣ =
<

⌘
+ |3 |
=
<l M

⇣ =
<

⌘◆
✓ $

✓⇠ |3 |
=

⇡
<l M

⇣ =
<

⌘◆
.

Here we have used the superlinearity assumption on M(·), which
gives us M(C)

C 2 $ (M(=/<)
=/<). ⇤

6.3 Polynomial matrix truncated product
P���������� 6.4. Given � 2 F[G]=⇥< , ⌧ 2 F[G]<⇥< , and 3 =

(3 9) 9 2 N< , Algorithm TruncatedProduct uses

$
©≠
´

’
0:<dlog2 (<) e

l
2:
=

<

m
MM

✓
2�:<, 2:

⇠
⇡

<

⇡◆™Æ
¨

operations in F and returns the truncated product (�⌧) rem G3 that
is, �⌧ with column 9 truncated at order 3 9 . Here, ⇡ is the maximum
between |3 | and the sum of the degrees of the nonzero columns of � . If
< is both in $ (=) and $ (⇡), this cost bound is in $ (<l�2=M(⇡)).

Vincent Neiger, Clément Pernet, and Gilles Villard

Algorithm 4 TruncatedInverse(%,3)
Input: % 2 F[G]<⇥< with % (0) invertible, 3 = (31, . . . ,3<) 2 N<
Output: the column-truncated inverse %�1 rem G3 2 F[G]<⇥<
1: & zero matrix in F[G]<⇥< ù stores the result
2: if 3 = (0, . . . , 0) then return &
3: if deg(%) = 0 then ù constant matrix inversion,$ (<l)
4: & %�1; &⇤, 9 0 for all 9 with 3 9 = 0; return &
5: end if
6: ù build partition of {1, . . . ,<} based on truncation order û
7: X |3 |/<; ✓ dlog2 (<)e
8: �1 { 9 2 {1, . . . ,<} | 3 9 2X}; =1 #�1
9: for : 2, . . . , ✓ do
10: �: { 9 2 {1, . . . ,<} | 2:�1X < 3 9 2:X}; =: #�:
11: end for
12: ù partial linearization, note that C = deg(%̄) > 0 û
13: %̄ 2 F[G]<̄⇥<̄ matrix built from % as in Lemma 6.1
14: C deg(%̄); for : = 1, . . . , ✓ do B: d2:X/Ce
15: ù store high-order components to avoid redundant iterations û
16: ⇠ HighOrderComp[GC] (%̄, dlog2 (B✓)e � 1) ù [21, Alg. 1]
17: ù main loop: iteration : handles&⇤,9 for 9 in �: û
18: for : 1, 2, . . . , ✓ do
19: ⇢ 2 F<̄⇥=: (�<̄)⇤,�: ù columns of <̄ ⇥ <̄ identity matrix
20: � 2 F[G]<̄⇥=: SeriesSol(%̄, ⇢, B:), using the pre-

computed high-order components ⇠ ù Lemma 6.2
21: &⇤,�: �rst< rows of � , all truncated at order (3 9) 92 �:
22: end for
23: return &

P����. For convenience, we denote by �: and �: the sets � and
� de�ned at the iteration : of the main loop of the algorithm. Let
also ' (:) be the matrix ' at the beginning of iteration : , and ' (✓)

be the output '. Let � (0::) = � rem G2
:X for 1 : ✓ , with in

particular � (0:✓) = � since max9 3 9 |3 | <X 2✓X .
At the beginning of the �rst iteration, ' (1) = (� (0)⌧) rem G3 =

(� (0:1)⌧) rem G3 . Then, to prove the correctness of the algorithm,
we let : 2 {1, . . . , ✓} and assume ' (:) = (� (0::)⌧) rem G3 , and we
show ' (:+1) = (� (0::+1)⌧) rem G3 .

First, consider 9 8 �: . The column 9 of ' (:) is not modi�ed by
iteration : , i.e. ' (:)⇤, 9 = ' (:+1)⇤, 9 . On the other hand, one has 3 9 < 2:X ,
hence � (0::) rem G3 9 = � (0::+1) rem G3 9 . We obtain

' (:+1)⇤, 9 = ' (:)⇤, 9 = (� (0::)⌧⇤, 9) rem G3 9 = (� (0::+1)⌧⇤, 9) rem G3 9 .

meaning that the sought equality holds for the columns 9 8 �: .
Now, consider 9 2 �: . For 8 8 �: , one has cdeg (�⇤,8) < 2:X , hence

� (:)⇤,8 = 0: it follows that � (:)⌧⇤, 9 = �
(:)
⇤,� ⌧� , 9 . Thus Line 9 computes

' (:+1)⇤, 9 ' (:)⇤, 9 +
⇣
(� (:)⇤,� ⌧� , 9) rem G3 9�2

:X
⌘
G2

:X

= (� (0::)⌧⇤, 9) rem G3 9 + (G2:X� (:)⌧⇤, 9) rem G3 9

= (� (0::+1)⌧⇤, 9) rem G3 9 .

