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Abstract. We probabilistically determine the Frobenius form and thus
the characteristic polynomial of a matrix A € F"*" by O(unlog(n))
multiplications of A by vectors and O (un®log®(n)loglog(n)) arithmetic
operations in the field F. The parameter p is the number of distinct
invariant factors of A, it is less than 34/n/2 in the worst case. The method
requires O(n) storage space in addition to that needed for the matrix A.

1 Introduction

The known complexity estimates of the computation of the characteristic poly-
nomial and a fortiori, of the Frobenius normal form of special — sparse or black
box — square matrices A over a field F, seem to not be satisfactory. We refer
to Kaltofen [8, Open Problem 3] and to Pan et al. [16,15] for discussions on
this subject and survey of current solutions. We denote by M(n) the number of
operations in IF required for n x n matrix multiplications. The characteristic poly-
nomial of a general matrix A can be computed at cost of O(n?) or O(M(n)logn)
operations by the method of Keller-Gehrig [10]. The Frobenius normal form can
be computed in O(n?®) as achieved by Storjohann [19,20] and Storjohann and
the author [21] while the randomized Las Vegas algorithms of Giesbrecht [7] and
of Eberly [3, §4.3] give the best known asymptotic complexity O(M(n)logn).
The problem we address is to reduce these estimates when A is sparse or more
generally, given by a fast (faster than O(n?)) matrix-vector multiplication.

If we rely on the bound M(n) < 2n3 —n?, the worst case estimate for sparse
matrices was O(n?), not better than in the general case. Our paper decreases the
bound to O(unlog(n)) products of A by vectors and O (un? log®(n) log log(n))
arithmetic operations in F where p is the number of distinct invariant factors
of A. Since i is less than 3./n/2, we gain a factor almost /n if multiplying A by
a vector costs nlogo(l) operations. The algorithm is Monte Carlo randomized,
it succeeds with high probability if the field contains a large enough number of
distinct elements compared to the dimension of the matrix (see Theorem 3).

Faster solutions exist for particular classes of sparse matrices. A first partic-
ular class is given by matrices A defined with their s(n)-separator families, the
characteristic polynomial can be computed in O(n?) 4+ nM (s(n)) operations as
shown by Reif [17] or Pan et al. [16,15]. Up to a logarithmic factor with the stan-
dard matrix multiplication, we reach this estimate even when s(n) = O(y/n).



In this framework of separable matrices it is not known how to compute the
Frobenius normal form.

Another particular class of matrices is formed by those having few invariant
factors. Let us call v the number of non-trivial (non equal to one) invariant
factors of A. If v = 1, i.e. if the characteristic polynomial is equal to the minimum
polynomial, then Wiedemann [22] has shown that the characteristic polynomial
is computed at cost of O(n) multiplications of A by vectors and O(n?) additional
operations in F (which could be generalized to any value of v using a block
method). The Eberly’s algorithm [4] does not require the knowledge of v, has
cost sensitive to v and applies to the computation of the Frobenius form. Eberly
obtains the normal form by O(n) multiplications of A and AT by vectors and
O(vn?) operations over IF with an additional requirement of O(n?) storage space.
His method also provides a corresponding transition matrix. Our result gives a
better cost for large values of v and thus in the worst case where v = O(n), but
we do not provide a transition matrix. By reducing the problem to computing
minimum polynomials we require only O(n) storage space for elements of F in
addition to the storage of A.

The paper is organized as follows. The Frobenius form of A is computed
as the list of the p distinct invariant factors together with the multiplicities
m;, 1 < ¢ < p, at which they appear in the characteristic polynomial. We
first study in Section 2 the effect of a perturbation A + B, with B of rank £,
on the Frobenius form of A. Section 3 extends the result to random Toeplitz
perturbations B on which we rely for the final complexity. We then prove in
Section 4 that computing any of the invariant factors reduces to computing the
minimum polynomials of A and of A + B for B of rank given by the index
of the target invariant factor. Finally, the Frobenius form itself is computed at
Section 5. It is found by a binary search of the p invariant factor degree changes
using random Toeplitz perturbations. We refer to Gantmacher for the classical
definitions of the invariant factors of matrices over F"*™ or F[z]"*" in relation
with the Frobenius normal form [6, Chap. 7 §5] or with the Smith normal form [6,
Chap. 6 §2].

