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A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an
arbitrary field. When the degrees of these polynomials are bounded by n, the algorithm uses O(n!-#3) field
operations, breaking through the 3/2 barrier in the exponent for the first time. The previous fastest algebraic
algorithms, due to Brent and Kung in 1978, require O(n!-%3) field operations in general, and n3/2+0(1) field
operations in the special case of power series over a field of large enough characteristic. If cubic-time matrix
multiplication is used, the new algorithm runs in n3/3+0(1) operations, while previous ones run in O(n?)
operations.

Our approach relies on the computation of a matrix of algebraic relations that is typically of small size.
Randomization is used to reduce arbitrary input to this favorable situation.
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1 INTRODUCTION
1.1 Problem and Result

Many fundamental operations over univariate polynomials of degree at most n with coefficients
in a commutative ring A can be computed in a number of arithmetic operations in A that is quasi-
linear in n [26]. It is the case for multiplication, division with remainder by a monic polynomial,
multipoint evaluation, interpolation at points whose differences are units in A, and greatest com-
mon divisors when A is a field.

Implementations of Algorithms 3.1 to 8.1 are available at https://github.com/vneiger/faster_modular_composition_
SageMath, based on the SageMath software (version > 9.4 is required and is freely available at https://www.sagemath.org/).
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11:2 V. Neiger et al.

In contrast with these operations, improving the cost bound for modular composition is a long-
standing open question. Given three polynomials a, f € A[x] and g € A[y], with deg(a) < n and
deg(g) < n where n = deg(f), and with f monic, this problem is to compute g(a) rem f, where
the “rem” operation takes the remainder of the Euclidean division.

Motivation. This operation arises in a variety of contexts. For instance, with f = x", it amounts
to power series composition. For many applications of power series, composition is the bottleneck.
This is the case for power series reversion, which can then be reduced to composition with a small
overhead [17]. This is also the case of further operations such as solving families of functional
equations [32].

The application of certain algebra morphisms also translates to modular composition. Over a
field K, for f and a in K[x], we denote by a mod f € K[x]/(f) the class of a modulo f. Then, for
e and f in respectively K[y] and K[x], and for a K-algebra morphism ¢ : K[y]/{e) — K[x]/{f), if
¢(y mod e) = a mod f then for g in K[y], the image ¢(g mod e) is equal to g(a) mod f.

Over finite fields, with e and f the same polynomial and ¢ the Frobenius endomorphism, this
results in modular composition playing an important role in algorithms for polynomial factor-
ization [27, 48, 49]. Dedicated algorithms exist for modular composition over finite fields, with
quasi-linear complexity (they are discussed later). Still, there remains a variety of questions that
can be considered over arbitrary fields, and which are impacted by modular composition (or closely
related operations such as power projection, discussed later as well): computing the minimal poly-
nomial of an algebraic number [69-71], normal bases computations [30, 49], arithmetic opera-
tions with two algebraic numbers [12], computing with towers of algebraic extensions [36, 65, 66],
Riemann-Roch space computations [1, 2], and so on.

Previous algorithms. The most famous algorithm in this area is that of Kedlaya and Umans, which
achieves complexity n!*¢ log”"(l)(q) bit operations for any given € > 0 [52, Corollary 7.2] when
the field K is the finite field F,. In contrast, we deal with an arbitrary field K and count arithmetic
operations in K. In this context, the known algorithms have much higher complexity estimates.

Modular composition can be performed using Horner’s algorithm with modular reduction at
each stage, which leads to a complexity in O(n?) operations if fast polynomial multiplication is used.
The notation ¢’ = O(c) means that ¢/ = O(c logk(c)) for some k > 0; in other words, logarithmic
factors are dropped.