This completes the proof of correctness.
For complexity, note that the de�nition of ⇡ gives #�: 2�:<

and #�: 2�:<; also, only Lines 4 and 9 use arithmetic operations.

At Line 4, we �rst compute � (0)⌧ , then truncate. The left and
right matrices in this product are respectively = ⇥< of degree < 2X ,
and< ⇥< with sum of column degrees <X . The product can be
performed by expanding the columns of ⌧ into 2< columns all
of degree X , which leads to the complexity $ (d =< eMM(<, X)).

At Line 9, the multiplication by a power of G is free. The sum
consists in adding two matrices with = rows and with column
degrees strictly less than (3 9) 92 �: entry-wise. This costs $ (= |3 |)
operations in F at each iteration, hence $ (✓= |3 |) in total. Using
the trivial lower bound on MM(·, ·) shows that this is within the
claimed overall cost bound:

✓= |3 |
✓�1’
:=0

=⇡
✓�1’
:=0

l
2:
=

<

m
(2�:<)22:

⇠
⇡

<

⇡

2 $

✓�1’
:=0

l
2:
=

<

m
MM

✓
2�:<, 2:

⇠
⇡

<

⇡◆!
.

Finally, for the truncated product, we �rst multiply � (:)⇤,�:⌧�: ,�:
and then truncate. The left matrix in this product has = rows,
 2�:< columns, and degree < 2:X . The right matrix has row
and columns dimensions both 2�:<, and sum of column degrees
 |3 |. The product can be performed by expanding the columns
of ⌧�: ,�: into 21�:< columns all of degree |3 |/(2�:<) 2:X ,
which leads to the complexity $ (d2: =< eMM(2�:<, 2:X)). Sum-
ming the latter bound for : 2 {1, . . . , ✓ � 1}, and adding the term
: = 0 for Line 4, yields the claimed cost bound.

The �nal simpli�ed complexity bound follows from the assump-
tions mentioned in Section 6.1: MM(`, X) is in $ (`l M(X)),M(·)
is superlinear, and l > 2 implies that the sum

Õ
0:<✓ 2: (2�l) is

bounded by a constant. ⇤

Algorithm 5 TruncatedProduct(� ,⌧,3)
Input: � 2 F[G]=⇥< , ⌧ 2 F[G]<⇥< , 3 = (31, . . . ,3<) 2 N<
Output: the column-truncated product (�⌧) rem G3 2 F[G]=⇥<
1: W sum of the degrees of the nonzero columns of �
2: ⇡ max(|3 |,W); X d⇡/<e; ✓ dlog2 (<)e
3: write � = � (0) +Õ

1:<✓ � (:)G2
:X with each � (:) in F[G]=⇥< ,

deg(� (:)) < 2:X for 1 : < ✓ , and deg(� (0)) < 2X
4: ' 2 F[G]=⇥< (� (0)⌧) rem G3 ù stores the result
5: for : 1, . . . , ✓ � 1 do
6: � {8 2 {1, . . . ,<} | cdeg (�⇤,8) � 2:X}
7: � { 9 2 {1, . . . ,<} | 3 9 � 2:X}
8: 4 (3 9 � 2:X) 92 �
9: '⇤,� '⇤,� +

⇣
(� (:)⇤,� ⌧� ,�) rem G4

⌘
G2

:X

10: end for
11: return '

Computing Krylov iterates in the time of matrix multiplication

REFERENCES
[1] B. Beckermann, G. Labahn, and G. Villard. 2006. Normal forms for general

polynomial matrices. J. Symbolic Comput. 41, 6 (2006), 708–737. https://doi.org/
10.1016/j.jsc.2006.02.001

[2] R. Duan, H. Wu, and R. Zhou. 2023. Faster Matrix Multiplication via Asymmetric
Hashing. In Proceedings 64th IEEE Symposium on Foundations of Computer Science
(FOCS). 2129–2138. https://doi.org/10.1109/FOCS57990.2023.00130

