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A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an
arbitrary !eld. When the degrees of these polynomials are bounded by n, the algorithm uses O(n1.43) !eld
operations, breaking through the 3/2 barrier in the exponent for the !rst time. The previous fastest algebraic
algorithms, due to Brent and Kung in 1978, require O(n1.63) !eld operations in general, and n3/2+o(1) !eld
operations in the special case of power series over a !eld of large enough characteristic. If cubic-time matrix
multiplication is used, the new algorithm runs in n5/3+o(1) operations, while previous ones run in O(n2)
operations.

Our approach relies on the computation of a matrix of algebraic relations that is typically of small size.
Randomization is used to reduce arbitrary input to this favorable situation.
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1 INTRODUCTION
1.1 Problem and Result
Many fundamental operations over univariate polynomials of degree at most n with coexcients
in a commutative ring A can be computed in a number of arithmetic operations in A that is quasi-
linear in n [26]. It is the case for multiplication, division with remainder by a monic polynomial,
multipoint evaluation, interpolation at points whose diberences are units in A, and greatest com-
mon divisors when A is a !eld.

Implementations of Algorithms 3.1 to 8.1 are available at https://github.com/vneiger/faster_modular_composition_
SageMath, based on the SageMath software (version ≥ 9.4 is required and is freely available at https://www.sagemath.org/).
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11:2 V. Neiger et al.

In contrast with these operations, improving the cost bound for modular composition is a long-
standing open question. Given three polynomials a, f ∈ A[x] and д ∈ A[y], with deg(a) < n and
deg(д) < n where n = deg(f ), and with f monic, this problem is to compute д(a) rem f , where
the “rem” operation takes the remainder of the Euclidean division.

Motivation. This operation arises in a variety of contexts. For instance, with f = xn , it amounts
to power series composition. For many applications of power series, composition is the bottleneck.
This is the case for power series reversion, which can then be reduced to composition with a small
overhead [17]. This is also the case of further operations such as solving families of functional
equations [32].

The application of certain algebra morphisms also translates to modular composition. Over a
!eld K, for f and a in K[x], we denote by a mod f ∈ K[x]/〈f 〉 the class of a modulo f . Then, for
e and f in respectively K[y] and K[x], and for a K-algebra morphism ϕ : K[y]/〈e〉 → K[x]/〈f 〉, if
ϕ(y mod e) = a mod f then for д in K[y], the image ϕ(д mod e) is equal to д(a) mod f .

Over !nite !elds, with e and f the same polynomial and ϕ the Frobenius endomorphism, this
results in modular composition playing an important role in algorithms for polynomial factor-
ization [27, 48, 49]. Dedicated algorithms exist for modular composition over !nite !elds, with
quasi-linear complexity (they are discussed later). Still, there remains a variety of questions that
can be considered over arbitrary !elds, and which are impacted by modular composition (or closely
related operations such as power projection, discussed later as well): computing the minimal poly-
nomial of an algebraic number [69–71], normal bases computations [30, 49], arithmetic opera-
tions with two algebraic numbers [12], computing with towers of algebraic extensions [36, 65, 66],
Riemann–Roch space computations [1, 2], and so on.

Previous algorithms. The most famous algorithm in this area is that of Kedlaya and Umans, which
achieves complexity n1+ϵ log1+o(1)(q) bit operations for any given ϵ > 0 [52, Corollary 7.2] when
the !eld K is the !nite !eld Fq . In contrast, we deal with an arbitrary !eld K and count arithmetic
operations in K. In this context, the known algorithms have much higher complexity estimates.

Modular composition can be performed using Horner’s algorithm with modular reduction at
each stage, which leads to a complexity in Õ(n2) operations if fast polynomial multiplication is used.
The notation c ′ = Õ(c) means that c ′ = O(c logk (c)) for some k > 0; in other words, logarithmic
factors are dropped.

In 1978, Brent and Kung gave two algorithms that perform composition modulo xn (the case of
power series) [16, 17]. One relies strongly on Taylor expansion and runs in Õ(n3/2) operations; the
other one, using a baby steps/giant steps approach, uses O(n(ω+1)/2) + Õ(n3/2) operations, where
ω ≤ 3 is a feasible matrix multiplication exponent (twon(n matrices can be multiplied inO(nω ) op-
erations; the best known bound is 2.371552 [3, 22, 77]). This latter algorithm works verbatim and in
the same complexity for composition modulo an arbitrary polynomial f of degree n not restricted
to be xn [27]. Both these algorithms have remained essentially the best ones since then. Huang
and Pan used fast rectangular matrix multiplication in the central step of the baby steps/giant
steps algorithm to reduce its complexity to O(nω2/2) + Õ(n3/2) [41], where ω2 ≤ ω + 1 is a feasible
exponent such that a n ( n2 matrix can be multiplied by a n2 ( n matrix in O(nω2 ) operations.
The currently best known value gives ω2 ) 3.250385 [55, 56, 77], which makes the previous alge-
braic complexity bound O(n1.626) for modular composition for an arbitrary f . Even assuming an
optimal matrix multiplication, which means ω = 2, these algorithms do not break the exponent
barrier 3/2.

Our result. The open problem 2.4 in the book of Bürgisser, Clausen, and Shokrollahi [19] asks
whether Brent and Kung’s algorithm can be improved substantially. The research problem 12.19 in

Journal of the ACM, Vol. 71, No. 2, Article 11. Publication date: April 2024.



Faster Modular Composition 11:3

von zur Gathen and Gerhard’s book [26] asks for complexity in Õ(n1.5) or better. Our main result
answers both questions positively when A is a !eld, with few extra hypotheses.

The&re( 1.1. Given a, f ∈ K[x] and д ∈ K[y] with coe!cients in a "eld K, with deg(f ) =
n, deg(a) and deg(д) smaller than n, and a tuple r of O(n1+1/3) "eld elements, Algorithm
Modula(Co)pos,-,o. returns eitherд(a) rem f or F)il after Õ(nκ ) arithmetic operations inK, with

κ = 1 + 1
1

ω−1 +
2

ω2−2
< 1.43. (1)

It returns F)il with probability at most (2n4+18n2)/card(S)when the entries of r are chosen uniformly
and independently from a "nite subset S ⊆ K.

Here, we use an algebraic model of computation: roughly, basic arithmetic operations
{+,−,(,÷} and zero-tests in the base !eld K are counted at unit cost; for more details, see
Section 2. As usual with probabilistic algorithms of Las Vegas type, the algorithm can be repeated
until it succeeds, so that only its running time becomes a random variable.

We assume that the characteristic p of K is known to the algorithms. For K !nite and of small
cardinality q (namely, q ≤ 2n4 + 18n2), the probability statement becomes vacuous. However, in
such cases, one can work in a suxciently large !eld, by constructing an extension of K of de-
gree O(log(n)) exciently (see [26, Section 14.9] and references therein). In this extension, each
arithmetic operation can be performed in Õ(log(n)) arithmetic operations in K, so that the asymp-
totic complexity estimate is unabected.

We also give a probabilistic algorithm of the Las Vegas type with the same complexity bound
for computing an annihilating polynomial for a mod f , that is, a nonzero polynomial д ∈ K[y]
such that д(a) rem f = 0.

The improvements brought by fast matrix multiplication on one hand and by fast rectangular
matrix multiplication, on the other hand, are made clearer by noting that the exponent κ of com-
position satis!es

4
3 ≤ κ = 1 + 1

1
ω−1 +

2
ω2−2︸!!!!!!!!!!!!!!⎧⎪!!!!!!!!!!!!!!⎨

<1.42945

≤ ω + 2
3︸⎧⎪⎨

<1.4572

≤ 5
3︸⎧⎪⎨

<1.666667

,

where the !rst approximation is obtained with the bounds on ω and ω2 given above; the second
one is obtained when no fast rectangular matrix multiplication is used, so that ω2 simply becomes
ω + 1; the last one is obtained when no fast matrix multiplication is used, thus taking ω = 3. In
the latter case, our algorithm is the !rst subquadratic one for modular composition. In the other
direction, considering the lower bounds ω ≥ 2 and ω2 ≥ 3 shows that κ ≥ 4/3, giving a lower
bound on the complexity estimate that can be achieved by the algorithm designed in this work.

Main steps. To compute д(a) rem f , our approach relies on !rst computing a polynomial д̃ of
“small degree” such that д̃(a) rem f = д(a) rem f . If a mod f has a minimal polynomial of small
degree µ(a), then one can take д̃ = д mod µ. In general, such a µ may not exist, and a small
degree univariate д̃ may not exist either. However, generically, one can compute a set of bivariate
polynomials µi (x ,y) of “small degree” such that µi (x ,a) rem f = 0. These are called relations.
From these, a small degree bivariate д̃(x ,y) is found via some type of reduction of д by all µi ’s
simultaneously, ensuring д̃(x ,a) rem f = д(a) rem f . Relations form one of the main ingredients
of the new algorithm, and most of the new technical results are about them. On the algorithmic
side, the coexcients of these relations are gathered into matrices called matrices of relations and
we make heavy use of fast algorithms on polynomial matrices.
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11:4 V. Neiger et al.

Here and throughout the article, genericity is understood in the Zariski sense: a property is
generic if it holds outside of a hypersurface of the corresponding parameter space. A randomized
change of basis brings f and a to a situation where “small” matrices of relations exist.

This probabilistic algorithm is proved to be correct for f separable (i.e., with no repeated roots in
an algebraic closure K of K) and for f purely inseparable (i.e., with only one root in K). Modular
composition modulo an arbitrary f is reduced to these two extreme cases by separable decom-
position of f [57], Chinese remainder theorem, and a slight generalization of a technique called
untangling [34]. The latter allows to transport the composition problem over K modulo a factor
of the separable decomposition, to a composition problem over a quotient algebra with purely
inseparable modulus.

Complexity aspects. Under genericity conditions, m (m matrices of relations of “small degree”
d ≤ ,n/m- are shown to exist (the choice of m is optimized below). Their computation starts
from the !rst m coexcients of the 2md polynomials x iak rem f , for 0 ≤ i < m and 0 ≤ k < 2d .
With

c(n,m,d) = (m + n/d)dω2/2, (2)
these coexcients can be computed in Õ(m2d + c(n,m,d)) operations in K (Section 3.3).

From these coexcients, a matrix of relations is obtained by approximant bases [31] in Õ(mωd)
operations (Section 5.4). Given such a matrix and in the same complexity, linear system solving
over K[x] [80] allows us to reduce the univariate д ∈ K[y] to a bivariate д̃ ∈ K[x ,y], of degrees
smaller thanm and d in x and y, such that д(a) ≡ д̃(x ,a) mod f (Section 4.2).

A generalization due to Nüsken and Ziegler [63] of Brent and Kung’s algorithm to the case of a
bivariate polynomial д̃(x ,y) ∈ K[x ,y] !nally computes the “uni-bivariate” composition д̃(x ,a) rem
f using Õ(c(n,m,d)) operations in K (Section 3.2).

Altogether, the costs of the various parts of the algorithm add up to Õ(mωd + c(n,m,d)) opera-
tions in K. Then choosingm and d = ,n/m- so as to minimizemωd + c(n,m,d) leads us tom / nη ,
where

η =
1

1 + ω−1
(ω2−2)/2

, (3)

which is approximately 0.3131 with the bounds on ω and ω2 given above and leads to to the com-
plexity estimate Õ(nκ ) of Theorem 1.1.

1.2 Previous Algorithms in Special Cases
To compute д(a) rem f , previous known improvements upon Brent and Kung’s approach all have
requirements on the input, either on some of the polynomials f , д, and a, or on the ring or !eld of
coexcients—possibly with nonalgebraic algorithms.

1.2.1 Special Modulus.

Power Series. For the special case f = xn of power series, Brent and Kung’s second algorithm
relying on Taylor expansion performs composition in only Õ(n3/2) operations, provided a′(0) and
(,

⎩
n log(n)-)! are invertible in A; the assumption on a′(0) can be weakened [32, Section 3.4.3]. In

more variables, even in the speci!c case д(x ,a) rem f handled by the Nüsken–Ziegler algorithm,
we do not know of any algorithm computing composition faster for power series than modulo
arbitrary polynomials.

Faster composition in only Õ(n) operations for д(a) rem xn is possible for many special
cases of д: when д is a polynomial of degree O(1), but also when it is a power series solution
of a polynomial equation of degree O(1) via Newton’s iteration, or when it is a solution of a
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diberential equation (e.g., exp), by !rst forming a diberential equation for д(a) and then solving
it by Newton’s iteration or other divide-and-conquer algorithms, generally in characteristic 0 or
large enough [11, 17, 32, 58; 10, Section 13.4].

Similarly, still in the case when f = xn , if furthermore a has speci!c properties, then composi-
tion of power series can be performed in Õ(n) operations. This is the case when a is a polynomial
of moderate degree [17] (it is a part of Brent and Kung’s fast composition algorithm), an algebraic
power series [32], but also for a class of truncated power series that can be obtained via shifts,
reversals, scalings, multiplications by polynomials, exponentials, and logarithms [14].

Separable Polynomials. Ritzmann observed that for a separable modulus f (x) = (x − ϵ1) · · · (x −
ϵn) with distinct ϵ1, . . . , ϵn that are known, modular composition boils down to multipoint eval-
uation and interpolation [68], which can be computed in Õ(n) arithmetic operations. When fur-
thermore the ring of coexcients is Z, he uses well-chosen ϵi ’s to give an excient algorithm for
composing power series, in a nonalgebraic model of computation: if д and a over Z have coex-
cients bounded in absolute value by K , then д(a) rem xn can be computed using Õ(n2 log(K)) bit
operations, which is quasi-optimal since the output has bit size Ω(n2 log(K)) in general.

Chinese Remainder Theorem. In our work, the cases of power series and of separable polynomials
play an important role as well. We use the observation that if a factorization f = f1 · · · fs is known
with the fi ’s relatively prime, then composing modulo f reduces to composing modulo each fi
and reconstructing the result via the Chinese remainder theorem. Several consequences of this
observation have been discussed by van der Hoeven and Lecerf [35].

1.2.2 Special Rings or Fields. For power series over a ringA of positive characteristic, Bernstein
proposed an algebraic algorithm whose complexity is quasi-linear in n, with a constant factor that
depends on the characteristic of the ring [6]. In particular, this algorithm is very excient over rings
whose characteristic is a product of small primes; if A is a ring of prime characteristic p then the
algorithm uses Õ(np) operations in A.

A further step forward was achieved by Umans in 2008 [72], with a new algorithm for modu-
lar composition modulo an arbitrary f , over !nite !elds of small characteristic: if p is no(1), his
algorithm uses n1+o(1) base !eld operations. Later, Kedlaya and Umans introduced new techniques
for composition over !nite rings of the form (Z/rZ)[z]/〈h(z)〉, for an integer r and h monic. For a
!nite !eld K = Fq , their algorithm runs in n1+ϵ log1+o(1)(q) bit operations [52, Corollary 7.2].

As in Ritzmann’s work, a key idea in References [52, 72] is to exploit fast multipoint evaluation,
but this time in a multivariate setting. The composition д(a) rem f is reduced to the evaluation at
suitable points of a multivariate polynomial constructed from д by an inverse Kronecker substitu-
tion, decreasing degrees at the expense of increasing the number of variables. Umans’ algorithm
performs the evaluation using the properties of the Frobenius endomorphism [72, Thm 6], while
Kedlaya and Umans’ proceeds by lifting to characteristic zero (which requires working in a bit
complexity model) [52, Thm 6.3]. These multipoint evaluation algorithms have been extended to
arbitrary number of variables and arbitrary !nite !elds [7, 8]. For general !elds, excient analogues
of these multivariate multipoint evaluation algorithms are currently unknown.

1.3 Related !estions
1.3.1 (Multivariate) Multipoint Evaluation. For simplicity, we limit the discussion to the case of a

!eld; most of it extends to rings, with minor restrictions. The evaluation of a univariateд ∈ K[x]<n
at n points in the !eld K, and conversely the interpolation of a polynomial of degree < n from n
values, are computable in quasi-linear complexity [26, Chap. 10]. For polynomials in at least two
variables, however, the situation becomes tightly related to modular composition.
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11:6 V. Neiger et al.

The motivation of Nüsken and Ziegler [63] was the evaluation of a polynomial д ∈ K[x ,y]<(m,d )
at n points (xk ,yk )1≤k≤n in general position, with md = O(n). Their algorithm !rst computes a
univariate interpolation polynomial such that a(xk ) = yk for all k ; then the composition b =
д(x ,a(x)) rem f , where f =

∏
k (x − xk ); and concludes by a univariate multipoint evaluation

of b at x1, . . . ,xn . Since the univariate evaluation and interpolation are performed in essentially
linear time, the complexity is dominated by the “uni-bivariate” modular compositionд(x ,a) rem f .

The case when several points have the same x-value can be handled by an axne change of coor-
dinates [63]; another approach, taken by Kedlaya and Umans, is to pick n suitable points t1, . . . , tn
in K, to compute two interpolation polynomials ax and ay in K[t], and thus reduce the evalua-
tion to the fully bivariate modular composition д(ax ,ay ) rem f , where now f =

∏
k (t − tk ). This

extends to an arbitrary number of variables and shows that multipoint evaluation in s variables
reduces to multivariate modular composition in the same number of variables [52, Theorem 3.3].

As mentioned in Section 1.2.2, Kedlaya and Umans actually make a heavy use of a con-
verse reduction [52, Theorem 3.1]. If д is a polynomial in K[x1, . . . ,xs ], the composition
д(a1(x), . . . ,as (x)) rem f reduces to a multipoint evaluation of a polynomial of smaller degree
in each of its variables, whose number is increased. For the univariate case of composition (s = 1)
studied here, the smallest possible number of variables for evaluation would be 2, leading to a bi-
variate evaluation of a polynomial of degree √n at Θ(n3/2) points, which is too large for our target
complexity. The next possible choice would be a polynomial of 3 variables in degree n1/3 at Θ(n4/3)
points. Unfortunately, we are not aware of a suxciently excient multipoint evaluation algorithm
in 3 or more variables to make this approach succeed in the algebraic model.

1.3.2 Bivariate Ideals. Viewing the problem of computing д(a) modulo f as a problem of
reduction of д modulo the ideal I = 〈y − a(x), f (x)〉, we introduce bivariate polynomials in
a diberent way from the inverse Kronecker substitution mentioned above. Gröbner bases are
commonly used for reductions modulo multivariate ideals. A division with a remainder similar to
that in Equation (6) below would be achieved via reduction by an appropriate Gröbner basis of I,
provided we could compute this basis and perform the reduction in good complexity. However,
already the size of the Gröbner basis itself may be Θ(n3/2) (see the example below), hence exceed
our target complexity.

For an ideal given by two generic bivariate polynomials of degree n (hence the ideal is of de-
green2) and the graded lexicographic order, van der Hoeven and Larrieu avoid the use of an explicit
Gröbner basis. They show that a concise representation of the basis of size only Õ(n2) is suxcient
for reducing a polynomial modulo the ideal in time Õ(n2) [33]; the concise representation consists
in particular of truncations of well chosen polynomials in the ideal. It is unclear to us whether a
similar truncation strategy could be applied speci!cally to I, whose degree is only n. Instead, the
matrices of relations we compute give a set of small degree polynomials in I that may not gener-
ate the whole ideal (see Section 4.1), but provide a process of complexity Õ(nκ ) for the reduction
modulo I of Equation (6). These polynomials generate the same ideal as the !rst polynomials in
the Gröbner basis of I for the lexicographic order (see Corollary 4.3).

The concise representation of Gröbner bases has also been exploited by van der Hoeven
and Lecerf for computing the minimal polynomial of the multiplication by y modulo J , when
J = 〈f1, f2〉 is generated by two generic polynomials f1, f2 ∈ K[x ,y] and K is a !nite !eld [40,
Section 4]. They apply the transposition principle to a bivariate modular composition map mod-
ulo J , then compute the minimal polynomial from the resulting bivariate power projections [45,
Section 6]. The evaluation of the composition map modulo J is again in Õ(n2), thanks to the
concise representation [40]. In our case of I = 〈y − a(x), f (x)〉 and for a generic a, matrices of
relations allow us to compute the minimal polynomial of the multiplication by y modulo I in
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Faster Modular Composition 11:7

complexity Õ(nκ ) (see Section 10.1); matrices of relations are obtained via a bivariate power pro-
jection process that can be regarded, in part, as dual to Nüsken and Ziegler’s bivariate modular
composition algorithm (Section 3.4.3).

Note. For a suxciently large !eldK, take f = (x−1) · · · (x−n), wheren = k(k+1)/2, anda ∈ K[x]
the polynomial of degree smaller than n such that a(i) = [

√
2i] for 1 ≤ i ≤ n. Then the reduced

Gröbner bases for the graded lexicographic order and for the lexicographic order, both with y ≺ x ,
coincide. They contain one polynomial with leading term x iyk−i for each i ∈ {0, . . . ,k}. Counting
the number of monomials of these polynomials shows that this basis has k(k + 1)(k + 2)/3+ (k + 1)
monomials; this is of the order of n3/2.

1.3.3 Modular Composition and Multipoint Evaluation with Precomputation. Quasi-linear mod-
ular composition д(a) rem f is feasible after precomputations on (f ,a) only, for a generic and f
square free [61].

Likewise, after precomputations on the evaluation points and under genericity assumptions
on them, quasi-linear multivariate multipoint evaluation is feasible [39], as well as quasi-linear
bivariate interpolation [61]. Furthermore, for bivariate evaluation, genericity can be replaced by
randomization [38].

In these works, the precomputation stages are at least as expensive as the fastest known corre-
sponding modular composition or multipoint evaluation algorithms. They have a feature in com-
mon with our composition algorithm: from f ,a (or from the evaluation points), they compute a
set of polynomials that belong to 〈y − a(x), f (x)〉 (or vanish at the points), and allow for excient
degree reduction of the polynomial to compose with (or to evaluate). This set is either akin to
several matrices of relations of M(a,f )

m for a small number of values ofm ranging from 1 to n [61],
or is a collection of well-chosen polynomials in several Gröbner bases for subsets of the points so
as to build a multivariate divide and conquer evaluation tree [38, 39].

1.4 Algorithmic Tools
Our work builds upon a sequence of earlier algorithmic progress that we now recall. We denote
by K[x]<n the set of univariate polynomials in x with coexcients in K and degree less than n; by
K[x ,y]<(r,s) the bivariate polynomials in x ,y of bidegree in (x ,y) less than (r , s).

1.4.1 Baby Steps/Giant Steps. One of the bottlenecks in algebraic approaches for evaluating д
at a modulo f is the computation of successive powers 1,a,a2, . . . modulo f , which leads to the
question of minimizing the number of powers that are used. The solution used by Brent and Kung
relies on a baby steps/giant steps scheme [17, 64], where only

1,a, . . . ,a ,
√

n - rem f and a2 ,√n - ,a3 ,√n - , . . . rem f

are computed. The former group forms the baby steps; the latter forms the giant steps. The problem
is then reduced to about √n modular compositions “дi (a) rem f ” for дi of degree about √n. These
compositions are all obtained simultaneously through the multiplication of two matrices of sizes
roughly √n ( √n and √n ( n. This is followed by a less expensive Horner evaluation step using
the powers of a ,

√
n - . See Section 3.1 for a complete description.

1.4.2 Projection-Reconstruction. Wiedemann’s algorithm [76] !nds the minimal polynomial of
a matrix A ∈ Kn(n by considering the sequence (vTAkw)k≥0, for two vectors v and w . This se-
quence is linearly recurrent and its generating function h(y) = ∑

k≥0(vTAkw)/yk+1 is rational; for
generic v and w , the denominator of h(y) is the minimal polynomial µA of the matrix A. Writing
d ≤ n for the degree of µA, this polynomial can be reconstructed exciently from the !rst 2d terms
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11:8 V. Neiger et al.

of the sequence by the Berlekamp–Massey algorithm or, equivalently, by the computation of a
Padé approximant. Given the expansion in y−1 of a rational power series h(y) = q(y)/µA(y) with
polynomials q and µA of degree at most d − 1 and d , this reconstructs the fraction (q, µA) as a
solution of

(h(y) +O(y−2d−1))µA(y) − q(y) = O(y−d−1). (4)
If the degree of µA is unknown, one can use this approach with the upper bound d = n instead.

Wiedemann’s algorithm can be combined with the baby steps/giant steps paradigm [44, Sec-
tion 3; 69; 49, Algorithm AP]. In particular, when A is the matrix Ma of multiplication by a mod f
in the basis B = (1,x , . . . ,xn−1) ofK[x]/〈f 〉, this was used by Shoup to compute the minimal poly-
nomial of the polynomial a modulo f [69–71]. For irreducible f , Shoup used the vectorsv = w = 1
(where 1 is the !rst column of the identity matrix), in which case the sequence (vTAkw)k≥0 be-
comes the sequence of power projections (!(1), !(a), !(a2), . . . ), where ! is the linear form that takes
the coexcient of 1 of an element of K[x]/〈f 〉 written on the basis B. For an arbitrary f , Shoup
used a random linear form !, corresponding to a random choice of the vector v and w = 1.

In either case, the required 2d elements of the sequence can be obtained by left multiplication
by vT of a matrix whose columns are the coexcient vectors of 1, a, a2, . . . modulo f . Now, the
right multiplication of the exact same matrix by a vector of coexcients corresponds to modular
composition. Using the transposition principle, Shoup described a baby steps/giant steps algorithm
that computes the power projections for an arbitrary linear form ! : K[x]/〈f 〉 → K in the same
complexity as that of Brent and Kung’s algorithm [69–71] (See Section 3.1.2.). This principle states
that the existence of an algebraic algorithm for the multiplication of a matrix by a vector induces
the existence of an algorithm for the product of the transpose of that matrix by a vector, both
having essentially the same complexity [19, Theorem 13.20; 13].

The same idea is used by Shoup for another operation that we also need. Given a,b, f , the inverse
modular composition asks for a polynomialд of least degree such thatд(a) ≡ b mod f or for a proof
that no such д exists. This problem reduces to the computation of the power projections

(!(1), !(a), . . . , !(a2n−1)) and (!(b), !(ab), . . . , !(an−1b)),
again in the same complexity as that of modular composition, followed by the resolution of a linear
system of Hankel type [69, Theorem 3.5]. The latter is known to be equivalent to Padé approxima-
tion [15], where Equation (4) generalizes to(∑

k≥0

!(ak )
yk+1 +O(y

−2n−1)
)
д(y) − q(y) =

∑
k≥0

!(akb)
yk+1 +O(y

−n−1),

with unknowns a numerator q(y) ∈ K[y]<n and the inverse composition д(y) ∈ K[y]≤n .

1.4.3 Blocks for Speed and Structure. Coppersmith introduced a block version of Wiedemann’s
algorithm [20]. There, the scalar sequence (vTAkw)k≥0 is replaced by the matrix sequence
(V TAkW )k≥0 for two matrices V ∈ Kn(! and W ∈ Kn(m : the generating function H (y) =∑

k≥0(V TAkW )/yk+1 is a rational ! (m matrix.
Such a matrix admits an irreducible matrix fraction description N (y)D(y)−1 with N ∈ K[y]!(m

and D ∈ K[y]m(m two polynomial matrices (see Section 5.1.1), and the columns of the denom-
inator matrix D form a basis of the K[y]-module of polynomial vectors u ∈ K[y]m such that∑

i≤deg(u)V
TAk+iWui = 0 for all k ≥ 0, where ui denotes the coexcient of yi in u [50, Lemma 2.8].

Form = 1, this module is the ideal generated by the minimal polynomial of the sequence in Wiede-
mann’s algorithm.

For 1 ≤ m ≤ ! ≤ n, the matrix D contains more information: for example, for generic V
andW , its invariant factors are them invariant factors of largest degree of the characteristic matrix
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yIn − A [50, Theorem 2.12], the highest degree one being the minimal polynomial of A. Conse-
quently, the determinant of D has degree the sum νm of the degrees of these m invariant factors,
which implies that νm ≤ n.

The computation of D can be achieved in two steps, which are matrix versions of the methods
used for m = 1 in Section 1.4.2. Writing d for the degree of D, it is suxcient to compute the
!rst 2d matrices of the sequence (V TAkW )k≥0, which can be done by a baby steps/giant steps
approach [50]. Next, D is obtained by matrix fraction reconstruction, solving(

V T(yIn −A)−1W +O(y−2d−1)
)
D(y) − N (y) = O(y−d−1)

for the unknown N ∈ K[y]!(m and D ∈ K[y]m(m of degrees at most d − 1 and d ; this can be done
exciently by a generalization of Padé approximation called minimal approximant bases, whose
properties are recalled in Section 5.2. (See References [50, 51] for bibliographic pointers to algo-
rithms that compute minimal linear generators of matrix sequences.) The parameter d plays a
major role in the exciency of both steps: it is usually unknown a priori, and might be as large as
Θ(n). Yet, the interest of this block approach lies in the fact that, for generic V andW and ! ≥ m,
the matrix D has degree d = ,νm/m- ≤ ,n/m- [74, Corollary 6.4].

1.4.4 E!icient Projections and Small Bivariate Polynomials. Special choices of the matrices V
andW above, with identity blocks, lead to excient projections and have been shown to be ebective
in the context of black-box matrix inversion [24]. Even simpler matrices, X = (Im 0)T and Y =
(0 Im)T in Kn(m with m ∈ {1, . . . ,n}, have been used by Villard in his fast algorithm for the
bivariate resultant of two bivariate polynomials f and д in K[x ,y] [75]. In this context, for generic
f and д, this choice of X and Y is suxcient to ensure that the denominator matrix D contains m
“small” polynomials in the ideal of K[x ,y] generated by f and д.

1.5 Overview of the Core Algorithm
When a mod f has a minimal polynomial µa of small degree, µa can be computed exciently using
power projections (!(1), !(a), !(a2), . . . ) by Shoup’s algorithm, since few terms in the sequence are
needed (see Sections 1.4.2 and 3.1.3). Then, for composition, one uses the identity д(a) ≡ д̂(a) mod
f , where д̂ = д rem µa . Since д̂ has small degree, this reduces the number of powers of a mod f
that need be considered.

Our algorithm can be viewed as a block or bivariate version of this approach, replacing the
univariate polynomial µa by a collection of m small bivariate polynomials in the ideal generated by
y−a(x) and f (x), for a !xed parameterm. In a generic situation, while µa has degree n, there exists
such a collection with degreesm−1 and ,n/m- in x andy. This collection is represented as a matrix
in K[y]m(m and is found exciently by exploiting the structure of the matrix of multiplication
by a mod f .

Matrices of Relations. Let Ma ∈ Kn(n be the matrix of multiplication by a mod f in the ba-
sis (1,x , . . . ,xn−1). Following Section 1.4.3, in the special case where A = Ma , if V is a generic
matrix in Kn(! , and W is the matrix X = (Im 0)T with m ≤ ! and m ≤ n, the block Wiede-
mann approach yields a denominator matrix D ∈ K[y]m(m whose columns represent a basis of
the K[y]-module

M(a,f )
m =

{
r (x ,y) = r0(y) + · · · + rm−1(y)xm−1 | r (x ,a(x)) ≡ 0 mod f (x)

}
; (5)

this follows, for instance, from [74, Lemma 4.2]. The elements of this module are algebraic rela-
tions of degree less than m in x satis!ed by a mod f (Section 5.1). We call matrix of relations any
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nonsingular matrix R(a,f )
m ∈ K[y]m(m whose columns are the coexcients of polynomials in M(a,f )

m
(Section 4.1.1), that is, any nonsingular right multiple of D.

Given a matrix of relations R(a,f )
m , the composition д(a) rem f is obtained in two steps.

— First, by polynomial matrix division [43, Theorem 6.3-15, p. 389], there exist vectors v,w ∈
K[y]m such that

(д(y) 0 · · · 0)T = R(a,f )
m w +v, (6)

where deg(v) < d and d is an upper bound on deg(R(a,f )
m ); !nding such vectors takes

Õ(mω (d + n/m)) operations (Section 4.2) [80]. Then, by design, the bivariate polynomial

д̃(x ,y) = v1(y) + · · · +vm(y)xm−1

has degree less thanm and d in x and y, and is such that д(a) ≡ д̃(x ,a) mod f .
— The polynomial д̃ can then be evaluated at y = a mod f by the Nüsken–Ziegler algorithm

in Õ(c(n,m,d)) operations, with c(·) from Equation (2) (Proposition 3.4).

Truncated Sequence of Projections. In the block Wiedemann approach, using X as our right pro-
jection matrix, we need the !rst 2d elements of the matrix sequence (VMk

aX )k≥0, which amounts
to a type of bivariate power projections (see Section 1.3.2). Unfortunately, we do not know how to
obtain them exciently enough for an arbitraryV . ChoosingV = X T, we design a baby steps/giant
steps algorithm in Section 3.3 that runs in Õ(c(n,m,d) + m2d) operations. With this choice, by
fraction reconstruction the sequence (X TMk

aX )k≥0 yields a denominator D that is a basis of the
K[y]-module

M(a,f )
m,m =

{
r (x ,y) ∈ K[x ,y]<(m, ·) |

[
a(x)kr (x ,a(x)) rem f (x)

]m−1
0 = 0 for all k ≥ 0

}
,

where [ · ]m−1
0 is the projection on Span(1,x , . . . ,xm−1). The inclusion M(a,f )

m ⊆ M(a,f )
m,m holds but

may be strict, leading to a denominator D that is not a matrix of relations.

Matrices of Relations of Small Degree. For an arbitrary f with f (0) ! 0 (this is not really a restric-
tion, see Remark 3.8) and a generic a, two important properties hold (see Section 7.3): the above
inclusion of modules is an equality—making the algorithm correct—and a basis R(a,f )

m of degree
d = ,n/m- ofM(a,f )

m can be reconstructed from the !rst 2d elements of the sequence (X TMk
aX )k≥0—

making the algorithm fast.
The reconstruction is done via minimal approximant bases in Sections 5.2 and 5.3. Directly

extending Section 1.4.3, we would solve the equation at in!nity(
X T(yIn −Ma)−1X +O(y−2d−1)

)
R(a,f )

m (y) − N (y) = O(y−d−1), (7)

for unknown matrices N and R(a,f )
m of degree at most d − 1 and d . For technical reasons coming

from the reconstruction algorithm, we actually use an expansion at y = 0 rather than at in!nity,
so that the sequence we use involves powers of M−1

a instead of Ma (see Remark 5.7).
Beyond generic cases, a relevant quantity is

ν (a,f )m = deg(σ1) + · · · + deg(σm), (8)

where σ1, . . . ,σn ∈ K[y] are the invariant factors of yIn −Ma , ordered by decreasing degree. This
quantity is at mostn, and it is the degree of the determinant of any basis of M(a,f )

m (Proposition 4.1).
In favorable situations, working with d = ,ν (a,f )m /m-, and a fortiori with ,n/m-, is suxcient to
obtain such a basis M(a,f )

m .

Journal of the ACM, Vol. 71, No. 2, Article 11. Publication date: April 2024.



Faster Modular Composition 11:11

1.6 Probabilistic Algorithm for f Separable or Purely Inseparable
Our probabilistic algorithm aims at bringing arbitrary inputs to the favorable situation mentioned
above, by means of a random change of basis. For a polynomial γ ∈ K[x] such that the minimal
polynomial µγ of γ mod f has degree n, the powers (1,γ , . . . ,γn−1) mod f form a basis of A =
K[x]/〈f 〉. This induces a K-algebra isomorphism:

ϕγ : A→ K[y]/〈µγ 〉

that maps γ to y, and more generally u ∈ A to v such that v(γ ) ≡ u mod f .
Using ϕγ allows us to transport our problem of modular composition to the right-hand side. For

a in K[x]<n and д in K[y], to !nd д(a) rem f , this boils down to the following (see Algorithm 8.1):
— a forward change of basis: through inverse modular composition, compute α ∈ K[y]<n such

that a = α(γ ) rem f ; this step also determines the minimal polynomial µγ ;
— a modular composition in the new basis: compute β = д(α) rem µγ ;
— a backward change of basis: the modular composition β(γ ) rem f , which equals д(a) rem f .

Computational Aspects. The second and third steps are modular compositions. They can
performed exciently by the approach of Section 1.5, by !nding and using matrices of relations
R(γ ,f )

m and R
(α,µγ )
m , as long as certain genericity assumptions hold; this aspect is discussed

below.
The !rst step, for the forward change of basis, is an instance of inverse modular composition and

the calculation of a minimal polynomial. As mentioned in Section 1.4.2, Shoup’s solutions recover
both α and µγ from the power projections (!(1), !(γ ), . . . , !(γ 2n−1)) and (!(a), !(γa), . . . , !(γn−1a)),
in the complexity of Brent and Kung’s modular composition algorithm. Using matrices of relations
we achieve a lower complexity, for a generic γ , as follows.

(1) Matrix of relations and minimal polynomial. Generalizing the power projections of γ , the
algorithm of Section 1.5 computes the !rst 2d terms of (X TMk

γX )k≥0, where d = ,n/m-,
and then reconstructs a basis R(γ ,f )

m of M(γ ,f )
m by solving Equation (7) (with γ instead of a).