In 1978, Brent and Kung gave two algorithms that perform composition modulo x” (the case of
power series) [16, 17]. One relies strongly on Taylor expansion and runs in O(n*/?) operations; the
other one, using a baby steps/giant steps approach, uses O(n'®*1/2) + O(n/?) operations, where
o < 3is afeasible matrix multiplication exponent (two nXn matrices can be multiplied in O(n“) op-
erations; the best known bound is 2.371552 [3, 22, 77]). This latter algorithm works verbatim and in
the same complexity for composition modulo an arbitrary polynomial f of degree n not restricted
to be x™ [27]. Both these algorithms have remained essentially the best ones since then. Huang
and Pan used fast rectangular matrix multiplication in the central step of the baby steps/giant
steps algorithm to reduce its complexity to O(n®/%) + O(n®/?) [41], where w; < w + 1 is a feasible
exponent such that a n X n? matrix can be multiplied by a n? X n matrix in O(n“?) operations.
The currently best known value gives w; = 3.250385 [55, 56, 77], which makes the previous alge-
braic complexity bound O(n!-%*) for modular composition for an arbitrary f. Even assuming an
optimal matrix multiplication, which means v = 2, these algorithms do not break the exponent
barrier 3/2.

Our result. The open problem 2.4 in the book of Biirgisser, Clausen, and Shokrollahi [19] asks
whether Brent and Kung’s algorithm can be improved substantially. The research problem 12.19 in
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Faster Modular Composition 11:3

von zur Gathen and Gerhard’s book [26] asks for complexity in O(n'-®) or better. Our main result
answers both questions positively when A is a field, with few extra hypotheses.

THEOREM 1.1. Given a, f € K[x] and g € K[y] with coefficients in a field K, with deg(f) =
n, deg(a) and deg(g) smaller than n, and a tuple r of O(n'*'/3) field elements, Algorithm
MobpuULARCOMPOSITION returns either g(a) rem f orFaIL after O(n*) arithmetic operations in K, with

1
K=1+———— <143, (1)

1
w—1 + Wy—2

It returns FAIL with probability at most (2n*+18n?)/card(S) when the entries of r are chosen uniformly
and independently from a finite subset S C K.

Here, we use an algebraic model of computation: roughly, basic arithmetic operations
{+,-,%,+} and zero-tests in the base field K are counted at unit cost; for more details, see
Section 2. As usual with probabilistic algorithms of Las Vegas type, the algorithm can be repeated
until it succeeds, so that only its running time becomes a random variable.

We assume that the characteristic p of K is known to the algorithms. For K finite and of small
cardinality g (namely, ¢ < 2n* + 18n?), the probability statement becomes vacuous. However, in
such cases, one can work in a sufficiently large field, by constructing an extension of K of de-
gree O(log(n)) efficiently (see [26, Section 14.9] and references therein). In this extension, each
arithmetic operation can be performed in é(log(n)) arithmetic operations in K, so that the asymp-
totic complexity estimate is unaffected.

We also give a probabilistic algorithm of the Las Vegas type with the same complexity bound
for computing an annihilating polynomial for a mod f, that is, a nonzero polynomial g € K[y]
such that g(a) rem f = 0.

The improvements brought by fast matrix multiplication on one hand and by fast rectangular
matrix multiplication, on the other hand, are made clearer by noting that the exponent x of com-
position satisfies

4 1 w+2 5
s Sk=14— — < < O
3 — 4+ 5 3 3
w—1 wy— \ . R ’
v <1.4572 <1.666667
<1.42945

where the first approximation is obtained with the bounds on w and w; given above; the second
one is obtained when no fast rectangular matrix multiplication is used, so that w; simply becomes
w + 1; the last one is obtained when no fast matrix multiplication is used, thus taking ® = 3. In
the latter case, our algorithm is the first subquadratic one for modular composition. In the other
direction, considering the lower bounds w > 2 and w, > 3 shows that k > 4/3, giving a lower
bound on the complexity estimate that can be achieved by the algorithm designed in this work.

Main steps. To compute g(a) rem f, our approach relies on first computing a polynomial g of
“small degree” such that g(a) rem f = g(a) rem f.If a mod f has a minimal polynomial of small
degree p(a), then one can take § = g mod p. In general, such a g may not exist, and a small
degree univariate ¢ may not exist either. However, generically, one can compute a set of bivariate
polynomials p;(x,y) of “small degree” such that p;(x,a) rem f = 0. These are called relations.
From these, a small degree bivariate g(x,y) is found via some type of reduction of g by all y;’s
simultaneously, ensuring g(x, a) rem f = g(a) rem f. Relations form one of the main ingredients
of the new algorithm, and most of the new technical results are about them. On the algorithmic
side, the coeflicients of these relations are gathered into matrices called matrices of relations and
we make heavy use of fast algorithms on polynomial matrices.
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11:4 V. Neiger et al.