[3] F. R. Gantmacher. 1960. The Theory of Matrices. Volume one. Chelsea Publishing
Company. https://bookstore.ams.org/chelgantset

[4] Joachim von zur Gathen and Jürgen Gerhard. 1999. Modern computer alge-
bra. Third edition 2013. Cambridge University Press. https://doi.org/10.1017/
CBO9781139856065

[5] M. Giesbrecht. 1995. Nearly Optimal Algorithms for Canonical Matrix
Forms. SIAM J. Comput. 24, 5 (1995), 948–969. https://doi.org/10.1137/
S0097539793252687

[6] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. 2012. Triangular G-basis
decompositions and derandomization of linear algebra algorithms over [G]. J.
Symbolic Comput. 47, 4 (2012), 422–453. https://doi.org/10.1016/j.jsc.2011.09.006

[7] N. Jacobson. 2009. Basic Algebra I. Dover Publications Inc. https://store.
doverpublications.com/0486471896.html Second Edition W.H. Freeman 1985.

[8] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. 2017. Computing minimal
interpolation bases. J. Symbolic Comput. 83 (2017), 272–314. https://doi.org/10.
1016/j.jsc.2016.11.015

[9] T. Kailath. 1980. Linear Systems. Prentice-Hall.
[10] R.E. Kalman. 1963. Mathematical Description of Linear Dynamical Systems.

Journal of the Society for Industrial and Applied Mathematics, Series A: Control 1,
2 (1963), 152–192. https://doi.org/10.1137/0301010

[11] W. Keller-Gehrig. 1985. Fast algorithms for the characteristic polynomial. The-
oretical computer science 36 (1985), 309–317. https://doi.org/10.1016/0304-
3975(85)90049-0

[12] G. Labahn, V. Neiger, and W. Zhou. 2017. Fast, deterministic computation of the
Hermite normal form and determinant of a polynomial matrix. J. Complexity 42
(2017), 44–71. https://doi.org/10.1016/j.jco.2017.03.003

[13] S. Lang. 2002. Algebra (revised third edition). Springer-Verlag New-York Inc.
https://doi.org/10.1007/978-1-4613-0041-0

[14] R. T. Moenck and J. H. Carter. 1979. Approximate algorithms to derive exact
solutions to systems of linear equations. In Proceedings International Symposium
on Symbolic and Algebraic Manipulation (Eurosam) (LNCS 72). 65–73. https:
//doi.org/10.1007/3-540-09519-5_60

[15] V. Neiger and C. Pernet. 2021. Deterministic computation of the characteristic
polynomial in the time of matrix multiplication. J. Complexity 67 (2021), 101572.
https://doi.org/10.1016/j.jco.2021.101572

[16] V. Neiger and T. X. Vu. 2017. Computing canonical bases of modules of univariate
relations. In Proceedings ISSAC 2017 (Kaiserslautern, Germany). ACM, 357–364.
https://doi.org/10.1145/3087604.3087656

[17] C. Pernet and A. Storjohann. 2007. Faster Algorithms for the Characteristic
Polynomial. In Proceedings ISSAC 2007. ACM, 307–314. https://doi.org/10.1145/
1277548.1277590

[18] C. Pernet and A. Storjohann. 2007. Frobenius form in expected matrix multiplica-
tion time over su�ciently large �elds. Technical Report. https://cs.uwaterloo.ca/
~astorjoh/cpoly.pdf

[19] A. Storjohann. 2000. Algorithms for Matrix Canonical Forms. Ph. D. Disserta-
tion. Institut für Wissenschaftliches Rechnen, ETH-Zentrum, Zurich, Switzer-
land. https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/
145127/eth-24018-02.pdf

[20] A. Storjohann. 2001. Deterministic computation of the Frobenius form. In Pro-
ceedings 42nd IEEE Symposium on Foundations of Computer Science (FOCS). IEEE,
368–377. https://doi.org/10.1109/SFCS.2001.959911

[21] A. Storjohann. 2003. High-order lifting and integrality certi�cation. J. Symbolic
Comput. 36, 3-4 (2003), 613–648. https://doi.org/10.1016/S0747-7171(03)00097-X

[22] G. Villard. 1997. Fast Parallel Algorithms for Matrix Reduction to Normal Forms.
Appl. Algebra Eng. Commun. Comput. 8, 6 (1997), 511–537. https://doi.org/10.
1007/s002000050089