This basis gives in particular the minimal polynomial µγ , which appears as an entry of the
Hermite normal form of this basis (Proposition 4.1).

(2) Bivariate inverse composition. The use of projections (!(a), !(γa), . . . , !(γn−1a)) is directly
generalized by computing the !rst 2d terms of (X TMk

γ Ma1)k≥0, where 1 is the !rst column
of X , and solving

(
X T(yIn −Mγ )−1X +O(y−2d−1)

)
vα̃ (y) −vN (y) = X T(yIn −Mγ )−1Ma1 +O(y−d−1) (9)

for polynomial vectors vN and vα̃ in K[y]m of degree less than d ; the entries of the vector
vα̃ are the coexcients of a bivariate polynomial α̃(x ,y) of small degree such that α̃(x ,γ ) ≡
a mod f .
As for Equation (9), we actually work with an expansion at y = 0 rather than in!nity.

(3) Bivariate α̃ to univariate α . The situation is now symmetric to that of the composition algo-
rithm of Section 1.5: we consider again Equation (6), where now д is unknown (it is α ), v
is known (it is α̃(x ,y)) and both R(a,f )

m and v have degree at most d , so that the polynomial
matrix problem can be solved in Õ(mω (d + n/m)) operations.

This approach is detailed in Algorithm Ch),-eO.B)/i/, with the steps reordered and combined
so as to retrieve both R(γ ,f )

m and vα̃ from a single fraction reconstruction.
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Probabilistic Aspects. For a generic γ , one has deg(µγ ) = n, so the isomorphism ϕγ is well
de!ned. Using the Schwartz–Zippel lemma, it is straightforward to control the probability of
having deg(µγ ) < n.

For generic γ , we can then follow the approach described in Section 1.5 to perform the last
step, modular composition by γ , with the desired complexity. The quantitative aspects can be
worked out as well, and similar considerations hold for the !rst step, inverse modular composition
by γ .

However, the composition in the second step, д(α) rem µγ , is more delicate to analyze. We
need the equality of modules M(α,µγ )

m = M(α,µγ )
m,m , and that a matrix of relations in this module

can be reconstructed from the !rst 2,ν (α,µγ )
m /m- ≤ 2,n/m- elements of the corresponding matrix

sequence; the analysis is made dixcult by the fact that both α and µγ are nonlinear functions of
the random element γ .

We prove that this happens for a generic γ in two cases: when f is separable in Section 8.3, and
when f is purely inseparable, with extra conditions, in Section 8.4; the latter case covers power
series composition with f = xn . In both situations, there is a nonzero polynomial ∆ in n variables
such that the constraints above hold if ∆ does not vanish at the coexcients of γ . We choose a
random γ , and the probability of failure is again bounded by the Schwartz–Zippel lemma.

We do not have a proof that a generic γ satis!es our requirements for an arbitrary f . Our algo-
rithm for the general case proceeds by reduction to the two extreme cases above, separable and
purely inseparable polynomials.

From Monte Carlo to Las Vegas. At this stage, we have a probabilistic algorithm of Monte Carlo
type, that runs in the announced complexity and returns the correct result with a controlled prob-
ability of error. The next question is to modify the algorithm so that it detects and reports the
unlucky choices of γ for which its result would be incorrect.

In order to certify the result obtained for a random choice of γ ∈ A, it would be suxcient to
check the following properties:

(1) the computed matrix R(γ ,f )
m is a basis of relations of M(γ ,f )

m ;
(2) the minimal polynomial of γ modulo f has degree n;
(3) the computed matrix R

(α,µγ )
m is a basis of relations of M(α,µγ )

m .
However, we do not know how to check that all the columns of a matrix belong to the ideal
〈f (x),y − γ (x)〉 or 〈µγ (x),y − α〉 in suxciently low complexity and in a deterministic way. The
matrix R(γ ,f )

m is easier to deal with: as it is expected to behave like in the generic case, its expected
degree structure is known and the matrix can be certi!ed by degree considerations (Item (ii) of
Proposition 5.4, and Proposition 6.1). From there, the minimal polynomial of γ can be computed
exciently via the Hermite normal form of M(γ ,f )

m , and it remains to check that it has degree n.
The other matrix, R(α,µγ )

m , carries more information about a and cannot be expected to behave as
predictably as R(γ ,f )

m . Our approach is to extract from its columns two small degree polynomials r
and s in K[x ,y]. Since only two such polynomials are considered, they can be checked to vanish
at α mod µγ by the Nüsken–Ziegler algorithm without abecting the asymptotic cost. Then, these
two polynomials are used to construct a Sylvester matrix that can be used for composition instead
of R(α,µγ )

m , without increasing the overall complexity (Algorithm 5.2).

Note. Equivalently, the randomization of our probabilistic algorithm can be seen as a change
of projection. Indeed, let P ∈ Kn(n have its jth column formed by the coexcients of γ j−1 rem f .
If γ mod f generates K[x]/〈f 〉 and Mα is the matrix of multiplication by α mod µγ with basis
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(1,y, . . . ,yn−1), then the multiplications by α and by a are related by
Mα = P−1MaP . (10)

Hence
X TMk

αX = (X TP−1)Mk
a (PX ),

which, for instance, on the right side, leads to considering the !rst m columns of P instead of X
for projecting. This amounts to kinds of structured projections (V TMk

aW )k≥0, i.e. with matricesV
andW in a special proper subset of Kn(m .

1.7 Algorithm for the General Case
The algorithm of Section 1.6 is proved to work when f is either separable, or purely inseparable
(for the latter, with extra conditions that are dealt with in Section 8.4). In Section 9, we address the
general case, by !rst computing a separable decomposition of f [57], yielding a factorization into
a product into pairwise coprime terms of the form hi (xpei )!i , with hi separable and ei , !i integers
(here, p is the characteristic of K).

Working modulo each factor separately, we are thus left with the question of composition mod-
ulo a polynomial of the form h(xpe )! , with h separable (all such results are eventually recombined
via the Chinese remainder theorem).

For a modulus of the form h(x)! , van der Hoeven and Lecerf showed how composition can be
reduced to ! compositions moduloh, the computation of an annihilating polynomial moduloh, and
a power series composition at precision ! with coexcients in L = K[x]/〈h(x)〉 [34]. We extend
this result to the case of moduli of the form h(xpe )! in Section 9.4, involving essentially the same
steps. The !rst two operations (compositions and annihilating polynomial modulo h) are directly
handled by our results so far, but this is not quite the case for the latter, power series composition
with coexcients in L.

Our algorithms are written assuming they work over a !eld, as they perform zero-tests and
inversions (compare this with Brent and Kung’s algorithms, for instance, which apply over a ring).
If h is irreducible, L is a !eld, but if h is only assumed to be separable, then L is only a product of
!elds. The dynamic evaluation paradigm [21] explains how an algorithm written for inputs lying
in a !eld can carry over to inputs in a product of !elds, but the original approach induces cost
overheads that go beyond our cost target. Using van der Hoeven and Lecerf’s excient dynamic
evaluation strategy [37], we show how our algorithm for power series adapts to this situation
(Section 9.2) without abecting the asymptotic runtime.

1.8 Outline
Section 2 introduces some notation and our computational model. Section 3 details baby
steps/giant steps techniques used in our composition algorithm: known ones such as in Brent and
Kung’s composition, and new ones such as for computing truncated powers, which give access to
(X TMk

aX )k≥0. Section 4 studies matrices of relations and how they are used in our composition
algorithm, whereas Section 5 shows how to compute them exciently by matrix fraction recon-
struction under some assumptions on (f ,a,m). Section 6 presents an algorithm for the change of
basis of Section 1.6: it !nds the minimal polynomial µγ and an inverse composition α such that
α(γ ) ≡ a mod f , under assumptions on (f ,γ ,m). Section 7 studies these assumptions, and in par-
ticular gives precise generic situations where they hold. Section 8 describes our main randomized
composition algorithm and proves its correctness for a separable f and for a purely inseparable
f (generalizing f = xn); then Section 9 handles the general case of composition modulo any f .
Finally, in Section 10, we state resulting complexity improvements for several variants of modular
composition and other related problems.
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2 PRELIMINARIES
Notation. In this article, K is an arbitrary !eld. For bivariate polynomials in variables x and y,

degx and degy give the degree in x and in y. For any polynomial or power series p = ∑
i pix i , we

use the following notation for a “slice” of it: [p]kj = pj + pj+1x + · · · + pj+kxk . The ideal generated
by polynomials f1, . . . , fk in an ambient ring (which will be clear from the context) is denoted
by 〈f1, . . . , fk 〉.

Vectors, such as elements of Km or K[y]m , are seen as column vectors by default; when row
vectors are considered this is explicit in our notation, e.g., K1(m or K[y]1(m . We often identify a
polynomial д0(y) + · · · + дm−1(y)xm−1 in K[x ,y]<(m, ·) with the column vector (д0 · · · дm−1)T in
K[y]m of its coexcients on the basis (1,x , . . . ,xm−1) of the K[y]-module K[x ,y]<(m, ·).

For a and f in K[x], Ma denotes the matrix of the linear map of multiplication by a
in K[x]/〈f (x)〉 with basis (1,x , . . . ,xn−1), and µa , resp. χa , denotes the minimal, resp. characteris-
tic polynomial of a in K[x]/〈f (x)〉 (that is, the minimal and characteristic polynomials of Ma ).

Whenever the context is suxciently clear, particularly in Sections 4, 5 and 7, notation such
asM(a,f )

m , ν (a,f )m de!ned in the introduction is shortened into Mm , νm . We keep the superscripts in
important statements.

Computational Model. Our algorithms are written in pseudocode, using standard syntax ele-
ments (for loops, if statements, . . .). Informally, we count all arithmetic operations {+,−,(,÷}
and zero-tests in K at unit cost. The underlying complexity model is the computation tree [19,
Section 4.4].

A computation tree overK is a binary tree whose nodes are partitioned into input nodes that form
an initial segment of the tree starting at the root, computation nodes with outdegree 1, branching
nodes with outdegree 2 and output nodes at the leaves. To each node is associated a label. Compu-
tation nodes are labeled by constants in K or operations in {+,−,(,÷}, in which case they also
carry references to two previous input or computation nodes; branching nodes are labeled by zero-
tests, referring to some previously computed quantity. Each leaf v is labeled with a sequence of
references (u1, . . . ,u!(v)) to previous input or computation nodes. The cost of a computation tree
is its height τ , that is, the maximum length of a path from the root to a leaf.

It then makes sense to evaluate a computation tree at an element of Ks — called input to the
tree, where s is the number of input nodes, following a path from the root to a leaf. After the input
nodes, the path is constructed as follows. Each computation node is assigned a value derived from
the label it carries, when it is de!ned. Otherwise, e.g., in case of a division by 0, the path stops.
At a branching node the path branches left or right depending on whether the value it refers to
vanishes or not. At a leaf v with label (u1, . . . ,u!(v)), the output of the computation is the tuple of
the values computed at nodes u1, . . . ,u!(v). In that case, the computation tree is called evaluable
at the input. Overall, the computation requires at most τ arithmetic operations in K. An algorithm
is called quasi-linear when the height of its computation tree is linear (up to logarithmic factors)
in the number of inputs. It is called quasi-optimal when this height is linear (up to logarithmic
factors) in the number of inputs plus the maximum number of values returned by the output nodes.

A computation tree takes inputs of !xed length. In order to solve a problem for inputs of ar-
bitrary size and characteristic, we need a family of trees, parametrized by the input size and the
characteristic. Every algorithm we describe using pseudocode in this article, and all algorithms
that we rely on from the literature, can be described by a family of computation trees.

The translation from pseudocode to computation tree is usually rather direct, and as is cus-
tomary in the literature, we do not do it explicitly. In a nutshell, for loops and recursive calls are
“unrolled”; if statements that test whether a computed quantity vanishes yield branching nodes,
and so on. Some operations in our pseudocode may not be directly available in our model (as
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we only allow arithmetic operations in K and zero-test), but they can be rewritten in a way that
complies with our requirements. This is, for instance, the case when we compute the degree of a
polynomial (as in Euclid’s GCD algorithm): this can be achieved by scanning its coexcients, in or-
der of decreasing degree, until a nonzero one is found. We also invoke a result by van der Hoeven
and Lecerf [37] on the transformation of computation trees for directed evaluation in Section 9.2;
the translation from pseudocode to tree also applies to their algorithm.

The families of trees that we build for modular composition with arbitrary degree and character-
istic are uniform, in the sense that an appropriate tree description is generated from the pseudocode
and any given degree n and characteristic p.

We allow our algorithms to return 0ags (such as F)il, or Cer1/N&Cer1). This can be done in
this model, by returning constants in the vector of outputs, such as 1 for F)il and 0 otherwise.

Finally, several of our algorithms rely on randomization; however, we do not want to introduce
another arithmetic operation for the selection of random !eld elements. One reason for this is that
the result by van der Hoeven and Lecerf [37] mentioned above is explicitly written in a determinis-
tic model. Instead, “random” !eld elements are given to our procedures as extra input parameters.

3 SIMULTANEOUS MODULAR OPERATIONS BY MATRIX MULTIPLICATION
A key ingredient in fast modular composition algorithms is to turn the problem into the simulta-
neous evaluation of polynomials of smaller degree, and exploit the structure brought by this si-
multaneity using matrix multiplication. In this section, after reviewing Brent and Kung’s original
algorithm and giving a direct extension of it, we use this idea in two further contexts: Nüsken and
Ziegler’s bivariate modular composition algorithm, and the computation of truncations of powers
of the form ak rem f . Both arise in our algorithms, and are bottlenecks in their complexity.

3.1 Brent and Kung’s Algorithm
3.1.1 Modular Composition. We start with a review of Brent and Kung’s algorithm to compute

д(a) rem f , pointing out the impact of rectangular matrix multiplication [41] and how the runtime
depends on the degrees of both f and д [69, Fact 3.1]. This can be seen as an introduction to the
Nüsken–Ziegler algorithm, which generalizes this approach to a bivariate д.

Pr&2&/i1i&, 3.1. Given polynomials f ∈ K[x] of degree n, a in K[x]<n and д in K[y]<d , Algo-
rithm Modula(Co)pos,-,o.-B(0.-Ku.1 computes д(a) rem f using Õ((1 + n/d)dω2/2) operations
in K.

Pr&&.. Correctness follows from noticing that at Step 7, bi ≡ дir +дir+1a+ · · ·+дir+r−1ar−1 mod
f holds for all i , where дj is the coexcient of degree j in д for all j. The cost of the algorithm comes
from Θ(d1/2) multiplications modulo f , which use Õ(nd1/2) operations in K, and a matrix product
in sizes s(r and r(n, with both s and r in Θ(d1/2). This product can be done through ,n/d- ≤ n/d+1
matrix products in sizes s ( r and r ( d , each of which takes O(dω2/2) operations in K. !

Note. In the analysis, dividing the matrix product into blocks, as we did, is suboptimal. Us-
ing rectangular matrix multiplication directly, the runtime can be described by the !ner estimate
Õ(dω2 log(n)/log(d )/2). Here, the notation ωθ is a feasible exponent for rectangular matrix multiplica-
tion for any real number θ : there is an algorithm that multiplies an n ( ,nθ - matrix by an ,nθ - (n
matrix using O(nωθ ) operations [56]. However, this re!nement complicates notation, and would
not be of use for our main results. The same remark holds for several other runtime estimates in
this section, such as Lemmas 3.3 and 3.5.
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ALGORITHM 3.1 M&34l)rC&(2&/i1i&,5Bre,1K4,-(f ,a,д)
Input: f of degree n in K[x], a in K[x]<n , д in K[y]<d
Output: д(a) rem f

1: r ← ,d1/2-, s ← ,d/r-
2: â0 ← 1
3: for i = 1, . . . , r do âi ← a · âi−1 rem f " âi = ai rem f
4: A← matrix (coeb(âi , j))0≤i<r

0≤j<n
in Kr(n " coe!cient of degree j of âi

5: G ← matrix (coeb(д, ir + j))0≤i<s
0≤j<r

in Ks(r

6: B = (bi, j )0≤i<s
0≤j<n

← GA in Ks(n

7: for i = 0, . . . , s − 1 do bi ← bi,0 + · · · + bi,n−1xn−1

8: return b0 + b1âr + · · · + bs−1âs−1
r rem f " Horner evaluation

ALGORITHM 3.2 P&6erPr&7e81i&,(f ,a,d, (ri )0≤i<n)
Input: f of degree n in K[x], a in K[x]<n , d in N, (ri )0≤i<n in Kn

Output: (!(1), !(a), . . . , !(ad−1 mod f )), with !(b0 + · · · + bn−1xn−1) = r0b0 + · · · + rn−1bn−1

3.1.2 Power Projection. The transposition principle implies the existence of an algorithm
P&6erPr&7e81i&, with the same asymptotic runtime as Algorithm M&34l)rC&(2&/i1i&,5
Bre,1K4,- and with the following signature [69].

Whereas seeing the details of Algorithm M&34l)rC&(2&/i1i&,5Bre,1K4,- is useful as a pre-
amble to the Nüsken–Ziegler algorithm, Algorithm P&6erPr&7e81i&, only plays the role of a
subroutine in one other algorithm given just below. Moreover, giving its pseudocode would re-
quire us to introduce concepts such as transposed product, that would not used any further in
this text. We refer the reader to Reference [71], which gives all details but uses classical matrix
arithmetic (with ω2 = 4), so the runtime of that version is Õ(d2 + nd) instead of Õ((1 + n/d)dω2/2).

3.1.3 Small Minimal Polynomial. Modular composition can be sped up when the minimal
polynomial µa of a modulo f has degree at most d , for some (small) integer d ≤ n. To com-
pute д(a) rem f , the idea is that once µa is known, д̃ = д rem µa can be computed, and then
д(a) ≡ д̃(a) mod f (see e.g. [35, Section 4.1]). The computation of the latter by Proposition 3.1
bene!ts from д̃ having degree less than d .

It remains to discuss how to compute µa . Here, we follow an algorithm of Shoup (the deter-
ministic version, for f irreducible, is in [69, Theorem 3.4]; the randomized one is in [70, Sec-
tion 4]). We take a random linear form ! : K[x]/〈f 〉 → K and compute the sequence (!(ak mod
f ))0≤k<2d . With high probability, its minimal polynomial is µa ; the algorithm veri!es whether
it is the case, and returns either a correct result or F)il. In Algorithm M&34l)rC&(2&/i1i&,5
S()llMi,i()lP&l9,&(i)l, µa is computed using an Extended Euclidean scheme called Mi,i5
()lP&l9,&(i)lF&rSe:e,8e [26, Algorithm 12.9].

The following lemma analyses the runtime of this procedure, and the probability of success. As
per our convention at the end of Section 2, the “random” linear form ! is actually given as an
argument, through the vector (r0, . . . , rn−1) ∈ Kn of its coexcients.

Le(() 3.2. Given f ∈ K[x] of degree n, a in K[x]<n , д in K[y]<n , d in {1, . . . ,n} and (ri )0≤i<n
in Kn , Algorithm Modula(Co)pos,-,o.-S)allM,.,)alPol2.o),al uses Õ(nd (ω2/2)−1) operations
in K and returns either д(a) rem f or Fa,l. If µa has degree at most d , and the entries of (ri )0≤i<n
are chosen uniformly and independently from a "nite subset S of K, then with probability at least
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ALGORITHM 3.3 M&34l)rC&(2&/i1i&,5S()llMi,i()lP&l9,&(i)l(f ,a,д,d, (ri )0≤i<n)
Input: f of degree n in K[x], a in K[x]<n , д in K[y]<n , d in {1, . . . ,n}, (ri )0≤i<n in Kn

Output: д(a) rem f or F)il
1: (v0, . . . ,v2d−1)← P&6erPr&7e81i&,(f ,a, 2d, (ri )0≤i<n)
2: µ ← Mi,i()lP&l9,&(i)lF&rSe:e,8e(v0, . . . ,v2d−1)
3: t ← M&34l)rC&(2&/i1i&,5Bre,1K4,-(f ,a, µ)
4: if t ! 0 then return F)il
5: else return M&34l)rC&(2&/i1i&,5Bre,1K4,-(f ,a,д rem µ)

1 − n/card(S) the algorithm returns д(a) rem f and computes µa as a by-product. If µa has degree
more than d , the algorithm returns Fa,l.

Pr&&.. For any given a in K[x]<n and (r0, . . . , rn−1), the algorithm computes a polynomial µ
and tests whether µ(a) ≡ 0 mod f ; if it is the case, it reduces д modulo µ before doing a modular
composition. Hence, the output may only be д(a) rem f or F)il, as claimed; it is F)il if and only
if the value t at Step 3 does not vanish.

By the discussion in Section 3.1.2 and Proposition 3.1, the call to P&6erPr&7e81i&, takes Õ((1+
n/d)dω2/2) operations in K; because we take d ≤ n, this is Õ(nd (ω2/2)−1). Step 2 then computes a
nonzero annihilating polynomial of degree at most d in Õ(d) operations in K [26, Algorithm 12.9].
The remaining lines call Algorithm M&34l)rC&(2&/i1i&,5Bre,1K4,- with a last argument of
degree at most d , so the cost is Õ(nd (ω2/2)−1) again; this establishes the claim on the runtime.

Suppose !rst that µa has degree greater than d . Then since deg(µ) ≤ d , µ(a) rem f cannot be
zero, so the output is F)il, as claimed.

Finally, suppose that the minimal polynomial µa has degree at most d and that the entries of
(ri )0≤i<n are chosen uniformly at random and independently from a set S inK. With Ma the multi-
plication matrix by a mod f and 1 the vector (1, 0, . . . , 0), the sequence (Mk

a 1)k≥0 is (ak rem f )k≥0
and the sequence ((ri )TMk

a 1)k≥0 is (!(ak mod f ))k≥0. Following the probabilistic analysis of Wiede-
mann’s algorithm [46, Lemma 2; 47, Lemma 1], the probability that their minimal polynomials
coincide is at least 1 − n/card(S). When this occurs, Step 2 computes µa ; the value t at Step 3 is
then zero, and the output is д(a) rem f . !

The main idea in this algorithm—computing an annihilating polynomial for a and using it to
reduceд — is actually at the core of our main algorithm as well. Key diberences are that we compute
several annihilating polynomials (which we call relations), and use them to reduceд into a bivariate
polynomial. We then apply Nüsken and Ziegler’s extension of Brent and Kung’s algorithm, which
we present now.

3.2 Bivariate Composition
Here we describe the Nüsken–Ziegler algorithm for modular composition [63], which computes
д(x ,a) rem f for a bivariate д in K[x ,y].

First, however, we address the following question: given f of degree n in K[x], a in K[x]<n and
an s-tuple (д0, . . . ,дs−1) in K[x ,y]s

<(m,r ), compute all compositions

(д0(x ,a) rem f , . . . ,дs−1(x ,a) rem f ) ∈ K[x]s .
The solution designed by Nüsken and Ziegler [63] boils down to a multiplication of polynomial
matrices. Writing the polynomials дi as the rows of their coexcients in y gives an s ( r matrix G
whose entries are polynomials in K[x]<m . Writing the powers of 1,a, . . . ,ar−1 rem f in a column
vector A reduces the simultaneous composition to a matrix-vector productGA. This is turned into
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ALGORITHM 3.4 Si(4l1),e&4/Bi;)ri)1eM&34l)rC&(2&/i1i&,(f ,a,д0, . . . ,дs−1,m, r )
Input: f of degree n in K[x], a in K[x]<n , (д0, . . . ,дs−1) in K[x ,y]s

<(m,r )
Output: (д0(x ,a) rem f , . . . ,дs−1(x ,a) rem f )

1: â0 ← 1
2: for i = 1, . . . , r − 1 do âi ← a · âi−1 rem f " âi = ai rem f

3: A← matrix ([âi ]m−1
jm )0≤i<r

0≤j< ,n/m -
in K[x]r(,n/m -<m

4: G ← matrix (дi, j (x))1≤i≤s
0≤j<r

in K[x]s(r
<m , where дi (x ,y) =

∑
j дi, j (x)y j

5: B = (Bi, j )0≤i<r
0≤j< ,n/m -

← GA

6: for i = 0, . . . , s − 1 do bi ← (∑0≤j< ,n/m - Bi, jx jm) rem f
7: return (b0, . . . ,bs−1)

a matrix-matrix product by spreading the coexcients of A as follows. If

дi (x ,y) =
∑

0≤j<r
дi, j (x)y j ,

then computing the product

B =
344
5

д0,0(x) · · · д0,r−1(x)
...

...
дs−1,0(x) · · · дs−1,r−1(x)

677
8
3444
5

[a0 rem f ]m−1
0 · · · [a0 rem f ]m−1

( ,n/m -−1)m
...

...
[ar−1 rem f ]m−1

0 · · · [ar−1 rem f ]m−1
( ,n/m -−1)m

6777
8

yields a matrix whose entry Bi,! is

Bi,! =
∑

0≤j<r
дi, j (x)[aj rem f ]m−1

!m .

Summing the Bi,!x !m modulo f , for ! = 0, . . . , ,n/m- − 1, then provides дi (x ,a) rem f for i =
0, . . . , s − 1 at low cost. This is detailed in Algorithm 3.4 and Lemma 3.3.

Le(() 3.3 ([63, Le(() 10(iii)]). Algorithm S,)ul-a.0ousB,3a(,a-0Modula(Co)pos,-,o. com-
putes (д0(x ,a) rem f , . . . ,дs−1(x ,a) rem f ). Assuming s ∈ Õ(r ), it uses Õ(c(n,m, r 2)) = Õ((m +
n/r 2)rω2) operations in K, with c(·) from Equation (2).

Pr&&.. Steps 1 and 2 use Õ(rn) operations. Similarly, for each i = 0, . . . , s −1, Step 6 uses ,n/m-
additions in O(m) operations each and one reduction in Õ(m + n) operations. The total cost of
Step 6 is thus Õ(s(n +m)).

Steps 3 and 4 do not use any arithmetic operation. The most expensive step is Step 5, the product
of an s(r matrix by an r(,n/m- matrix, both with entries inK[x]<m . Using the same kind of block
decomposition as in Proposition 3.1, this is done using ,,n/m-/r 2- ∈ n/(mr 2) +O(1) products in
sizes s ( r and r ( r 2. With the assumption s ∈ Õ(r ), each of them uses Õ(mrω2 ) operations in K,
for a total of Õ(c(n,m, r 2)) = Õ((m + n/r 2)rω2) operations in K.

The other steps, in Õ((r+s)(n+m)) = Õ(rm+rn), are at most of the same order, sinceω2 ≥ 3. !

Algorithm Si(4l1),e&4/Bi;)ri)1eM&34l)rC&(2&/i1i&, is the central step in bivariate com-
position as showed in Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&,, leading to the complexity
stated in Proposition 3.4.
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ALGORITHM 3.5 Bi;)ri)1eM&34l)rC&(2&/i1i&,(f ,a,д) (Nüsken-Ziegler algorithm [63])
Input: f of degree n in K[x], a in K[x]<n , д in K[x ,y]<(m,d )
Output: д(x ,a) rem f

1: r ← ,d1/2-, s ← ,d/r-
2: Write д(x ,y) = д0(x ,y) + д1(x ,y)yr + · · · + дs−1(x ,y)yr (s−1) with degy (дi ) < r for 0 ≤ i < s
3: (b0, . . . ,bs−1)← Si(4l1),e&4/Bi;)ri)1eM&34l)rC&(2&/i1i&,(f ,a,д0, . . . ,дs−1,m, r )
" bi = дi (x ,a) rem f

4: â ← ar rem f " is computed in the previous step
5: return b0 + b1â + · · · + bs−1âs−1 " Horner evaluation

Pr&2&/i1i&, 3.4 ([63, The&re( 9]). Given f ∈ K[x] of degree n, a ∈ K[x]<n , д in K[x ,y]<(m,d ),
Algorithm B,3a(,a-0Modula(Co)pos,-,o. computes д(x ,a) rem f using Õ(c(n,m,d)) = Õ((m +
n/d)dω2/2) operations in K, with c(·) from Equation (2).

Pr&&.. The correctness of the algorithm is straightforward. For the complexity analysis, we
!rst note that s / r / d1/2. Lemma 3.3 then shows that the complexity of Step 3 is Õ(c(n,m, r 2)) =
Õ(c(n,m,d)). The other task involving arithmetic operations is the !nal Horner evaluation which
costs Õ(rn). As in the proof of Lemma 3.3, this is smaller than the other part, since ω2 ≥ 3. !

3.3 Sequence of Truncated Modular Powers
Another key ingredient in our composition algorithm also relies on polynomial matrix multipli-
cation. To our knowledge this is a new algorithm, whose properties are summarized in the next
lemma.

Le(() 3.5. Given f of degree n in K[x], (p0, . . . ,pr−1) in K[x]r<n , (q0, . . . ,qs−1) in K[x]s<n and
m ∈ N>0, Algorithm S,)ul-a.0ousT(u.4a-0dModula(Mul-,pl,4a-,o. computes the simultane-
ous truncated modular multiplications

{[piqj rem f ]m−1
0 | 0 ≤ i < r , 0 ≤ j < s}.

If s ∈ Õ(r ), it uses Õ(c(n,m, r 2)) = Õ((m + n/r 2)rω2) operations in K, with c(·) from Equation (2).

The basic approach to this problem is to !rst compute all the products piqj modulo f and then
truncate the computed polynomials. However, this produces an intermediate result of size nrs ,
which is Θ(nr 2) when s is in Θ(r ), and is larger than our target complexity.

Hereafter, we use the reversal of a polynomial p ∈ K[x] with respect to m ∈ N de!ned by
rev(p,m) = xmp(1/x); whenm = deg(p) this is the classical reciprocal of the polynomial p.

Pr&&.. For all i < r and j < s , let piqj = hi, j f + ri, j , with deg(ri, j ) < n, be the Euclidean
division of the product piqj by the polynomial f . The main task of the algorithm is to compute
the truncated quotients [hi, j ]m−1

0 (Steps 1 to 5); from there, the truncated remainders [ri, j ]m−1
0 are

easily obtained (Step 6) at a total cost of Õ(mrs) operations.
For the excient computation of the quotients hi, j , we rely on the classical approach via recipro-

cals and power series operations. More speci!cally we use the identity

rev(hi, j ,n − 2) =
rev(pi ,n − 1) rev(qj ,n − 1)

rev(f ,n) rem xn−1 = p̄iq̄j rem xn−1,

obtained by evaluating piqj = hi, j f +ri, j at 1/x and multiplying by xn−2/f (1/x) = x2n−2/rev(f ,n);
here we have p̄i = rev(pi ,n − 1) and q̄j = rev(qj ,n − 1)/rev(f ,n) rem xn−1, as in the pseudocode.
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ALGORITHM 3.6 Si(4l1),e&4/Tr4,8)1e3M&34l)rM4l1i2li8)1i&,(f , (pi )i<r , (qj )j<s ,m)
Input: f of degree n in K[x], (p0, . . . ,pr−1) in K[x]r<n , (q0, . . . ,qs−1) in K[x]s<n ,m ∈ N>0
Output: ([piqj rem f ]m−1

0 )0≤i<r
0≤j<s

1: (!, t)← (quotient,remainder) in the Euclidean division n −m − 1 = !m + t with ! = 0 ifm ≥ n
2: for i = 0, . . . , r − 1 do p̄i ← rev(pi ,n − 1)
3: for j = 0, . . . , s − 1 do q̄j ← power series expansion rev(qj ,n − 1)/rev(f ,n) rem xn−1

4: Form the matrices
P1 ← ([p̄i ]m−1

jm+t )0≤i<r
0≤j≤!

∈ K[x]r((!+1)
<m P2 ← ([p̄i ]m−1

jm+t )0≤i<r
0≤j<!

∈ K[x]r(!<m

(note that P2 is the r ( ! left submatrix of P1), and
Q1 ← ([q̄j ]m−1

(!−i)m)0≤i≤!
0≤j<s

∈ K[x](!+1)(s
<m Q2 ← ([q̄j ]m−1

(!−1−i)m)0≤i<!
0≤j<s

∈ K[x]!(s
<m

5: H ← [P1Q1]m−1
0 + [P2Q2]m−1

m +
( [
[p̄i ]t−1

0 [q̄j ]m−1+t−1
!m+1

]m−1
t−1

)
0≤i<r
0≤j<s

" H = (h̄i, j )i, j is in K[x]r(s
<m

6: for i = 0, . . . , r − 1 and j = 0, . . . , s − 1 do ri, j ← (piqj − rev(h̄i, j ,m − 1)f ) rem xm

7: return (ri, j )0≤i<r
0≤j<s

The idea of our algorithm is to compute only the lastm coexcients of this expansion by means of
two polynomial matrix multiplications.

For any t ∈ {0, . . . ,m − 1}, for any polynomials a,b written as

a = [a]t−1
0 + x t

∑
i≥0

aix
im with deg(ai ) < m, b =

∑
j≥0

bjx
jm with deg(bj ) < m,

and for any positive integer !, one has

[ab]m−1
!m+t =


∑

i+j=!

aibj



m−1

0

+


∑

i+j=!−1
aibj



m−1

m

+
[
[a]t−1

0 [b]m−1+t−1
!m+1

]m−1
0 . (11)

(The last summand is a product of small degree polynomials that is 0 when t = 0.) We use this
formula with ! and t as de!ned in Step 1, so that the left-hand side is [ab]m−1

n−m−1; applying this to
a = p̄i and b = q̄j gives h̄i, j = [rev(hi, j ,n − 2)]m−1

n−m−1, and thus [hi, j ]m−1
0 by reversal.

Since ! / n/m, using this formula for a single pair i, j requires Õ(n) operations in K and thus
is as costly as computing p̄iq̄j rem xn . In our algorithm, the gain comes from using this formula
simultaneously for several products, in which case matrix multiplication helps.

The !rst multiplication in Step 5 is the matrix product

344
5

[p̄0]m−1
t · · · [p̄0]m−1

n−m−1
...

...
[p̄r−1]m−1

t · · · [p̄r−1]m−1
n−m−1

677
8
344
5

[q̄0]m−1
!m · · · [q̄s−1]m−1

!m
...

...
[q̄0]m−1

0 · · · [q̄s−1]m−1
0

677
8
.

Its entries are the !rst summand in Equation (11) for a = p̄i and b = q̄j , for 0 ≤ i < r and 0 ≤ j < s .
Similarly, the second summand in Equation (11) is obtained from the matrix product

3444
5

[p̄0]m−1
t · · · [p̄0]m−1

n−2(m−1)
...

...
[p̄r−1]m−1

t · · · [p̄r−1]m−1
n−2(m−1)

6777
8
344
5

[q̄0]m−1
(!−1)m · · · [q̄s−1]m−1

(!−1)m
...

...
[q̄0]m−1

0 · · · [q̄s−1]m−1
0

677
8
.
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ALGORITHM 3.7 Tr4,8)1e3P&6er/(f ,a,b,m,d)
Input: f of degree n in K[x], a and b in K[x]<n ,m and d in N>0
Output: the truncated powers [bak rem f ]m−1

0 for 0 ≤ k < d
1: r ← ,d1/2-; s ← ,d/r-
2: â0 ← 1; for i = 1, . . . , r do âi ← a · âi−1 rem f " âi = ai rem f

3: ā0 ← b; for j = 1, . . . , s − 1 do āj ← âr · āj−1 rem f " āj = bajr rem f
4: (ci, j )0≤i<r

0≤j<s
←

Si(4l1),e&4/Tr4,8)1e3M&34l)rM4l1i2li8)1i&,(f , â0, . . . , âr−1, ā0, . . . , ās−1,m)
5: for i = 0, . . . , r − 1 and j = 0, . . . , s − 2 do ri+r j ← ci, j

for i = 0, . . . ,d − 1 − (s − 1)r do ri+r (s−1) ← ci,s−1
6: return (rk )0≤k<d

In terms of complexity, the multiplication P1Q1 involves r ( (! + 1) and (! + 1) ( s matrices, while
P2Q2 involves r ( ! and ! ( s matrices; all four operands have degree less thanm.

Since ! = 3(n − 1)/m4 − 1, we have ! + 1 ≤ n/m, so each matrix product can be done using at
most ,n/(mr 2)- ≤ n/(mr 2)+ 1 products in sizes r ( r 2 and r 2 ( s . Since s ∈ Õ(r ), each of these take
Õ(mrω2 ), for a total cost of c(n,m, r 2) = Õ((m + n/r 2)rω2).

The other operations performed by the algorithm areO(r ) power series expansions at precision
n − 1 in Õ(n) operations each (precisely, one inverse and t multiplications, see Step 3), and O(r 2)
power series expansions at precision m in Õ(m) operations each (precisely, at most 3rs multipli-
cations and rs subtractions, see Steps 5 and 6). This amounts to a total of Õ(nr +mr 2) operations,
and can thus be neglected, since ω2 ≥ 3. !