Here and throughout the article, genericity is understood in the Zariski sense: a property is
generic if it holds outside of a hypersurface of the corresponding parameter space. A randomized
change of basis brings f and a to a situation where “small” matrices of relations exist.

This probabilistic algorithm is proved to be correct for f separable (i.e., with no repeated roots in
an algebraic closure K of K) and for f purely inseparable (i.e., with only one root in K). Modular
composition modulo an arbitrary f is reduced to these two extreme cases by separable decom-
position of f [57], Chinese remainder theorem, and a slight generalization of a technique called
untangling [34]. The latter allows to transport the composition problem over K modulo a factor
of the separable decomposition, to a composition problem over a quotient algebra with purely
inseparable modulus.

Complexity aspects. Under genericity conditions, m X m matrices of relations of “small degree”

d < [n/m] are shown to exist (the choice of m is optimized below). Their computation starts

from the first m coefficients of the 2md polynomials x’a* rem f, for 0 < i < mand 0 < k < 2d.
With

c(n,m,d) = (m + n/d)d**'?, ()

these coefficients can be computed in O(m?d + ¢(n, m, d)) operations in K (Section 3.3).

From these coefficients, a matrix of relations is obtained by approximant bases [31] in O(m®d)
operations (Section 5.4). Given such a matrix and in the same complexity, linear system solving
over K[x] [80] allows us to reduce the univariate g € K[y] to a bivariate § € K[x, y], of degrees
smaller than m and d in x and vy, such that g(a) = g(x, a) mod f (Section 4.2).

A generalization due to Niisken and Ziegler [63] of Brent and Kung’s algorithm to the case of a
bivariate polynomial g(x, y) € K[x, y] finally computes the “uni-bivariate” composition g(x, a) rem
f using O(c(n, m, d)) operations in K (Section 3.2).

Altogether, the costs of the various parts of the algorithm add up to O(m®d + ¢(n, m, d)) opera-
tions in K. Then choosing m and d = [n/m] so as to minimize m“d + c¢(n, m, d) leads us to m ~ n",
where

1
n=——7r75"": 3)
=
which is approximately 0.3131 with the bounds on w and w; given above and leads to to the com-

plexity estimate O(n*) of Theorem 1.1.

1.2 Previous Algorithms in Special Cases

To compute g(a) rem f, previous known improvements upon Brent and Kung’s approach all have
requirements on the input, either on some of the polynomials f, g, and a, or on the ring or field of
coeflicients—possibly with nonalgebraic algorithms.

1.2.1  Special Modulus.

Power Series. For the special case f = x" of power series, Brent and Kung’s second algorithm
relying on Taylor expansion performs composition in only O(n*?) operations, provided a’(0) and
([y/nlog(n)])! are invertible in A; the assumption on a’(0) can be weakened [32, Section 3.4.3]. In
more variables, even in the specific case g(x, a) rem f handled by the Niisken-Ziegler algorithm,
we do not know of any algorithm computing composition faster for power series than modulo
arbitrary polynomials.

Faster composition in only O(n) operations for g(a) rem x" is possible for many special
cases of g: when g is a polynomial of degree O(1), but also when it is a power series solution
of a polynomial equation of degree O(1) via Newton’s iteration, or when it is a solution of a
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Faster Modular Composition 11:5

differential equation (e.g., exp), by first forming a differential equation for g(a) and then solving
it by Newton’s iteration or other divide-and-conquer algorithms, generally in characteristic 0 or
large enough [11, 17, 32, 58; 10, Section 13.4].

Similarly, still in the case when f = x", if furthermore a has specific properties, then composi-
tion of power series can be performed in O(n) operations. This is the case when a is a polynomial
of moderate degree [17] (it is a part of Brent and Kung’s fast composition algorithm), an algebraic
power series [32], but also for a class of truncated power series that can be obtained via shifts,
reversals, scalings, multiplications by polynomials, exponentials, and logarithms [14].