2 Rank-k Perturbations

For a given matrix A € F**™ many relationships are known between the invari-
ant factors of A and those of A 4+ B, in particular we have:

Lemma 1. Ifsq,...,s, are the invariant factors of A and if B has rank k then
the invariant factors o1,...,0, of A+ B satisfies:
5i|0'i+k, i:l,...,n—k. (1)

Proof. Let U and V be unimodular matrices in F[z]"*" such that U(z — A)V
is in Smith normal form S = diag(sy, s2,...,sn) and let R be unimodular in
TF[2]"*™ such that the last n—k rows of R(U BV) are zero. We define the matrix



T, equivalent to x — A — B, by:

M % .. x
X X
T=RS—R({UBV) = € Fla]™*"
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L On—k,151 IR @ R I

where the “x” stand for any elements in F[z] and the a; ;’s are in F[z]. Let T

be the matrix formed by the last n — k rows of 7" and let its first n — k linearly
independent columns be those indexed by ji, ..., jn—k. Considering the left Her-
mite normal form of T, we know that for a matrix W € F[z](» %)% T is left
equivalent to diag(s;,,...,s;,_,)W. Thus for W € F[z]"*", T is equivalent to
diag(1,...,1,s5,...,85,_,)W. Since the invariant factors of two non-singular
matrices divide the invariants factors of the product — see Newman [14, The-
orem I1.14], the invariants factors o1,...,0, of T and thus of « — A — B are
respectively divisible by 1,...,1,s;,,...,5;._,. Thus s;, divides 0,4, and since
Ji > ¢ implies that s; divides s;,, s; also divides oy, for 1 <i<n—k. O

In addition to this knowledge on the invariant factors, informations on the
characteristic polynomial may be obtained following Lidskii’s theory [12] and
the construction of Moro et al.[13, §2]. Let A € T**" be in Jordan normal form

diag(J, J') where

J=diag(Ji', Jyt, o0 U Iy Ty €T
gives all the Jordan blocks
Al
o p—
1
A
arranged in decreasing dimensions 71 > r9 > ... > 1, associated to a given

eigenvalue A. We denote by u! and v/, 1 < j <l and 1 <i < g;, the canonical
vectors which are right (column) and left (row) eigenvectors in " associated to
the block J;7. For an integer 1 < s <1 and B € "*" we define &, by:

&, = .B.[uH...|uél|...|ui|...|ugs]EFdSXdS,ds:ql—i—...—l—qs.




Let us note that @ is a sub-matrix of @,,; and of B. Now, for an integer k,
1 <k <n, we define ¥ and ¥;, by:

v =[] W= if1<k<q,
V=@ gand ¥, =&, ifqr+...+qso1 <k<q+...4qs,
W;::Wk:@l ifql—l—...—l—ql<k’§n.

As previously, ¥} is a sub-matrix of ¥, they are both sub-matrices of B. Lidskii’s
conditions on particular minors of ¥y and thus of B give relations between the
characteristic polynomial of A and the one of A + ¢B:

Lemma 2. Let B be of rank k. Let X be the sum of all determinants of k x k
principal sub-matrices of Wy, that contain W[, taking the sum of the k x k principal
minors of U if 1 <k < qu and X, = Xy 4. 4q fork>q + ...+ q. Then for
k<q+...4+q we have

xx(z,e) = det ((l‘ +A)— (fl + EB)) = (—l)kc/Zkekxp(k) + B(x, e)xp(k)'l'l (2)

where ¢ is nonzero in the algebraic closure T of F, p(k) is the sum of the di-
mensions of the q1 + ...+ q — k smallest (last) Jordan blocks of J and 8 is in
Flz,€]. For k> q1 4 ...+ q, taking p(k) =0, we have

X (2, €) = det ((l‘ +A)— (fl + EB)) = ((—l)éc/Z,; + a(e)e) e +zB(z,¢) (3)

where k = q1+ ...+ qi, ¢ and B are as above and o € F[e] has degree k — k—1.