Using simultaneous truncated modular multiplication combined with a baby steps/giant steps
strategy leads to Algorithm Tr4,8)1e3P&6er/, with the following properties.

Pr&2&/i1i&, 3.6. Given f in K[x] of degree n, a and b in K[x]<n , m and d in N>0, Algorithm
T(u.4a-0dPo50(s computes the truncations

[akb rem f ]m−1
0 , 0 ≤ k < d

using Õ(c(n,m,d)) = Õ((m + n/d)dω2/2) operations in K, with c(·) from Equation (2).

Pr&&.. The algorithm computes 1,a, . . . ,ar−1 rem f and b,bar , . . . ,ba(s−1)r rem f , which
costs Õ(nr ) operations in K since r / s . From these two sets of polynomials, Algorithm
Si(4l1),e&4/Tr4,8)1e3M&34l)rM4l1i2li8)1i&, is then used to compute [bak rem f ]m−1

0 for
0 ≤ k ≤ rs − 1 using Õ((m + n/r 2)rω2) operations, by Lemma 3.5; since ω2 ≥ 3, this is larger than
Õ(nr ). The choice of s makes (s − 1)r < d ≤ rs , so the output consists of the terms k = i + r j for
j < s − 1 and i < r , and for j = s − 1 and i < d − (s − 1)r ∈ {1, . . . , r }. !

Finally, Algorithm Bl&8kTr4,8)1e3P&6er/ computes truncations of products of the form
x iak rem f , which are needed in our composition algorithm; here, we assume that f (0) is nonzero
(see Remark 3.8).

Pr&2&/i1i&, 3.7. Given f in K[x] of degree n with f (0) ! 0, a in K[x]<n , m and d in N>0,
Algorithm Blo46T(u.4a-0dPo50(s computes

[x iak rem f ]m−1
0 , 0 ≤ i < m, 0 ≤ k < d

using Õ(c(n,m,d)) + O(m2d) = Õ((m + n/d)dω2/2) + O(m2d) operations in K, with c(·) from
Equation (2).
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ALGORITHM 3.8 Bl&8kTr4,8)1e3P&6er/(f ,a,m,d)
Input: f of degree n in K[x], with f0 = f (0) ! 0, a in K[x]<n ,m and d in N>0
Output: the truncated powers [x iak rem f ]m−1

0 , for 0 ≤ i < m and 0 ≤ k < d
1: (rk )0≤k<d ← Tr4,8)1e3P&6er/(f ,a,xm−1 rem f , 2m − 1,d) " rk = [xm−1ak ]2m−2

0
2: fn ← coeb(f ,n) " leading coe!cient
3: for k = 0, . . . ,d − 1 do
4: am−1,k ← rk
5: for i =m − 1, . . . , 2, 1 do
6: c ← −ai,k (0)/f0
7: ai−1,k ← (ai,k + c[f ]m+i−1

0 )/x " ai−1,k = [x i−1ak rem f ]m+i−2
0

8: return ([ai,k ]m−1
0 )0≤i<m

0≤k<d

Pr&&.. Proposition 3.6 shows that the !rst step computes the sequence [xm−1ak ]2m−2
0 for k =

0, . . . ,d−1 in the announced complexity. The remaining truncations are obtained from the identity

[xp rem f ]j
0 = x[p rem f ]j−1

0 − pn−1
fn

[f ]j
0,

for any integer j and polynomial p, where pn−1 is the coexcient of degree n − 1 of p rem f and
fn is the coexcient of degree n in f . If we know [xp rem f ]j

0, we get −pn−1 f0/fn as its constant
coexcient, whence pn−1 since f0 ! 0 and from there [p rem f ]j−1

0 is easily obtained. At iteration
k of the loop at Step 3, the truncation [xm−1ak rem f ]2m−2

0 computed previously is used to deduce
all [xm−1−iak rem f ]2m−2−i

0 for 1 ≤ i < m in O(m2) operations. Thus this loop has a total cost of
O(m2d) operations. !

Remark 3.8. The assumption f (0) ! 0 is harmless in the context of modular composition:
in the computation of д(a) rem f , one can rather evaluate д(y) at a(x + c) modulo f (x + c)
for a randomly chosen c ∈ K, and unshift the result. See Steps 3 and 12 in Algorithm
M&34l)rC&(2&/i1i&,B)/eC)/e.

3.4 Notes
3.4.1 Linear Algebra Interpretation. Representing polynomials by their vector of coexcients

leads to viewing the operations performed by Algorithms Bi;)ri)1eM&34l)rC&(2&/i1i&, and
Tr4,8)1e3P&6er/ as computing the product of special matrices by column vectors. Recall the
notation Ma for the n ( n matrix of multiplication by a mod f in the basis (1,x , . . . ,xn−1), and X
for the matrix (Im 0)T ∈ Kn(m with m ∈ {1, . . . ,n}. Then, Algorithms Bi;)ri)1eM&34l)rC&(5
2&/i1i&, and Tr4,8)1e3P&6er/ correspond, respectively, to multiplication by

K (a,f )
m,d =

(
X · · · Md−1

a X
)
∈ Kn((md ) and L(a,f )m,d =

344
5

X T

...
X TMd−1

a

677
8
∈ K(md )(n . (12)

Indeed,K (a,f )
m,d is the matrix of the mappingκ(a,f )m,d of bivariate modular composition with bounded

degrees, as computed by Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&,:

κ(a,f )m,d : K[x ,y]<(m,d ) → K[x]<n

д(x ,y) 5→ д(x ,a) rem f .
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On the other hand, L(a,f )m,d represents the mapping λ(a,f )m,d that extracts the low-degree part of multi-
plications by powers of a, as computed by Algorithm Tr4,8)1e3P&6er/:

λ(a,f )m,d : K[x]<n → K[x]d<m

b 5→ ([b rem f ]m−1
0 , . . . , [bad−1 rem f ]m−1

0 ).
These maps and matrices play an important role in the study of the generic behavior of our algo-
rithm starting from Section 7.

3.4.2 Complexity Equivalence. Proposition 3.4 (Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&,)
and Proposition 3.6 (Algorithm Tr4,8)1e3P&6er/) give similar complexity bounds for the evalu-
ation of κ(a,f )m,d and λ(a,f )m,d , but the computational equivalence of these problems, possibly up to some
conditions, is is still unclear to us in general.

However, for m = 1, when f (0) ! 0, these two problems are indeed equivalent. This is a conse-
quence of the transposition principle in an indirect way, starting from the equality

L(a,f )1,n vb = (MbK
(a,f )
1,n )T1,

where vb is the vector associated to b, Mb is the matrix of multiplication by b mod f , and 1 is
the !rst canonical vector. First, this equality gives a way to evaluate λ(a,f )1,n for the cost of one
multiplication by MT

b (i.e., Õ(n) by the transposition principle), plus one multiplication by the
transpose ofK (a,f )

1,n , which has the same asymptotic cost as that ofK (a,f )
1,n itself, by the same principle.

Conversely, ifv = MT
b 1, the equality reads (K (a,f )

1,n )Tv = L(a,f )1,n vb , so that, again by the transposition
principle, the evaluation of κ(a,f )1,n reduces to that of λ(a,f )1,n provided vb can be computed from v in
low complexity. When f (0) ! 0, this can be done in Õ(n) by solving a linear system of Hankel
type [71, Section 3].

If f (0) = 0, it is unclear whether such a reduction holds: in the special case f = xn , the map
λ(a,f )1,n becomes much simpler, as it simply computes the sequence ai

0b0 for 0 ≤ i < d , where a0 and
b0 are the constant coexcients of a and b. This only requires a linear number O(d) of operations.
On the other hand, κ1,d is the composition of a univariate polynomial д(y) of degree less than d
with the power series a(x) and no quasi-linear complexity result is known for this operation.

3.4.3 Transposition of the Nüsken–Ziegler Algorithm. Finally, we discuss a diberent approach
to Algorithm Bl&8kTr4,8)1e3P&6er/, which actually bypasses Algorithm Tr4,8)1e3P&6er/
altogether, and uses the transpose of Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&, instead.

Algorithm Bl&8kTr4,8)1e3P&6er/ computes the m (m projections Hk = X TMakX , for k =
0, . . . ,d − 1, using the fact that for k < d , Hk can be deduced in O(m2) operations (for loop at
Step 5) from the column vector X̄ TMaku of size 2m− 1, where X̄ = (I2m−1 0)T ∈ K(2m−1)(n and u is
the mth column of X , i.e., the mth canonical vector (Step 1). (Here, we have taken m ≤ (n + 1)/2.)
Algorithm Tr4,8)1e3P&6er/ computes the vectors X̄ TMk

au for 0 ≤ k < d using Õ(c(n,m,d))
operations.

Alternatively, we can consider a recursion similar to the one in the proof of Proposition 3.7, but
now for learning a new coexcient of a polynomial rather than a coexcient of a new polynomial.
Assuming f (0) ! 0, for a polynomial p one has

[xp rem f ]0i+1 = [p rem f ]0i + (c/f0)[f ]0i+1,

where c is the coexcient of degree 0 of xp rem f : we see that from the row vector 1TMx−m+1ak X̄ ,
one can also deduce Hk = X TMakX using O(m2) operations.
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Now, if we set v = MT
x−m+1 1, computing vTK (a,f )

d,2m−1 precisely gives all vectors 1TMx−m+1ak X̄ ,
for 0 ≤ k < d . Since v can be computed in quasi-linear time, the application of the trans-
position principle to Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&, shows that these vectors can
be computed using Õ(c(n,m,d)) operations. Altogether, this gives an alternative to Algorithm
Bl&8kTr4,8)1e3P&6er/ with the same asymptotic complexity.

4 MATRICES OF RELATIONS FOR COMPOSITION
The heart of our algorithm for !ndingд(a) rem f is the computation of a matrix of relations, which
gives a collection of polynomials of small degree in the ideal I generated by y −a and f in K[x ,y].
For a given positive integerm, these polynomials are in theK[y]-moduleM(a,f )

m obtained by degree
restriction as I ∩ K[x ,y]<(m, ·).

In Section 4.1, we show that the invariant factors of M(a,f )
m are them invariant factors of highest

degree of the characteristic matrix yIn −Ma , where Ma is the matrix of multiplication by a mod f .
Once a matrix of relations has been obtained, it can be used to perform composition by reducing
univariate composition to a small bivariate composition problem; this is described in Section 4.2.
Finally, in Section 4.3, the results of this section are applied to the excient computation of annihi-
lating polynomials for a modulo f .

In all of Section 4, notation such as M(a,f )
m and ν (a,f )m is shortened into Mm and νm , except for

the main de!nitions and statements, as there is no ambiguity as to the dependency on a or f .

4.1 Structure of the Module of Relations
This section introduces the module of relations M(a,f )

m and relates it to the characteristic matrix.
4.1.1 Definitions.

Relations. We call relations the polynomials of the ideal I = 〈y − a(x), f (x)〉 of K[x ,y]; these
are the bivariate polynomials r (x ,y) such that r (x ,a) ≡ 0 mod f , i.e., they are algebraic relations
satis!ed by a mod f . We are interested in those relations whose x-degree is bounded from above
by a given positive integerm. They form the K[y]-module

M(a,f )
m =

{
r (x ,y) ∈ K[x ,y]<(m, ·) | r (x ,a(x)) ≡ 0 mod f

}
= I ∩ K[x ,y]<(m, ·),

which is denoted Mm when a and f are clear from the context.
This is a K[y]-submodule of K[x ,y]<(m, ·), itself a free K[y]-module with basis (1,x , . . . ,xm−1);

we refer to [23, Part III] for basic notions of module theory and modules over principal ideal
domains. As stated in Section 2, we often identify a polynomial r0(y) + · · · + rm−1(y)xm−1 in
K[x ,y]<(m, ·) with the column vector (r0 · · · rm−1)T in K[y]m of its coexcients on that basis.
Since K[y] is a principal ideal domain, Mm is free as well, and it has rank m since it contains
µaK[y]m , where µa is the minimal polynomial of a mod f .

In terms of ideals, there is a chain of inclusions {0} = 〈M0〉 ⊆ · · · ⊆ 〈Mn+1〉 = I; the latter
identity follows from the fact thaty−a and f have x-degree less thann+1. Furthermore, M1 ! {0}
since µa belongs to I ∩ K[y]. For small m, the module Mm may not contain all the information
in I: the inclusion 〈Mm〉 ⊂ I can be strict.

Matrix and basis of relations, determinantal degree. A matrix of relations of Mm is any nonsin-
gular matrix in K[y]m(m whose columns are elements of the module Mm (represented as column
vectors). Such a matrix is further called a basis of relations if its columns generate Mm ; all bases
of relations of Mm can be obtained from any single one of them via right multiplication by an uni-
modular matrix inK[y]m(m , i.e., a matrix whose determinant is inK\{0}. It follows that any matrix
of relations of Mm is a square, nonsingular right multiple of any basis of relations of Mm , and,
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therefore, bases of relations are exactly the matrices of relations whose determinant has minimal
degree. This degree is called the determinantal degree of the module Mm .

4.1.2 Relation to Invariant Factors. As a !nitely generated module over a principal ideal domain,
Mm has an invariant factor decomposition. The next result shows that these invariant factors can
be found in any triangular basis of Mm , and that the largest of these factors is precisely µa , the
minimal polynomial of a modulo f . It also relates the degrees of these factors to the quantity ν (a,f )m
(written more simply as νm when context is clear), already highlighted in Equation (8), and which
plays an important role in the analysis of our approach.

Pr&2&/i1i&, 4.1. Let B be an upper triangular basis of M(a,f )
m for somem ≥ 1. Then its diagonal

entries are the invariant factors of M(a,f )
m , up to multiplication by nonzero elements of K. A number

k ≤ min(m,n) of these invariant factors are nontrivial, and these nontrivial ones are the k invariant
factors of highest degree of the characteristic matrix yIn −Ma , which is a basis of relations of M(a,f )

n .
The determinantal degree of M(a,f )

m is the sum ν (a,f )m of the degrees of these invariant factors, hence
it satis"es min(m,n) ≤ ν (a,f )m ≤ n.

4.1.3 Proof of Proposition 4.1. Our proof relies on Lazard’s structure theorem [54] on lexico-
graphic Gröbner bases in K[x ,y]. Here, the degree of a zero-dimensional ideal I ⊂ K[x ,y] is the
dimension of the K-vector space K[x ,y]/I.

Le(() 4.2 (L)z)r3’/ S1r4814re The&re( .&r Bi;)ri)1e I3e)l/). Let I be a zero-dimensional
ideal of degree n in K[x ,y]. Any minimal Gröbner basis of I for the (y ≺ x)-lexicographic order has
the form {r0(y)hk (x ,y), r1(y)hk−1(x ,y), . . . , rk (y)h0(x ,y)} for some k ≥ 1, where




rk = hk = 1
n ≥ deg(r0) > · · · > deg(rk ) = 0
n ≥ degx (h0) > · · · > degx (hk ) = 0
for 0 ≤ i < k, ri ∈ K[y] is divisible by ri+1
for 0 ≤ i ≤ k, hi ∈ K[x ,y] has leading monomial a power of x .

Pr&&.. The form of a minimal Gröbner basis of I is given by Lazard’s result [54, Theorem 1].
The additional assumption that I is zero-dimensional ensures that this Gröbner basis contains
a polynomial whose leading term is a power of y, hence hk = 1, and one whose leading term
is a power of x , hence rk = 1. Since I has degree n, there are precisely n monomials that are
not multiples of the leading monomials of {rihk−i | 0 ≤ i ≤ k}. These leading monomials are
{xdegx (hk−i )ydeg(ri ) | 0 ≤ i ≤ k}, whence the bounds deg(r0) ≤ n and degx (h0) ≤ n. !

C&r&ll)r9 4.3. With the same notation, when I = 〈f ,y − a〉 and m ≥ 1, a basis of M(a,f )
m =

I ∩ K[x ,y]<(m, ·) is given by the "rstm polynomials in the sequence

(x jr0hk )0≤j<δk , . . . , (x jrk−1h1)0≤j<δ1 , (x jh0)j≥0, (13)
where δi = degx (hi−1) − degx (hi ). If s = degx (h0) = δ1 + · · · + δk , the nontrivial invariant factors of
M(a,f )

m are the "rst min(m, s) polynomials in(
r0, . . . , r0︸!!!!⎧⎪!!!!⎨

δk

, . . . , rk−1, . . . , rk−1︸!!!!!!!!!!!⎧⎪!!!!!!!!!!!⎨
δ1

)
. (14)

Pr&&.. The polynomials in the sequence in Equation (13) form a (non!nite) Gröbner basis of
I, made of polynomials of x-degree 0, 1, 2, . . . respectively [54, Proposition 1]. By design, the !rst
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m elements in this sequence belong to Mm , and considering their x-degrees shows that they are
K[y]-linearly independent.

Any polynomial p(x ,y) ∈Mm is a K[y]-linear combination of the !rst m of these polynomials.
Indeed, it can be divided by the Gröbner basis with a remainder equal to 0; in view of its degree
in x , only these m polynomials are involved in the division. This proves the claim on the basis
of Mm described in Equation (13).

The matrix T (y) ∈ K[y]m(m representing this basis (with basis elements written in columns)
is upper triangular, with its !rst min(m, s) diagonal entries being the !rst min(m, s) polynomials
in Equation (14) in this order, and with its remaining diagonal entries being nonzero elements of
K. Furthermore, each of these diagonal entries divides all other entries in the same column, hence
the Smith normal form of T (y) has the same diagonal entries as T (y), which proves the claim on
the invariant factors of Mm . !

Pr&&. &. Pr&2&/i1i&, 4.1. Corollary 4.3 implies that the determinantal degree νm ofMm is the
sum of the degrees of the elements of the !rst min(m, s) elements of Equation (14). It follows that

νm ≤ δk deg(r0) + · · · + δ1 deg(rk−1) = n,

where the last identity comes from considering the K-vector space dimension of K[x ,y]/I. If
s ≤ m, all the nontrivial invariant factors appear and the bound is reached, while otherwisem < s
and deg det(B), being the sum of the degrees of m nonconstant polynomials, is at leastm.

If B is a basis of Mm , then there exists an unimodular matrix U ∈ K[y]m(m such that UB = T
with T as in the previous proof. If, moreover, B is upper triangular, then so is U and since
det(U ) ∈ K \ {0}, the diagonal entries of U belong to K \ {0}. It follows that B has the same
diagonal entries as T up to multiplication by nonzero elements of K.

The columns of the characteristic matrixyIn −Ma represent the polynomials xk (y−a(x)) rem f
for 0 ≤ k < n, making this matrix a matrix of relations of Mn . It has determinantal degree
deg(χa) = n, which coincides with the determinantal degree of Mn , by the previous inequalities.
Thus yIn − Ma is actually a basis of Mn and its invariant factors are given by the previous
paragraph. !

4.1.4 Note. For m ∈ {1, . . . ,n}, the module of relations Mm is isomorphic to the module of
vector generators for the matrix sequence {Mk

aX }k≥0, where X = (Im 0)T ∈ Kn(m as above (this
elementary fact is established within the proof of Lemma 5.2, for instance); the bases of relations
are the minimal generating polynomials for that sequence [50, 74].

The relation between Coppersmith’s block Wiedemann algorithm and invariant factors of a char-
acteristic matrix was described by Kaltofen and Villard: they show that for generic projections V
andW in Kn(! and Kn(m , with ! ≥ m, the invariant factors of minimal generating polynomial of
the sequence (V TAkW )k≥0 are them invariant factors of largest degree of the characteristic matrix
yIn − A [50, Theorem 2.12]. In our more speci!c setting, Proposition 4.1 shows that this relation
holds when the right projection is the structured matrix X (see also Section 5.1.4).

4.2 Composition using Matrices of Relations
Matrices of relations are used to reduce the univariate problem д(a) rem f with д ∈ K[y], to a
bivariate one with better degree properties, thanks to a matrix division.

4.2.1 Division for Polynomial Matrices. If R is a nonsingular matrix in K[y]m(m and vд is a
vector in K[y]m , then there exist quotient and remainder vectors w and vд̃ such that

vд = Rw +vд̃ , (15)
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ALGORITHM 4.1 Bi;)ri)1eM&34l)rC&(2&/i1i&,Wi1hRel)1i&,M)1rix(f ,a,д,R)
Input: f of degree n in K[x], a in K[x]<n , д in K[x ,y]<(m, .),

R ∈ K[y]m(m
≤d a matrix of relations of M(a,f )

m
Output: д(x ,a) rem f

1: Write д(x ,y) = д0(y) + д1(y)x + · · · + дm−1(y)xm−1 and set vд ← (д0 · · ·дm−1)T ∈ K[y]m
2: " Compute v ∈ K[y]m and r ∈ K[y] using [80, Algorithm 1](

v
r

)
∈ K[y]m+1 ← Mi,i()lN4ll/2)8eB)/i/((R −vд), (d, . . . ,d, degy (д)))

3: vд̃ ← R (v rem r )/r ∈ K[y]m
<d " v rem r is the vector of entry-wise remainders

4: д̃(x ,y)← the polynomial in K[x ,y]<(m,d ) corresponding to vд̃
5: return Bi;)ri)1eM&34l)rC&(2&/i1i&,(f ,a, д̃) " д̃(x ,a) rem f , Algorithm 3.5

and each entry of vд̃ has degree less than that of the corresponding row of R [43, Theorem 6.3-
15, p. 389]. The latter reference actually states a stronger condition on vд̃ , namely that the matrix
fraction R−1vд̃ is strictly proper (see Section 5.1.1); this implies the above degree condition [43,
Lemma 6.3–10, p. 383], which is suxcient for our needs.

For computing this division, it is customary to use K[y]-linear system solving. For this, we rely
on a kernel basis algorithm [80]: this returns v in K[y]m and r in K[y] such that R−1vд = v/r ,
with r of minimal degree. From this, the remainder is obtained as vд̃ = R (v rem r )/r , and here we
do not need the quotient vector w .

4.2.2 Composition Algorithm. In the case where vд = (д 0 · · · 0)T and R is a matrix of relations
of Mm of degree at most d , the remainder in the above division is a vector vд̃ of degree less than
d whose entries yield д̃ ∈ K[x ,y]<(m,d ) such that д − д̃ ∈ Mm . Thus, analogously to a reduction
modulo a Gröbner basis of the ideal I = 〈y − a, f 〉, this provides a bivariate polynomial д̃ with
smaller degree in y and controlled degree in x , and such that д̃ − д ∈ I, that is, д̃(x ,a) ≡ д(a)
mod f .

Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&,Wi1hRel)1i&,M)1rix is given a matrix of re-
lations R of Mm as a parameter and performs this division; then it completes the composi-
tion by evaluating д̃(x ,a) rem f using Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&,. Algorithm
Bi;)ri)1eM&34l)rC&(2&/i1i&,Wi1hRel)1i&,M)1rix actually accepts a slightly more general
input: д can be a bivariate polynomial with x-degree less than m (however, the rest of the article
focuses on the case of д in K[y] highlighted above). The algorithm accepts д of arbitrary degree in
y, but the cost analysis is done under the assumption degy (д) ∈ O(n).

Pr&2&/i1i&, 4.4. Given f in K[x] of degree n, a in K[x]<n , д in K[x ,y]<(m, .)
with degy (д) = O(n) and a matrix of relations R in K[y]m(m

≤d of M(a,f )
m , Algorithm

B,3a(,a-0Modula(Co)pos,-,o.W,-7R0la-,o.Ma-(,8 computes д(x ,a) rem f using
Õ(mω (d + n/m) + c(n,m,d)) operations in K, with c(·) from Equation (2).

Pr&&.. First, Step 2 computes r ∈ K[y] and v = rR−1vд ∈ K[y]m with r of minimal degree.
Indeed, since R is nonsingular, the right kernel of (R −vд) ∈ K[y]m((m+1) has rank 1. We use [80,
Algorithm 1] to compute a basis (vT r )T of this kernel. Thus by construction Rv = rvд holds, and
the fact that (vT r )T generates the kernel ensures that the greatest common divisor of r and all
the entries of v is 1, hence the minimality of deg(v) and deg(r ).

At Step 3 one considers the vector v̄ = v rem r ∈ K[y]m such that deg(v̄) < deg(r ) andv = rw+v̄
for some w ∈ K[y]m . It follows that vд = Rv/r = Rw + vд̃ , where vд̃ = Rv̄/r is the vector
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computed at Step 3; by construction the ith entry of vд̃ has degree less than that of the ith row
of R. In short, Steps 2 and 3 compute a vector vд̃ ∈ K[y]m that has degree less than d and is
a remainder of vд modulo R. Since R is a matrix of relations, the polynomial д̃(x ,y) at Step 4 is
such that д̃(x ,a) ≡ д(x ,a) mod f . The correctness follows, since д̃(x ,a) rem f is the polynomial
returned by Bi;)ri)1eM&34l)rC&(2&/i1i&,(f ,a, д̃) (see Proposition 3.4).

As required by Algorithm 1 of [80], the tuple of integers (d, . . . ,d, degy (д)) ∈ Zm+1 bounds the
column degrees of (R −vд). Then, since the sum of this tuple ismd+degy (д), with degy (д) = O(n),
Step 2 costs Õ(mω (d + n/m)) operations [80, Theorem 4.1]. The minimality of deg(r ) implies
deg(r ) ≤ deg det(R) ≤ md , and then v has degree at most deg det(R)R−1vд ≤ (m − 1)d + n since
det(R)R−1 is the transpose of the cofactor matrix of R. Thus, the computation of v̄ = v rem r
in Step 3 uses Õ(m(md + n)) operations, which is smaller than the cost of Step 2. Next, the
matrix-vector product Rv̄ can be performed in Õ(mωd) operations: write the column v̄ of degree
< md as m columns of degree < d via yd -adic expansion; use a matrix-matrix product to
left-multiply these columns by R; !nally, recombine the resulting columns into a single column
that gives Rv̄ . To obtain vд̃ it remains to divide each entry of Rv̄ by r , which costs Õ(m2d) since
deg(Rv̄) < (m + 1)d . By Proposition 3.4, the call at Step 5 uses c(n,m,d) operations. The cost
bound in the Proposition follows. !

Note. Comparing Proposition 4.4 with Proposition 3.4, note that when m / nη and d / n1−η

with η from Equation (3), then the complexity bound of Proposition 4.4 is the same as the one
given by the Nüsken–Ziegler algorithm, however, the y-degree of д can now go up to the order
of n.

4.3 Annihilating Polynomials Using Matrices of Relations
Our main algorithm requires an annihilating polynomial for a, that is, a polynomial h inK[y] such
that h(a) ≡ 0 mod f . It can readily be obtained from a matrix of relations.

Pr&2&/i1i&, 4.5. Let R ∈ K[y]m(m
≤d be a matrix of relations of M(a,f )

m . Its determinant is a nonzero
annihilating polynomial for a modulo f . It has degree at mostmd inK[y] and can be computed from R
using Õ(mωd) operations in K.

Pr&&.. As a polynomial combination of relations in Mm , the entry (1, 1) of the (upper triangu-
lar) Hermite normal form of a matrix of relations is a relation in 〈f ,y−a〉 ∩K[y], so it is a nonzero
multiple of the minimal polynomial of a. This implies the same property for the determinant, since
it is a multiple of that entry. The bound on the degree of the determinant is straightforward, and
the cost bound is from [53, Theorem 1.1]. !

Note. For the computations of the minimal polynomial and of the characteristic polynomial of
a modulo f , see Section 10.1.

5 COMPUTING MATRICES OF RELATIONS
In this section, we give an algorithm computing a matrix of relations. This study may be viewed
as a specialization of the formalism developed by Kaltofen and Villard for the block Wiedemann
approach (see Sections 1.4.3 and 1.4.4) in terms of manipulations of bivariate polynomials in the
ideal generated by y − a and f .

As already done in Section 4, notation such as M(a,f )
m and ν (a,f )m is shortened into Mm and νm

in this section, except in the main statements.
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In Section 5.1, we show that form ∈ {1, . . . ,n}, denominators of irreducible right matrix fraction
descriptions of (yIn − Ma)−1X with X = (Im 0)T ∈ Kn(m yield bases of M(a,f )

m . For exciency
reasons, a further truncation is required: this leads us to introduce modules M(a,f )

!,m whose bases
are the denominators of irreducible right matrix fraction descriptions of Y T(yIn −Ma)−1X , where
Y T = (I! 0) ∈ K!(n , with ! ∈ {1, . . . ,n}; thus, we use structured left and right block projections.
If ! = n, Y is the identity matrix of size n, and we recover M(a,f )

m , but this value is too large for our
cost objectives. Instead, we focus on ! =m, and thus Y = X .

Section 5.2 describes how a basis of M(a,f )
!,m can be reconstructed using minimal approximant

bases [4, 73], from suxciently many terms of the power series expansion of the matrix H =
X T(yIn −Ma)−1X .

This strategy is turned into an algorithm for computing matrices of relations in Section 5.3: the
expansion of H is obtained via Algorithm Bl&8kTr4,8)1e3P&6er/, while approximant bases are
computed using a matrix Padé version of the Berlekamp–Massey algorithm [4, 31]. The correctness
and exciency of this approach depends on a fundamental condition on Ma , i.e., on f and a (Propo-
sition 5.6, !rst item). First, it expresses that the left projection does not prevent us from getting
the right denominators of (yIn −Ma)−1X from those of H . It also ensures the existence of matrices
of relations of “small” degree , and, in this way, appropriately limits the number of terms of the
expansion of H that are required for the reconstruction. We prove in Section 7 that these proper-
ties are satis!ed for generic inputs; in Section 8, we further study cases where randomization can
ensure such a condition.

Verifying the condition on Ma , or verifying that a certain matrix is a matrix of relations, are
expensive tasks: except for some restricted cases, the algorithm of Section 5.3 does not certify that
its output is indeed a matrix of relations. As such, this would lead to a Monte Carlo composition
algorithm. To achieve Las Vegas composition instead, in Section 5.4, we propose an algorithm
which either detects that the output mentioned above is not a matrix of relations, or uses this
output to build a certi!ed matrix of relations of slightly larger dimensions.

5.1 Matrices of Relations as Denominators of Matrix Fractions
This section relates denominators of some matrix fractions to bases of the module of relations Mm
and of a truncated version M!,m of it.

5.1.1 Definitions.

Matrix Fractions. We !rst recall several notions on matrix fractions that can be found in Kailath’s
book [43, Chap. 6]. Let N be inK[y]!(m , letD ∈ K[y]m(m be nonsingular, and consider the rational
matrix F = ND−1 ∈ K(y)!(m . Then ND−1 is called a right fraction description of F . Similarly, if
F = D̂−1N̂ , then D̂−1N̂ is called a left fraction description of F . The right fraction ND−1 is said to be
irreducible ifN andD are right coprime, i.e., any right divisor common toN andD is unimodular, or
equivalentlyUN +VD = Im for someU ∈ K[y]m(! andV ∈ K[y]m(m [43, Lemma 6.3.5 p. 379]. The
fraction ND−1 is said to be strictly proper if for each nonzero entry of the rational matrix F = ND−1,
the degree of the numerator is less than the degree of the denominator. A matrix F ∈ K(y)!(m

is said to be describable in degree d if it admits both a left and a right fraction description with
denominators of degree at most d .

Truncated Module of Relations. For exciency reasons, we consider aK[y]-module similar toMm ,
but where only the !rst ! coexcients of the polynomials are required to be 0, for some positive
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integer ! with ! ≤ n = deg(f ). Explicitly, for !,m ∈ N>0 we de!ne the K[y]-modules

M(a,f )
!,m =

{
r (x ,y) ∈ K[x ,y]<(m, ·) |

[
a(x)kr (x ,a(x)) rem f

] !−1
0 = 0 for all k ≥ 0

}
,

together with the usual simpli!ed notation M!,m . They satisfy the inclusions M1,m ⊇ M2,m ⊇
· · · ⊇ Mn,m =Mm . If r (x ,a(x)) rem f = 0 then a(x)kr (x ,a(x)) rem f = 0 for all k ≥ 0, but note
that this is no longer true if truncated polynomials are considered. This explains the presence of
kth powers of a in the de!nition of M(a,f )

!,m , while they are not necessary in the de!nition of M(a,f )
m

in Section 4.1.1.
The determinantal degree of M!,m is denoted ν!,m . Of particular interest is the case when

Mm,m =Mm .

5.1.2 Relation Between Bases of Relations and Denominators of Matrix Fractions.

Pr&2&/i1i&, 5.1. For !,m ∈ {1, . . . ,n}, the columns of a matrix D ∈ K[y]m(m form a basis
of M(a,f )

!,m if and only if D is the denominator of an irreducible right fraction description ND−1 of

(I! 0)(yIn −Ma)−1X ∈ K[y]!(m ;
the denominator of any right fraction description of this matrix is a right multiple of any such basis D.

5.1.3 Proof of Proposition 5.1. For a matrix of rational functions F ∈ K(y)!(m , we let
D(F ) = {v ∈ K[y]m | Fv ∈ K[y]!}, (16)

which is a K[y]-submodule of K[y]m of rank m. Then, we can establish the relation between the
module M!,m and the matrix in Proposition 5.1.

Le(() 5.2. For !,m in {1, . . . ,n}, one has M!,m = D
(
(I! 0)(yIn −Ma)−1X

)
.

Pr&&.. Taking Y T = (I! 0), de!ne H (y) = Y T(yIn −Ma)−1X and Hk = Y TMk
aX ∈ K!(m , so that,

by power series expansion in y−1,

H (y) =
∑
k≥0

Hky
−k−1 =

∑
k≥0

Y TMk
aXy

−k−1.

Let r (x ,y) = ∑
0≤i≤d ri (x)yi ∈ K[x ,y]<(m, ·) be of y-degree d , and let vi ∈ Km be the coexcient

vector of ri for i = 0, . . . ,d . Then, for k ≥ 0,
[
akr (x ,a) rem f

] !−1

0
=

[ ∑
0≤i≤d

ak+iri rem f

] !−1

0

=
∑

0≤i≤d

[
ak+iri rem f

] !−1

0

and [ak+iri rem f ]!−1
0 has coexcient vector Y TMk+i

a Xvi = Hk+ivi . Hence,
[
akr (x ,a) rem f

] !−1
0

has coexcient vector Hkv0 + · · · + Hk+dvd . Therefore, r (x ,y) is in M!,m if and only if
Hkv0 + · · · + Hk+dvd = 0 for all k ≥ 0. (17)

On the other hand, de!ning v = ∑
0≤i≤d viyi and setting Hk = 0 for k < 0, the expansion of Hv at

in!nity reads

Hv =
∑
k≥0

Hky
−k−1

∑
0≤i≤d

viy
i =

∑
k≥−d

(Hkv0 + · · · + Hk+dvd )y−k−1, (18)

which implies that Equation (17) holds if and only if Hv has polynomial entries. !

Proposition 5.1 is then a direct consequence of the following general result on matrix fractions,
which is a reformulation of [43, Theorem 6.5-4 and Lemma 6.5-5, p. 441].
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Le(() 5.3. Let F ∈ K(y)!(m be a matrix of rational fractions. The columns of D ∈ K[y]m(m form
a basis of D(F ) if and only if D is the denominator of an irreducible right fraction description ND−1

of F . Besides, the denominator of any right fraction description of F is a right multiple of such a D.

5.1.4 Notes. The role of the truncated modules M!,m is to reduce the cost of computations: we
decrease the dimension of the relevant matrices using a structured left projection. The more usual
approach [50] uses generic projections matrices; our choice here is similar to the one used for the
excient computation of generic resultants [75].

Although not used in this work, genericity on the left is suxcient: ifV ∈ Kn(! is generic with ! ∈
{m, . . . ,n}, then one has Mm = D((yIn − Ma)−1X ) = D(V T(yIn − Ma)−1X ). The latter occurs if
and only if rank(V TP ,V TPA,V TPA2, . . .) = νm for a well chosen full rank matrix P ∈ Kn(νm , and a
restriction A ∈ Kνm(νm of Ma to the invariant subspace generated by X [74, Lemma 4.2]. The rank
condition is satis!ed for a generic projection [74, Corollary 6.4 and its proof].

In terms of generators of matrix sequences, Equation (17) shows that the denominators of Propo-
sition 5.1 are bases of modules of vector generators for the matrix sequence {(I! 0)Mk

aX }k≥0 [50,
Lemma 2.8].

5.2 Reconstructing Denominators of Matrix Fractions Via Approximant Bases
Algorithm Bl&8kTr4,8)1e3P&6er/ from Section 3.3 allows one to compute a truncated power
series expansion of H (y) = X T(yIn −Ma)−1X . When the precision of this expansion is suxcient, a
basis of Mm,m can be reconstructed.

5.2.1 Definitions.

Weak Popov matrices. Let P ∈ K[y]m(m be a matrix whose column j has degree dj ≥ 0. The
(column) leading matrix of P is the matrix in Km(m whose entry (i, j) is the coexcient of degree dj
of the entry (i, j) of P . Then P is said to be (column) reduced if its leading matrix is invertible. This
is the case if and only if [43, Equation (24), p. 384]

deg det(P) = d1 + · · · + dm . (19)
A (column) reduced matrix is in (column) weak Popov form if its leading matrix is invertible and up-
per triangular. Any submodule ofK[y]m has at least one basis which is in weak Popov form [5, 43].