[23] V.V. Williams, Y. Xu, Z. Xu, and R. Zhou. 2024. New Bounds for Matrix Multipli-
cation: from Alpha to Omega. In Proceedings ACM-SIAM Symposium on Discrete
Algorithms (SODA). 3792–3835. https://doi.org/10.1137/1.9781611977912.134

[24] W. Zhou and G. Labahn. 2013. Computing Column Bases of Polynomial Matrices.
In Proceedings ISSAC 2013. ACM, 379–386. https://doi.org/10.1145/2465506.
2465947

[25] W. Zhou, G. Labahn, and A. Storjohann. 2012. Computing Minimal Nullspace
Bases. In Proceedings ISSAC 2012 (Grenoble, France). ACM, 366–373. https:
//doi.org/10.1145/2442829.2442881

[26] W. Zhou, G. Labahn, and A. Storjohann. 2015. A deterministic algorithm for
inverting a polynomial matrix. J. Complexity 31, 2 (2015), 162–173. https:
//doi.org/10.1016/j.jco.2014.09.004

A DECOMPOSITION OF THE SPACE F=
The following is part of the basic material when studying the behav-
ior of a linear operator � and the decomposition of F= into cyclic
subspaces [3, Chap. VII], which corresponds to the diagonal matrix
form of Smith and the block diagonal form of Frobenius. The same
concepts can also be used for decompositions associated with the
triangular form of Hermite [22;19, Chap. 9], or more general forms
such as column reduced ones [9, Sec. 6.4.6, p. 424].

Existence of a Krylov basis. Let � 2 F=⇥= and * 2 F=⇥< , and for
1 9 <, let 3 9 is the �rst integer such that

�3 9D 9 2 Span(D 9 ,�D 9 , . . . ,�3 9�1D 9) + Orb(�,*⇤,1.. 9�1) . (9)

We prove that the columns of K3 (�,*) form a basis of Orb(�,*).
Given a subspace E ✓ F= invariant with respect to �, we say

that two vectors D, E 2 F= are congruent modulo E if and only
if D � E 2 E, and we write D ⌘ E mod E. For a �xed D, the set
of polynomials ? 2 F[G] such that ? (�)D ⌘ 0 mod E is an ideal
of F[G], generated by a monic polynomial which is the minimal
polynomial of D modulo E. In particular, if ? (�)D ⌘ 0 mod E, then
@(�)D ⌘ 0 mod E for all multiples @ 2 F[G] of ? .

The proof of Eq. (9) is by induction on<. For one vector, 31 is
the �rst integer such that

(G31) (�) = �31D1 ⌘ 0 mod Span(D1,�D1, . . . ,�31�1D1) .

Therefore all the subsequent vectors (G31G:) (�) = �31+:D1 with
: � 0 are zero modulo K31 (�,D1) which then forms a basis of
Orb(�,D1). Then assume that the property holds for all * of col-
umn dimension< � 1:K3 (�,*) is a basis ofOrb(�,*). For E 2 F< ,
let 3<+1 be the smallest integer so that �3<+1E is a combination of
the previous iterates of E and the vectors inOrb(�,*). By analogy to
the case< = 1, all subsequent vectors�3<+1+:E are also linear com-
binations of the vectors in Span(E,�E, . . . ,�3<+1�1E) + Orb(�,*) .
So the latter subspace isOrb(�, [* , E]), and by induction hypothesis
the columns of K3<+1 (�, E) and K3 (�,*) form one of its bases.

Maximal Krylov indices. The tuple 3 constructed this way is lex-
icographically maximal so that K3 (�,*) is a basis of Orb(�,*).
The existence of an ; such that (301, . . . ,30; , . . .3

0
<) is another suit-

able tuple with 30; < 3; would indeed contradict the fact that 3;
corresponds to the smallest linear dependence.

B A SLIGHTLY DIFFERENT ALGORITHM
Thematrices G��� and ��G� considered in Algorithm MaxIndices
and Algorithm KrylovMatrix mirror each other. As we explain be-
low, G��� could also be used to compute a Krylovmatrix. Algorithm
KrylovMatrix provides a small simpli�cation by considering ��G�
instead.