Proof. Since B has rank k there is no power of ¢ greater than k in the de-
terminant, this gives the bound on the degree of a. We begin with the case
k<qg 4+ ...+ q. By Lemma 1, with B of rank k, at least ¢1 + ...+ q — k
invariant factors of A are factors of the characteristic polynomial of A+ B thus
2P) divides y»(z,¢). We adapt the arguments of Moro et al. [13, Theorem 3.1]
to show that the terms in z?*)€’, i < k, are zero and to compute the coefficient
of €+,

For a given i we begin to compute the lowest possible power 2! involved
with €. The terms in y»(z,¢) are products of n factors that are elements of
(x4 X)) — (fl + EB) in different rows and columns. To produce €', n — i factors
free of € must be taken in x + A — J or # + A — J'. We look at the possible
contributions for the term in 2?(¢’. The factors may be “z” or “—1” from the
part corresponding to —J, or “x”, “A— X" or “~1” from the part corresponding
to —J' where X stands for any eigenvalue of J'. Define ¢ys = A — X # 0. The
“¢” contributing to x°() must come from the —.J part because otherwise the
corresponding terms with “ex/” would contradict the fact that p(7) is minimum.
Let j be the number of “¢” contributing to ¢ and taken in the —J part. If 3
factors “—17 are taken in the —J part from 5 different Jordan blocks then also
B+~ factors “a” are excluded (from the same rows and columns) to choose the
remaining factors in the —J part. Since » — j — 3 factors “@” from the —J part



will be in the term we have (r—j—8)+ (B+v)=r—j+v <randy <j. To
produce the lowest possible power p(7) of x, the term must be formed by taking
all the “—1” from j blocks among the largest Jordan blocks of J and j must be
as large as possible thus equal to i. The term must be completed by r —i — 3
factors “z” from the —J part and by all the factors “cx/” from the —J' part to
not introduce additional “€”.

We may conclude as done by Moro et al. [13]. The lowest power p(i) is the sum
of the dimensions of the ¢; + ...+ ¢; — i smallest blocks of J. Thus for ¢ < k there
is no term in 2’ If we delete the rows and the columns corresponding to the
factor “—1” and “z” from the —J part for the term in 2°*)e* the remaining
elements are in —eWy. The different possible ways to choose i largest Jordan
blocks in J give the different k x k principal minors to sum and give (—1)* 3.
The constant ¢’ is the product [,,(A — A’) taken over all the eigenvalues (with
their multiplicities) of J'.

For k > ¢q1+...4¢q;, similar arguments show that the lowest power of ¢ in the
constant term of x 1s k= q1+...+¢q and give the corresponding coefficient. 0O

We now apply both Lemma 1 and Lemma 2 for a general A + ¢qB:

Theorem 1. Let P be such that P~' AP is in Jordan normal form. Let Ay, ..., s
be the distinct eigenvalues of A. Let B be of rank k. We denote by FEM(E) the

factor of #xr®) in (2) or of F 20 in (3) for A = X;, 1 < j < 4, and for
B = P~'BP. If the invariant factors of A are s1,..., s, and if

§
A pleo) = eo [ TP (c0) #0 (4)
j=1
foreq inTF* | then the invariant factors of A4eq B arety, ... ta, s1lk41, .., Sn—kin

where the t;’s are polynomials in F[z] relatively prime to the characteristic poly-
nomial of A thus also to s1,...,8n_k.

Proof. The existence of the ¢;’s is given by Lemma 1. We have to prove their
relative primeness to the characteristic polynomial of A. This may be deduced
locally at each eigenvalue A;, 1 < j < 4. Indeed, if (4) holds then by Lemma 2,
the valuation of xx,(z,¢) in z is exactly p(k). Since p(k) is the valuation of
H::lk s;(x 4+ Aj), A; cannot be a zero of t;, 1 < i < n, otherwise the valuation
would be strictly greater. ad

3 Rank-k Toeplitz Perturbations

For any given matrix A, we first prove that condition (4) is generically satisfied
when B is a product of two Toeplitz matrices:



Lemma 3. Let (1, ...,C oyh—1 and &1, ... Enqr—1 be 2(n+ k — 1) distinet inde-
terminates over F. Let B =UYV be the product of the two Toeplitz matrices

[ C” Cﬂ-l-l Cn+k—1_
Cn—l Cn Cn+k—2 & €k+1 ......... €n+k—1
U= , V= 51@71 &k ”‘:":"€n+’k—2 (5)
G Crrt & & &n
LG o G

of F[C1y ..o Caar)* and of Ty, ..., Enqn]*>™. Then for any given A € T?*",
Ay, 15 a nonzero polynomaial in FlC1, ... Engr1,€]. Its degree in ¢ is at most
n(k—1)+1 and its coefficient AS,)B of degree 1 in € is nonzero in F[C1, ..., Enqn_i]
of total degree at most 2n.

Proof. We denote by ZEM the quantity X of Lemma 2 for A= X;, 1 < j <4,

and B = P~!BP. We prove that AS)B and thus A4 5 is nonzero. It is equivalent
to show that any ZEM 18 nonzero since — up to a nonzero constant — their product

gives AS)B. By definition, ¥¥ Iy is a sum of k x k (or k x 127) minors built on

different rows and columns of P~'BP. For a matrix A and sets I, J of indexes,
we denote by Ar j the determinant of the sub-matrix of A built on the rows
whose indexes are in I and columns whose of indexes in J. By the Binet-Cauchy
formula — see Gantmacher [6, p9], the k x k minor of P=!BP built on sets I and

J is:
D= Z Z PI_iBL,MPM,J

L=A{l,... Ik} M={my,...,mp}
1<h<... <l <n1<m <...<mp<n

Now, if the terms of the sum EkB,Aj are built on (71, Jy),...(I,,J,) then

E?,Aj = ZDi = ZZZPI_,}LBL,MPM,J, = ZZ (Z PI_MILPM,J,) Br m.
i=1 L M =1

i=1 L M

Using ideas similar to those Kaltofen and Pan [9, Theorem 2], to prove that
the latter sum is non zero we observe that there exist sets Lg and My with

> PI_,ILDPMD,L # 0 and that the By a’s are linearly independent over IF. Indeed,

it 3, PI_MlLPMVJl = 0 for all L and M then Zi(P(_l)TP)Iqu = 0 for any
matrix 7. But taking 7' = PEP~! with F a matrix whose only k x k nonzero
minor is Fr, . for some ip, 1 < ig < 4, S(PEVTPY 5 = Er, 5., # 0.
Therefore, Ly and My exist as announced. For the independence of the Br ar’s,
let us first notice that:

B = UV)p yr = Ur g1, 03 Vin, k) M



We may view these minors of I and V as polynomials in F[¢q, ..., (nyk—1] and
F[&1, ..., Enyk—1] with lexicographically ordered terms using the variable orders

Cnmkt1 > .. >0 >0, Cnokg1 > ... >8> 6.

For given L = {ly,..., I} and M = {my,..., my}, the diagonal terms

Cn—ll+1 . Cn—12+2 et Cn—lk+k and €k+m1—1 . €k+m2—2 et gmk

are the lexicographically smallest terms in the minor expansions of Uy, 11, 1}
and of Vyy . x1,m and uniquely correspond to I and M thus the polynomials
Br,aur are linearly independent over [F. This establishes that A(l)B and Ay p
are nonzero polynomials. Moreover, each $5 Y has degree at most two times
the number of Jordan blocks with elgenvalue /\ thus their product has total
degree at most 2n. By the definition of the Fk)\j in Theorem 1 and by the

degree bound for « in (3), F,fAj has degree in € at most k¥ minus the number
dy; of Jordan blocks with eigenvalue A; thus the product A4 s has degree in €
at most 1+ 5 . (k—dy;) <nk—n+1. O

Lemma 3 indicates that the condition of application of Theorem 1 is generi-
cally satisfied for a special class of matrix B, for random such perturbations it
follows that:

Theorem 2. Let A be a matriz in T**™ with invariant factors s, . .., s, € F[z]
and let S be a finite subset of F. Let U € F"** and V € F**" be Toeplitz
matrices — as in (5) — with entries chosen uniformly and independently from S.
The minimum polynomial of A+ B = A4+UV is s,_xt, wheret € F[z] has degree
less than ZZ—k+1 deg s; and is relatively prime to the minimum polynomial of A,
with probability at least 1 — (nk +n 4+ 1)/|S|.