Approximant bases. Let F ∈ K[[y]]m(k be a matrix of power series and σ ∈ N be a nonnegative
integer. A matrix P ∈ K[y]k(k is an approximant basis of F at order σ if its columns form a basis
of the K[y]-module {v ∈ K[y]k | Fv ≡ 0 mod yσ }, which is free of rank k . This approximant basis
is said to be minimal if it is reduced. Minimal approximant bases are also called σ -bases, or order
bases [4, 73].

5.2.2 Denominators from Approximant Bases. We are going to use approximant bases for solv-
ing equations of the type of Equation (7). As pointed out in Section 1.5, we use expansions at y = 0
rather than in!nity (see Remark 5.7).

Pr&2&/i1i&, 5.4. Let H ∈ K(y)m(m be strictly proper, and δ be the determinantal degree of D(H )
(notation from Equation (16)). Suppose that H has a power series expansion H =

∑
k≥0 Skyk at y = 0,

with Sk ∈ Km(m . Let

F =

(2d−1∑
k=0

Sky
k − Im

)
∈ K[y]m((2m),

and let
P =

(
D P1
N P2

)
∈ K[y](2m)((2m)
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be an approximant basis at order 2d of F in weak Popov form, with each submatrix of size m (m.
Then the following properties hold:

(i) D is weak Popov; deg(N ) < deg(D); the sum of the degrees of the diagonal entries of D is
deg det(D) and satis"es deg det(D) ≤ δ .

(ii) If deg det(D) = δ and each of the m rightmost columns of P has degree at least deg(D),
then ND−1 is an irreducible description of H .

(iii) IfH is describable in degreed , thenND−1 is an irreducible description ofH such that deg(D) ≤ d
and each of them rightmost columns of P has degree at least deg(D).

The !rst item gives general properties of the approximant basis in weak Popov form, whereas
Items (ii) and (iii) give suxcient conditions to guarantee it recovers an irreducible fraction
description of H .

5.2.3 Proof of Proposition 5.4.

Le(() 5.5. Let P ∈ K[y]m(m . If P is reduced and B ∈ K[y]m(m is a right multiple B = PU
with U nonsingular, then deg(P) ≤ deg(B). If P ∈ K[y]m(m is weak Popov, with diagonal degrees
d1, . . . ,dm ∈ N, andv ∈ K[y]m is a nonzero right multiplev = Pu whose bottom-most entry of largest
degree is in row i and has degree d , then di ≤ d = max1≤j≤m(deg(uj ) + dj ), where u = (uj )1≤j≤m .

Pr&&.. The !rst claim follows from the predictable degree property [43, Theorem 6.3–13, p. 387],
and so does the identity deg(v) = d = max1≤j≤m(deg(uj )+dj ) since (d1, . . . ,dm) are also the column
degrees of P by de!nition of a weak Popov form. The inequality di ≤ d is from [60, Lemma 1.17].

!

We now prove Proposition 5.4. Consider an irreducible fraction description QR−1 = H for some
Q ∈ K[y]m(m and some weak Popov R ∈ K[y]m(m . Since H is strictly proper we have deg(Q) <
deg(R) and, more precisely, the ith column ofQ has degree less than the ith column of R. Thus the
ith column of ( R

Q ) has its bottom-most entry of largest degree in row i; let di be this degree.
In Item (i), the !rst two claims follow from the de!nition of P being weak Popov. In particular D

is column reduced, hence Equation (19) shows that deg det(D) is the sum of column degrees of D,
which is also the sum of diagonal degrees ofD sinceD is weak Popov. The identity (H −Im)( R

Q ) = 0
implies F ( R

Q ) = 0 mod y2d , and therefore ( R
Q ) is a right multiple of P . Hence, by Lemma 5.5, di is at

least the degree of the ith column of P , which is the degree of the ith column of D; it follows that
deg det(D) ≤ d1+· · ·+dm . On the other hand, sinceR is reduced and since by Lemma 5.3 its columns
form a basis of D(H ) we have d1 + · · · + dm = deg det(R) = δ , proving the last claim of Item (i).

Concerning Item (ii), the assumption deg det(D) = δ = deg det(R) implies that the sum of col-
umn degrees of D is d1 + · · · + dm , while as showed above the ith column of D has degree at most
di . Thus D has the same column degrees (d1, . . . ,dm) as R. In particular deg(D) = deg(R) > deg(Q).
Then, since by assumption the m rightmost columns of P have bottom-most entries of largest de-
gree in rows at least m + 1 and of degree at least deg(D), one can deduce from Lemma 5.5 that
( R

Q ) is a right multiple of the leftmostm columns of P . Indeed, let u = ( u1
u2 ) ∈ K[y]2m , with u1 and

u2 each of dimension m, such that the ith column of ( R
Q ) is Pu = ( Du1+P1u2

N u1+P2u2
); we want to prove

u2 = 0. Using the last identity in Lemma 5.5 on each of the weak Popov matrices P , D, and P2, we
observe that deg(Pu) = max(deg(Du1), deg(P2u2)); note deg(Pu) = di ≤ deg(D) by construction.
On the other hand, since all diagonal degrees of P2 are at least deg(D), Lemma 5.5 shows deg(D) ≤
deg(P2u2), provided that u2 ! 0, which we now assume by contradiction. This implies deg(Du1) ≤
deg(Pu) = deg(P2u2) = deg(D), hence max1≤j≤m dj + deg(u1, j ) ≤ deg(D) using Lemma 5.5, where
u1 = (u1, j )1≤j≤m . Now by de!nition of weak Popov forms, the jth column of N has degree less than
dj for 1 ≤ j ≤ m, hence deg(Nu1) < max1≤j≤m dj +deg(u1, j ). This gives deg(Nu1+P2u2) = deg(D),
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which is a contradiction since Nu1 + P2u2 is the ith column of Q and has degree strictly less than
di , itself at most deg(D). So, u2 = 0. Gathering this over all columns 1 ≤ i ≤ m, this means
( R

Q ) = ( D
N )U = ( DU

N U ) for someU ∈ K[y]m(m , andU is unimodular since R and D are nonsingular
with deg det(R) = deg det(D). Hence H = QR−1 = ND−1 and the fraction ND−1 is irreducible.

The following proof of Item (iii) re0ects that of [31, Lemma 3.7]. The assumption implies !rst
the existence of a left fraction H = R̂−1Q̂ with deg(Q̂) < deg(R̂) ≤ d , and second the degree
bound deg(R) ≤ d thanks to the degree minimality of reduced bases (see Lemma 5.5). The above
paragraph shows in particular deg(D) ≤ maxi (di ) = deg(R) ≤ d .

Now, since R̂(∑0≤k<2d Skyk ) ≡ Q̂ mod y2d , multiplying on the left by R̂ both sides of F ( D
N ) ≡

0 mod y2d shows that Q̂D− R̂N is a right multiple ofy2d R̂. On the other hand, Q̂D− R̂N has degree
less than 2d . Hence it is zero, andH = R̂−1Q̂ = ND−1. To prove that the latter fraction is irreducible,
assume by contradiction that D and N have a nonsingular common right divisor B ∈ K[y]m(m ,
with deg det(B) > 0. Then H = (NB−1)(DB−1)−1 yields F ( DB−1

N B−1 ) ≡ 0 mod y2d , and P diag(B−1, Im)
is a right multiple of P (since P is a basis): this is impossible since deg det(P diag(B−1, Im)) <
deg det(P).

It remains to prove the last degree assertion. By contradiction, assume that P has a column
( v0

v1 ) of index larger thanm with v0 and v1 in K[y]m both of degree less than d . Then an argument
similar to the one above shows that Q̂v0 − R̂v1 = 0. Altogether, we obtain a matrix ( D v0

N v1
) of

rank m + 1 which is in the right kernel of (Q̂ R̂) ∈ K[y]m((2m) whose rank is m: this is not
possible.

5.2.4 Notes. The existence of appropriate left and right descriptions of H was used before for
the reconstruction of matrix fractions within the approximant framework [31, Section 3.2]. Our
proof is similar to that of [31, Lemma 3.7], with the additional use of the weak Popov form.

Reduced forms were introduced [78] as a way to get a better control over the degrees when com-
puting with polynomial matrices and matrix fractions, see e.g., [43, Lemma 6.3-11, p. 385] for proper
fractions, [43, Theorem 6.3-13, p. 387] for a predictable degree property, and [43, Theorem 6.5-10,
p. 458] concerning the minimality of the column degrees. Weak Popov forms were introduced later
[5, 59] (under the name quasi-Popov and up to column permutation) and provide a re!ned degree
control as illustrated by Lemma 5.5.

5.3 Candidate Basis of Relations
Algorithm C),3i3)1eB)/i/ takes as input a polynomial f ∈ K[x] of degree n with f (0) ! 0, a
polynomial a ∈ K[x]<n such that gcd(a, f ) = 1, and two positive integers m ≤ n and d . With this
input, it computes anm (m matrix of degree at most 2d .

The algorithm starts by computing a truncated expansion at order 2d of H = X T(yIn −Ma)−1X
aty = 0 using Algorithm Bl&8kTr4,8)1e3P&6er/. Then, it computes a 2m(2m minimal approx-
imant basis as in Proposition 5.4 using the algorithm PM5B)/i/ of [31], and extracts a potential
basis of relations. In some cases, we can certify that it is indeed basis of Mm , but it is not always
possible to do so; a 0ag is returned to indicate this. This certi!cation is actually an optimization,
rather than strictly necessary; Section 5.4 discusses this question in more detail.

Pr&2&/i1i&, 5.6. Given f ∈ K[x] of degree n with f (0) ! 0, a ∈ K[x]<n such that gcd(a, f ) =
1, and two positive integers m ≤ n and d , Algorithm Ca.d,da-0Bas,s uses Õ(mωd + c(n,m,d))
operations in K, with c(·) from Equation (2), and computes a weak Popov matrix R ∈ K[y]m(m

≤2d . The
matrix R is a basis of M(a,f )

m in either of the following cases:
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ALGORITHM 5.1 C),3i3)1eB)/i/(f ,a,m,d)
Input: f ∈ K[x] of degree n, with f (0) ! 0, a ∈ K[x]<n with gcd(a, f ) = 1,m ≤ n and d in N>0
Output: a weak Popov matrix R ∈ K[y]m(m

≤2d and a 0ag in {Cer1,N&Cer1}; R is a basis of Mm in
either of the following cases:
• νm,m = νm and H = X T(yIn −Ma)−1X is describable in degree d , in which case deg(R) ≤ d
• the 0ag is Cer1, which implies νm,m = νm = n

1: " Truncated expansion of H : compute Sk = −XTM−k−1
a X for 0 ≤ k < 2d using Algorithm 3.8

(A∗i,k ) 0≤i<m
0≤k<2d+1

← Bl&8kTr4,8)1e3P&6er/(f ,a−1 mod f ,m, 2d + 1)
Si,k ∈ Km ← vector of coexcients of −A∗i,k+1 ∈ K[x]<m , for 0 ≤ i < m and 0 ≤ k < 2d

2: " Fraction reconstruction: compute approximant basis using algorithm from [31, 42]
F ∈ K[y]m(2m

<2d ← (∑0≤k<2d Skyk − Im) where Sk = (S0,k · · · Sm−1,k ) ∈ Km(m

P ∈ K[y]2m(2m
≤2d ← PM5B)/i/(F T, 2d, 0)T, with P in weak Popov form

3: " Return candidate matrix and result of basic certi"cation
R ← P1..m,1..m
if the sum of diagonal degrees of R is equal to n " Item (ii) of Proposition 5.4
and each of them rightmost columns of P has degree ≥ deg(R)
then return (R,Cer1) else return (R,N&Cer1)

— The determinantal degree ν (a,f )m,m is equal to ν (a,f )m and the fraction H (y) = X T(yIn −Ma)−1X is
describable in degree d ; in that case we further have deg(R) ≤ d ; if in addition ν (a,f )m = n then
the 9ag is C0(-.

— The 9ag is C0(-, which implies ν (a,f )m,m = ν
(a,f )
m = n.

Pr&&.. Proposition 3.7 shows that Step 1 uses Õ(m2d + c(n,m,d)) operations to compute the
vectors Si,k ∈ Km . These vectors are such that the matrices Sk built in Step 2 are Sk = −X TM−k−1

a X ;
as a result, the matrix S =

∑
0≤k<2d Skyk considered at Step 2 is the power series expansion of H

truncated at order 2d . Then Step 2 correctly computes a weak Popov approximant basis P for
F = (S − Im) at order 2d with deg(P) ≤ 2d using Õ(mωd) operations [31, Theorem 2.4] [42,
Proposition 3.2]. (Note that transposes are used at Step 2 because in References [31, 42] approxi-
mant bases are considered row-wise, rather than column-wise here.) The claimed cost bound for
Algorithm C),3i3)1eB)/i/ is proved.

For the !rst item, assume that H is describable in degree d . Then Item (iii) of Proposition 5.4
ensures that R is the denominator of an irreducible right fraction description ofH , that deg(R) ≤ d ,
and that each of them rightmost columns of P has degree at least deg(R). From Proposition 5.1 we
obtain that R is a basis of Mm,m , hence a basis of Mm when νm,m = νm . This also proves the last
claim of the item: if νm,m = νm = n, then deg det(R) = n and this is the sum of diagonal degrees of
R since this matrix is in weak Popov form; hence the 0ag Cer1 is returned.

For the second item, assume that the output 0ag is Cer1. Then, the sum of diagonal degrees
of R is n; according to Item (i) of Proposition 5.4, this sum is also deg det(R) and is at most δ ,
the determinantal degree of bases of D(H ). On the other hand, Proposition 5.1 implies that δ
is the determinantal degree νm,m of Mm,m . Hence n = deg det(R) ≤ δ = νm,m , from which
we deduce deg det(R) = δ = νm,m = νm = n, since νm,m ≤ νm ≤ n always holds. Since
the output 0ag is Cer1 we know in addition that each of the m rightmost columns of P has
degree at least deg(R). Thus, Item (ii) of Proposition 5.4 applies, and R is the denominator of an
irreducible right fraction description of H . We conclude as done for the !rst item that R is a basis
of Mm . !
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Remark 5.7. The assumption that f and a are coprime is used here to ensure thatMa is invertible,
so that the expansion H =

∑
k≥0 Skyk =

∑
k≥0(−X TM−k−1

a X )yk at y = 0 can be used for fraction
reconstruction. This is diberent from what happened in the proof of Proposition 5.1, where we used
the expansion at in!nityH =

∑
k≥0 Hky−k−1. The latter expansion involves powers of Ma and thus

our formalism remains close to that of Reference [50] with Krylov sequences. From an algorithmic
point of view, expansions at y = 0 allow us to use directly the existing excient algorithms for
matrix fraction reconstruction [31, 42], and exploit their properties.

This assumption on gcd(f ,a) is harmless in our context: in the computation of д(a) rem f , one
can instead evaluate д(y − c) at y = a + c for a randomly chosen c ∈ K, ensuring gcd(a + c, f ) = 1
with good probability. See Step 2 in Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e.

Notes. For some families of approximation instances, PM5B)/i/ has been used to design faster
minimal approximant basis algorithms [42, 79]. Yet, the instances considered here are ones where
PM5B)/i/ is the fastest known algorithm.

A candidate matrix of relations in K[y]m(m
≤2d corresponds to m polynomials in K[x ,y]≤(m,2d ).

Using Algorithm Si(4l1),e&4/Bi;)ri)1eM&34l)rC&(2&/i1i&, to verify that the evaluations
of these polynomials at a mod f are zero uses Õ(c(n,m,d2)) operations in K, by Lemma 3.3. For
the values ofm and d used to obtain the exponent κ < 1.43 in our main algorithm, this is O(n2.55),
and thus too costly.

5.4 Certified Matrix of Relations
In general, when Algorithm C),3i3)1eB)/i/ does not certify its result, we do not know methods
to verify that the matrix it returns is a matrix of relations within our complexity bound.

Instead, from a matrix R computed by Algorithm C),3i3)1eB)/i/, Algorithm
M)1rixO.Rel)1i&,/ either detects that it is not a matrix of relations of Mm , or constructs from
R a matrix of relations of Mm′ of degree at most 2d , for some m′ < 2m. This is the key toward
making our modular composition algorithm Las Vegas, rather than Monte Carlo.

To achieve this, instead of evaluating all columns of R at a mod f , Algorithm
M)1rixO.Rel)1i&,/ evaluates only two polynomials built randomly from these columns
(and only one polynomial in the special case m = 1), which is within our target complexity using
the Nüsken–Ziegler algorithm. If these evaluations are not both zero, then R was not a matrix
of relations. Otherwise, the algorithm constructs a Sylvester matrix from these two vectors (see
e.g., [26, Section 6.3] for the de!nition and properties of the Sylvester matrix). When this matrix
is nonsingular, it is a matrix of relations of a module Mm′ for m′ ≤ max(1, 2(m − 1)); since m′

cannot be much larger thanm, this matrix can be used for excient composition.

Pr&2&/i1i&, 5.8. Given f ∈ K[x] of degree n with f (0) ! 0, a ∈ K[x]<n with gcd(a, f ) = 1,
two positive integers m(≤ n) and d , and (ri )3≤i≤m ∈ Km−2, Algorithm Ma-(,8O:R0la-,o.s uses
Õ(mωd + c(n,m,d)) operations in K, with c(·) from Equation (2), and returns either Fa,l or a matrix
of relations R′ ∈ K[y]m′(m′

≤2d of M(a,f )
m′ wherem′ ≤ max(1, 2(m − 1)).

If ν (a,f )m,m = ν
(a,f )
m , the fraction H = X T(yIn −Ma)−1X is describable in degree d , and (r3, . . . , rm) are

chosen uniformly and independently at random from a "nite subset S of K, then failure happens with
probability at most (m − 1)/card(S) and in case of success, deg(R′) ≤ d .

Pr&&.. If Fl)- = Cer1 at Step 1, then from the second item of Proposition 5.6 an ap-
propriate matrix of relations is returned. Now assume that Fl)- = N&Cer1 and Algorithm
M)1rixO.Rel)1i&,/ does not return F)il. If m = 1 then the relation has been checked at Step 2,
proving the result. Otherwise, let R′ ∈ K[y]m′(m′ be the output matrix, which is constructed from
the polynomials r , s of x-degree less than m; in particular, m′ = degx (r ) + degx (s) ≤ 2(m − 1)
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ALGORITHM 5.2 M)1rixO.Rel)1i&,/(f ,a,m,d, (ri )3≤i≤m)
Input: f ∈ K[x] of degree n, with f (0) ! 0, a ∈ K[x]<n with gcd(a, f ) = 1,

m ≤ n and d in N>0, (ri )3≤i≤m ∈ Km−2

Output: either F)il or a matrix R′ ∈ K[y]m′(m′
≤2d of relations of Mm′ withm′ ≤ max(1, 2(m − 1))

1: " Use Algorithm 5.1 to "nd a candidate basis of relations
(R, Fl)-) ∈ K[y]m(m

≤2d ( {Cer1,N&Cer1}← C),3i3)1eB)/i/(f ,a,m,d)
if Fl)- = Cer1 then return R

2: " Casem = 1, check that R1,1 ∈ K[y]<2d+1 annihilates a mod f
if m = 1 then

if M&34l)rC&(2&/i1i&,5Bre,1K4,-(f ,a,R1,1) ! 0 then return F)il
else return R

3: " Build candidate relations and verify them
r (x ,y)← R∗,1; s(x ,y)← R∗,2 + r3R∗,3 + · · · + rmR∗,m " both in K[x ,y]<(m,2d+1)
if Bi;)ri)1eM&34l)rC&(2&/i1i&,(f ,a, r ) ! 0
or Bi;)ri)1eM&34l)rC&(2&/i1i&,(f ,a, s) ! 0
then return F)il " Algorithm 3.5
if m = 2 then return R

4: " Construct and return the Sylvester matrix of f and s , if it is nonsingular
if gcdx (r , s) ! 1 then return F)il " r and s not coprime as elements of K(y)[x]
return the Sylvester matrix of (r , s) as in [26, Section 6.3, Equation (5)], with rows in reversed
order, viewing r and s as polynomials in x over K[y]

[26, Section 6.3]. The fact that the test at Step 4 has not failed ensures that r and s are coprime
as univariate polynomials in K(y)[x], and therefore R′ is nonsingular [26, Corollary 6.15]. Fur-
thermore, since the tests at Step 3 have not failed, r and s are relations of Mm . It follows that the
columns of R′, which are by construction multiples of r and s in K[x ,y] represented as vectors in
K[y]m′ , are relations of Mm′ . Besides, the construction of the Sylvester matrix does not increase
the y-degree, hence deg(R′) ≤ deg(R) ≤ 2d . We have proved the fact that if the output is not F)il,
then it is a matrix of relations of Mm′ .

For the complexity bound, the cost for !nding R is given in Proposition 5.6, while the ones for
checking that R1,1, r and s are relations are given in Propositions 3.1 and 3.4. As for the gcd test
at Step 4, it can be done via the resultant of r and s with respect to x , computed using Õ(m2d)
operations [67].

It remains to prove the third assertion and the probability bound. Since when Fl)- = Cer1
a basis is returned with no randomization, assume Fl)- = N&Cer1. The assumptions here
and the !rst item of Proposition 5.6 ensure that R is a basis of Mm with deg(R) ≤ d , hence
deg(R′) ≤ d . In that case failure never occurs at Step 2 for m = 1. It never occurs either at Step 3
for m ≥ 2, and r and s are relations of Mm . The columns of R represent bivariate polynomials
b1, . . . ,bm ∈ K[x ,y]<(m,d+1) and we claim that gcdx (b1, . . . ,bm) = 1, meaning that there is a K[y]-
linear combination of b1, . . . ,bm inK[y]\{0}. Since R is nonsingular, the !rst column of a transfor-
mation for the (upper triangular) Hermite normal form ofR provides such a combination. It follows
that F)il is returned with probability at most (m − 1)/card(S) at Step 4 [26, Theorem 6.46]. !

Note. The computation of Cer1 by Algorithm C),3i3)1eB)/i/ is only an optimization. Algo-
rithm M)1rixO.Rel)1i&,/ works as it is, even if Cer1 is never returned. When the candidate
matrix R at Step 1 is not a matrix of relations, this is often detected at Step 3, but not always. Even
if it is not detected, it suxces to !nd two coprime polynomials r (x ,y) and s(x ,y) that are relations
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to ensure that Algorithm M)1rixO.Rel)1i&,/ returns a matrix of relations. For example, it may
happen that R is not a matrix of relations but some columns of it still give low-degree relations
of Mm .

6 CHANGE OF BASIS
In this section, we present an algorithm for performing a change of basis in A = K[x]/〈f 〉. This
algorithm is used in a randomized manner in Section 8, in order to handle arbitrary inputs with
good complexity bounds. Our approach is based on an extension of the approximant bases used
in Section 5; we start with necessary de!nitions.

6.1 Definitions
We use an extension of the forms of polynomial matrices introduced in Section 5.2.1, called shifted
forms [5, 73]. For a given tuple t = (t1, . . . , tm) ∈ Zm and a column vectorv ∈ K[y]m , the t-shifted
degree of v is max1≤i≤m(deg(vi ) + ti ). Then, for a matrix P ∈ K[y]m(m whose jth column has
t-shifted degree dj ∈ Z, the (column) t-shifted leading matrix of P is the matrix in Km(m whose
entry (i, j) is the coexcient of degree dj − ti of the entry (i, j) of P . Then P is said to be t-shifted
weak Popov if this t-shifted leading matrix is invertible and upper triangular.

We also need the corresponding normal form: P is said to be t-shifted Popov if it is t-shifted weak
Popov and its row leading matrix is the identity of Km(m [5, 43]. For a given t , any submodule of
rank m of K[y]m admits a unique basis in t-shifted Popov normal form [5, Theorem 3.7]. By de!-
nition, t-shifted Popov matrices are also (nonshifted) row reduced; in particular, Hermite normal
forms are t-shifted Popov for an appropriate choice of t , hence are row reduced.

Row reduced matrices allow for a division with remainder with stronger properties than the
one for general nonsingular matrices presented in Section 4.2.1; namely, they ensure uniqueness
of the remainder. Precisely, if a matrix P ∈ K[y]m(m is row reduced, for any vector v ∈ K[y]m
there exists a unique vector ṽ ∈ K[y]m such that v − ṽ is a right multiple of P and the ith entry
of ṽ has degree less than the ith row of P [43, Theorem 6.3-15, p. 389].

We also use the fact that, by de!nition, for any block decomposition P = ( P11 P12
P21 P22

) of a matrix P ,
if P is in Hermite (resp. t-shifted Popov) normal form, then:

— P11 and P22 are in Hermite normal form (resp. in shifted Popov normal form with respect to
the corresponding subtuple of t );

— each column of P12 (resp. P21) is its own remainder in the division by P11 (resp. P22).
Finally, t-shifted forms induce the notion of t-shifted approximant bases [5, 42, 79], which are

approximant bases (see Section 5.2.1) in t-shifted Popov normal form.

6.2 Inverse Modular Composition and Change of Basis Via Approximant Bases
Let f be inK[x] of degree n. A core ingredient for the randomization in our composition algorithm
is an instance of inverse modular composition, which is used to change the basis of A = K[x]/〈f 〉
from (1,x , . . . ,xn−1) to (1,γ , . . . ,γn−1) mod f , for some γ ∈ K[x] whose minimal polynomial µγ
modulo f has degree n. This change of basis induces the K-algebra isomorphism

ϕγ : A→ K[y]/〈µγ 〉, (20)

which maps any u ∈ A to v such that v(γ ) ≡ u mod f . Given a in K[x]<n , this section explains
how to compute the unique polynomial representative α ∈ K[y]<n of ϕγ (a mod f ), i.e., the unique
α ∈ K[y]<n such that α(γ ) rem f = a.

Reversing the path followed in our modular composition approach, we !rst !nd a bivariate
α̃ ∈ K[x ,y] such that α̃ −α ∈M(γ ,f )

m , hence α̃(x ,γ ) ≡ α(γ ) mod f . Then, the univariate solution α
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is recovered from α̃ and a basis of relationsR ofM(γ ,f )
m by reversing the division from Equation (15);

this corresponds to a division by the Hermite normal form of R.
Our algorithm for computing α̃ can be seen as a generalization to m ≥ 1 of Shoup’s algorithm

for computing α , mentioned in Section 1.4.2. The latter algorithm deals with the casem = 1: from
the power projections (!(1), !(γ ), . . . , !(γ 2n−1)) and (!(a), !(γa), . . . , !(γn−1a)), it obtains both
α and µγ by solving two Padé approximation problems. In the matrix case m ≥ 1, Algorithm
Ch),-eO.B)/i/ computes solutions to equations similar to Equations (7) and (9) given in
the introduction. These are matrix generalizations of the Padé approximation problems; their
solutions provide, respectively, a basis of relations R of M(γ ,f )

m and α̃ .
In more details, Steps 2 and 3 !rst compute the power series expansions involved in Equations (7)

and (9), which amounts to a type of generalized power projections. Then both approximation
problems are solved at once using shifted approximant bases:

— The choice of the !rst 2m columns of F = (S −Im s) at Step 4, which are the same as in Step 2
of Algorithm C),3i3)1eB)/i/, and the use of a corresponding “zero shift” (!rst 2m entries
of the tuple t at Step 4), make this equivalent to the computation in Section 5.3 (compare
Steps 3 to 5 of Algorithm Ch),-eO.B)/i/ to Steps 1 to 3 of Algorithm C),3i3)1eB)/i/).
This yields a basis R of M(γ ,f )

m .
— Equation (9) is solved thanks to an additional series expansion in F (its last column), and

the use of a suxciently large shift (the last entry 2d of the tuple t ). This yields a bivariate
polynomial α̃ that is the remainder of the requested α in the division by R.

Finally, this sought α can be obtained by reversing this division, using a Hermite normal form
computation which also provides the minimal polynomial µγ (Steps 6 and 7).

The assumptions in Algorithm Ch),-eO.B)/i/ yield a slightly stronger statement in Proposi-
tion 6.1 than in Proposition 5.6 for Algorithm C),3i3)1eB)/i/. Indeed, we suppose that γ is such
that deg(µγ ) = n, whereas we make no such assumption in Algorithm C),3i3)1eB)/i/. From the
module properties in Proposition 4.1, we deduce that deg(µγ ) = n implies ν (γ ,f )m = n, which allows
us to certify the basis of relations R when F)il is not returned.

Algorithm Ch),-eO.B)/i/ may still return F)il; Section 8 shows that when it is called with a
random γ , then with high probability, it does not fail, at least under some assumptions on f .

Pr&2&/i1i&, 6.1. Given f ∈ K[x] of degree n with f (0) ! 0, γ and a in K[x]<n , m ≤ n and d
in N>0, Algorithm C7a.10O:Bas,s uses Õ(mωd + c(n,m,d)) operations in K, with c(·) from Equa-
tion (2), to return either Fa,l or (R, µ ,α) where R ∈ K[y]m(m

≤2d is the Popov basis of M(γ ,f )
m , µ is the

minimal polynomial µγ of γ mod f and has degree n, and α is the unique polynomial inK[y]<n such
that α(γ ) ≡ a mod f .

If gcd(γ , f ) = 1, ν (γ ,f )m,m = ν
(γ ,f )
m , deg(µγ ) = n and the fraction H = X T(yIn −Mγ )−1X is describable

in degree d , then the output is not Fa,l; in that case we further have deg(R) ≤ d .

Pr&&.. We start by showing that if the algorithm does not fail, then the truncated moduleM(γ ,f )
m,m

and the module of relations M(γ ,f )
m are equal, and R is a basis of this module.

Steps 1 to 4: the approximant basis P̄ . If the test at Step 1 does not fail then the speci!cations for
Steps 2 and 3 are met. At Step 2, Algorithm Tr4,8)1e3P&6er/ returns rk = [aγ−k−1 rem f ]m−1

0
for 0 ≤ k < 2d using Õ(c(n,m,d)) operations, according to Proposition 3.6. Thus the coexcient
vector sk ∈ Km of rk isX TM−k−1

γ va , whereva ∈ Kn is the coexcient vector of a, so that the polyno-
mial vector s(y) computed at Step 2 is the power series expansion of −X T(yIn −Mγ )−1va truncated
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ALGORITHM 6.1 Ch),-eO.B)/i/(f ,γ ,a,m,d)
Input: f of degree n in K[x], with f (0) ! 0, γ ∈ K[x]<n , a ∈ K[x]<n ,m ≤ n and d in N>0
Output: either F)il or (R, µ ,α) where R ∈ K[y]m(m

≤2d is the Popov basis of M(γ ,f )
m , µ is the minimal

polynomial of γ in K[x]/〈f 〉 and has degree n, and α ∈ K[y]<n with α(γ ) ≡ a mod f
1: if gcd(γ , f ) ! 1 then return F)il
2: " Truncated expansion of −XT(yIn −Mγ )−1va using Algorithm 3.7, va ∈ Kn is the coe!cient vector of a

(rk )0≤k<2d ← Tr4,8)1e3P&6er/(f ,γ−1 mod f ,γ−1a mod f ,m, 2d)
s ∈ K[y]m ← ∑

0≤k<2d skyk where sk ∈ Km is the coexcient vector of rk
3: " Truncated expansion of XT(yIn −Mγ )−1X using Algorithm 3.8 (analogous to Step 1 of Algorithm 5.1)

(Γi,k ) 0≤i<m
0≤k<2d+2

← Bl&8kTr4,8)1e3P&6er/(f ,γ−1 mod f ,m, 2(d + 1))
Si,k ∈ Km ← vector of coexcients of −Γi,k+1 ∈ K[x]<m , for 0 ≤ i < m and 0 ≤ k < 2d
S ∈ K[y]m(m

<2d ←
∑

0≤k<2d Skyk where Sk = (S0,k · · · Sm−1,k ) ∈ Km(m

4: " Fraction reconstruction using [31, 42] (analogous to Step 2 of Algorithm 5.1)
F ∈ K[y]m((2m+1)

<2d ← (S(y) − Im s(y))
t ∈ N2m+1 ← (0, . . . , 0, 2d)
P̄ ∈ K[y](2m+1)((2m+1)

≤2d ← P&2&;5PM5B)/i/(F T, 2d, t)T, with P̄ in t-shifted Popov normal form
P ← P̄1..2m,1..2m
vᾱ ∈ K[y]m<deg(R) ← P̄1..m,2m+1 " represents ᾱ(x ,y), expected to satisfy ᾱ(x ,γ ) ≡ a mod f

5: " Ensure R is a basis of M(γ ,f )
m , from Item (ii) of Proposition 5.4 (analogous to Step 3 of Algorithm 5.1)

R ← P1..m,1..m
if the sum of diagonal degrees of R is less than n
or among them rightmost columns of P , one has degree < deg(R) then return F)il

6: " Compute µγ , and ensure it has degree n
T ∈ K[y]m(m ← Hermite normal form of R " using [53, Algorithm 1 and 3]
µ ∈ K[y]← T1,1; if deg(µ) < n then return F)il

7: " Deduce α and return
α ∈ K[y]<n ← ᾱ1 − (T1,2ᾱ2 + · · · +T1,mᾱm) rem µ , where vᾱ = (ᾱ1 · · · ᾱm)
return (R, µ ,α)

at order 2d . From Proposition 3.7, the computation of S(y) at Step 3 uses Õ(m2d + c(n,m,d)) oper-
ations; S is the power series expansion of X T(yIn −Mγ )−1X truncated at order 2d .

Step 4 computes the t-shifted Popov approximant basis P̄ for F = (S − Im s) at order 2d , which
uses Õ(mωd) operations [31, Theorem 2.4; 42, Section 3]. Writing

P̄ =

(
P u
z λ

)
for some P ∈ K[y](2m)((2m)

≤2d , λ ∈ K[y]≤2d ,u ∈ K[y]2m
≤2d , and z ∈ K[y]1((2m)

≤2d ,

the fact that P̄ is t-shifted Popov and the choice t = (0, . . . , 0, 2d) ensure that P is (nonshifted)
Popov, that λ ! 0, and that deg(z) + 2d < deg(P) ≤ 2d . The latter degree bound yields z = 0,
hence P is the Popov approximant basis of (S − Im) at order 2d . The fact that P̄ is t-shifted Popov
also ensures that the (unique) remainder in the division of u by P is u itself, and that the ith entry
of u has degree less than the ith diagonal degree of P .

After Step 5, R is a basis of M(γ ,f )
m,m =M(γ ,f )

m . Let R be the m (m leading principal submatrix of
P (and of P̄ ), and let vᾱ ∈ K[y]m be the length-m top subvector of u. Similarly to the above, R is
(nonshifted) Popov, and the ith entry of vᾱ has degree less than the ith diagonal degree of R; in
particular, deg(vᾱ ) < deg(R). Considering H (y) = X T(yIn − Mγ )−1X , recall from Proposition 5.1
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that D(H ) = M(γ ,f )
m,m , and recall that M(γ ,f )

m,m ⊇ M(γ ,f )
m with equality if and only if ν (γ ,f )m,m = ν (γ ,f )m .

In particular, bases of D(H ) have determinantal degree ν (γ ,f )m,m ≤ ν (γ ,f )m ≤ n. Applying Item (i) of
Proposition 5.4 to H and the approximant basis P shows that the sum of diagonal degrees of R is
deg det(R), and is at most ν (γ ,f )m,m .

As a result, if Step 5 does not return F)il, then n ≤ deg det(R) ≤ ν (γ ,f )m,m , hence ν (γ ,f )m,m = ν
(γ ,f )
m = n

and D(H ) = M(γ ,f )
m,m = M(γ ,f )

m . Furthermore, Item (ii) of Proposition 5.4 shows that R is a basis
of M(γ ,f )

m .

After Step 6, µ is µγ and has degree n. Using Õ(mωd) operations [53], Step 6 !nds the Hermite
normal formT of R. SinceT is a basis of M(γ ,f )

m in upper triangular form, Proposition 4.1 states that
its !rst diagonal entry is the minimal polynomial of γ in K[x]/〈f 〉. Hence µ computed at Step 6
is this minimal polynomial. It has degree at most n, and the algorithm returns F)il at this step if
and only if deg(µ) < n.

After Step 6, vᾱ represents ᾱ(x ,y) such that ᾱ(x ,γ ) ≡ a mod f . Let ᾱ ∈ K[x ,y]<(m,deg(R)) be the
polynomial whose coexcient vector is vᾱ , that is, ᾱ = ᾱ1(y) + xᾱ2(y) + · · · + xm−1ᾱm(y) using
notation from Step 7.