Consider a minimal kernel basis
⇥
(T) T⇤T of ⇥G� �� �*

⇤
as

in Algorithm MaxIndices. Since (G� ��)�1* is strictly proper and
(= (G� ��)�1*) , the column degrees in) are greater than those
in (, and) is column reduced since the kernel basis is (Lemma 2.1).
Let 3 9 be the degree of the 9th column of) . Substituting 1/G for G
in (G� ��)(�*) = 0, and multiplying on the right by the diagonal
matrix Gdiag(31,...,3<) we get

(� � G�)((1/G)Gdiag(31�1,...,3<�1) �*) (1/G)Gdiag(31,...,3<) .

https://doi.org/10.1016/j.jsc.2006.02.001
https://doi.org/10.1016/j.jsc.2006.02.001
https://doi.org/10.1109/FOCS57990.2023.00130
https://bookstore.ams.org/chelgantset
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1137/S0097539793252687
https://doi.org/10.1137/S0097539793252687
https://doi.org/10.1016/j.jsc.2011.09.006
https://store.doverpublications.com/0486471896.html
https://store.doverpublications.com/0486471896.html
https://doi.org/10.1016/j.jsc.2016.11.015
https://doi.org/10.1016/j.jsc.2016.11.015
https://doi.org/10.1137/0301010
https://doi.org/10.1016/0304-3975(85)90049-0
https://doi.org/10.1016/0304-3975(85)90049-0
https://doi.org/10.1016/j.jco.2017.03.003
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/3-540-09519-5_60
https://doi.org/10.1007/3-540-09519-5_60
https://doi.org/10.1016/j.jco.2021.101572
https://doi.org/10.1145/3087604.3087656
https://doi.org/10.1145/1277548.1277590
https://doi.org/10.1145/1277548.1277590
https://cs.uwaterloo.ca/~astorjoh/cpoly.pdf
https://cs.uwaterloo.ca/~astorjoh/cpoly.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/145127/eth-24018-02.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/145127/eth-24018-02.pdf
https://doi.org/10.1109/SFCS.2001.959911
https://doi.org/10.1016/S0747-7171(03)00097-X
https://doi.org/10.1007/s002000050089
https://doi.org/10.1007/s002000050089
https://doi.org/10.1137/1.9781611977912.134
https://doi.org/10.1145/2465506.2465947
https://doi.org/10.1145/2465506.2465947
https://doi.org/10.1145/2442829.2442881
https://doi.org/10.1145/2442829.2442881
https://doi.org/10.1016/j.jco.2014.09.004
https://doi.org/10.1016/j.jco.2014.09.004

Vincent Neiger, Clément Pernet, and Gilles Villard

By de�nition of the3 9 ’s, the right term above is a polynomial matrix,
say*)̂ . Noticing that the 9th column of (is zero if 3 9 = 0, we also
have that the left term is a polynomial matrix (� � G�)(̂ . It follows
that the columns of

⇥
(̂T)̂ T⇤T are in the kernel of

⇥
� � G� �*

⇤
,

and we can now also verify that they form a basis. Since
⇥
(T) T⇤T

is itself a minimal basis, it is irreducible i.e. is of full rank for all
�nite values of G [9, Thm6.5-10, p. 458]. Equivalently, (and) are
coprime [9, Lem. 6.3-6, p. 379], so there exists + unimodular such
that +

⇥
(T) T⇤T =

⇥
� 0

⇤T. It follows that
+ (1/G)Gdiag(1,...,1,0,...,0)

(̂
)̂

�
=

�
0

�
Gdiag(31,...,3<) ,

and since+ is unimodular, the rank of
⇥
(̂ (G0)T)̂ (G0)T

⇤T is full for
all values G0 < 0 of G . The fact that) is column reduced adds that
)̂ (0) is nonsingular, which means that

⇥
(̂T)̂ T⇤T is irreducible.

By irreducibility ([9, Thm6.5-10, p. 458] again, here after column
reduction), we get as announced that

⇥
(̂T)̂ T⇤T is a kernel basis

of
⇥
� � G� �*

⇤
We see that Algorithm KrylovMatrix could therefore be modi-

�ed using the same kernel basis as in Algorithm MaxIndices, and
by inserting an instruction to work with)̂ afterwards.

	Abstract
	1 Introduction
	2 Kernel basis, Hermite normal form
	2.1 Minimal kernel basis
	2.2 Hermite normal form

	3 Krylov basis via polynomial kernel
	3.1 Computing the maximal indices
	3.2 Computing a Krylov matrix

	4 Preprocessing of small indices
	5 Frobenius and Kalman forms
	5.1 Frobenius normal form
	5.2 Kalman decomposition

	6 Polynomial Matrix subroutines
	6.1 Complexity helper functions
	6.2 Polynomial matrix truncated inverse
	6.3 Polynomial matrix truncated product

	References
	A Decomposition of the space F**n
	B A slightly different algorithm