Proof. By Lemma 3, AE4 )B has degree bounded by 2n. Therefore, using the
Schwartz-Zippel Lemma [18 Lemma 1], if the indeterminates (1, ..., Cookt1,
&1, ..., &n_k41 are replaced by uniformly and independently chosen elements
in S to give B = UV € IF"*" then Al )B is nonzero with probability at least
1—2n/|S|. The same argument then gives that for a uniformly and independently
chosen €y in S, Ay p(ep) is nonzero with probability at least 1 — (2n + nk —n +
1)/IS| > 1=(nk+n+1)/|S|. Theorem 1 implies that the minimum polynomial of
A+egB is s, _pt, where t is relatively prime to the characteristic polynomial of A.
In case of successful random choices, ¢y must be nonzero thus the probability
bound is valid for A + B. Theorem 1 also implies that the remaining invariant

factors are t1,ta, ..., S1lk41,...,Sn—k—1tn—1, their product has degree at least
Tf_k_l deg s; which, taking the degree of s,_j into account, proves the degree
bound for ¢. a

4 Computing One of the Invariant Factors

For convenience we denote by f; the (n — i 4 1)-th invariant factor of A. If v
invariant factors are non-trivial (not equal to one) then the polynomials f; are



the characteristic polynomials of the v blocks of the Frobenius form of A, f;11]f;
and if deg f; = d; then Z;’:l d; = n. Theorem 2 reduces the computation of f; to
the computation of the minimum polynomial of A and of A+ B for B of rank i—1:

Function InvFact

Input: anindex 1 <7 <n.
Output: the invariant factor f;.

Compute the minimum polynomial f; of A and if ¢ = 1 return f;
Choose random Toeplitz matrices U and V of rank k =i — 1 as in (5)
Compute g the minimum polynomial of A + UV

Return ged(f1,9)- |

Since the function InvFact consists in computing two minimum polynomials,
many results are available for its cost analysis, especially:

Lemma 4. Let S be a subset of . The degree d and the coefficients of the
minimum polynomial of A € FT**" may be probabilistically computed by O(d)
multiplications of A by vectors and O(dn) arithmetic operations in . The al-
gorithm returns correct answers with probability at least 1 — 2d/|S| and requires
O(n) space in addition to that required for the matriz coefficient.

Proof. The version of Lanczos’s method given by Lambert [11, Algorithm 3.5.1],
for two input vectors ucyrr and veurr, provides a factor of the minimum polyno-
mial within the announced cost and space bounds. As proved by Kaltofen and
Pan [9, Lemma 2], if vcypr and veyyr are randomly chosen with entries in S then
the computed factor coincides with the minimum polynomial with probability
more than 1 — 2d/|S|. O

This lemma together with the function InvFact gives the following.

Lemma 5. Let A € T"*" and S C F. We may probabilistically compute the
(n—1i+1)-th invariant factor f; of A by computing O(dy+da+. ..+ d;) multipli-
cations of A by vectors and O ((d1 +da + ...+ d;)nlog(n) loglog(n)) arithmetic
operations in F. The algorithm returns f; with probability at least 1 — (n? 4+ 5n +
/1Sl

Proof. By Theorem 2, with probability at least 1 —(n?+n+1)/|S|, the minimum
polynomial ¢ of A+ UV is fit with d = degg < dy + ...+ d;. In addition, ¢ is
relatively prime to fi and f;|f1 thus ged(f1,¢9) = ged(f1, fit) = fi. The cost of
the matrix-vector multiplications in the computation of ¢ dominates the overall
cost. By Lemma 4, O(d) multiplications of A+ UV by vectors are needed. For a
vector u, (A+ UV)u = Au+ (U(Vu)), the cost of one multiplication is thus the
cost of one multiplication by A plus two times the cost of multiplying a Toeplitz
matrix by a vector. This latter operation reduces to polynomial multiplication —
see Bini and Pan [1, p133] — and costs O(nlog(n) loglog(n)) using the algorithm
of Cantor and Kaltofen [2]. This proves the first assertion. By Theorem 2 and
Lemma 4, the probability that the algorithm fails can be bounded by ((n? +n +
)+ 2x2d)/]S| < (n? +5n+1)/|9). ad