The fact that µ = µγ has degree n also ensures that there exists a unique α ∈ K[y]<n such
that α(γ ) ≡ a mod f . Then let vα = (α 0 · · · 0)T ∈ K[y]m , and let vα̃ ∈ K[y]m be the unique
remainder in the division of vα by R. The entries of vα̃ have degree strictly less than that of the
corresponding row of R: the degree of the ith entry of vα̃ is less than the ith diagonal degree of R.
We also de!ne α̃ ∈ K[x ,y]<(m,deg(R)) as the polynomial whose coexcient vector isvα̃ ; in particular
α̃(x ,γ ) = α(γ ) ≡ a mod f .

We now show that ᾱ = α̃ , which yields ᾱ(x ,γ ) = a mod f . By construction, α̃(x ,y) − a(x) is in
M(γ ,f )

n , and since yIn − Mγ is a basis of M(γ ,f )
n (see Proposition 4.1) there is a vector v ∈ K[y]n

such that (yIn −Mγ )v = Xvα̃ −va . Applying the predictable degree property [43, Theorem 6.3-13,
p. 387] to the column reduced matrixyIn −Mγ , all of whose columns have degree 1, we obtain that
deg(v) + 1 = deg(Xvα̃ −va) = deg(vα̃ ). Furthermore, from (yIn −Mγ )v = Xvα̃ −va we get

X T(yIn −Mγ )−1Xvα̃ − X Tv − X T(yIn −Mγ )−1va = 0,
and considering truncated power series it follows that Fq = (S − Im s)q ≡ 0 mod y2d , where

q =

(
ũ
1

)
∈ K[y]2m+1 and ũ =

(
vα̃
X Tv

)
∈ K[y]2m .

Therefore q is a right multiple of the approximant basis P̄ = ( P u
0 λ ), which shows that λ is an

element of K (we had shown λ ! 0 in K[y] at Step 4), hence λ = 1 as it is a monic polynomial in
the Popov form. It follows that ũ−u is a right multiple of P , and we check !nally that the remainder
of ũ in the division by P—which is u by construction—is ũ itself. Indeed the degree of the ith entry
of vα̃ is less than the ith diagonal degree of R, which is the ith diagonal degree of P ; and as seen
above all entries of X Tv have degree at most deg(vα̃ ) − 1 < deg(R) − 1, with deg(R) being itself
at most the ith diagonal degree of P for m + 1 ≤ i ≤ 2m. In particular vᾱ = vα̃ , hence ᾱ = α̃ and
ᾱ(x ,γ ) = a mod f .

Step 7 computes α ∈ K[x]<n such that α(γ ) = a mod f . Since deg(µ) = n, the Hermite normal
form of R has the shape T = ( µ T1,∗

0 Im−1
), with T1,∗ = (T1,2 · · · T1,m) and deg(T1, j ) < deg(µ) = n for

2 ≤ j ≤ m. Then, the polynomial α = ᾱ1 − (T1,2ᾱ2 + · · · +T1,mᾱm) rem µ constructed at Step 7 has
degree less thann and, by construction as well, the vectorvα = (α 0 · · · 0)T ∈ K[y]m is such that
vᾱ −vα is a right multiple ofT . (In fact, vα is the unique remainder in the division of vᾱ by T .) In
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particular,vᾱ−vα is a right multiple ofR, meaning thatvα is equal tovᾱ modulo relations ofM(γ ,f )
m ,

which implies α(γ ) = ᾱ(x ,γ ) ≡ a mod f . The computation of α costs Õ(nm) operations in K.
This concludes the proof of the properties of (R, µ ,α) in the case where the algorithm does not re-

turn F)il. Furthermore, adding the above costs yields the cost bound claimed in the lemma, which,
therefore, holds in general since the cost can only be smaller when the algorithm returns F)il.

Proof of the last claim. The assumption gcd(γ , f ) = 1 ensures that Step 1 does not return F)il,
in which case we have seen that P is a weak Popov approximant basis of (S − Im) at order 2d .

From deg(µγ ) = n and Proposition 4.1 we know that ν (γ ,f )m = n, hence with the assumption
ν (γ ,f )m,m = ν (γ ,f )m we have ν (γ ,f )m,m = ν (γ ,f )m = n. Using D(H ) = M(γ ,f )

m,m = M(γ ,f )
m , and Item (iii) of

Proposition 5.4 thanks to the assumption on H (y) = X T(yIn − Mγ )−1X , we deduce that the m

rightmost columns of P have degree at least deg(R) and that R is a basis of M(γ ,f )
m with deg(R) ≤ d .

In particular deg det(R) = n, and it follows that Step 5 does not return F)il.
Then, the assumption on the degree of the minimal polynomial also ensures, using Proposi-

tion 4.1 as above, that the !rst diagonal entry of the Hermite normal form T of R is µγ , and is the
polynomial µ computed at Step 6. Therefore, Step 6 does not return F)il either: we have proved
that, under the assumptions gcd(γ , f ) = 1, ν (γ ,f )m,m = ν

(γ ,f )
m , deg(µγ ) = n, and H = X T(yIn −Mγ )−1X

is describable in degree d , then the output is not F)il and deg(R) ≤ d . !

Notes. Shoup’s algorithm for computing α in the case m = 1 uses only n terms of the sequence
(!(γ ka))k≥0, or more generally d terms, where d is a known bound on deg(µa). Here as well, if one
knows that the sought basis of relations satis!es deg(R) ≤ d , for example under the conditions
of Proposition 6.1 ensuring success, then the algorithm may be modi!ed so as to require only d
terms of the expansion of −X T(yIn − Mγ )−1va instead of 2d . The vector vα̃ would appear in the
approximant basis at order d , and from there one would consider a residual approximant problem
focusing on obtaining the missing part of R. This is not detailed here, as this would complicate the
presentation without bringing an improvement to the asymptotic complexity.

Modular composition and inverse composition are very similar. They both involve the
computation of a matrix of relations and use symmetric steps with similar complexi-
ties. Indeed, the division with remainder of Section 4.2.1 is used in both algorithms to
change between univariate and bivariate representations exciently. Also, the application of
Algorithm Bi;)ri)1eM&34l)rC&(2&/i1i&, at the last step of composition in Algorithm
Bi;)ri)1eM&34l)rC&(2&/i1i&,Wi1hRel)1i&,M)1rix is re0ected by Tr4,8)1e3P&6er/ as
starting step of inverse composition in Algorithm Ch),-eO.B)/i/. Both these steps have cost
Õ(c(n,m,d)) from Propositions 3.4 and 3.6, respectively (see also Section 3.4.3).

7 THE BLOCK HANKEL MATRIX Hk(a,f )m,d AND ITS GENERIC PROPERTIES
Matrices of relations are obtained either by Algorithm M)1rixO.Rel)1i&,/ directly, or by Algo-
rithm Ch),-eO.B)/i/ after a change of basis. In both cases, for the correctness of the computation
to be granted via Propositions 5.8 and 6.1, we need ν (a,f )m,m and ν (a,f )m to be equal (and, equivalently,
M(a,f )

m,m = M(a,f )
m ) and the fraction H (y) = X T(yIn −Ma)−1X to be describable in degree d , or the

same statement with γ in place of a. It is thus important to understand when these properties hold.
Recall from Section 3.4.1 the matrices K (a,f )

m,d and L(a,f )m,d , that are de!ned for m ∈ {1, . . . ,n} by

L(a,f )m,d =
344
5

X T

...
X TMd−1

a

677
8
∈ K(md )(n and K (a,f )

m,d =
(
X · · · Md−1

a X
)
∈ Kn((md )
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and that correspond to Algorithms Bi;)ri)1eM&34l)rC&(2&/i1i&, and Tr4,8)1e3P&6er/ re-
spectively, and also to the maps κ(a,f )m,d and λ(a,f )m,d . Their product forms the block Hankel matrix

Hk(a,f )m,d = L(a,f )m,d K (a,f )
m,d =

344444
5

H0 H1 . . . Hd−1

H1 . .
.
. .
.

Hd
... . .

.
. .
. ...

Hd−1 Hd . . . H2d−2

677777
8
∈ K(md )((md ), (21)

with Hk = X TMk
aX for k in N. This matrix, and in particular its rank, is strongly related to the

two properties mentioned above [74; 50, p. 97].
The outcomes of this section are the following. For any positive parameters m ≤ n and d , as

soon as rank(Hk(a,f )m,d ) = ν (a,f )m , then ν (a,f )m,m = ν (a,f )m and H is describable in degree d (Section 7.1).
This happens in particular when f (0) ! 0, d ≥ ,n/m- and either deg(a) =m (Section 7.2) or for a
generic choice of a (Section 7.3). Also, for generic choices of the roots of f and of the values of a at
these roots, rank(Hk(a,f )m,d ) = ν (a,f )m as soon as d ≥ ,ν (a,f )m /m- (Section 7.4). As in previous sections,
notation such as ν (a,f )m ,Hk(a,f )m,d , λ

(a,f )
m,d , and so on. is often shortened into νm ,Hkm,d , λm,d , and so on.

These results will be used in Section 8 for the analysis of the randomized composition algorithm
when f is separable (Section 8.3), or when f is purely inseparable, which includes the case of power
series composition (Sections 8.4 and 8.5).

7.1 Relation Between Block Hankel Matrix Rank and Fraction description degree
The key condition to control the degrees of fraction descriptions of H (y) and obtain matrices of
relations is the equality

rank(Hkm,d ) = νm .

The special case when rank(Hkm,d ) = n is common, and appears naturally later on. The proof of
the following result relies in an essential manner on Lemma 7.2, which we give next (the references
we cite only give a sketch of proof).

Pr&2&/i1i&, 7.1. Given f ∈ K[x] of degree n, a ∈ K[x]<n , and positive integers m ≤ n and
d , the rank of Hk(a,f )m,d is at most ν (a,f )m . In case of equality, we have ν (a,f )m,m = ν (a,f )m and H (y) =
X T(yIn −Ma)−1X is describable in degree d .

In particular, if Hk(a,f )m,d has rank n, then ν (a,f )m,m = ν
(a,f )
m = n and H (y) is describable in degree d .

Pr&&.. Using Proposition 4.1, the inclusion Mm ⊆ Mm,m implies νm,m ≤ νm ≤ n, so that
by Lemma 7.2 below, we have rank(Hkm,d ) ≤ νm,m ≤ νm ≤ n. If Hkm,d has rank νm , then
νm = νm,m , and the claim on H follows again from Lemma 7.2. The case where the rank is n
follows similarly. !

Le(() 7.2 ([50, Se81i&, 2.1] ),3 [75, Le(() 2.4]). For positive integers m ≤ n and d , the rank
of Hk(a,f )m,d is at most ν (a,f )m,m , with equality if and only if H (y) = X T(yIn − Ma)−1X is describable in
degree d .

Pr&&.. We denote by Hk = X TMk
aX ∈ Km(m the coexcient in the expansion of H at in!nity:

H (y) = X T(yIn −Ma)−1X =
∑
k≥0

Hky
−k−1 =

∑
k≥0

X TMk
aXy

−k−1.

To show that the rank is at most νm,m we !rst note that Hkm,d is a submatrix of Hkm,d+1
for d ≥ 0, the sequence (rank(Hkm,d ))d ≥0 is thus nondecreasing. Since Mm,m is the module of
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vector generators for the sequence {Hk }k≥0 (Section 5.1), the minimal generating polynomial
F ∈ K[y]m(m in Popov form for that sequence is a basis of Mm,m ([74, De!nition 2.5] and [50,
De!nition 2.3]). It follows that deg det(F ) = νm,m , and [50, Equation (2.6)] shows that for d ≥ n,
the rank of Hkm,d is νm,m . So the !rst claim is proved.

From Lemma 5.2, F is also a basis of D(H ); we now study the descriptions of H by exploiting
identities that we used to prove this lemma. If the rank of Hkm,d is equal to νm,m , then this rank
is also that of the in!nite matrix corresponding to the system (see also Equation (17))

Hkv0 + · · · + Hk+dvd = 0 for k ≥ 0, (22)

thus a solution to
Hkv0 + · · · + Hk+dvd = 0 for 0 ≤ k ≤ d − 1 (23)

is also a solution to Equation (22). Since the rank of Hkm,d is maximal, we also know that the
last block column of Hkm,d+1 is a linear combination of the previous ones. This provides with m
linearly independent R1, . . . ,Rm ∈ K[y]m , of degree d , whose coexcient vectors in y are solutions
to Equation (23), hence to Equation (22). Let R be the matrix in K[y]m(m whose jth column is R j .
Using Equation (22), we deduce that HR = Q with Q ∈ K[y]m(m (see also Equation (18)). This
gives a right fraction description H = QR−1 (which may not be irreducible) with denominator of
degree d . The same reasoning on the left side gives a left matrix description of degree d , hence H
is describable in degree d .

Conversely, a right matrix descriptionH = QR−1 with R of degree at most d gives R j ’s whose co-
excient vectors are solutions to Equation (22). Since F is a basis of the module of vector generators
for {Hk }k≥0, R must be a multiple of F . By minimality F has degree at most d [43, Theorem 6.5-10,
p. 458], and using [50, Equation (2.6)] the rank of the in!nite block Hankel matrix restricted to its
!rst d block columns is maximal. Starting from a left description, in an analogous way we obtain
that the rank restricted to the !rst d block rows is maximal, which yields that Hkm,d has rank
deg det(F ) = νm,m . !

7.2 Families with Hk(a,f )m,d of rank n

A simple condition implies the equality rank(Hkm,d ) = n of Proposition 7.1.

Pr&2&/i1i&, 7.3. Let f ∈ K[x] have degree n, let a ∈ K[x]<n , and let m be a positive integer. If
f (0) ! 0 and deg(a) =m (hence 1 ≤ m < n), then the block Hankel matrix Hk(a,f )m,d ∈ K

(md )((md ) has
rank n for all d ≥ ,n/m-.

The rest of this subsection is devoted to the proof of this result. It is a basis for the genericity
result in the next subsection.

Pr&&.. For a given c in K, by construction of this block-Hankel matrix, one has

Hk(ca,f )
m,d = C Hk(a,f )m,d C, where C = diag(1, . . . , 1︸!!⎧⎪!!⎨

m times

, c, . . . , c︸!!⎧⎪!!⎨
m times

, . . . , cd−1, . . . , cd−1︸!!!!!!!!!!!⎧⎪!!!!!!!!!!!⎨
m times

).

It follows that rank(Hk(ca,f )
m,d ) = rank(Hk(a,f )m,d ) for any c ! 0, and therefore in the rest of the proof

we can assume that a is monic of degreem.
By Equation (21), it is suxcient to show that the mappings κm,d and λm,d associated to Km,d

and Lm,d are surjective and injective, respectively.
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The mapping κm,d is surjective. By assumption, n ≤ md so that surjectivity of κm,d is equivalent
to the matrixKm,d ∈ Kn((md ) from Equation (12) having full row rankn. Indeed, the !rstn columns
of Km,d are the coexcients of the family of polynomials x iaj rem f , for 0 ≤ i < m and 0 ≤ j < d ,
with 0 ≤ i + jm < n. Since deg(a) = m, these columns form an upper triangular matrix, with 1’s
on the diagonal; this proves the claim.

The mapping λm,d is injective. Equivalently, we have to show that Lm,d has full column rank n.
This follows from the structure of this matrix, seen at the level of polynomials.

Le(() 7.4. With the notation and hypotheses of Proposition 7.3, let

pi = [axn−m+i rem f ]m−1
0 , i = 0, . . . ,m − 1.

Then,
(i) ifm ≤ n/2, them polynomials p0, . . . ,pm−1 are linearly independent;

(ii) if n/2 < m, the n −m polynomials p2m−n , . . . ,pm−1 are linearly independent.

Pr&&.. The two cases require diberent proofs, sharing common ingredients. For i ≥ 0, let ri =
xn+i rem f . For b in K[x]<n , we then have

x ib rem f = [x ib]n−1
0 + δb,i , (24)

for some δb,i in Span(r0, . . . , ri−1), in particular δb,0 = 0. Applying this to b = r0 = xn rem f yields
ri = [x ir0]n−1

0 + δr0,i . Taking this relation modulo xm gives [ri ]m−1
0 = [x ir0]m−1

0 + µi , with µi in
Span([r0]m−1

0 , . . . , [ri−1]m−1
0 ) for i > 0 and µ0 = 0. By induction on i ≥ 0, one deduces that

Span([r0]m−1
0 , . . . , [ri ]m−1

0 ) = Span([r0]m−1
0 , . . . , [x ir0]m−1

0 ).
Writing f = f0 + · · · + fn−1xn−1 + xn , we get r0 = −f0 − f1x − · · · − fn−1xn−1. Since f0 ! 0 by
assumption, [x ir0]m−1

0 has valuation i for 0 ≤ i < m; this implies that Span([r0]m−1
0 , . . . , [ri ]m−1

0 )
has dimension i + 1 for 0 ≤ i < m.

Proof of Item (i). Let b = axn−m rem f in Equation (24). Upon reduction modulo xm , for 0 ≤ i <
m, we obtain the relation pi = [x ib]m−1

0 + µ ′i , with µ ′i in Span([r0]m−1
0 , . . . , [ri−1]m−1

0 ).
Since axn−m is monic of degree n (a has degree m), with valuation at least n −m ≥ m (here,

m ≤ n/2), we get [b]m−1
0 = [r0]m−1

0 , and thus [x ib]m−1
0 = [x ir0]m−1

0 for 0 ≤ i < m. This gives
pi = [ri ]m−1

0 + µ ′i − µi , with µ ′i − µi in Span([r0]m−1
0 , . . . , [ri−1]m−1

0 ). In particular, taking all i up to
m−1, we get the equality Span(p0, . . . ,pm−1) = Span([r0]m−1

0 , . . . , [rm−1]m−1
0 ), and we saw that the

latter has dimensionm. Item (i) is proved.
Proof of Item (ii). Assume that q = cmxm + · · · + cn−1xn−1 is such that [aq rem f ]m−1

0 = 0. We
prove that all ci ’s vanish.

We can rewrite aq rem f as xmb rem f , with b = a(q/xm); since a has degree m, b is in
K[x]<n . Applying Equation (24) to b and i = m, our assumption that [xmb rem f ]m−1

0 = 0
implies [δb,m]m−1

0 = 0. Writing δb,m =
∑m−1

j=0 δ̄ jr j for some δ̄0, . . . , δ̄m−1 ∈ K, we get∑m−1
j=0 δ̄ j [r j ]m−1

0 = [δb,m]m−1
0 = 0. The linear independence of [r0]m−1

0 , . . . , [rm−1]m−1
0 en-

sures δ̄ j = 0 for all j, showing that δb,m itself is zero. Hence xmb rem f = [xmb]n−1
0 , from which

we deduce xn[xmb]m−1
n rem f = 0 using

xmb rem f = ([xmb]n−1
0 + xn[xmb]m−1

n ) rem f = [xmb]n−1
0 + (xn[xmb]m−1

n rem f ).
Since xn[xmb]m−1

n = xn[b]m−1
n−m , and since f0 ! 0 ensures that x is invertible modulo f , it follows

that [b]m−1
n−m vanishes modulo f , or equivalently that [b]m−1

n−m = 0. Since a is monic of degreem, and
since n −m < m, the de!nition of b then implies that all coexcients ci ’s vanish. Hence, Item (ii)
is proved. !
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Let now v ∈ K[x]<n be such that
[v]m−1

0 = [av rem f ]m−1
0 = · · · = [ad−1v rem f ]m−1

0 = 0.
We prove that deg(v) < n − mi for i = 0, . . . ,d − 1, by induction. For d = ,n/m-, this gives
deg(v) < m; together with the assumption [v]m−1

0 = 0, this proves that v = 0.
The base case of the induction is for i = 0, and deg(v) < n holds by assumption. If the claim holds

for some index i < d−1, since a has degreem, for anyw inK[x]<n , the polynomial [aw rem f ]m−1
0

splits into two parts:
[aw rem f ]m−1

0 = [a[w]n−m−1
0 ]m−1

0 + [axn−m[w]m−1
n−m rem f ]m−1

0 .

Apply this identity with w = aiv rem f . Then, both the left-hand side and the !rst summand
vanish: the former because [ai+1v rem f ]m−1

0 = 0, the latter because [aiv rem f ]m−1
0 = 0, i.e.,

w = aiv rem f has valuation at least m. We deduce that [axn−m[w]m−1
n−m rem f ]m−1

0 = 0, with
w = aiv rem f .

— If m ≤ n/2, the linear independence of the polynomials pj = [axn−m+j rem f ]m−1
0 , for j =

0, . . . ,m − 1, then shows that [w]m−1
n−m = [aiv rem f ]m−1

n−m vanishes.
— Ifm > n/2, then the assumption thatw has valuation at leastm, with thusm > n−m, shows

that [w]m−1
n−m = x2m−n[w]n−m−1

m . In this case, the linear independence of the polynomials pj
for j = 2m − n, . . . ,m − 1 shows that [w]m−1

n−m = 0.
In other words, in both cases, we have proved that w = aiv rem f has degree less than n −m.

On the other hand, the induction assumption that deg(v) < n−mi implies that aiv rem f = aiv ,
so the latter has degree less thann−m. Since ai has degreemi , this shows that deg(v) < n−m(i+1),
as claimed. !

7.3 Generic Regularity in a and f

In all this document, genericity is understood in the Zariski sense:

De"nition 7.5. A property P of certain parameters (u1, . . . ,us ) holds for a generic choice of
(u1, . . . ,us ) in Ks if there exists a nonzero polynomial ∆ in K[ū1, . . . , ūs ] (where the ūi ’s are new
indeterminates) such that ∆(u1, . . . ,us ) ! 0 implies that P(u1, . . . ,us ) holds.

Note that if K is !nite, there may be no choice of the ui ’s in K for which ∆ does not vanish, but
such points exist in a !nite extension of K of suxciently large degree (such asO(log(n)) when the
degree of ∆ is polynomial in n, as is the case below).

Pr&2&/i1i&, 7.6. Let f in K[x] be of degree n and such that f (0) ! 0. For any m ∈ {1, . . . ,n}
there exists a nonzero polynomial ∆f ,m in K[ā0, . . . , ān−1] of degree at most 2n2/m such that for
a = a0 + · · · + an−1xn−1 in K[x]<n , if ∆f ,m(a0, . . . ,an−1) ! 0 then Hk(a,f )m,d ∈ K

(md )((md ) has rank n
for any d ≥ ,n/m-.

7.3.1 Proof of Proposition 7.6.

Le(() 7.7. Letm, n be positive integers, withm ∈ {1, . . . ,n}, and let f̄ = f̄0+ · · ·+ f̄n−1xn−1+xn

and ā = ā0 + · · · + ān−1xn−1 be polynomials in Z[ā0, . . . , ān−1, f̄0, . . . , f̄n−1][x]. Then any n-minor of
Hk(ā, f̄ )m, ,n/m - has degree at most 2n2/m in ā0, . . . , ān−1 and 2n2(n − 1)/m in f̄0, . . . , f̄n−1.

Pr&&.. The multiplication matrix Mā can be written as Mā =
∑n−1

k=0 ākMk
x , where Mx is the

companion matrix of f̄ . The entries ofMā , which are the coexcients ofxk ā rem f̄ fork = 0, . . . ,n−
1, are therefore polynomials of degree 1 in the coexcients ā0, . . . , ān−1 and at most n − 1 in the
coexcients f̄0, . . . , f̄n−1. In turn, the coexcients of M j

ā have degree at most j in ā0, . . . , ān−1 and
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j(n − 1) in f̄0, . . . , f̄n−1. For 0 ≤ i, j < ,n/m-, them (m block of coordinates (i, j) in Hk(ā, f̄ )m, ,n/m - is a
submatrix of M i+j

ā ; it has degree at most i + j in ā0, . . . , ān−1 and (i + j)(n − 1) in f̄0, . . . , f̄n−1. As a
result, any n-minor of this matrix has degree at mostm,n/m-(,n/m- − 1) ≤ 2n2/m in ā0, . . . , ān−1
andm,n/m-(,n/m- − 1)(n − 1) ≤ 2n2(n − 1)/m in f̄0, . . . , f̄n−1. !

Take f of degree n with f (0) ! 0. Proposition 7.3 with a = xm shows that at least one n-minor
of Hk(x

m,f )
m, ,n/m - is nonzero, so the corresponding n-minor of Hk(ā,f )m, ,n/m - is not identically zero. We

take this minor for ∆f ,m , and its degree is then bounded by Lemma 7.7.

7.3.2 Note: Basis of Relations for a Generic a. For any f in K[x] with f (0) ! 0, and for a
generic a in K[x]<n , Proposition 7.6 shows that the rank of Hk(a,f )m,d is n, with d = ,n/m-. From
Proposition 7.1 we then obtain ν (a,f )m = ν (a,f )m,m = n and the describability ofH in degreed . Therefore,
by Proposition 5.6, Algorithm C),3i3)1eB)/i/ returns a basis of M(a,f )

m and the 0ag Cer1.

7.4 Generic Rank for a Separable f

We now study the rank of Hkm,d , for a generic choice of the roots of f , and for a generic choice
of the values of a at these roots, subject to certain combinatorial conditions.

7.4.1 Definitions. Consider pairwise distinct ξ1, . . . , ξn in an algebraic closure K of K. To such
points, we associate the polynomial f = (x − ξ1) · · · (x − ξn). We also consider a ∈ K[x]<n , and we
say that a takes values λ1, . . . , λr at ξ1, . . . , ξn with multiplicities !1, . . . , !r if the following holds:

— λ1, . . . , λr are pairwise distinct elements in K;
— !1 + · · · + !r = n, with all !i positive integers;
— for i = 1, . . . , r , a(ξσi+1) = · · · = a(ξσi+!i ) = λi , where we write σi = !1 + · · · + !i−1 (the

empty sum for i = 1 is zero).
In view of our application, we also assume that the ξi ’s are such that f is in K[x].

7.4.2 Generic Rank.

Pr&2&/i1i&, 7.8. Fix positive integersm ∈ {1, . . . ,n} and ! = (!1, . . . , !r ) such that !1+ · · ·+!r =
n. Then, there exists a nonzero polynomial Γ!,m ∈ Z[ξ̄1, . . . , ξ̄n , λ̄1, . . . , λ̄r ] such that the following
holds. For pairwise distinct nonzero ξ1, . . . , ξn inK such that f = c(x−ξ1) · · · (x−ξn) with c ∈ K\{0}
is in K[x] and for a ∈ K[x] that takes values λ1, . . . , λr at ξ1, . . . , ξn with multiplicities !1, . . . , !r , if
Γ!,m(ξ1, . . . , ξn , λ1, . . . , λr ) is nonzero, then

rank(Hk(a,f )m,d ) = ν (a,f )m for any d ≥ ,ν (a,f )m /m-,
with in addition the equality

ν (a,f )m =

r∑
i=1

min(!i ,m).

Finally, for any pairwise distinct λ1, . . . , λr , the polynomial Γ!,m(ξ̄1, . . . , ξ̄n , λ1, . . . , λr ) is nonzero
and has degree at most 2n2.

7.4.3 Proof of Proposition 7.8. The rather long proof is decomposed as follows. First, the expres-
sion for the determinantal degree νm is established. For the proof of the rest of the proposition we
exploit the factorization Hkm,d = Lm,dKm,d , that is analyzed through a series of lemmas. All along,
we use classical linear algebra notions concerning invariant factors and Smith normal forms, and
their relation to eigenvalues in the case of diagonalizable matrices; see e.g. [62, Ch. II and III] for
more background on these aspects.
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The ranks of the matrices Km,d and Lm,d are related to that of a simple matrix P!,m,d (see
Equation (31)). This leads to the proof that for d = ,νm/m-, the rank of Km,d and Lm,d is νm
generically. Then we prove that generically, taking any d0 ≥ ,νm/m- is suxcient for studying the
rank of Hkm,d . The proof is concluded by establishing that the rank is νm when d0 is r , the number
of distinct values a(ξk )’s: for this value ofd0, we establish that the intersection of the image ofKm,d
with the kernel of Lm,d is reduced to 0. The polynomial Γ!,m and the degree bounds are derived
from the proof.

Determinantal degree ν (a,f )m . As in the proposition, let ξ1, . . . , ξn be pairwise distinct inK and let
f = c(x − ξ1) · · · (x − ξn). The Lagrange interpolation polynomials

Lk (x) =
1

f ′(ξk )
f (x)
x − ξk

=
∏
!!k

x − ξ!
ξk − ξ!

, k = 1, . . . ,n. (25)

form a basis of A := K[x]/〈f 〉. For any a ∈ A, the matrix of multiplication by a is diagonalizable,
its eigenvalues are the values of a at the ξ j ’s, and the Lagrange polynomials are eigenvectors. The
characteristic polynomial χa of a modulo f is therefore given by

χa =

n∏
k=1

(y − a(ξk )) ∈ K[y].

For 1 ≤ i ≤ r , we de!ne Si = {k ∈ {1, . . . ,n} | a(ξk ) = λi } and use that
Si = {σi + 1, . . . ,σi + !i }. (26)

With these conventions we have the factorization

χa =

r∏
i=1

(y − λi )!i ,

where the factors (y−λi ) are pairwise coprime. The Smith normal form of yIn −Ma is then known
and an explicit expression for the determinantal degree νm can be given: yIn − Ma has max(!i )
nontrivial invariant factors; for 1 ≤ k ≤ max(!i ), the kth one is ∏

1≤i≤r (y − λi )εi,k , where εi,k = 1
if k ≤ !i and 0 otherwise. From there, recalling from Equation (8) that for m in {1, . . . ,n}, νm is
the sum of the degrees of the !rstm such invariant factors, we have:

νm =

min(m,max(!i ))∑
k=1

card({i | !i ≤ k}) =
r∑

i=1
min(!i ,m). (27)

This proves the claim regarding νm in the proposition (this claim thus holds without further
assumption on the ξi ’s and λi ’s).

Maximal rank of Hk(a,f )m,d .

Le(() 7.9. Let A ∈ Kn(n and m ∈ N>0, and let ν be the sum of the degrees of the min(m,n)
highest degree invariant factors of yIn −A. Then for any collection ofm vectors v1, . . . ,vm ∈ Kn , one
has dim(Span(Aivj , 0 ≤ i, 1 ≤ j ≤ m)) ≤ ν .

Pr&&.. We let ν̃ = dim(Span(Aivj , 0 ≤ i, 1 ≤ j ≤ m)). For 1 ≤ j ≤ m, let dj ≥ 0 be the !rst
index such that Adjvj ∈ Span(vj ,Avj , . . . ,Adj−1vj , {Aivk | 0 ≤ i, 0 ≤ k < j}); if l ≥ dj then Alvj
also belongs to the latter subspace of Kn , which is therefore stable under left multiplication by A.
This holds for any 1 ≤ j ≤ m, hence d1 + · · · + dm = ν̃ , and the matrix

P1 =
(
v1 Av1 · · · Avd1−1

1 · · · vm Avm · · · Avdm−1
m

)
∈ Kn(ν̃
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has rank ν̃ and can be completed into a nonsingular matrix P = (P1 P2) ∈ Kn(n . By applying the
change of basis P−1AP we obtain

P−1(yIn −A)P =
(
yIν̃ −C B1

0 yIn−ν̃ − B2

)
∈ K[y]n(n , (28)

whereC ∈ Kν̃(ν̃ , B1 ∈ Kν̃((n−ν̃ ), B2 ∈ K(n−ν̃ )((n−ν̃ ). Thanks to the form of P1, the matrixC ∈ Kν̃(ν̃ is
block upper triangular with at mostm companion blocksCj of dimensionsdj on the diagonal (there
is no block for dj = 0, and at most n of the dj ’s are nonzero). By a unimodular row transformation
Uj ∈ K[y]dj(dj , a matrixyIdj −Cj can be brought into an upper triangular formTj (y) = Uj (y)(yIdj −
Cj ), which has diagonal entries 1 except for the last entry which is the characteristic polynomial
χ (j) = ydj − χ (j)dj−1y

dj−1 − · · · − χ (j)0 of Cj :

34444
5

−1
. . .

−1
1 y . . . ydj−1

67777
8

344444
5
yIdj −

344444
5

χ (j)0
1 χ (j)1
. . .

...

1 χ (j)dj−1

677777
8

677777
8
=

34444
5

1 · · ·
. . . · ·

1 ·
χ (j)(y)

67777
8
∈ K[y]dj(dj ,

Therefore Equation (28) can be rewritten as

U (y)P−1(yIn −A)P =
(
T (y) B̄1(y)

0 yIn−ν̃ − B2

)
=

(
Iν̃ B̄1(y)
0 yIñ−ν − B2

) (
T (y) 0

0 In−ν̃

)
, (29)

where U = diag(U1, . . .Um , In−ν̃ ) is unimodular (with no Uj if dj = 0), and T ∈ K[y]ν̃(ν̃ is block
upper triangular with diagonal blocks theTj ’s. The matrixT is triangular with 1’s on the diagonal
except for at most m entries. We deduce that the gcd of the minors of dimension k of T is a unit
for 1 ≤ k ≤ ν̃ −m, and that T has at most m nontrivial invariant factors [62, Ch. II, Equation (13)].
The product of these invariant factors is det(T ) =∏

j χ
(j), whose degree is d1 + · · ·+dm = ν̃ . From

the matrix product on the right-hand side of Equation (29), these latter invariant factors divide
the m highest degree invariant factors of yIn − A [62, Theorem II.14]. From the de!nition of ν we
obtain ν̃ ≤ ν . !

With A = Ma or MT
a , and Km,d ,Lm,d from Equation (12), for any positive integer d , Lemma 7.9

gives
rank(Km,d ) ≤ νm , rank(Lm,d ) ≤ νm and rank(Hkm,d ) ≤ νm . (30)

Next, we show that the ranks of both Km, ,νm/m - and Lm, ,νm/m - are νm generically.

The relation of K (a,f )
m,d and L(a,f )m,d to the matrix P!,m,d . For ! = (!1, . . . , !r ), m in {1, . . . ,n}, and a

positive integer d , we de!ne the matrix

P!,m,d =
(
Vξ̄ Dλ̄Vξ̄ · · · Dd−1

λ̄
Vξ̄

)
∈ Z[ξ̄1, . . . , ξ̄n , λ̄1, . . . , λ̄r ]n(md , (31)

where

Vξ̄ =
344
5

1 ξ̄1 · · · ξ̄m−1
1

...
...

...
1 ξ̄n · · · ξ̄m−1

n

677
8

and Dλ̄ = diag(λ̄1, . . . , λ̄1︸!!!!!⎧⎪!!!!!⎨
!1 times

, . . . , λ̄r , . . . , λ̄r︸!!!!!!⎧⎪!!!!!!⎨
!r times

).

The following lemma summarizes the key properties of this matrix in relation with the rank of
Km,d and Lm,d .

Le(() 7.10. Let !, ξ1, . . . , ξn , λ1, . . . , λr , f , a andm be as in Proposition 7.8, and let d be a positive
integer. The following holds:
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— the rank of Km,d is equal to the rank of P!,m,d (ξ1, . . . , ξn , λ1, . . . , λr );
— if all ξi ’s are nonzero, the rank of Lm,d is equal to the rank of P!,m,d (1/ξ1, . . . , 1/ξn , λ1, . . . , λr ).

Pr&&.. We use the same notation
κm,d : K[x ,y]<(m,d ) → K[x]/〈f 〉 and λm,d : K[x]<n → K[x]d<m

for the mappings induced by scalar extension from κm,d and λm,d from Section 3.4.1.
Taking (x iy j )0≤i<m,0≤j<d for basis of K[x ,y]<(m,d ) and the Lagrange basis L1, . . . ,Ln

for K[x]<n , the matrix of κm,d is P!,m,d (ξ1, . . . , ξn , λ1, . . . , λr ). This proves the !rst point.
To prove the second point, take k in {1, . . . ,n}, and let i in {1, . . . , r } be such that a(ξk ) = λi .

The image of the Lagrange polynomial Lk by λm,d is the polynomial vector

λm,d (Lk ) =
(
[Lk ]m−1

0 , [aLk rem f ]m−1
0 , . . . , [ad−1Lk rem f ]m−1

0

)
∈ K[x]d<m ,

and since the Lagrange polynomials are eigenvectors of multiplication by a, we get

λm,d (Lk ) =
(
[Lk ]m−1

0 , [λiLk ]m−1
0 , . . . , [λd−1

i Lk ]m−1
0

)

=
(
[Lk ]m−1

0 , λi [Lk ]m−1
0 , . . . , λd−1

i [Lk ]m−1
0

)
.

Let L′ ∈ K(md )(n be the matrix whose kth column (for k = 1, . . . ,n) contains the md coexcients
of the entries of λm,d (Lk ). This is the matrix of λm,d , if we take the Lagrange basis for the do-
main K[x]<n .

Since all ξi ’s are nonzero, we get f (0) ! 0, so that f is invertible as a power series. Because the
K-linear transformation b ∈ K[x]<m 5→ [b/f ]m−1

0 is invertible, L′ has the same rank as the matrix
whose columns are the coexcients of the vectors(

[[Lk ]m−1
0 /f ]m−1

0 , λi [[Lk ]m−1
0 /f ]m−1

0 , . . . , λd−1
i [[Lk ]m−1

0 /f ]m−1
0

)
,

for i and k as above. On the other hand, we have [[Lk ]m−1
0 /f ]m−1

0 = [Lk/f ]m−1
0 and

Lk

f
=

1
f ′(ξk )

1
x − ξk

.