5 Computing the Frobenius Normal Form

The Frobenius normal form of A is computed as the set of the invariant factors
of A. Each invariant factor may be computed by the function InvFact. To reduce
the overall cost of the computation we remark that in case of repeated invariant
factors it is sufficient to explicitly compute only one of them and their number.
For A having exactly u distinct invariant factors ¢;, our algorithm Frobenius will
precisely compute few copies of each ¢; (a logarithmic number) together with
the powers m; at which they appear in the characteristic polynomial, so that:

Xa =670 o, Gigalen 1< < p (6)

We denote by (;Sl(l), .. .,(/)Z(»m’) the m; copies of each ¢;, 1 < i < pu. We develop a
binary search using rank-k perturbations to detect that — for every ¢; — a rank-
k'l(l) perturbation provides qbl(»l) and that a rank—k’l(m’) provides (/)Z(»m’) = (;Sl(l).
From where everything will be known since then the multiplicities m; must be
kl(m’) — k'l(l) + 1. To know that f; is qbl(»l) or (/)Z(»m’) for some 7 1s equivalent to
know that f;_1 # f; or f; # fi+1 (fo = fay1 = 0). This leads to the function
SearchThresholds which recursively computes, for two different invariant factors
fiand fn,, I < m, a decomposition of fifit1...fm

fifir o fn = 3D D,

1 ®
e =f, gl = f, ™
o =e == = 1<i<n,

1/)i+1|1/)ia 1 S i < K,
as a partial decomposition (6).

Function SearchThresholds

Input: [(1, fi), (m, fm)], I < m.
Output: [l1, 01, ..., e, ] **  The decomposition (7) **

Ifl=m-1
if fi = fim then Return [2, fi]
(a) if fi # fm then Return [1, fi, 1, fi]

ko= [(1 4 m)/2]

(b) fx :=InvFact(k)
(c) Tf fi # fx then [k1, %1, ..., kr,1r] := SearchThresholds((l, f;), (k, fx))
(d) else r:=1, [klﬂ/)l] = [k’tl—l—l,fl]
() If fi # fm then [my, 91, ..., mys, ¢s] := SearchThresholds((k, fx ), (m, fm))
(d) else s := 1, [my, 1/;1] =[m—k+1,f]
*¥ [ere, i), = 1/;1 *ok
Return [ky, 1, ... ke +my — 1,00, ma, o, ..., my, 1hs]. O

The function basically finds all the threshold indexes j such that f; # fj41,
I < j < m. They are found at step (a) — with j = [, 4+ 1 = m — which is



the deepest level of the recursion. The multiplicities I; of the invariants factors
at accumulated at each level when it is discovered — at steps (d) and (d’) —
that for two indexes — (I, k) or (k,m) — the corresponding invariant factors are
identical. Let us bound the number of recursive calls to the function and thus
the number of invariant factor computations by InvFact at step (b). Since k is
an index bound of the created search intervals, the function may go through (b)
with fi # fr and fi # fm at most £ — 2 times. In this latter situation, a new
invariant factor fi 1s found. Then, at its deeper levels, the binary search will
refine at most two intervals with index bounds corresponding to invariant factors
identical to fi. The function will thus go O(>_;_, logl;) times through (b) and
either through (c) or (¢’), this may be bounded by O(xlog(m —1)).

Since decompositions (6) and (7) coincide for I = 1 and m = n, the Frobenius
normal form can be computed by:

Algorithm Frobenius

Input: A e F">7,
Output: the Frobenius normal form of A (decomposition (6)).

J1 := InvFact(1)
fn = InvFact(n)
SearchThresholds((1, f1), (n, fn)). |

Before giving the final theorem we may run the algorithm on an example.

Example 1. Let us compute the Frobenius normal form of
r20 3 0 3 07
02-10-10
003010 6x6
“=loo1210|%Y

00-20 00

LOO 0 0 0 2]

The first call to InvFact gives the minimum polynomial f; = 2% — 3z + 2 of A.
For Toeplitz matrices

r1 0 3 1-117
r3 1 —42 1 27
2 1 031
0 3 1 —42 1
4 2 103
Us = WVei=|-10 3 1 —4 2
24 210
3 -10 3 1 —4
3 -24 21
L1 3 -10 3 1|
|5 3 —24 2 |




of rank n — 1 = b5, the second call to InvFact computes the minimum polynomial

gof A+ UsVs:
g(x) = 2% 4+ 28 2° + 612" — 16993 2° — 499329 2% + 1938360 = — 434012.

Since g is relatively prime to fi, fn = f6 = gcd(f1,9) = 1. The call to the
recursive function SearchThresholds then leads to the execution:

- SearchThresholds((1, 2% — 3z + 2), (6, 1))
k=4, fr=2—2
.- SearchThresholds((1, 22 — 3z + 2), (4,2 — 2))
Mk=3 fs=2—-2
.- SearchThresholds((1, 2% — 3z + 2), (3,2 — 2))
k=2, fo=uw—2
... SearchThresholds((1, z? — 3z + 2), (2,2 — 2))
i # f
(a) Return [1,2? -3z 42,1,z — 2]
<o (d”) fa = f3, found [2,2 — 2]
Return [1,22 — 32 +2,2,2 — 2]
o (d) fs = fa, found [2,2 — 2]
Return [1,22 — 3z + 2,3, 2 — 2]
-+ SearchThresholds((4, z — 2), (6, 1))
k= 5, f5 =xr—2
< (d) fa=f5, found [2,2 — 2]
-+ SearchThresholds((5,z — 2), (6, 1))
Is# fs
(a) Return [1,2—2,1,1]
Return [2,2 — 2,1,1]
Return [1,22 — 32 +2,4,2 —2,1,1].

The numbers of dots indicate the levels of the recursion and the labels (a), (d)
or (d’) — corresponding to the definition of SearchThresholds — are given for the
deepest levels. The (*) indicates one of the steps (b) and thus one of the internal
calls to InvFact. Here, for k& = 3, InvFact(3) generates two Toeplitz matrices of
rank k — 1 = 2, for instance:

o 31
12
0 1 16-12 13
Uy = Vs = .
30 416 -121
-1 3
[ -1 -1

The minimum polynomial of A 4+ UsV; is
g=x*—422% + 349 2% + 80 2 — 1236,



this implies that fs = ged(f1,9) =2 — 2.
The resulting list [1, 22 — 3z + 2,4, 2 — 2,1, 1] provides the invariant factors
of A:

hi=a®=30+2 fo=fa=fa=fr=x—-2fs=1
according to identities (7). O

Theorem 3. Let A € F"*" and S C F. If A has p distinct invariant factors then
we may probabilistically compute the Frobenius normal form of A by computing
O(pnlog(n)) multiplications of A by vectors and O (pun? log®(n) log log(n)) arith-
metic operations in F. Since p is always less than 3\/n /2, this gives O(n®/?log(n))
multiplications of A by vectors plus O (n5/2 log?(n) log log(n)) operations in the
worst case. The algorithm returns the correct answer with probability at least
1 —O(n®?logn)/|S| and requires O(n) storage space in addition to that neces-
sary to store the input matriz.

Proof. Taking into account the invariant factors equal to one, the number p of
distinct invariant factors must satisfy:

(n=1)+(p=2)+...+ 1< deg(d1) +deg(d2) + ...+ deg(du-1) <n,

thus p is less than 3y/n/2. The execution of Frobenius will generate O(y/nlog(n))
calls to InvFact. Lemma 5 then imply the cost and storage assertion. In the same
way, the failure probability is in O(n? x \/nlogn). ad

Our strategy, based on rank-k perturbations combined to binary searches,

may be applied in other situations. A paper of Eberly, Giesbrecht and the au-
thor [5] demonstrates the technique over the integers.

Acknowledgements. Grateful thanks to Erich Kaltofen for his questions.
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