This shows that to determine the rank of L′, we may as well consider the vectors([
1

x − ξk

]m−1

0
, λi

[
1

x − ξk

]m−1

0
, . . . , λd−1

i

[
1

x − ξk

]m−1

0

)
.

Now, note that [
1

x − ξk

]m−1

0
= −ξk

(
1 + 1

ξk
x + · · · + 1

ξm−1
k

xm−1
)
.

Thus, up to the factors−ξk , taking themd coexcients of these vectors and putting them in columns
gives us the transpose of P!,m,d (1/ξ1, . . . , 1/ξn , λ1, . . . , λr ). This proves the rank equality claimed
in the second item. !

The rank of K (a,f )
m,d and L(a,f )m,d for d = ,ν (a,f )m /m-. Together with Lemma 7.10, the next lemma

establishes that the generic rank ofKm, ,νm/m - and Lm, ,νm/m - is νm . Let R!,m be the νm(νm subma-
trix of P!,m, ,νm/m - obtained by extracting the !rst min(!i ,m) rows containing λ̄i , for i = 1, . . . , r
(see Equation (27)), and the !rst νm columns (note that P!,m, ,νm/m - hasm,νm/m- ≥ νm columns).
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Le(() 7.11. For ! = (!1, . . . , !r ), n = !1 + · · · + !r and m in {1, . . . ,n}, and for any pairwise
distinct λ1, . . . , λr in K

r
, the determinantw!,m(ξ̄1, . . . , ξ̄n , λ1, . . . , λr ) of the νm (νm matrix R!,m at

λ1, . . . , λr is nonzero.

Pr&&.. We prove the nonvanishing property by exhibiting a vector (ξ1, . . . , ξn) ∈ K
n for which

the evaluation w!,m(ξ1, . . . , ξn , λ1, . . . , λr ) is not zero. In what follows, for i = 1, . . . , r , recall that
we writeσi = !1+· · ·+!i−1, so that the rows involving λ̄i in P!,m, ,νm/m - have indicesσi+1, . . . ,σi+
!i (see Equation (26)).

Assume !rst that m is invertible in K, and choose δ in K such that δ + λi ! 0 for i = 1, . . . , r .
Then, for all i , the polynomial xm−(δ+λi ) is separable, since its discriminant ismm(δ+λi )m−1, and
we choose ξσi+1, . . . , ξσi+min(!i ,m) to be pairwise distinct roots of this polynomial inK. Ifm < !i , we
further take ξσi+m+1, . . . , ξσi+!i arbitrary inK (note thatw!,m does not depend on these quantities).
Now, for any ξ , λ such that ξm = δ+λ, and for j ≥ 1, we have λj = ξ jm+

∑j
k=1

( j
k
)
(−δ )kξ (j−k)m . Up to

invertible linear combinations of its columns, R!,m(ξ1, . . . , ξn , λ1, . . . , λr ) is thus the Vandermonde
matrix at the roots ξσi+1, . . . , ξσi+min(!i ,m), i = 1, . . . , r . Since the λi ’s are pairwise distinct, all these
roots are pairwise distinct too, so the determinant w!,m(ξ1, . . . , ξn , λ1, . . . , λr ) is nonzero.

If m is 0 in K, then for all i , xm + x − λi is separable, since its discriminant is (−1)m(m−1)/2 ! 0.
Again, choosing distinct roots of these polynomials and performing linear combinations of the
columns of R!,m leads to a nonzero Vandermonde determinant. !

In several steps, we now study the rank of Hk(a,f )m,d and show it is ν (a,f )m for d large enough. Note
that unlike in Section 7.2 where we were working withνm = n, additional ingredients are necessary
in order to deduce this rank from those of K (a,f )

m,d and L(a,f )m,d .

If the rank of Hk(a,f )m,d is ν (a,f )m for some d ≥ 0, then it is ν (a,f )m for all d ≥ ,ν (a,f )m /m-.

Le(() 7.12. Let !, ξ1, . . . , ξn , λ1, . . . , λr , a, f andm be as in Proposition 7.8. If Hkm,d0 has rank νm
for some d0 ≥ ,νm/m-, and ifw!,m(ξ1, . . . , ξn , λ1, . . . , λr ) andw!,m(1/ξ1, . . . , 1/ξn , λ1, . . . , λr ) from
Lemma 7.11 are nonzero, then Hkm,d has rank νm for all d ≥ ,νm/m-.

Pr&&.. Since w!,m(ξ1, . . . , ξn , λ1, . . . , λr ) is nonzero, P!,m, ,νm/m -(ξ1, . . . , ξn , λ1, . . . , λr ) has
rank at least νm , and so does Km, ,νm/m - (Lemma 7.10).

As a result, for d ≥ ,νm/m-, Km,d still has rank exactly νm (recall that this rank cannot exceed
νm , by Equation (30)). Thus, for such d , there exists a nonsingular P ∈ K(md )((md ) such that
Km,dP = [Km, ,νm/m - 0], where the zero matrix is n ( (m(d − ,νm/m-)). In the same way, since
w!,m(1/ξ1, . . . , 1/ξn , λ1, . . . , λr ) is nonzero, Lemma 7.10 also implies that Lm, ,νm/m - has rank νm ,
therefore there exists a nonsingular Q ∈ K(md )((md ) such that QLm,d = [(Lm, ,νm/m -)T 0]T. We
obtain

Q Hkm,d P = QLm,dKm,dP =

(
Hkm, ,νm/m - 0

0 0

)
∈ K(md )((md ),

which shows that for d ≥ ,νm/m- we have rank(Hkm,d ) = rank(Hkm, ,νm/m -). !

The rank of Hk(a,f )m,r is ν (a,f )m generically. To establish that the rank of Hkm,r is νm for generic
choices of ξ1, . . . , ξn , we introduce a decomposition into vector spaces associated to the λi ’s. We
then study these spaces separately; their dimensions are min(!i ,m), respectively, leading as ex-
pected to a total dimension ∑r

i=1 min(!i ,m) = νm .
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This is achieved through a description of the images of the mappings κm,d and λm,d in terms of
polynomials. Given positive integers ! = (!1, . . . , !r ) and ξ1, . . . , ξn in Kn , de!ne

Pi, j =
∑
k ∈Si

ξ j
kLk ∈ K[x], i = 1, . . . , r , j ≥ 0, (32)

with the Lagrange polynomials L1, . . . ,Ln and the sets S1, . . . , Sr from Equation (26).

Le(() 7.13. Let !, ξ1, . . . , ξn , λ1, . . . , λr , a, f andm be as in Proposition 7.8 and let d be a positive
integer. The image of κm,d lies in the linear span of the νm linearly independent polynomials Pi, j from
Equation (32), for 1 ≤ i ≤ r and 0 ≤ j < min(!i ,m).

Pr&&.. Let V (x ,y) = ∑m−1
j=0 c j (y)x j belong to K[x ,y]<(m,d ). Lagrange interpolation gives

κm,d (V ) = V (x ,a) rem f =
n∑

k=1
V (ξk ,a(ξk ))Lk .

Since V (ξk ,a(ξk )) =
∑m−1

j=0 c j (a(ξk ))ξ j
k , we deduce

κm,d (V ) =
r∑

i=1

m−1∑
j=0

c j (λi )Pi, j .

For i = 1, . . . , r , at most !i of the polynomials Pi, j , j = 0, . . . ,m − 1, can be linearly indepen-
dent, since they are all linear combinations of !i linearly independent Lk . On the other hand, the
polynomials Pi, j for j = 0, . . . , !i − 1 are linearly independent, due to the linear independence of
the polynomials Lk , and the invertibility of the Vandermonde matrix [ξ j

k ]0≤j<!i ∈ K
!i(!i . This

proves that the image of κm,d is included in the span of the polynomials Pi, j , for i = 1, . . . , r and
j = 0, . . . ,min(!i ,m) − 1, as claimed. !

This polynomial-based interpretation then allows us to use the following decomposition.

Le(() 7.14. Let !, ξ1, . . . , ξn , λ1, . . . , λr , a, f and m be as in Proposition 7.8. The rank of Hkm,r
is the sum of the dimensions of the vector spaces

Vi = Span
(
[Pi, j ]m−1

0 , j = 0, . . . ,min(!i ,m) − 1
)

(33)
with the polynomials Pi, j from Equation (32) for i = 1, . . . , r .

Pr&&.. We !rst claim that for d = r ,Km,r has rank νm , or equivalently (Lemma 7.10) that P!,m,r
has rank νm at (ξ1, . . . , ξn , λ1, . . . , λr ). Indeed, we can extract from P!,m,r a νm ( νm submatrix by
keeping the !rst min(!i ,m) rows indexed by λ̄i , for i = 1, . . . , r , and the columns containing
the monomials λ̄i−1, . . . , λ̄i−1ξmin(!i ,m)−1, for i = 1, . . . , r . The columns of this matrix contain the
evaluations of the polynomials x iy j for i = 0, . . . , r − 1 and j = 0, . . . ,min(!i+1,m) − 1 at the
points (λi , ξi j ) for i = 1, . . . , r and ξi j = ξ!1+· · ·+!i−1+j for j = 1, . . . ,min(!i ,m). Now, up to linear
combinations of its columns, the determinant of this matrix is the same as that of the matrix whose
columns evaluate the polynomials

Qi j (x ,y) :=
i−1∏
h=1

(x − λh)
j−1∏
k=1

(y − ξik ), i = 1, . . . , r , j = 1, . . . ,min(!i ,m).

The latter matrix is triangular; its diagonal elements areQi j (λi , ξi j ) ! 0, showing that the matrix is
nonsingular and therefore thatKm,r has rank at least νm . (More general determinant factorizations
of this kind are considered by [18], [25, Section 2].) Using Equation (30) we deduce that Km,r has
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rank exactly νm as announced, and from Lemma 7.13, we know that the image of κm,r is the span
of the polynomials Pi, j de!ned in that lemma.

It follows that the rank of Hkm,r is the dimension of the span of the image λm,r (Pi, j ). For
i = 1, . . . , r , and j = 0, . . . ,min(!i ,m) − 1,

λm,r (Pi, j ) =
(
[Pi, j rem f ]m−1

0 , [aPi, j rem f ]m−1
0 , . . . , [ar−1Pi, j rem f ]m−1

0
)
,

and since the Lagrange polynomials are eigenvectors of multiplication by a, we get

λm,r (Pi, j ) =
(
[Pi, j ]m−1

0 , [λiPi, j ]m−1
0 , . . . , [λr−1

i Pi, j ]m−1
0

)
=

(
[Pi, j ]m−1

0 , λi [Pi, j ]m−1
0 , . . . , λr−1

i [Pi, j ]m−1
0

)
.

Let vi, j =
(
0, . . . , 0, [Pi, j ]m−1

0 , 0, . . . , 0
)

be [Pi, j ]m−1
0 times the ith canonical vector in K[x]r<m ,

seen as row vector. The span of the λm,r (Pi, j )’s multiplied on the right by the inverse of the Van-
dermonde matrix associated to the λi ’s is the span of the vi, j ’s . By grouping the vi, j ’s for each i ,
this yields a block-diagonal matrix with blocks that span the spaces Vi of the lemma. The result
on the rank follows. !

The dimensions of the vector spaces from Equation (33) can now be analyzed separately.

Le(() 7.15. Fix positive integers ! = (!1, . . . , !r ) such that !1 + · · · + !r = n, andm in {1, . . . ,n}.
There exists a nonzero polynomial z!,m ∈ Z[ξ̄1, . . . , ξ̄n] of degree at most (n − 1)(n − νm) such that
if pairwise distinct nonzero ξ1, . . . , ξn do not form a zero of z!,m , then Vi from Equation (33) has
dimension min(!i ,m) for all i .

Pr&&.. Take i in {1, . . . , r }, consider the set of indices Si = {!1 + · · ·+ !i−1 + 1, . . . , !1 + · · ·+ !i }
from Equation (26). Let then Ai =

∏
k ∈Si (x − ξk ), Bi =

∏
k"Si (x − ξk ) andCi = 1/Bi mod Ai . Note

that Ai and Bi have respective degrees !i and n − !i , and that Ci is well de!ned, since Bi and Ai
have no common root.

For k in Si , by construction, Bi divides the Lagrange polynomial Lk , with a quotient of degree
n − 1 − deg(Bi ) = !i − 1. In view of Equation (32), Bi divides Pi, j =

∑
k ∈Si ξ

j
kLk , for all j ≥ 0, and

the quotient has degree less than !i . We now prove that it is actually equal to x jCi rem Ai . Since
f = AiBi , for k in Si , the Lagrange polynomial Lk = f /(f ′(ξk )(x − ξk )) satis!es

Lk

Bi
=

1
f ′(ξk )

f

Bi (x − ξk )
=

1
f ′(ξk )

Ai

x − ξk
=

Ci (ξk )
A′i (ξk )

Ai

x − ξk
.

In particular, for j ≥ 0, ξ j
kLk/Bi takes the value ξ j

kCi (ξk ) at ξk , and 0 at all other roots of Ai .
Taking the sum over all k in Si then proves our claim that Pi, j/Bi = x jCi rem Ai . Since ξ1, . . . , ξn
are nonzero, Bi (0) as well is nonzero, so Bi is invertible as a power series and [Pi, j/Bi ]m−1

0 =

[[Pi, j ]m−1
0 /Bi ]m−1

0 . Thus the truncated polynomials [Pi, j ]m−1
0 , for 0 ≤ j < min(!i ,m), are linearly

independent if and only if the truncated polynomials [x jCi rem Ai ]m−1
0 are.

When !i ≤ m, the polynomials x jCi rem Ai have degree less than m and their linear indepen-
dence follows from that of the polynomials x j , j = 0, . . . , !i − 1, since Ci is invertible modulo Ai .
Thus in this case, we always have dim(Vi ) = !i = min(!i ,m).

When !i > m, we are going to prove that the polynomials [x jCi rem Ai ]m−1
0 , j = 0, . . . ,m − 1,

are linearly independent for a generic choice of ξ1, . . . , ξn . To achieve this, de!ne the matrix MCi

whose entry (j, !) is the coexcient of x !−1 in x j−1Ci rem Ai for j = 1, . . . , !i and ! = 1, . . . , !i ;
this is the multiplication matrix by Ci modulo Ai . We also consider its inverse, the multiplication
matrix MBi by Bi modulo Ai .
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For our claim to hold, it is enough to guarantee that them(m leading principal minorKi of MCi

be nonzero. We view this minor as a rational function in ξ̄1, . . . , ξ̄n : this is done by introducing the
polynomials Āi =

∏
k ∈Si (x − ξ̄k ), B̄i =

∏
k"Si (x − ξ̄k ) and C̄i = 1/B̄i mod Āi , all of which are in

Q(ξ̄1, . . . , ξ̄n)[x]. We can then de!ne the matrices MC̄i and MB̄i of multiplication by respectively
C̄i and B̄i modulo Āi , and them (m leading principal minor K̄i of MC̄i . This is a rational function
of ξ̄1, . . . , ξ̄n , whose evaluation at ξ1, . . . , ξn gives the scalar Ki ∈ K.

Note !rst that K̄i is not identically zero: if we evaluate all ξ̄д at 0, for д in Si , Āi becomes x !i ,
and the matrix MC̄i becomes lower triangular, with 1/Bi (0) ! 0. It then remains to estimate the
degree of a numerator of K̄i . The Schur complement formula gives K̄i = det(MC̄i )L̄i , where L̄i is
the (!i −m) ( (!i −m) lower right minor of the inverse MB̄i of MC̄i . The determinant of MC̄i is
the resultant of C̄i and Āi , that is, 1/∏д∈Si ,h"Si (ξ̄д − ξ̄h). On the other hand, L̄i is a polynomial in
Z[ξ̄1, . . . , ξ̄n] (since B̄i and Āi have coexcients in Z[ξ̄1, . . . , ξ̄n], and Āi is monic in x ).

For s ≥ 0, write xs rem Āi = cs,0 + · · · + cs,!i−1x !i−1, for cs,t ∈ Z[ξ̄1, . . . , ξ̄n]. By induction on s ,
we obtain the bound deg(cs,t ) ≤ s − t . From this, it follows that all entries of MB̄i have degree at
most n − 1, and that L̄i has degree at most (n − 1)(!i −m) ≤ n!i . To conclude the proof, we let
z!,m be the product of the polynomials L̄i , for i such that !i > m. The degree bound follows from
remarking that ∑

!i >m(!i −m) = n − νm . !

Genericity polynomials and degree bounds. Until here, the conditions we have seen are the nonva-
nishing ofw!,m(ξ1, . . . , ξn , λ1, . . . , λr ),w!,m(1/ξ1, . . . , 1/ξn , λ1, . . . , λr ), and z!,m(ξ1, . . . , ξn). When
nonzero, the !rst two quantities allow us to apply Lemma 7.12 and obtain the rank of Hkm, ,n/m -
from any Hkm,d0 with d0 ≥ ,νm/m-; the third condition z!,m(ξ1, . . . , ξn) ! 0 allows us to take
d0 = r thanks to Lemmas 7.14 and 7.15

The bound on the degree ofw!,m in ξ̄1, . . . , ξ̄n follows from summing the degrees of the columns
in P!,m, ,νm/m - . Each block of m columns involves degrees 1 + · · · + (m − 1) = m(m − 1)/2, and
we consider ,νm/m- such blocks (the last one may not be complete), for a total of at most (νm +
m)(m − 1)/2. Next, consider the term w!,m(1/ξ̄1, . . . , 1/ξ̄n , λ̄1, . . . , λ̄r ), which is not a polynomial
in the ξ̄i ’s. To estimate the degree of its numerator, observe that it is a νm (νm-minor of the matrix

34444
5

1 1
ξ̄1
. . . 1

ξ̄ m−1
1

λ̄1
1
ξ̄1
λ̄1 . . . 1

ξ̄ m−1
1

λ̄ ,νm/m -−1
1

...
...

1 1
ξ̄n
. . . 1

ξ̄ m−1
n

λ̄r
1

ξ̄n
λ̄r . . . 1

ξ̄ m−1
n

λ̄ ,νm/m -−1
r

67777
8

Factoring out (on the right) the diagonal matrix with diagonal (1/ξ̄m−1
i )1≤i≤n , we see that the

nonvanishing of w!,m(1/ξ1, . . . , 1/ξn , λ1, . . . , λr ) is equivalent to the nonvanishing of the corre-
sponding νm ( νm-minor w̃!,m in

3444
5

ξ̄m−1
1 ξ̄m−2

1 . . . 1 ξ̄m−1
1 λ̄1 ξ̄m−2

1 λ̄1 . . . λ̄ ,νm/m -−1
1

...
...

ξ̄m−1
n ξ̄m−2

n . . . 1 ξ̄m−1
n λ̄r ξ̄m−2

n λ̄r . . . λ̄ ,νm/m -−1
r

6777
8
.

The degree upper bound for w̃!,m is (νm +m)(m − 1)/2, as for w!,m .
We then take Γ!,m = w!,mw̃!,mz!,m to prove Proposition 7.8. For the degree estimate, note that

(νm +m)(m − 1)+ (n − 1)(n − νm) ≤ 2n2. For correctness, take pairwise distinct nonzero ξ1, . . . , ξn
in K and let a ∈ K[x] take distinct values λ1, . . . , λr at ξ1, . . . , ξn , with multiplicities !1, . . . , !r . As
before, we write f = (x − ξ1) · · · (x − ξn), and we assume that f is in K[x]. Finally, we suppose
that Γ!,m(ξ1, . . . , ξn , λ1, . . . , λr ) is nonzero. Lemmas 7.14 and 7.15 show that for d0 = r , we have
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rank(Hk(a,f )m,r ) = νm . Since r ≥ ,νm/m-, by Lemma 7.12, it is then also the case for Hk(a,f )m,d for all
d ≥ ,νm/m-, as claimed.

The only remaining claim is that for any pairwise distinct λ1, . . . , λr , Γ!,m(ξ̄1, . . . , ξ̄n , λ1, . . . , λr )
is a nonzero polynomial in ξ̄1, . . . , ξ̄n . That z!,m is nonzero is in Lemma 7.15 (this polynomial does
not depend on λ1, . . . , λr ); Lemma 7.11 proves that w!,m(ξ̄1, . . . , ξ̄n , λ1, . . . , λr ) is nonzero. That
lemma also implies thatw!,m(1/ξ̄1, . . . , 1/ξ̄n , λ1, . . . , λr ) is nonzero (as a rational function), and as a
consequence, this is also the case for w̃!,m(ξ̄1, . . . , ξ̄n , λ1, . . . , λr ). The claim for Γ!,m is thus proved.

8 A RANDOMIZED COMPOSITION ALGORITHM THROUGH CHANGE OF BASIS
In this section, we give the base case of our modular composition algorithm that is used when f
is either separable or purely inseparable (which includes the case of power series). The core Al-
gorithm M&34l)rC&(2&/i1i&,B)/eC)/e is studied in Section 8.1, and a variation for computing
annihilating polynomials is given in Section 8.2.

The algorithm of Section 4.2 performs bivariate modular composition within our target com-
plexity bound, assuming the knowledge of a matrix of relations with appropriate dimension and
degree. Since such a matrix of relations of M(a,f )

m may not exist for general a and f , Algorithm
M&34l)rC&(2&/i1i&,B)/eC)/e transports the computation of д(a) in A = K[x]/〈f 〉 to an iso-
morphic algebra that is expected to be more favorable to the computation.

More precisely, we pick a random γ ∈ K[x]<n ; generically, its minimal polynomial µγ ∈
K[y] has degree n and is also its characteristic polynomial χγ , so that the powers of γ gen-
erate A. This induces the K-algebra isomorphism ϕγ of Equation (20); Step 5 of Algorithm
M&34l)rC&(2&/i1i&,B)/eC)/e then computes a polynomial representative α of ϕγ (a mod f )
using the change of basis algorithm of Section 6. Note that a matrix of relations R(γ ,f )

m is also ob-
tained at Step 5 in preparation for the !nal stage. Then, with good probability, the conditions for
the excient computation of a certi!ed matrix of relations R(α,µγ )

m of M(α,µγ )
m via the approach of

Section 5.4 are ful!lled. Step 8 of Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e computes this ma-
trix of relations, which then allows us to obtain the polynomial β = д(α) rem µγ at Step 9, as seen
in Section 4.2. The solution b = д(a) rem f to the initial problem is !nally recovered by applying
ϕ−1

γ to β mod µγ , which amounts to computing b = β(γ ) rem f . Since we already have R(γ ,f )
m at

our disposal, b is obtained with the algorithm of Section 4.2 as well.
Proposition 8.1 in Section 8.1 shows the correctness of this strategy and bounds its complexity.

We then study the probability of success for f separable and f purely inseparable. The main point
is to ensure that appropriate matrices of relations R(γ ,f )

m and R
(α,µγ )
m are actually available. For

Steps 5 and 11 where a random γ is involved, we directly rely on the generic properties of the
associated block Hankel matrix Hk(γ ,f )m, ,n/m - (Proposition 7.6). For the computation of R(α,µγ )

m we
use the fact that α and µγ are suxciently generic, hence also give access to good properties for the
associated block Hankel matrix after the change of basis.

The probability of failure for a general separable f is bounded in Section 8.3. The power series
case and, more generally, the case of purely inseparable f are treated in Sections 8.4 and 8.5. For
such f , the success of Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e is proven in Section 8.4 under
some assumptions on the valuation of the input polynomiala and the characteristic ofK. Still in the
case of f purely inseparable, a complete algorithm is then given in Section 8.5: when the valuation
is large (with respect to the target value m / nη with η from Equation (3)), then the minimal
polynomial of a modulo f has small degree and we use the extension of Shoup’s algorithm seen
in Section 3.1.3. For !elds K of small characteristic, we adapt Bernstein’s composition algorithm
for power series [6] to our general context.
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ALGORITHM 8.1 M&34l)rC&(2&/i1i&,B)/eC)/e(f ,a,д, r )
Input: f of degree n in K[x], a ∈ K[x]<n , д ∈ K[y], r ∈ Kn+ ,nη -

Output: b = д(a) rem f or F)il
1: if n = 1 then return д(a) " a ∈ K
2: д← д(y − r1), a ← a(x) + r1; if gcd(a, f ) ! 1 then return F)il
3: f ← f (x + r2); a ← a(x + r2); if f (0) = 0 then return F)il
4: m ← ,nη- " With η from Equation (3)
5: " Change of basis: compute a polynomial α such that α ≡ ϕγ (a mod f ) mod µγ
" Getting a basis of relations R(γ ,f ) and the minimal polynomial µγ of γ mod f

γ ← r3 + r4x + · · · + rn+2xn−1

(R(γ ,f ), µγ ,α) ← Ch),-eO.B)/i/(f ,
γ ,a,m, ,n/m-) " Algorithm 6.1
if this call returned F)il then return F)il

6: if µγ (0) = 0 then return F)il
7: substitute “y” by “x” in µγ and α , which are then in K[x]
8: " Compute a matrix of relations for (α , µγ )

R(α,µγ ) ← M)1rixO.Rel)1i&,/(µγ ,α ,m, ,n/m-, (rn+i )3≤i≤m) " Algorithm 5.2
if this call returned F)il then return F)il

9: " Bivariate modular composition in the new basis: β ≡ д(α) mod µγ " Algorithm 4.1
β← Bi;)ri)1eM&34l)rC&(2&/i1i&,Wi1hRel)1i&,M)1rix(µγ ,α ,д,R(α,µγ ))

10: substitute “x” by “y” in β , which is then in K[y]
11: " Inverse change of basis: b ≡ ϕ−1(β mod µγ ) mod f

b ← Bi;)ri)1eM&34l)rC&(2&/i1i&,Wi1hRel)1i&,M)1rix(f ,γ , β,R(γ ,f )) " Algorithm 4.1
12: return b(x − r2)

8.1 Randomized Composition
The procedure is detailed in Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e. It uses n+m parameters
from K that are available as a sequence r of length n +m. The coexcients of the random polyno-
mial γ are given as part of the input as ri , for 3 ≤ i ≤ n+ 2; we require further parameters in order
to reduce to the case where f (0) ! 0 and gcd(a, f ) = 1 (Remarks 3.8 and 5.7), and for the random
column combination performed by Algorithm M)1rixO.Rel)1i&,/.

The parameter m could be taken arbitrarily in {1, . . . ,n}, but we choose the speci!c value m =
,nη-, with η from Equation (3), as this choice minimizes the overall cost. The following proposition
describes the output of the procedure; the probability of failure is bounded in Sections 8.3 and 8.4.

Pr&2&/i1i&, 8.1. Given f ∈ K[x] of degree n, a ∈ K[x]<n , д ∈ K[y] with deg(д) = O(n) and
r ∈ Kn+m with m = ,nη- and η from Equation (3), Algorithm Modula(Co)pos,-,o.Bas0Cas0
returns either д(a) rem f or Fa,l; it uses Õ(nκ ) operations in K, with κ < 1.43 as in Equation (1).

Pr&&.. If n = 1 then as a has degree 0, the result is д(a) ∈ K and the algorithm is correct. The
rest of the proof assumes n > 1.

Steps 2 and 3 ensure that gcd(a, f ) = 1 and f (0) ! 0. This does not impact the complexity, as
shifting a polynomial of degree O(n) can be achieved in Õ(n) arithmetic operations [9, Chap. 1,
Pb. 3.5]. The same observation applies to the last step.

At Step 5, if Algorithm Ch),-eO.B)/i/ does not return F)il then by Proposition 6.1 the matrix
R(γ ,f ) is a basis of relations of M(γ ,f )

m , µγ = χγ , and α(γ ) ≡ a mod f . It follows that µα = µa since
the quotient algebras are isomorphic, and µα (0) = µa(0) implies gcd(α , µγ ) = gcd(a, f ) = 1. If the
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ALGORITHM 8.2 A,,ihil)1i,-P&l9,&(i)l(f ,a, r )
Input: f of degree n in K[x], a ∈ K[x]<n , r ∈ Kn+ ,nη -

Output: µ nonzero in K[y]≤4n such that µ(a) ≡ 0 mod f or F)il
1: if n = 1 then return y − a " a ∈ K
2: " Compute a matrix of relations R(α,µγ ) for (α , µγ ) with α = ϕγ (a)

execute Steps 3 to 8 of Algorithm 8.1
if F)il has been returned by one of these steps then return F)il

3: µ ← det(R(α,µγ )) " [53, Algorithm 2]
4: return µ

test at Step 6 does not fail then the speci!cations for the call to Algorithm M)1rixO.Rel)1i&,/
are met; from Proposition 5.8, if Step 8 does not return F)il then the matrix R(α,µγ ) is a matrix
of relations in 〈µγ ,y − α〉. Both these matrices of relations have dimension at most 2(m − 1), and
degree at most 2,n/m-; they are obtained in Õ(mωd + c(n,m,d)) = Õ(mωd +mdω2/2) operations,
with d = ,n/m-. This is Õ(nκ ) arithmetic operations, according to Equations (1) and (3) and the
choice ofm at Step 4.

The variable substitutions at Steps 7 and 10 are harmless; they make notation match with that in
Algorithms M)1rixO.Rel)1i&,/ and Bi;)ri)1eM&34l)rC&(2&/i1i&,Wi1hRel)1i&,M)1rix.

At Step 9, within the same complexity bound as above by Proposition 4.4, β is computed such
that β ≡ д(α) mod µγ (these polynomials are temporarily in x ). After the substitution of Step 10
the latter relation implies the existence of a polynomial h ∈ K[y] such that

β(y) = д(α(y)) + h(y)µγ (y).
Since µγ (γ ) ≡ 0 mod f , evaluating this identity at y = γ results in b = β(γ ) = д(a) rem f at
Step 11. !

8.2 Randomized Annihilating Polynomial
If the choice of γ ensures that the isomorphism ϕγ is well de!ned (the powers of γ generate A),
then a univariate polynomial µ over K is such that µ(a) ≡ 0 mod f if and only µ(α) ≡ 0 mod µγ .
Since Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e computes a matrix of relations in 〈µγ ,y − α〉
at Step 8, an algorithm for computing such a µ follows from the results of Section 4.3.

C&r&ll)r9 8.2. Given f ∈ K[x] of degree n, a ∈ K[x]<n and r ∈ Kn+m withm = ,nη- and η from
Equation (3), Algorithm A..,7,la-,.1Pol2.o),al returns either Fa,l or a nonzero µ ∈ K[y]≤4n such
that µ(a) ≡ 0 mod f ; it uses Õ(nκ ) operations in K, with κ < 1.43 as in Equation (1).

Pr&&.. If n = 1 then as a ∈ K, µ = y − a is such that µ(a) = 0 and the algorithm is correct.
Now assume that n > 1. The annihilating polynomials are left unchanged by the substitution
x ← x + r2. As in the proof of Proposition 8.1, if failure does not occur then Step 8 computes a
matrix of relations of M(α,µγ )

m′ , for somem′ ≤ 2(m − 1), within the claimed complexity bound; this
matrix has degree at most 2,n/m-. Then Proposition 4.5 shows that µ annihilates α mod µγ and
thus a mod f , and that it has degree deg(µ) ≤ 4(m − 1),n/m-. This is at most 4n when m ≤ √n,
which is the case whenm = ,nη- with η as in Equation (3). The complexity then follows from the
proof of Proposition 8.1 and Proposition 4.5 again. !

8.3 Success of Randomization for Separable f

The probabilistic properties of the previous algorithms in the separable case are summarized in
the following.
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Pr&2&/i1i&, 8.3. Let a, f be polynomials in K[x] and д be in K[y], with f separable of degree n
and deg(a) < n. If r1, . . . , rn+ ,nη - ∈ K are chosen uniformly and independently from a "nite subset S
of K, then Algorithms Modula(Co)pos,-,o.Bas0Cas0 and A..,7,la-,.1Pol2.o),al return Fa,l
with probability at most 6n2/card(S).

Pr&&.. The success of modular composition in Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e
and of the computation of an annihilating polynomial in Algorithm A,,ihil)1i,-P&l9,&(i)l
relies on: !nding good shifts r1 and r2 in the !rst two steps; a choice of γ such that µγ (0) ! 0 and
µγ has degree n; the availability of matrices of relations R(γ ,f ) and R(α,µγ ). The probability estimate
is obtained by showing the existence of polynomials whose zero sets contain the values of the
parameters ri where these properties do not hold. The probability of avoiding these zero sets is then
handled by the Schwartz–Zippel lemma. In what follows, as in the algorithm, we writem = ,nη-.

(1) A value of r1 such that gcd(a + r1, f ) ! 1. The resultant of a(x) + r1 and f (x) is nonzero of
degree n in r1. Bad choices thus occur with probability at most n/card(S).

(2) A value of r2 such that f (0) ! 0 after the shift “x ← x + r2”. The same reasoning as above
applies to the coexcient of degree zero of f (x + r2).

The next properties all concern the same parameters (r3, . . . , rn+m), so their failures are not
independent events, and their joint probability is bounded using a product of polynomials
encoding each of them. Below, we write γ̄ = γ̄0 + · · ·+ γ̄n−1xn−1, with the γ̄i ’s new indeterminates,
and consider polynomials in K[γ̄0, . . . , γ̄n−1] to quantify probabilities of failure.

(3) The constant coe!cient µγ (0) is not 0. Write f = c(x − φ1) · · · (x − φn), for pairwise distinct
φi in K and c ∈ K \ {0}. The roots of µγ are the values γ̄ (φi ), so µγ (0) being nonzero is equivalent
to gcd(γ , f ) being trivial. Thus, we let ∆0 ∈ K[γ̄0, . . . , γ̄n−1] be the resultant of γ̄ and f . This
polynomial has degree n, and choosing γ = 1 shows that it is not identically zero.

(4) The minimal polynomial µγ has degreen. For anyγ = γ0+· · ·+γn−1xn−1 inK[x]<n , the charac-
teristic polynomial χγ ∈ K[y] of γ mod f factors over K[y] as χγ =

∏n
i=1(y − ξi ), where ξi = γ (φi )

for all i . We can thus let ∆1 ∈ K[γ̄0, . . . , γ̄n−1] be the product ∏
1≤i<j≤n(γ̄ (φi ) − γ̄ (φ j )). This is

a polynomial of degree n(n − 1)/2, and the previous discussion shows that ∆1(γ0, . . . ,γn−1) ! 0
implies that χγ is separable. In that case, since the n distinct roots of χγ must be roots of µγ , we
have χγ = µγ . Finally, the polynomial ∆1 itself is nonzero since its value at (0, 1, 0, . . . , 0), i.e.
at γ = x , is not zero.

(5) The computation of R(γ ,f ) does not fail. Since f (0) ! 0, Proposition 7.6 shows that the
associated block Hankel matrix Hk(γ ,f )m, ,n/m - has rank n as soon as the coexcients of γ avoid the
zero set of a polynomial ∆f ,m of degree at most 2n2/m.

When this condition holds, Proposition 7.1 shows that the matrix fraction X T(yIn −Mγ )−1X is
describable in degree ,n/m-, and that ν (γ ,f )m = ν (γ ,f )m,m . Since we also have gcd(γ , f ) = 1 by the item
above, and since the minimal polynomial µγ of γ mod f has degree n, Proposition 6.1 concludes
that the computation of R(γ ,f ) is successful.

(6) The rank of Hk(α,µγ )
m,d is equal to ν (α,µγ )

m for d ≥ ,ν (α,µγ )
m /m-. When the previous properties are

all satis!ed, there exists a K-algebra isomorphism ϕγ : K[x]/〈f 〉 → K[y]/〈µγ 〉 that maps a to α
such that α(γ ) ≡ a mod f . Up to changing the indices of the roots φi , we can assume that a takes
values λ1, . . . , λr at φ1, . . . ,φn with multiplicities !1, . . . , !r , for some positive integers !1, . . . , !r ,
and pairwise distinct λ1, . . . , λr inK (as in Section 7.4, the φi ’s are assumed to be ordered such that
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a(φ1) = · · · = a(φ!1 ) = λ1, etc). Then, since ξi = γ (φi ) for all i , the relation α(γ ) ≡ a mod f implies
that α(ξi ) = a(φi ) for all i , so that α takes the values λ1, . . . , λr at ξ1, . . . , ξn with multiplicities
!1, . . . , !r .

The assumptions of Proposition 7.8 are satis!ed. If Γ!,m ∈ Z[ξ̄1, . . . , ξ̄n , λ̄1, . . . , λ̄r ] is the
polynomial de!ned in that proposition, then when Γ!,m(ξ1, . . . , ξn , λ1, . . . , λr ) is nonzero, the rank
of Hk(α,µγ )

m,d is ν (α,µγ )
m for d ≥ ,ν (α,µγ )

m /m-.
The relevant polynomial is thus ∆3 = Γ!,m(γ̄ (φ1), . . . , γ̄ (φn), λ1, . . . , λr ) ∈ K[γ̄0, . . . , γ̄n−1].

Proposition 7.8 states that Γ!,m(γ̄0, . . . , γ̄n−1, λ1, . . . , λr ) is nonzero of degree at most 2n2; this is
thus also the case for ∆3, since the transformation (γ̄0, . . . , γ̄n−1) 5→ (γ̄ (φ1), . . . , γ̄ (φn)) is linear
and invertible (its matrix is the Vandermonde matrix at φ1, . . . ,φn ).

(7) The computation of R(α,µγ ) does not fail. When the previous properties are all satis!ed, Propo-
sition 7.1 applies with a = α and f = µγ and shows that ν (α,µγ )

m,m = ν
(α,µγ )
m and X T(yIn − Mα )−1X

is describable in degree ,ν (α,µγ )
m /m-, where Mα is the multiplication matrix of α modulo µγ . Since

µγ (0) ! 0 and gcd(α , µγ ) = gcd(a, f ) = 1, the assumptions of Proposition 5.8 are satis!ed for the
successful computation of R(α,µγ ) (Algorithm M)1rixO.Rel)1i&,/) with a probability of failure
depending on the choices of (rn+3, . . . , rn+m) and bounded by (m − 1)/card(S).

Case n = 1. In that situation steps, (5)–(7) above simplify. Since its top left corner is the identity
matrix, the rank of the block-Hankel matrix is at least 1, which is equal to n, and thus (5)–(7)
succeed with probability 1 in that case.

Probability bounds. The polynomial ∆0∆1∆f ,m∆3 ∈ K[γ̄0, . . . , γ̄n−1] is nonzero and has degree
at most

dn,m = n +
n(n − 1)

2 +
2n2

m
+ 2n2.

A choice of (r3, . . . , rn+2) that avoids its zero set ensures that the properties (3)–(6) hold. The
other probabilities have been discussed in steps (1), (2) and (7) above. In summary, the probability
of success is at least




(
1 − 1

card(S )

)3
≥ 1 − 3

card(S ) if n = 1,(
1 − n

card(S )

)2 (
1 − dn,m

card(S )

) (
1 − m−1

card(S )

)
≥ 1 − 2n+dn,m+m−1

card(S ) otherwise.

In the second expression, dividing the numerator of the fraction for n ≥ 2 by n2 gives
5
2 +

5
2n +

2
m
+
m − 1
n2 ,

which decreases as a function of n for n ≥ 0 and, for !xed n, decreases as a function of m for
m ≤ n. Thus it reaches its maximum at m = 1,n = 2, where its value is 23/4 < 6, proving the
probability bound for n ≥ 2, while 3 < 6 deals with the case n = 1.

The assertion for Algorithm A,,ihil)1i,-P&l9,&(i)l follows: Step 2 apart, it fails in the
same cases as Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e. !

8.4 Success of Randomization for f Purely Inseparable: Small Valuation
De"nition 8.4. A degree n polynomial f in K[x] is purely inseparable if it has only one root in

an algebraic closure K, so that it factors as f = (x − ξ )n in K[x]; if n is a unit in K, ξ itself is in K.

In this section, we study the probabilistic aspects of Algorithm
M&34l)rC&(2&/i1i&,B)/eC)/e for such polynomials. If a = a0 + av (x − ξ )v + av+1(x −
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ξ )v+1 + · · ·+an−1(x − ξ )n−1, with a0 = a(ξ ) and av ! 0, then the valuationv = valξ (a −a(ξ )) is the
order of vanishing of a−a(ξ ) at x = ξ . For the moment, we work under two additional assumptions
on this valuation: it is not 0 in K, and it is at most the value chosen for m (which is ,nη- in the
algorithm, for the target complexity bound). The other cases are discussed in the next section.

Pr&2&/i1i&, 8.5. Let a, f be polynomials in K[x] and д be in K[y], with f = (x − ξ )n ∈ K[x]
where ξ ∈ K, and deg(a) < n. Let p be the characteristic ofK. Suppose thatv = valξ (a−a(ξ )) satis"es
the following inequalities, with η as in Equation (3):

v ≤ ,nη-, p = 0 or v < p.

Take r1 = 0 if gcd(a, f ) = 1 and r1 = 1 otherwise, r2 = 0 if f ! xn and r2 = 1 otherwise.
If r3, . . . , rn+ ,nη - are chosen uniformly and independently from a "nite subset S of K, then Algo-
rithms Modula(Co)pos,-,o.Bas0Cas0 and A..,7,la-,.1Pol2.o),al return Fa,l with probability
at most 2n4/card(S)

Pr&&.. The proof follows the same steps as in Section 8.3. As before, we writem = ,nη-.
(1), (2) Values of r1 and r2. The choice of r1 gives gcd(a + r1, f ) = 1, and r2 modi!es the constant

coexcient of f if necessary. The !rst two steps of Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e
therefore provide polynomials that satisfy gcd(a, f ) = 1, f (0) ! 0, and v = valξ (a − a(ξ )) ≤ m.

(3) The constant coe!cient µγ (0) is not 0. For any γ = γ0 + · · · + γn−1xn−1, the roots of the
characteristic polynomial χγ of γ modulo f are the values taken by γ at the roots of f , counted
with multiplicities. Since f = (x − ξ )n over K[x], this implies that χγ = (y − γ (ξ ))n . The minimal
polynomial µγ then admits a similar factorization as (y − γ (ξ ))c , for some positive c .

Set ∆0(γ̄0, . . . , γ̄n) =
∑n−1

i=0 γ̄iξ i ; this is a (nonzero) polynomial of degree 1 which is such that
∆0(γ0, . . . ,γn−1) = γ (ξ ), so the nonvanishing of this quantity gives the same property for µγ (0).

(4) The minimal polynomial µγ has degree n. Consider now ∆1(γ̄0, . . . , γ̄n−1) =
∑n−1

i=1 iγ̄iξ i−1,
which is also a nonzero polynomial of degree 1. It is such that ∆1(γ0, . . . ,γn−1) = γ ′(ξ ), so the
nonvanishing of this quantity implies that valξ (γ − γ (ξ )) = 1. This implies that the powers
1,γ − γ (ξ ), (γ − γ (ξ ))2, . . . , (γ − γ (ξ ))n−1 rem (x − ξ )n have respective valuations 0, 1, . . . ,n − 1
at ξ , and thus are linearly independent. It follows that the minimal polynomial of γ − γ (ξ ) has
degree n, and the same then holds for γ itself.

(5) The computation of R(γ ,f ) does not fail. Here, the argument of the previous section applies
verbatim and relies on a polynomial ∆f ,m of degree at most 2n2/m.

(6) The rank of Hk(α,µγ )
m,d is equal to n for d ≥ ,n/m-. This step is the dixcult one in the proof;

note that the statement slightly deviates from the one in the separable case in the de!nition of the
threshold degree ,n/m-.

The result is obtained by bounding the degree of the numerator of a nonzero n ( n minor
of Hk(α,µγ )

m, ,n/m - , seen as a polynomial in γ0, . . . ,γn−1. We !rst show the existence of γ ∈ K[x]<n

and α ∈ K[y]<n such that the block Hankel matrix Hk(α,µγ )
m, ,n/m - has rank n. This implies the ex-

istence of a nonzero n ( n minor of this matrix; the degree of this minor as a polynomial in the
coexcients of α and µγ is controlled by Lemma 7.7. These, in turn, are related to the coexcients
of γ , using its explicit form for µγ and a linear system for the coexcients of α .

(6a) Generic behavior. We start by proving the existence of α of degreem inK[y] andγ inK[x]<n
such that we have α(γ ) ≡ a mod f , γ (ξ ) ! 0 and γ ′(ξ ) ! 0.
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Write a = a0 + av (x − ξ )v + · · · + an−1(x − ξ )n−1, with a0 = a(ξ ) and, by de!nition of v =
valξ (a − a(ξ )), av ! 0 and v > 0. Since we also assume that the characteristic p of K is either zero,
or greater than v , this means in particular that v is a unit in K. Let

ã(x) = a − a0
av (x − ξ )v

= 1 +
∑

1≤i<n−v
ãi (x − ξ )i ,

with coexcients ãi = ai+v/av .
– If v = m, we de!ne α̃(y) = yv = ym . Since v ! 0 in K, α̃ ′(1) ! 0 and Newton iteration

guarantees the existence of a unique γ̃ = 1 +∑
1≤i<n γ̃i (x − ξ )i such that γ̃v ≡ ã mod f .

– Ifv < m, we de!ne α̃(y) = yv +ym . This time, we let γ̃ be the unique polynomial of the form
γ̃ = 1 +∑

1≤i<n γ̃i (x − ξ )i such that γ̃v + (x − ξ )m−vγ̃m ≡ ã mod f . As previously, existence
follows from Newton iteration, using the assumption v ! 0 in K.

In both cases, we set γ = 1 + (x − ξ )γ̃ rem f ∈ K[x] and α = a0 + av α̃(y − 1) ∈ K[y]. We can then
verify that all requirements α(γ ) ≡ a mod f , γ (ξ ) ! 0 and γ ′(ξ ) ! 0 are satis!ed.

Since µγ then has degree n, and since µγ (0) = (−γ (ξ ))n is nonzero, Proposition 7.3 shows that
Hk(α,µγ )

m,d has rank n for d ≥ ,n/m-.

(6b) A polynomial in K[ā0, . . . , ān−1, f̄0, . . . , f̄n−1]. The existence of γ and α implies that of a
nonzeron(n minorδ of Hk(α, χγ )

m, ,n/m - . Let then ∆ ∈ K[ā0, . . . , ān−1, f̄0, . . . , f̄n−1] be the corresponding
minor of Hk(ā, f̄ )m, ,n/m - , where ā = ā0+ · · ·+ān−1xn−1 and f̄ = f̄0+ · · ·+ f̄n−1xn−1+xn are polynomials
whose coexcients are indeterminates. Lemma 7.7 shows that this is a polynomial of degree at most
2n2/m in ā0, . . . , ān−1 and 2n2(n − 1)/m in f̄0, . . . , f̄n−1.

(6c) The rational functions ᾱ0, . . . , ᾱn−1. Next, with γ̄ = γ̄0 + · · · + γ̄n−1xn−1 a polynomial whose
coexcients are indeterminates, we consider ᾱ such that ᾱ(γ̄ ) ≡ a mod f . The coexcients of ᾱ
are given as solutions of the linear system ᾱ(γ̄ ) ≡ a mod f , thus they are rational functions
ᾱ0, . . . , ᾱn−1 in K(γ̄0, . . . , γ̄n−1). In this paragraph, we bound the degrees of their numerators and
denominators in K[γ̄0, . . . , γ̄n−1], using power series inversion and composition.

We !rst consider the solution u to u(γ̄ ) ≡ x − ξ mod (x − ξ )n , or equivalently u(φ̄) ≡ x mod xn ,
with φ̄ = γ̄ (x + ξ ). We write φ̄ = φ̄0 + φ̄1x + · · · + φ̄n−1xn−1, where the coexcients φ̄0, . . . , φ̄n−1 are
linear in γ̄0, . . . , γ̄n−1, with in particular φ̄0 = ∆0 and φ̄1 = ∆1. We can then write u = ∑n−1

j=1 uj (y −
∆0)j , where for j ≥ 1, the coexcient uj is a rational function in γ̄1, . . . , γ̄n−1, with numerator of
degree j − 1 in γ̄1, . . . , γ̄n−1 and denominator ∆2j−1

1 . More generally, for i ≥ 1, the power ui has
valuation i , and for j ≥ i , the coexcient of (y − ∆0)j in it is a rational function with numerator of
degree j − i in γ̄1, . . . , γ̄n−1 and denominator ∆2j−i

1 .
It follows that if we write a = a0 + av (x − ξ )v + · · · + an−1(x − ξ )n−1, then the solution ᾱ to

the equation ᾱ(γ̄ ) ≡ a mod f is given by ᾱ = a0 + avuv + · · · + an−1un−1 rem (y − ∆0)n . Once we
rewrite ᾱ as ᾱ0 + · · · + ᾱn−1yn−1, we see that the coexcients ᾱ0, . . . , ᾱn−1 are rational functions
with numerator of degree at most 2n − 3 in γ̄0, . . . , γ̄n−1, and denominator ∆2n−3

1 .

(6d) The polynomial ∆2. We now evaluate the indeterminates āi and f̄i in the minor ∆ of (6b) at
the coexcients of ᾱ and χγ̄ = (y − ∆0)n , respectively. Write (y − ∆0)n as q̄0 + · · · + q̄n−1yn−1 + yn ,
so that q̄i =

(n
i
)
(−∆0)n−i for all i . It follows that ∆(ᾱ0, . . . , ᾱn−1, q̄0, . . . , q̄n−1) is a rational function

in the indeterminates γ̄0, . . . , γ̄n−1, which can be written as

∆(ᾱ0, . . . , ᾱn−1, q̄0, . . . , q̄n−1) =
∆2(γ̄0, . . . , γ̄n−1)
∆1(γ̄0, . . . , γ̄n−1)ϵ

, (34)
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for some polynomial ∆2 of degree at most
2n2

m
(2n − 3) + 2n2(n − 1)

m
(n − 1) = 2n2(n2 − 2)

m
,

and for some integer exponent ϵ ≤ 2n2(2n − 3)/m.
Consider again the polynomials γ and α in (6a), and their coexcients γ0, . . . ,γn−1 and

α0, . . . ,αn−1 (with actually αm+1 = · · · = αn−1 = 0). We saw that γ satis!es ∆1(γ0, . . . ,γn−1) =
γ ′(ξ ) ! 0, which implies that the rational functions ᾱ0, . . . , ᾱn−1 are well de!ned at γ0, . . . ,γn−1
and take α0, . . . ,αn−1 for values there. This implies that the nonzero minor δ is δ =
∆2(γ0, . . . ,γn−1)/∆1(γ0, . . . ,γn−1)ϵ , and in particular that ∆2 is a nonzero polynomial.

Probability bounds. The end of the proof is as in the previous section. The polynomial
∆0∆1∆f ,m∆2 in K[γ̄0, . . . , γ̄n−1] has degree at most

1 + 1 + 2n2

m
+

2n2(n2 − 2)
m

=
2(n4 − n2 +m)

m
;

we can now readily verify that a choice of (r3, . . . , rn+2) that avoids its zeros ensures that properties
(3)–(6) hold. For (3)–(5), this follows immediately from the de!nitions.

To see that (6) holds, that is, that Hk(α,µγ )
m,d has rank n for d ≥ ,n/m-, recall that the algorithm

constructs γ = r3 + r4x + · · · + rn+2xn+1. Properties (3)–(4) show that µγ has degree n, and that its
constant coexcient is nonzero. Since in particular ∆1(r3, . . . , rn+2) ! 0, we deduce that the rational
functions ᾱ0, . . . , ᾱn−1 of (6c) are well de!ned at (r3, . . . , rn+2), and that they give the coexcients
of the unique polynomial α such that α(γ ) ≡ a mod f . Since ∆2(r3, . . . , rn+2) ! 0, it follows from
Equation (34) that Hk(α,µγ )

m, ,n/m - has rank n (and thus similarly for Hk(α,µγ )
m,d , for d ≥ ,n/m-).

The other probabilities have been discussed in step (1)–(2) above and in step (7) of the previous
section. Altogether, this gives a probability of success at least(

1 − 2(n4 − n2 +m)/m
card(S)

) (
1 − m − 1

card(S)

)
≥ 1 − 2(n4 − n2 +m)/m +m − 1

card(S) .

Dividing the numerator of the last fraction by n4/m gives

2 − 2n2 −m2 −m
n4 ≤ 2,

where the last inequality comes from m ≤ n. !

8.4.1 Note. In Proposition 8.5, the role of the condition on the valuation being nonzero in K is
shown by the following example. Take a !eld K of characteristic 2, n = 6,m = 3, f = (x − 1)6 and
a = (x−1)2. Then for anyγ ∈ K[x]<6, the four polynomials (1,a,γ 2,aγ 2) rem f belong to the vector
space generated by (1,x2,x4) and are therefore linearly dependent. Using the expression of Mα

from Equation (10), we see that this implies that the block Krylov matrix K
(α,µγ )
m,n/m of Equation (12)

is singular, and thus so is Hk(α,µγ )
m,n/m regardless of the choice of γ .

A more general version of this counterexample when K has characteristic p > 0 is obtained
withm = p + 1, d = p, n =md , and valξ (a) = p.

8.5 Complete Algorithm for f Purely Inseparable
We now extend Proposition 8.5 in order to cover all cases of composition modulo a purely insepa-
rable polynomial f .

If p is the characteristic of K, any purely inseparable f can be written as f (x) = (xpe − c)!
with c in K and e, ! in N such that p does not divide !, and e = 0 if p = 0 [29]; in particular the
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degree n of f is equal to pe!. We assume that the parameters e , ! and c are known, since this is the
case when our algorithms have to handle this situation; indeed in the next section we introduce
separable factorization techniques that allow us to compute them.

8.5.1 Large Valuation. If v = valξ (a(x) − a(ξ )) satis!es v > ,nη-, the minimal polynomial of a
inK[x]/〈f 〉 factors overK as µa(y) = (y−a(ξ ))δ , with δ = ,n/v- ≤ ,n1−η-. Since the latter degree
is small compared with n, this case is handled exciently by Algorithm M&34l)rC&(2&/i1i&,5
S()llMi,i()lP&l9,&(i)l from Section 3.1.

8.5.2 Small Characteristic. In the case 0 < p ≤ ,nη-, our algorithm is based on Bernstein’s
composition algorithm for power series [6], which we adapt to work modulo f (x) = (xpe − c)! .
See also [34, Algorithm 3.1] for another extension of Bernstein’s result, which is, however, not
suxcient to reach our target cost for the speci!c kind of modulus we work with.

If e = 0, pe = 1 and we are working modulo f = (x − c)! , with ! = n. In this case, to compute
b = д(a) rem f , we write ã(x) = a(x +c), we compute b̃ = д(ã) rem x ! , then we obtain b as b̃(x −c).
The bottleneck is the computation ofд(ã) rem x ! , which can be done in Õ(p!) operations inK using
Bernstein’s algorithm (in Algorithm C&(2&/i1i&,M&34l&I,/e2)r)ble5S()llCh)r)81eri/1i8,
that algorithm is called P&6erSerie/C&(2&/i1i&,5S()llCh)r)81eri/1i8).

Suppose now that e ≥ 1. Write д =
∑p−1

i=0 дi (yp )yi , with дi ∈ K[y] of degree less than pe−1!.
Write also a(x) = ∑n−1

i=0 aix i , and let ā(x) = ∑n−1
i=0 ap

i x
i , so that ap (x) = ā(xp ). It follows that

д(a) rem (xpe − c)! =
p−1∑
i=0

д̄ia
i rem (xpe − c)!

where, for all 0 ≤ i ≤ p − 1,

д̄i (x) = дi (ap (x)) rem (xpe − c)! = дi (ā(xp )) rem (xpe − c)! .

If we de!ne hi = дi (ā) rem (xpe−1 − c)! , it follows that д̄i = hi (xp ), so that

д(a) rem (xpe − c)! =
p−1∑
i=0

hi (xp )ai rem (xpe − c)! .

The following lemma summarizes the cost of this procedure.

Le(() 8.6. For a "eldK of characteristic p > 0, given a purely inseparable polynomial f = (xpe −
c)! of degree n = !pe , a ∈ K[x]<n and д ∈ K[y]<n , Algorithm Co)pos,-,o.ModuloI.s0pa(a;l0-
S)allC7a(a4-0(,s-,4 returns д(a) rem f and uses Õ(pn) operations in K.

Pr&&.. Correctness follows from the previous description. For the runtime analysis when e = 0,
the result is Bernstein’s. For e > 0, apart from thep recursive calls, Step 8 takes Õ(n) operations (we
raise all coexcients of a to the power p ≤ n), Step 11 takes Õ(n) operations by repeated squaring,
and Step 12 takes Õ(pn) operations, using Horner’s rule. Remembering that n = !pe , we deduce
that the runtimeT (e,p, !) satis!esT (e,p, !) = pT (e − 1,p, !)+ Õ(pe+1!) andT (0,p, !) ∈ Õ(p!). This
resolves to T (e,p, !) ∈ Õ(pe+1!), which is Õ(pn). !

8.5.3 Main Algorithm. Combining the previous results gives Algorithm
C&(2&/i1i&,M&34l&I,/e2)r)ble. It !rst tests whether the characteristic of K is small
enough for Algorithm C&(2&/i1i&,M&34l&I,/e2)r)ble5S()llCh)r)81eri/1i8 to run within
our prescribed runtime. Otherwise, rather than computing the valuation v , it simply calls
Algorithm M&34l)rC&(2&/i1i&,5S()llMi,i()lP&l9,&(i)l; in case of failure, it falls back on
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ALGORITHM 8.3 C&(2&/i1i&,M&34l&I,/e2)r)ble5S()llCh)r)81eri/1i8(c, e, !,a,д)
Input: K has characteristic p > 0,

c in K, e in N and ! in N>0 such that f = (xpe − c)! has degree n = !pe ,
a in K[x]<n , д in K[y]<n

Output: д(a) rem f
1: if e = 0 then
2: a ← a(x + c)
3: b ← P&6erSerie/C&(2&/i1i&,5S()llCh)r)81eri/1i8(xn ,a,д) " [6, Section 2]
4: return b(x − c)
5: else
6: Write д = д0(yp ) + · · · + дp−1(yp )yp−1

7: Write a = a0 + · · · + an−1xn−1

8: ā ← ap
0 + · · · + a

p
n−1x

n−1

9: for i = 0, . . . ,p − 1 do
10: hi ← C&(2&/i1i&,M&34l&I,/e2)r)ble5S()llCh)r)81eri/1i8(c, e − 1, !, ā,дi )
11: f ← (xpe − c)!
12: return h0(xp ) + · · · + hp−1(xp )ap−1 rem f

ALGORITHM 8.4 C&(2&/i1i&,M&34l&I,/e2)r)ble(c, e, !,a,д, r )
Input: c in K, e in N and ! in N>0 such that f = (xpe − c)! has degree n = !pe , where p is the

characteristic of K,
a in K[x]<n , д in K[y]<n , r ∈ Kn+ ,nη - with η from Equation (3)

Output: b = д(a) rem f or F)il
1: n ← !pe

2: if 0 < p ≤ ,nη- then
return C&(2&/i1i&,M&34l&I,/e2)r)ble5S()llCh)r)81eri/1i8(c, e, !,a,д)

3: f ← (xpe − c)!
4: b ← M&34l)rC&(2&/i1i&,5S()llMi,i()lP&l9,&(i)l(f ,a,д, ,n1−η-, (ri )0≤i<n)

if b ! F)il then return b
5: if gcd(a, f ) = 1 then r1 = 0 else r1 = 1; if c ! 0 then r2 = 0 else r2 = 1
6: return M&34l)rC&(2&/i1i&,B)/eC)/e(f ,a,д, r ) " Proposition 8.5

Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e. As previously, the algorithm takes as input a vector
r that plays the role of random parameters.

Pr&2&/i1i&, 8.7. For a "eld K of characteristic p, given c, e, ! such that f = (xpe − c)! is purely
inseparable of degree n = !pe (e = 0 if p = 0), a ∈ K[x]<n , д ∈ K[y]<n and r ∈ Kn+m withm = ,nη-
and η from Equation (3), Algorithm Co)pos,-,o.ModuloI.s0pa(a;l0 uses Õ(nκ ) operations in K,
with κ < 1.43 as in Equation (1), and returns either д(a) rem f , or Fa,l.

If the entries of r are chosen uniformly and independently from a "nite subset S of K, then the
algorithm returns д(a) rem f with probability at least 1 − 2n4/card(S).

Pr&&.. We !rst analyze the runtime. For a small characteristic 0 < p ≤ ,nη-, then Algo-
rithm C&(2&/i1i&,M&34l&I,/e2)r)ble5S()llCh)r)81eri/1i8 has cost Õ(pn) by Lemma 8.6,
which is thus Õ(n1+η) ∈ Õ(n1+(ω−1)η) = Õ(nκ ) from Equation (3). Computing f takes
time Õ(n) by repeated squaring. By Lemma 3.2, the call to Algorithm M&34l)rC&(2&/i1i&,5
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S()llMi,i()lP&l9,&(i)l uses

Õ
(
n1+(1−η)(ω2/2−1)

)
= Õ

(
nη+(1−η)(ω2/2)

)
= Õ (nκ )

operations in K, and by Proposition 8.1, it is also the case for Algorithm
M&34l)rC&(2&/i1i&,B)/eC)/e. The speci!cations of the subroutines imply that the out-
put can be either д(a) rem f or F)il, so only the probability analysis remains.

If 0 < p ≤ ,nη-, Lemma 8.6 shows that the output is д(a) rem f ; hence, we may now assume
that p > ,nη-, or p = 0. Let ξ = c1/pe ∈ K, so that f = (x − ξ )n in K[x]; let further v be the
valuation of a − a(ξ ) at ξ . The minimal polynomial of a modulo f has degree δ = ,n/v-.

Suppose !rst that v ≤ ,nη-, so that δ ≥ ,n1/,nη--. The value b computed at Step 4 is either
д(a) rem f , or F)il; let π be the probability of the former (for instance, by Lemma 3.2, π = 0
if δ > ,n1−η-). If F)il is returned at Step 4, then we enter Step 6. At this stage, we have in-
equalities v ≤ ,nη- < p, or v ≤ ,nη- and p = 0, so by Proposition 8.5 the call to Algorithm
M&34l)rC&(2&/i1i&,B)/eC)/e returns д(a) rem f with probability at least 1 − 2n4/card(S).
Overall, the probability of returning д(a) rem f in this case is at least π + (1− π )(1− 2n4/card(S)),
which is at least 1 − 2n4/card(S).

Suppose, on the other hand, that v > ,nη-, so that we have in particular v ≥ nη , and thus
δ = ,n/v- ≤ ,n1−η-. By Lemma 3.2, b computed at Step 4 is д(a) rem f with probability at least
1−n/card(S). If it is not the case, the algorithm enters Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e,
which computes д(a) rem f with a certain probability π ′ ≥ 0. Overall, we return д(a) rem f with
probability at least 1 − n/card(S) + π ′ ≥ 1 − n/card(S). !

9 ALGORITHM FOR GENERAL f

We now present our Las Vegas Algorithm M&34l)rC&(2&/i1i&, that computes д(a) rem f for
arbitrary input д,a, f . The analysis of this algorithm in Section 9.5 proves Theorem 1.1.

The starting point is the separable decomposition of f (Section 9.1), a generalization of square-
free decomposition from !elds of characteristic zero to arbitrary base !elds. This yields a partial
factorization f = f1 · · · fs into pairwise coprime factors. The algorithm then proceeds by comput-
ing д(a) modulo each of these factors and the !nal result is obtained by Chinese remaindering in
quasi-linear complexity [26, Section 10.3]. If p is the characteristic of K then the factors fi of the
separable decomposition of f are the form hi (xpei )!i (or more simply hi (x)!i when p = 0), with
integers ei , !i and separable hi ∈ K[x]. Composition modulo such an fi is achieved via aK-algebra
isomorphism

Ψi : Ai = K[x]/〈fi (x)〉 → Bi = K[θ , z]/〈hi (θ ), (zpei − θ )!i 〉
that maps x to z (Proposition 9.6). If Li denotes K[θ ]/〈hi (θ )〉, then, as a K-vector space,
Bi : Li [z]/〈(zpei − θ̄i )!i 〉 with θ̄i the class of θ in Li . The computation of д(a) rem fi over K is
thus mapped to the composition

д(Ai ) mod (zpei − θ̄i )!i

over Li , with Ai = Ψi (a mod fi ) and modulo the purely inseparable (zpei − θ̄i )!i . In order to
perform this last composition exciently, it is also necessary to decrease the degree of д by !rst
reducing д modulo the characteristic polynomial of Ai in Li [z]/〈(zpei − θ̄i )!i 〉. We call reduction
of д that step of the process (Proposition 9.8). It produces a representative of Gi ∈ Li [y] such
that Bi = д(Ai ) ∈ Bi is obtained through the univariate modular composition

Gi (Ai ) mod (zpei − θ̄i )!i ,
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which is computed with coexcients in Li . Finally, the class д(a) mod fi ∈ A is recovered as
Ψ−1

i (Bi ). In practice, the algorithms working with elements of Li use polynomial representatives
in K[θ ]<deg(fi ), that are the canonical lifts of their class.

The idea of using these homomorphisms was introduced by van der Hoeven and Lecerf in the
case ei = 0 [34]; it is extended to the general case in Sections 9.3 and 9.4. We keep their terminology,
calling untangling an algorithm that computes the map Ψi and tangling, one which computes the
reverse map. Both these operations can be performed exciently (Section 9.3).

The univariate modular composition in Li [z] modulo the purely inseparable polyno-
mial (zpei − θ̄ )!i can be achieved by Algorithm C&(2&/i1i&,M&34l&I,/e2)r)ble of Section 8.5
when Li is a !eld. In general, however, Li is a product of "elds. In Section 9.2, the extension of the
scope of our algorithms to this setting is obtained using a paradigm also due to van der Hoeven
and Lecerf called directed evaluation [37].

Conventions. For h of degree d in K[θ ] and f in K[θ , z], monic of degree n in z, and for any P
in K[θ , z], we denote by P rem 〈h, f 〉 ∈ K[θ , z]<(d,n) the polynomial obtained by reducing P !rst
by f , then by h (this is the normal form of P modulo (h, f ), if we see the latter as a Gröbner basis
for the lexicographic order induced by θ ≺ z). Thus P rem 〈h, f 〉 is a canonical lift of the class of
P in K[θ , z]/〈h, f 〉. If P ∈ K[θ , z], we use the notation P̄(z) to denote the class (projection) of P
in L[z], where L will be clear from the context.

9.1 Separable Decomposition
Letp be the characteristic of the !eldK and let f inK[x] be of degreen. The separable decomposition
of f is the set

S = {(h1, e1, !1), . . . , (hs , es , !s )}, with hi ∈ K[x] and ei , !i ∈ N for all i,

that satis!es the following properties, where we write fi = hi
(
xpei )!i :

(1) f = c f1 · · · fs with c ∈ K \ {0} ;
(2) for all i ! j in {1, . . . , s}, fi and fj are coprime;
(3) for all i in {1, . . . , s}, hi ∈ K[x] is separable, monic and of positive degree di ;
(4) for all i in {1, . . . , s}, ei = 0 (if p = 0) or ei is in N (if p > 0);
(5) for all i in {1, . . . , s}, !i is not divisible by p;
(6) for all i ! j in {1, . . . , s}, (ei , !i ) ! (ej , !j ).

The separable decomposition of f can be computed in Õ(n) operations inK using an algorithm due
to Lecerf [57]. The special case when p = 0 recovers the more classical square-free factorization.

9.2 Composition over Products of Fields, Modulo Purely Inseparable f

Let h be separable of degree d in K[θ ], and consider f of the form f = (zpe − c(θ ))! ∈ K[θ , z], for
integers e ∈ N and ! ∈ N>0, where p is the characteristic of K. Given A in K[θ , z]<(d,n) and G in
K[θ ,y]<(d,n), with n = degz (f ) = !pe , we consider here the computation of B = G(θ ,A) rem 〈h, f 〉.

This question is mapped to a univariate composition problem with coexcients in L = K[θ ]/〈h〉:
if we let Ā, Ḡ, B̄ and c̄ be the projections of respectively A,G, B and c in L[z], L[y], L[z] and L (the
degree constraints show that Ā, Ḡ, B̄ can be obtained without any calculation from A,G,B, and
conversely), then B̄ = Ḡ(Ā) rem (zpe − c̄)! as an equality in L[z].

When h is irreducible, so that L is a !eld, the algorithm of Section 8.5 applies over L; as reported
in Proposition 8.7, if n = deg(f ) = !pe , the runtime is Õ(dnκ ) operations in K, coming from
Õ((!pe )κ ) = Õ(nκ ) times a factor in Õ(d) for the cost of arithmetic operations in L. However,
we only assume h separable, so that L is a product of "elds. The key diberence is the presence of
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zero-divisors in L: a nonzero element of L is not necessarily invertible. Since the procedures in
Section 8.5 use zero-tests and divisions, their direct application is not possible.

9.2.1 Directed Evaluation. The technique of directed evaluation, due to van der Hoeven and
Lecerf [37], is an excient version of the classical dynamic evaluation process [21].

In dynamic evaluation, prior to each zero-test or inversion, say by a quantity q ∈ L, the compu-
tation of h1 = gcd(q,h) gives the factorization h = h1h2. Since h is separable, h1 and h2 are coprime,
and L can be decomposed as the product L1 ( L2, with q = 0 in L1 = K[θ ]/〈h1〉 and q invertible
in L2 = K[θ ]/〈h2〉. Under the dynamic evaluation paradigm, the calculation can then be continued
in two branches, working modulo h1 and h2 separately.

In directed evaluation, the idea is rather to run the entire program in a unique branch, then
to apply the process recursively in residual branches after reduction of input data modulo the
corresponding polynomial. We do not detail the underlying techniques, for which we refer to
Sections 3 and 4 of [37], and simply apply their panoramic evaluation procedure [37, Algorithm 2].
It takes as input a computation tree T over K (see Section 2), a de!ning separable polynomial h of
degree d for L, and λ = (λ1, . . . , λs ) in K[θ ]s

<d (representing an input to T in Ls ); it then returns
a panoramic value, de!ned as follows.

De"nition 9.1 ([37, De"nition 1 and Lemma 2]). Given an input (h, λ,T) as above, a panoramic
value of T at λ is a set of pairs {(h1, ε1), . . . , (ht , εt )}, where

—h1, . . . ,ht are polynomials in K[θ ] that satisfy h = h1 · · ·ht (thus L : L1 ( · · · ( Lt , with
Li = K[θ ]/〈hi 〉);

— for all i , εi is in K[θ ]!i
<di

(representing an output in L!i
i ), with di = deg(hi ) and !i in N;

— for all 1 ≤ i ≤ t , let hi,1, . . . ,hi,ki be the factorization of hi into irreducibles. For 1 ≤ j ≤ ki ,
let Li, j be the !eld K[θ ]/〈hi, j 〉, and denote by πi, j : K[θ ] → Li, j the canonical projection
a 5→ a mod hi, j (the notation carries over to vectors over K[θ ]). Then T is supposed to be
evaluable at πi, j (λ) ∈ Ls

i, j for all i, j, and πi, j (εi ) ∈ L!i
i, j is the result of evaluating T (seen as

a computation tree over Li, j ) at πi, j (λ), using the same branch of T for all j.

The application of this method requires that one uses computation trees as the underlying com-
putational model, which is the case here (Section 2). Crucially, the cost overhead is then Õ(d) [37,
Theorem 1], i.e., similar (up to logarithmic factors) to the one incurred if h were irreducible.

9.2.2 Algorithm. With Algorithm C&(2&/i1i&,M&34l&I,/e2)r)ble5Pr&3481O.Fiel3/
we apply panoramic evaluation (called P),&r)(i8 in our pseudocode) to Algorithm
C&(2&/i1i&,M&34l&I,/e2)r)ble for modular composition over K. Note that in addition
to !eld elements, the latter algorithm also takes two integers e, ! as input. Panoramic evaluation
can still be used in this context, since each choice of the parameters e, ! corresponds to a
computation tree, to which the techniques described above apply. This yields a factorization
of h, and performs the compositions modulo the corresponding factors; the !nal result is then
reconstructed using Chinese remaindering.

Pr&2&/i1i&, 9.2. For a "eld K of characteristic p, given h ∈ K[θ ] separable of degree d , c in
K[θ ]<d , integers e in N and ! in N>0, A in K[θ , z]<(d,n), G in K[θ ,y]<(d,n), r in Kn+ ,nη - with n =
!pe and η from Equation (3), Algorithm Co)pos,-,o.ModuloI.s0pa(a;l0-P(odu4-O:F,0lds uses
Õ(d(!pe )κ ) = Õ(dnκ ) operations in K, with κ < 1.43 as in Equation (1).

It returns either G(θ ,A) rem 〈h, f 〉 ∈ K[θ , z]<(d,n) or Fa,l, with f = (zpe − c)! . If the entries
of r are chosen uniformly and independently from a "nite subset S of K, then the algorithm returns
G(θ ,A) rem 〈h, f 〉 with probability at least 1 − 2dn4/card(S).
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ALGORITHM 9.1 C&(2&/i1i&,M&34l&I,/e2)r)ble5Pr&3481O.Fiel3/(h, c, e, !,A,G, r )
Input: h separable of degree d in K[θ ],

c in K[θ ]<d , e in N and ! in N>0 such that f = (zpe − c)! has degree n = !pe ,
A ∈ K[θ , z]<(d,n), G ∈ K[θ ,y]<(d,n), r ∈ Kn+ ,nη -

Output: B = G(θ ,A) rem 〈h, f 〉, or F)il
1: " Splitting L : K[θ ]/〈h1〉 ( · · · ( K[θ ]/〈ht 〉 and reductions of B, accordingly, using [37, Algorithm 2]

{(h1,B1), . . . ,(ht ,Bt )}← P),&r)(i8(C&(2&/i1i&,M&34l&I,/e2)r)ble, h, c, e, !,A,G, r )
2: if any of the Bi ’s equals F)il then return F)il
3: return Chi,e/eRe()i,3eri,-((B1, . . . ,Bt ), (h1, . . . ,ht ))

Pr&&.. Combined with our Proposition 8.7, Theorem 1 in [37] gives the runtime estimate.
In the pseudocode, the output of the panoramic evaluation is written as {(h1,B1), . . . , (ht ,Bt )},
where h1 · · ·ht is a factorization of h (not necessarily into irreducibles), and for all i , either
Bi ∈ K[θ , z]<(di ,n) with di = deg(hi ), or Bi = F)il. At the level of computation trees, a 0ag
such as F)il is obtained by setting a dedicated output value to 1 (and 0 otherwise); call 0agi this
value, for 1 ≤ i ≤ t . If 0agi = 1 (failure), we set Bi = 0 by convention, so in the rest of this proof,
Bi is an element of K[θ , z] for all i .

We use the following notation: for 1 ≤ i ≤ t , the irreducible factors of hi are written
hi,1, . . . ,hi,ki . For 1 ≤ j ≤ ki , we then de!ne c̄i, j , Āi, j , Ḡi, j by taking c,A,G modulo hi, j and
seeing them over the !eld Li, j = K[θ ]/〈hi, j 〉, so c̄i, j is in Li, j , Āi, j in Li, j [z] and Ḡi, j in Li, j [y]. The
elements in the vector r are already in K, and thus in Li, j . Finally, we let B̄i, j be the polynomial
obtained by taking Bi ∈ K[θ , z] and projecting it to Li, j [z] through reduction modulo hi, j , and we
set 0agi, j = 0agi (recall that 0agi ∈ K is either 0 or 1).

Then, from De!nition 9.1, the key property of the output of the !rst step is that for all indices
i, j, 0agi, j and B̄i, j are the result of calling Algorithm C&(2&/i1i&,M&34l&I,/e2)r)ble on input
c̄i, j , e, !, Āi, j , Ḡi, j , r over the !eld Li, j . This implies, in particular, that our algorithm returns F)il
if and only if the computation fails over one of the !elds Li, j .

To quantify the probability of this event, we apply Proposition 8.7 over all !elds Li, j . For any
given i, j, Proposition 8.7 shows that 0agi, j = 1 occurs with probability at most 2n4/card(S). Since
there are at most d such indices i, j, the probability that this happens for at least one pair of in-
dices is at most 2dn4/card(S). Assume none of the 0agi, j ’s is 1, so that the algorithm does not
return F)il. Then, for all i, j, B̄i, j ∈ Li, j [z]<n is equal to Ḡi, j (Āi, j ) rem (zpe − c̄i, j )! . In terms of
bivariate polynomials, the Chinese Remainder Theorem then implies that for all i , Bi itself is equal
to G(θ ,A) rem 〈hi , (zpe − c)!〉 ∈ K[θ , z]<(di ,n). In the last step of the algorithm, we further ap-
ply the Chinese Remainder Theorem coexcient-wise to the Bi ’s with respect to z; this gives us
G(θ ,A) rem 〈h, (zpe − c)!〉 as a polynomial in K[θ , z]<(d,n). The cost of this last step is in Õ(d!pe ),
so the proof is complete. !

The complexity bound Õ(dnκ ) in Proposition 9.2 indicates that the overhead coming from oper-
ations modulo h(θ ) is Õ(d), as pointed out previously.

9.3 Untangling and Tangling
In this subsection, we give the main tools (tangling, untangling and bivariate reduction) that are
needed for reducing composition modulo powers of separable polynomials to the situation of the
previous subsection. The central results are due to van der Hoeven and Lecerf [34] with f = h(x)!
and h separable (Sections 9.3.1 and 9.3.2). We slightly generalize them to the case f = h(xpe )!
with e > 0 (Sections 9.3.3 and 9.3.4).
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9.3.1 Tangling and Untangling. The starting point is the following observation.

Le(() 9.3 ([34, Se81i&, 4.2]). For h of degree d in K[x] and for a positive integer !, there exists
a K-algebra homomorphism

ψh,! : K[x]/〈h(x)!〉 → K[θ , z]/〈h(θ ), (z − θ )!〉
x 5→ z.

If moreover h is separable thenψh,! is an isomorphism.

This homomorphism is a variant of the homomorphism πh,! considered by van der Hoeven and
Lecerf, that maps u ∈ K[x]/〈h(x)!〉 to u(z +θ ) ∈ K[θ , z]/〈h(θ ), z!〉. The morphismψh,! is obtained
by composing πh,! with a translation z 5→ z−θ . It turns out thatψh,! is more convenient than πh,!
for our generalization in Section 9.3.3. van der Hoeven and Lecerf call U,1),-li,-(h, !,u) the
algorithm which implements πh,! ; we use this terminology for the algorithm that implementsψh,! :
given u in K[x]<d! , it computes U ∈ K[θ , z]<(d,!) such that U = u(z) rem 〈h(θ ), (z − θ )!〉. When
h is separable, the inverse operation is called T),-li,-(h, !,U ). Again, we use their terminology
for the inverse ofψh,! .

Le(() 9.4. U.-a.1l,.1 and Ta.1l,.1 (when de"ned) take Õ(d!) operations in K.

Pr&&.. This is mostly in Reference [34]. First, it is easy to check that the algorithms 4.3
and 4.5 and the proofs of Proposition 4.6 and 4.10 of that reference do not make use of the sep-
arability of h. Next, translation can be performed in quasi-linear complexity over an arbitrary
ring [28, Theorem. 4.5], so that the complexity estimate is unchanged for our variant of these
algorithms. !

9.3.2 Bivariate Reduction. The computation of the compositionд(a) rem h(x)! for a separableh
reduces to computing ψ−1

h,!(д(ψh,!(a mod h(x)!))), where the inner composition is performed as a
univariate composition in L[z] modulo (z − θ̄ )! , with L = K[θ ]/〈h〉.

In order to make use of the algorithms of the previous sections to perform this composition, it is
necessary to !rst reduce the degree ofд. Denote byA the canonical lift ofψh,!(a mod h(x)!), and by
Ā its projection in L[z]. The idea is to reduce д modulo the characteristic polynomial (y − Ā(θ̄ ))! ∈
L[y] of Ā(z) modulo (z − θ̄ )! .

This is achieved in two steps. For h of degree d , we let α ∈ K[θ ]<d be the canonical lift of
Ā(θ̄ ) ∈ L. First, one computes the canonical lift of ψµ,!(д mod µ!), where µ is an annihilating
polynomial of α mod h. This produces G̃(z,y) ∈ K[z,y]<(deg µ,!) such that

G̃(z,y) =
!−1∑
i=0

G̃i (z)yi = д(y) + Ũ (z,y)µ(z) + Ṽ (z,y)(y − z)!

for some polynomials Ũ , Ṽ in K[z,y].
Next, in view of µ(α) ≡ 0 mod h, a modular composition of each of the ! coexcients of this

polynomial G̃ in y with α(θ ) modulo h(θ ) gives G(θ ,y) ∈ K[z,y]<(deg µ,!) such that

G(θ ,y) = д(y) +U (θ ,y)h(θ ) +V (θ ,y)(y − α(θ ))!, (35)
for some polynomials U ,V in K[θ ,y]. Equation (35) may also be read as Ḡ(Ā) = д(Ā) rem (z − θ̄ )!
over L.

These two steps are detailed in Algorithm Bi;)ri)1eRe3481i&, below and correspond to
Steps (2)-(4) of [34, Algorithm 4.2]. The runtime and probability analyses are new; they are based
on the results of the previous sections.
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ALGORITHM 9.2 Bi;)ri)1eRe3481i&,(h, !,α ,д, r )
Input: h separable, monic, of degree d in K[θ ], ! in N>0, α in K[θ ]<d , д in K[y], r in Kd+ ,dη -

Output: G(θ ,y) = д(y) rem 〈h(θ ), (y − α(θ ))!〉 ∈ K[θ ,y]<(d,!), or F)il
1: " Either µ = Fa,l, or µ is nonzero in K[γ ]≤4d and µ(α) ≡ 0 mod h

µ ← A,,ihil)1i,-P&l9,&(i)l(h,α , r ) " Algorithm 8.2
if µ = F)il then return F)il

2: G̃ ← U,1),-li,-(µ, !,д rem µ!) " G̃(γ , z) ∈ K[γ ,y]<(deg(µ),!), Lemma 9.4
3: Write G̃ = ∑

0≤i<! G̃i (γ )yi " G̃i ∈ K[γ ]<deg(µ)
4: for i = 0, . . . , ! − 1 do

Gi ← M&34l)rC&(2&/i1i&,B)/eC)/e(h,α , G̃i , r ) " Gi = G̃i (α) rem h or Fa,l, Algorithm 8.1
if Gi = F)il then return F)il

5: G ← ∑
0≤i<! Giyi " G is in K[θ ,y]<(d,!)

6: return G

Le(() 9.5. Given h inK[θ ] monic, separable and of degree d , α inK[θ ]<d , д inK[y], r inKd+ ,dη -

with η from Equation (3), and ! in N>0, Algorithm B,3a(,a-0R0du4-,o. uses Õ(deg(д)+dκ!) opera-
tions in K with κ < 1.43 as in Equation (1), and returns either д rem 〈h(θ ), (y −α(θ ))!〉 or Fa,l. If the
entries of r are chosen uniformly and independently from a "nite subset S of K, then the algorithm
returns д rem 〈h, (y − α)!〉 with probability at least 1 − 6(! + 1)d2/card(S).

Pr&&.. The reduction of д mod µ! is justi!ed by the fact that µ(a)! = 0 mod h! . The correction
of the rest of the algorithm when Step 6 is reached follows from the discussion above.

Since h is separable, Proposition 8.3 applies; it shows that the !rst step computes an annihilat-
ing polynomial for α modulo h with probability at least 1 − 6d2/card(S). It also shows that each
call to Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e succeeds with at least the same probability.
Altogether, the probability of success of the whole algorithm is thus at least 1− 6(! + 1)d2/card(S).

By Corollary 8.2, the !rst step uses Õ(dκ ) operations in K. Since deg(µ) is in O(d), computing
д rem µ! takes Õ(deg(д)+d!) operations inK, and Lemma 9.4 shows that deducing G̃ takes a further
Õ(d!) cost. Finally, by Proposition 8.1, each pass in the loop at Step 4 takes Õ(dκ ) operations, so
that the overall runtime is Õ(deg(д) + dκ!). !

9.3.3 General Tangling and Untangling. In !elds of positive characteristic, the isomorphism of
Lemma 9.3 and the complexity of its realization generalize as follows.

Pr&2&/i1i&, 9.6. Let f = h(xpe )! be of degree n, with h of degree d in K[x], and K of character-
istic p (e = 0 if p = 0). There exists a K-algebra homomorphism

Ψh,! : K[x]/〈f 〉 → K[θ , z]/〈h(θ ), (zpe − θ )!〉
x 5→ z.

If moreover h is separable then Ψh,! is an isomorphism. Applying Ψh,! or its inverse when the latter
is de"ned takes quasi-linear time Õ(n) = Õ(d!pe ) over K.

Pr&&.. Write A = K[x]/〈f 〉 and B = K[θ , z]/〈h(θ ), (zpe − θ )!〉. When h is separable, we prove
that the minimal polynomial of z in the K-algebra B is f . This implies that A is K-isomorphic
(as a K-algebra) to the subalgebra of B generated by z. Since B has K-dimension n = deg(f ), this
subalgebra is B itself, and the !rst claim will follow.

To determine the minimal polynomial of z, we can work in B = K[θ , z]/〈h(θ ), (zpe − θ )!〉,
where K is an algebraic closure of K. If we let ξ1, . . . , ξd be the roots of h in K (which are pairwise
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distinct), then B is isomorphic, as a K-algebra, to the product
K[θ , z]/〈θ − ξ1, (zpe − ξ1)!〉 ( · · · ( K[θ , z]/〈θ − ξd , (zpe − ξd )!〉.

The minimal polynomial of z in the ith factor above is µi = (xpe − ξi )! for 1 ≤ i ≤ d . These
polynomials are pairwise coprime: since t 5→ tpe is a bijection in K, µi has a unique root in K,
which is the pe -th root of ξi , and these roots are pairwise distinct, since the ξi ’s are. As a result,
the minimal polynomial of z in B, or equivalently in B, is the product µ1 · · · µd = f .

For the second claim, we take a in K[x] of degree less than n, and write it as a =∑
0≤i<pe ai (xpe )x i , with all ai ’s of degree less than n/pe = d!. Then,

Ψh,!(a mod f ) ≡
∑

0≤i<pe

ai (zpe )zi mod〈h(θ ), (zpe − θ )!〉,

≡
∑

0≤i<pe

Ãi (θ , zpe )zi mod〈h(θ ), (zpe − θ )!〉, (36)

where Ãi (θ , z) = ai (z) rem 〈h(θ ), (z − θ )!〉 is in K[θ , z]<(d,!); these degree bounds show that the
expression in Equation (36) is indeed reduced modulo 〈f (θ ), (zpe − θ )!〉. Each Ãi = ψh,!(ai ) can
be computed in time Õ(d!) by Lemma 9.4, so that one application of Ψh,! takes Õ(d!pe ) = Õ(n)
operations in K, as claimed.

Conversely, any element B in K[θ , z]<(d,!pe ) can be written as in Equation (36), for some B̃i ’s
in K[θ , z]<(d,!). Applying ψ−1

h,! to each of them allows us to recover b = Ψ−1
h,!(B), by reversing the

steps above. The cost analysis is similar to the one for Ψh,! . !

We call U,1),-li,-5Ge,er)l(h, e, !,a) the algorithm outlined in this proof that applies Ψh,!
to (the class modulo f of) a ∈ K[x]<n , and returns the canonical lift of Ψh,!(a mod f ) to
K[θ , z]<(d,!pe ); equivalently, A(θ , z) = a(z) rem 〈h(θ ), (zpe − θ )!〉. For B in K[θ , z]<(d,!pe ), the in-
verse operation is written T),-li,-5Ge,er)l(h, e, !,B).

9.3.4 Main Reduction. A more general form of bivariate reduction is needed in Section 9.4. With
h of degree d as before, given д inK[y] and now a bivariateA inK[θ , z]<(d,!pe ), the aim is to reduce
the degree of д before performing the composition in L[z] modulo (zpe − θ̄ )! with L = K[θ ]/〈h〉.
Denoting by Ā the projection of A in L[z], the idea is to compute Ḡ = д rem χĀ in L[z], where
χĀ ∈ L[y] is the characteristic polynomial of Ā ∈ L[z] in the extension L → L[z]/〈(zpe − θ̄ )!〉.
Thus, Ḡ ∈ L[y] has degree less than !pe ; its canonical lift G ∈ K[θ ,y]<(d,!pe ) is the output.

The computation of д rem χĀ is made easy by an explicit formula for the characteristic polyno-
mial χĀ. In the following lemma, we let σ : L→ L be the pe th-power operator; we write the image
of Λ ∈ L as Λσ . This notation is extended to the coexcient-wise action on polynomial rings over L.

Le(() 9.7. The characteristic polynomial of Ā relative to the extension L→ L[z]/〈(zpe − θ̄ )!〉 is
χĀ = (ype − ᾱ)! ∈ L[y], where ᾱ = Āσ (θ̄ ) ∈ L.

Pr&&.. The characteristic polynomial χĀ can be computed relative to the extension L∗ →
L∗[z]/〈(zpe − θ̄ )!〉, where we set L∗ = L[w]/〈wpe − θ̄〉. In L∗[z], we have the factorization

(zpe − θ̄ )! = (zpe −wpe )! = (z −w)!pe
,

so the characteristic polynomial of Ā in L∗[z]/〈(zpe − θ̄ )!〉 is
(y − Ā(w))!pe

= (ype − Ā(w)pe )! = (ype − Āσ (θ̄ ))! . !

The reduction of д by this characteristic polynomial is described in Algorithm M)i,Re3481i&,.
First, the canonical lift α ∈ K[θ ]<d of ᾱ ∈ L from Lemma 9.7 is computed. Next, in
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ALGORITHM 9.3 M)i,Re3481i&,(h, e, !,A,д, r )
Input: h separable, monic, of degree d in K[x], e in N, ! in N>0, A in K[θ , z]<(d,!pe ), д in K[y], r in
Kd+ ,dη -

Output: G ∈ K[θ ,y]<(d,!pe ) such that G(θ ,A) ≡ д(A) mod 〈h(θ ), (zpe − θ )!〉, or F)il
1: Write A = ∑

0≤i<!pe Aizi " Ai ∈ K[θ ]<d
2: " Compute α s.t. the characteristic polynomial of Ā is (ype − α)! (see Lemma 9.7)

α ← ∑
0≤i<!pe Ai

pe
θ i ; α ← α rem h " α ∈ K[θ ]<d

3: Write д = ∑
0≤i<pe дi (ype )yi " deg(дi ) ≤ deg(д)/pe

4: for i = 0, . . . ,pe − 1 do
Gi ← Bi;)ri)1eRe3481i&,(h, !,α ,дi , r ) " Gi ∈ K[θ ,y]<(d,!)

5: G ← ∑
0≤i<pe Gi (θ ,ype )yi " G ∈ K[θ ,y]<(d,!pe )

6: return G

Step 3, the polynomial д is rewritten as a polynomial in y of degree less than pe , with co-
excients дi (ype ). Each of these polynomials дi (y) can then be reduced modulo 〈h, (y − α)!〉
by Algorithm Bi;)ri)1eRe3481i&,, producing a polynomial Gi (θ ,y) (Step 4). Thus, Gi (θ ,y) ≡
дi (y) mod 〈h, (y − α)!〉, whence Gi (θ̄ ,ype ) ≡ дi (ype ) mod χĀ. Recombining these coexcients
yields G(θ ,y) such that G(θ̄ ,y) ≡ д(y) mod χĀ. Finally, since χĀ(Ā) ≡ 0 in L[z]/〈(zpe − θ̄ )!〉, it
follows that G(θ ,A) ≡ д(A) mod 〈h(θ ), (zpe − θ )!〉.

Pr&2&/i1i&, 9.8. Given h separable, monic, of degree d in K[x], e in N, ! in N>0, A in
K[θ , z]<(d,!pe ), д in K[y], and r in Kd+ ,dη - , Algorithm Ma,.R0du4-,o. uses Õ(deg(д) + nκ ) op-
erations in K, with n = d!pe and κ < 1.43 as in Equation (1). It returns G ∈ K[θ ,y]<(d,!pe ) such
that G(θ ,A) ≡ д(A) mod 〈h(θ ), (zpe − θ )!〉, or Fa,l.

If the entries of r are chosen uniformly and independently from a "nite subset S of K, then the
algorithm returns G with probability at least 1 − 6(! + 1)d2pe/card(S).

Pr&&.. The correction of the algorithm when it does not return F)il follows from the discussion
above.

Working coexcient-wise, since e = O(log(pe )) the computation of α at Step 2 takes Õ(!pe )
operations on polynomials moduloh of degreed , so Õ(n) operations inK; reducing it moduloh has
the same complexity bound. The cost is thus governed by the loop, which uses Õ(deg(д)+dκ!pe ) =
Õ(deg(д)+ (n/d)dκ ) operations by Lemma 9.5. The latter also allows us to quantify the probability
of success: each of the pe calls to Algorithm Bi;)ri)1eRe3481i&, succeeds with probability at
least 1 − 6(! + 1)d2/card(S). !

9.4 Composition Modulo Powers
We now consider f = h(xpe )! , with h separable of degree d and integers e, !, with ! posi-
tive and not divisible by p (and e = 0 if p = 0); the degree of f is n = d!pe . Algorithm
M&34l)rC&(2&/i1i&,M&34l&P&6er computes д(a) rem f , extending to e ! 0 the approach
of van der Hoeven and Lecerf [34] outlined in Section 9.3.2.

We !rst compute A(θ , z) = a(z) rem 〈h(θ ), (zpe − θ )!〉; this is done using the general un-
tangling operation of Section 9.3.3. The reduction of the degree of д is done by Algorithm
M)i,Re3481i&,, giving G in K[θ ,y]<(d,!pe ), such that G(θ ,A) ≡ д(A) mod 〈h(θ ), (zpe − θ )!〉;
the construction of A then implies G(θ ,A) ≡ д(a(z)) mod 〈h(θ ), (zpe − θ )!〉. The quantity
B = G(θ ,A) rem 〈h(θ ), (zpe − θ )!〉 is obtained by Algorithm C&(2&/i1i&,M&34l&I,/e2)r)ble5
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ALGORITHM 9.4 M&34l)rC&(2&/i1i&,M&34l&P&6er(h, e, !,a,д, r )
Input: h separable, monic, of degree d in K[x], e in N, ! in N>0, such that f = h(xpe )! has degree

n = d!pe , a in K[x]<n , д in K[y], r in Kρ+ ,ρη - where ρ = max(d,n/d)
Output: b = д(a) rem f or F)il

1: " Conversion of a ∈ K[x] to a bivariate polynomial (Proposition 9.6)
A← U,1),-li,-5Ge,er)l(h, e, !,a) " A ∈ K[θ , z]<(d,!pe )

2: " Reduction of д modulo the characteristic polynomial of Ā (Proposition 9.8)
G ← M)i,Re3481i&,(h, e, !,A,д, (rk )0≤k<d+ ,dη -) " G ∈ K[θ ,y]<(d,!pe )
if G = F)il then return F)il

3: " Modular composition, B = G(θ ,A) rem 〈h(θ ), (zpe − θ )!〉 ∈ K[θ , z]<(d,!pe ) or Fa,l
B ← C&(2&/i1i&,M&34l&I,/e2)r)ble5Pr&3481O.Fiel3/(h,θ , e, !,A,G, (rk )0≤k< n

d + ,(
n
d )η -)

if B = F)il then return F)il
4: " Recovery of b over K (Proposition 9.6)

b ← T),-li,-5Ge,er)l(h, e, !,B)
5: return b

Pr&3481O.Fiel3/ of Section 9.2.2. We !nally apply the general tangling procedure of Section 9.3.3
to B; since tangling is a K-algebra isomorphism, the outcome is b = д(a) rem h(xpe )! .

Pr&2&/i1i&, 9.9. For a "eldK of characteristicp, givenh separable, monic and of degreed inK[x],
integers e in N and ! in N>0, a in K[x]<n , д in K[y], r in Kρ+ ,ρη - , with n = d!pe , ρ = max(d, !pe )
and η from Equation (3), Algorithm Modula(Co)pos,-,o.ModuloPo50( uses Õ(deg(д) + nκ ) op-
erations in K, with κ < 1.43 as in Equation (1), and returns д(a) rem h(xpe )! or Fa,l.

If the entries of r are chosen uniformly and independently from a "nite subset S of K, then the
algorithm returns д(a) rem h(xpe )! with probability at least 1 − (2n4 + 12n2)/card(S).

Pr&&.. That the output of the algorithm is д(a) rem h(xpe )! or F)il follows from the previous
discussion. By Proposition 9.6, with n = d!pe , the !rst and last step both take Õ(n) operations in
K. Proposition 9.8 shows that Step 2 takes Õ(deg(д)+nκ ) operations in K. Finally, Proposition 9.2
shows that Step 3 takes Õ(d(!pe )κ ) = Õ(d(n/d)κ ) operations in K, so the runtime estimate is
proved.

The steps that may output F)il are the computation of G at Step 2 and that of B at Step 3. By
Proposition 9.8, the former happens with probability at most 6(! + 1)d2pe/card(S) ≤ 12n2/card(S);
by Proposition 9.2, the latter happens with probability at most 2d(!pe )4/card(S) ≤ 2n4/card(S). !

9.5 Main Algorithm and its Analysis
We can now give Algorithm M&34l)rC&(2&/i1i&, performing modular composition with gen-
eral polynomials, and prove Theorem 1.1.

The separable decomposition f1 · · · fs of f allows us to reduce the problem to compositions
modulo the fi ’s, which are powers of polynomials as in Section 9.4. The polynomials a and д
are !rst reduced so that the compositions modulo the fi ’s are called with inputs of appropriate
degrees, then the result b = д(a) rem f is recovered using Chinese remaindering. The number
of random elements in K we use is an a priori bound that can be re!ned if the separable
decomposition of f is known.

Pr&&. &. The&re( 1.1. First we prove correctness. Suppose that none of the subroutines re-
turns F)il; we show that the output is д(a) mod f .

Using the same notation for pe th powering as in Lemma 9.7, at the ith pass in the loop at
Step 4, the polynomial µi satis!es µi (αi ) ≡ 0 mod hi , with αi = aσ

i (that is, the coexcients
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ALGORITHM 9.5 M&34l)rC&(2&/i1i&,(f ,a,д, r )
Input: f of degree n in K[x], a in K[x]<n , д in K[y]<n , r ∈ Kn+ ,nη -

Output: b = д(a) rem f or F)il
1: " Decomposition of f [57, Algorithm 3]

(h1, e1, !1), . . . , (hs , es , !s )← Se2)r)bleDe8&(2&/i1i&,(f ) " hi monic of degree di in K[x]
2: (f1, . . . , fs )← (h1(xpe1 )!1 , . . . ,hs (xpes )!s ) " fi of degree ni = di !ipei in K[x]
3: " Degree reduction, deg(ai ) < ni

(a1, . . . ,as )← (a rem f1, . . . ,a rem fs )
4: " Annihilating polynomials of the ai modulo fi

for i = 1, . . . , s do
Write ai =

∑
0≤k<ni ai,kxk

αi ←
∑

0≤k<ni ai,k
pei xk ; αi ← αi rem hi

µi ← A,,ihil)1i,-P&l9,&(i)l(hi ,αi , (rk )0≤k<di+ ,dη
i -) " µi (αi ) ≡ 0 mod hi , deg(µi ) ≤ 4di

if µi = F)il then return F)il
χi ← µi (ypei )!i " χi (ai ) ≡ 0 mod fi , deg(χi ) ≤ 4ni

5: " Degree reduction, deg(дi ) < 4ni
(д1, . . . ,дs )← (д rem χ1, . . . ,д rem χs )

6: " Modular compositions, either bi ≡ д(a) mod fi or Fa,l
for i = 1, . . . , s do

ρi ← max(di ,ni/di )
bi ← M&34l)rC&(2&/i1i&,M&34l&P&6er(hi , ei , !i ,ai ,дi , (rk )0≤k<ρi+ ,ρη

i -)
if bi = F)il then return F)il

7: return Chi,e/eRe()i,3eri,-((b1, . . . ,bs ), (f1, . . . , fs ))

of αi are the pei th powers of those of ai ). Raising this equality to the power !i gives µ!i
i (αi ) ≡

0 mod h!i
i . Evaluation at ypei using the facts that αi (ypei ) = ai

pei and χi = µi (ypei )!i !nally gives
χi (ai ) ≡ 0 mod fi . The degree bound deg(µi ) ≤ 4di follows from the speci!cations of Algorithm
A,,ihil)1i,-P&l9,&(i)l, and the degree bound for χi follows.

In the second for loop at Step 6, bi satis!esbi ≡ дi (ai ) mod hi (xpei )!i ≡ дi (ai ) mod fi . Sinceдi =
д rem χi , and χi cancels ai modulo fi , bi is also equal to д(ai ) rem fi , and thus to д(a) rem fi . It
follows that the return value, obtained by Chinese remaindering, is indeed д(a) rem f .

Next, we bound the overall cost. The call to Se2)r)bleDe8&(2&/i1i&,(f ) takes Õ(n) operations
in K [57, Proposition 5]. Using repeated squaring, the polynomials f1, . . . , fs can be computed in
quasi-linear time as well, and the same holds for the remainders a1, . . . ,as .

Consider a !xed index i in the loop at Step 4, and denote di!ipei by ni . Working coexcient-wise,
computing αi = aσ

i takes Õ(ni ) operations since ei = O(log(ni )), and reducing it modulo hi has
the same complexity bound. By Proposition 8.1, Algorithm A,,ihil)1i,-P&l9,&(i)l uses Õ(dκ

i )
operations in K. If it does not fail, χi is then deduced in Õ(ni ) operations again, hence the cost of
the loop is Õ(nκ ).

When Step 5 is reached, since all χi ’s have respective degrees at most 4ni , fast multiple remain-
dering gives the polynomials дi in Õ(n) operations, with deg(дi ) < 4ni . Then, by Proposition 9.9,
each call to Algorithm M&34l)rC&(2&/i1i&,M&34l&P&6er uses Õ(nκ

i ) operations in K, so
their total cost is Õ(nκ ) again. Finally, the cost of the last step (if reached) is Õ(n). Altogether, the
cost is Õ(nκ ), as claimed.

It remains to discuss the probability of failure. By Proposition 8.3, the ith call to Algorithm
A,,ihil)1i,-P&l9,&(i)l fails with probability at most 6d2

i /card(S); hence, the probability
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that we successfully exit the !rst for loop is at least 1 − 6n2/card(S). Then, by Proposition 9.9,
the ith call to Algorithm M&34l)rC&(2&/i1i&,M&34l&P&6er fails with probability at most
(2n4

i + 12n2
i )/card(S), so the probability that we successfully exit the second for loop is at least 1−

(2n4+12n2)/card(S). Altogether this gives a failure probability of at most (2n4+18n2)/card(S). !

10 APPLICATIONS
We now list several variants of the modular composition problem and related ones and sketch how
the algorithms presented above can improve the best known complexity.

10.1 Annihilating Polynomials
10.1.1 Annihilating Polynomial. A by-product of Algorithm M&34l)rC&(2&/i1i&, is a Las

Vegas algorithm that takes Õ(nκ ) (κ from Theorem 1.1) arithmetic operations for computing an
annihilating polynomial for a of degree at most 4n.

Indeed, with the notation of the algorithm, for all 1 ≤ i ≤ s , since χi (ai ) ≡ 0 mod fi we have
χi (a) = ri fi for some ri ∈ K[x]. Hence ∏s

i=1 χi is an annihilating polynomial for a modulo f =∏s
i=1 fi , whose degree is at most 4 ∑s

i=1 ni = 4n.

10.1.2 Minimal and Characteristic Polynomial. In general, our knowledge of the minimal and
characteristic polynomial depends on whether we have a certi!ed basis of relations.

Pr&2&/i1i&, 10.1. Let R ∈ K[y]m(m
≤2d be the matrix produced by Algorithm Ca.d,da-0Bas,s. If R

is a basis of M(a,f )
m , then the "rst m invariant factors of yIn − Ma , hence in particular the minimal

polynomial µa ∈ K[y] of a modulo f , can be computed in Õ(mωd) operations in K. If furthermore
C0(- is returned (implying that R is a basis of M(a,f )

m ), then the product of these invariant factors
gives the characteristic polynomial χa ∈ K[y] of a modulo f .

Pr&&.. If R is a basis of Mm , Proposition 4.1 shows that the Hermite normal form of R is a
triangular basis of Mm whose diagonal entries are the !rst invariant factors σ1, . . . ,σm ofyIn−Ma ;
in particular µa = σ1. If Cer1 is returned, then R is a basis of Mm and νm = n (Proposition 5.6).
Hence deg det(R) = n and all the invariant factors are known; the characteristic polynomial is their
product. The Hermite normal form of R can be computed in Õ(mωd) operations [53, Theorem 1.2].

!

One case of certi!cation of the minimal polynomial is when Cer1 is returned by Algorithm
C),3i3)1eB)/i/, which occurs in particular for any f in K[x] with f (0) ! 0 and a generic a in
K[x]<n (see Section 7.3.2). Using Proposition 5.6 and a shift as in Remark 3.8, this establishes the
complexity bound Õ(nκ ) for computing a basis of relations and the minimal polynomial in the case
of a generic a ∈ K[x]<n .

Under the assumptions of Proposition 8.3 with the additional hypothesis ν (a,f )m = n for m =
,nη-, a call to Algorithm C),3i3)1eB)/i/ instead of a call to Algorithm M)1rixO.Rel)1i&,/ in
Algorithm M&34l)rC&(2&/i1i&,B)/eC)/e, leads to a certi"ed basis of relations of M(α,µγ )

m with
good probability (use Proposition 5.6 instead of Proposition 5.8 in the proof of Proposition 8.3).
From Proposition 10.1, this also allows one to compute and certify the minimal and characteristic
polynomials in time Õ(nκ ) when f is separable and ν (a,f ),nη - = n.

The latter can be extended to the case f irreducible and separable since then the minimal poly-
nomial µa must be irreducible as well, and therefore yIn −Ma has r nontrivial invariant factors all
equal to µa . If for m = ,nη- the minimal polynomial satis!es δ = deg(µa) ≥ n/m, then r ≤ m and
ν (a,f )m = n, hence the above certi!cation when f is separable leads to the minimal polynomial. The
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low degree case δ < n/m can be treated directly using Lemma 3.2, allowing to compute µa in time
Õ(nδ (ω2/2)−1), which is Õ(nκ ) since δ < ,n1−η-.

However, a matrix R returned by Algorithm C),3i3)1eB)/i/ might not be a basis of M(α,µγ )
m :

without an excient certi!cation of this property, Proposition 10.1 only gives a minimal poly-
nomial algorithm of the Monte Carlo kind. Proceeding as done above, with a call to Al-
gorithm C),3i3)1eB)/i/ instead of a call to Algorithm M)1rixO.Rel)1i&,/ in Algorithm
M&34l)rC&(2&/i1i&,B)/eC)/e, a Monte Carlo minimal polynomial algorithm in Õ(nκ ) can be
derived under the assumptions of Proposition 8.3.

10.2 Power Series Reversion and Power Series Equations
In this subsection, the characteristic of K is 0.

For a given a ∈ K[x]with a(0) = 0 and a′(0) ! 0, power series reversion (or functional inversion)
asks for a power series д ∈ K[[x]] such that

a(д) = д(a) ≡ x mod xn .

By Newton’s iteration, a composition algorithm in Õ(nc ) operations for some c > 1 induces a
reversion algorithm in Õ(nc ) operations as well [17]. Thus, we get a Las Vegas algorithm for power
series reversion in Õ(nκ ) operations in K. Note that the converse reduction, from reversion to
composition, also holds in this situation [17].

The approach for reversion extends partially to the resolution of a class of power series equa-
tions. The aim is to solve an equation

д(x ,y) = b mod xn (37)
for y ∈ K[[x]]<n , when д ∈ K[[x]][y] satis!es д(0, 0) = b(0) and its partial derivative with respect
to y is not 0 at (0, 0).

By Proposition 8.7, Algorithm C&(2&/i1i&,M&34l&I,/e2)r)ble computes a composition
д(x ,a) in Õ(nκ ) operations for д in K[x ,y]<(m,n) with m = O(nη) and η from Equation (3). To-
gether with Newton’s iteration, this gives a Las Vegas algorithm solving Equation (37) in Õ(nκ )
operations for д ∈ K[x ,y]<(nη,n). Reversion is the special case with b = x and degx (д) = 0.

Note. It is known that the complexity of composition of power series (in terms of nonscalar oper-
ations) is essentially that of computing the coexcient of xn−1 of д(a) [68]. By contrast, computing
the coexcient of xn−1 in the reverse of a costs only Õ(n) arithmetic operations [17].

10.3 Bivariate Composition
In this subsection, the characteristic of K is 0.

Brent and Kung gave an algorithm that computes
д(a,b) rem xn

for д ∈ K[x ,y]<(n,n) and truncated power series a,b ∈ K[[x]] in only Õ(n2) operations [16]. This
is quasi-optimal, since the number of coexcients of д is Θ(n2) in general. In the simple situation
where a(0) = 0 and a′(0) = 1, the algorithm is as follows:

(1) by power series reversion, compute s(x) such that a(s) = s(a) ≡ x mod xn ;
(2) by univariate composition, compute c = b(s) rem xn ;
(3) by uni-bivariate composition, compute d = д(x , c) rem xn ;
(4) by univariate composition, compute d(a) rem xn .

The complexity is dominated by the uni-bivariate composition in Step (3), which can be performed
by Horner evaluation in Õ(n2) operations.
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We obtain a Las Vegas algorithm with a complexity reduced to Õ(nκ ) when д ∈ K[x ,y]<(nη,n),
where the uni-bivariate composition is done in Õ(nκ ) as discussed in the case of power series
equations, and all the other steps are univariate compositions that are also performed in Õ(nκ ) by
our algorithm.

This method extends to the computation of

д(a,b) rem f

with f of degree n in K[x], and a,b in K[x]<n . The algorithm becomes
(1) compute an annihilating polynomial χ of a modulo f ;
(2) by inverse modular composition, compute c such that c(a) ≡ b mod f ;
(3) by uni-bivariate composition, compute d = д(x , c) rem χ ;
(4) by univariate composition, compute d(a) rem f .

At least for generic a, this is again a Las Vegas algorithm in Õ(nκ ) operations when д ∈
K[x ,y]<(nη,n).
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