Separable Polynomials. Ritzmann observed that for a separable modulus f(x) = (x —€) -+ - (x —
€n) with distinct €1, . . ., €, that are known, modular composition boils down to multipoint eval-
uation and interpolation [68], which can be computed in O(n) arithmetic operations. When fur-
thermore the ring of coefficients is Z, he uses well-chosen ¢;’s to give an efficient algorithm for
composing power series, in a nonalgebraic model of computation: if g and a over Z have coefli-
cients bounded in absolute value by K, then g(a) rem x" can be computed using O(n? log(K)) bit
operations, which is quasi-optimal since the output has bit size Q(n?log(K)) in general.

Chinese Remainder Theorem. In our work, the cases of power series and of separable polynomials
play an important role as well. We use the observation that if a factorization f = fi - - - f; is known
with the f;’s relatively prime, then composing modulo f reduces to composing modulo each f;
and reconstructing the result via the Chinese remainder theorem. Several consequences of this
observation have been discussed by van der Hoeven and Lecerf [35].

1.2.2  Special Rings or Fields. For power series over a ring A of positive characteristic, Bernstein
proposed an algebraic algorithm whose complexity is quasi-linear in n, with a constant factor that
depends on the characteristic of the ring [6]. In particular, this algorithm is very efficient over rings
whose characteristic is a product of small primes; if A is a ring of prime characteristic p then the
algorithm uses O(np) operations in A.

A further step forward was achieved by Umans in 2008 [72], with a new algorithm for modu-
lar composition modulo an arbitrary f, over finite fields of small characteristic: if p is n°"), his
algorithm uses n'*°(!) base field operations. Later, Kedlaya and Umans introduced new techniques
for composition over finite rings of the form (Z/rZ)[(z]/(h(z)), for an integer r and h monic. For a
finite field K = Fy, their algorithm runs in n'*€ log"*°™(q) bit operations [52, Corollary 7.2].

As in Ritzmann’s work, a key idea in References [52, 72] is to exploit fast multipoint evaluation,
but this time in a multivariate setting. The composition g(a) rem f is reduced to the evaluation at
suitable points of a multivariate polynomial constructed from g by an inverse Kronecker substitu-
tion, decreasing degrees at the expense of increasing the number of variables. Umans’ algorithm
performs the evaluation using the properties of the Frobenius endomorphism [72, Thm 6], while
Kedlaya and Umans’ proceeds by lifting to characteristic zero (which requires working in a bit
complexity model) [52, Thm 6.3]. These multipoint evaluation algorithms have been extended to
arbitrary number of variables and arbitrary finite fields [7, 8]. For general fields, efficient analogues
of these multivariate multipoint evaluation algorithms are currently unknown.

1.3 Related Questions

1.3.1  (Multivariate) Multipoint Evaluation. For simplicity, we limit the discussion to the case of a
field; most of it extends to rings, with minor restrictions. The evaluation of a univariate g € K[x],
at n points in the field K, and conversely the interpolation of a polynomial of degree < n from n
values, are computable in quasi-linear complexity [26, Chap. 10]. For polynomials in at least two
variables, however, the situation becomes tightly related to modular composition.
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11:6 V. Neiger et al.

The motivation of Niisken and Ziegler [63] was the evaluation of a polynomial g € K[x, y]<(m,q)
at n points (xk, Yx)1<k<n in general position, with md = O(n). Their algorithm first computes a
univariate interpolation polynomial such that a(xy) = yj for all k; then the composition b =
g(x,a(x)) rem f, where f = [] (x —xx); and concludes by a univariate multipoint evaluation
of b at xy,...,x,. Since the univariate evaluation and interpolation are performed in essentially
linear time, the complexity is dominated by the “uni-bivariate” modular composition g(x, a) rem f.

The case when several points have the same x-value can be handled by an affine change of coor-
dinates [63]; another approach, taken by Kedlaya and Umans, is to pick n suitable points ti, .. ., t,
in K, to compute two interpolation polynomials a, and a, in K[t], and thus reduce the evalua-
tion to the fully bivariate modular composition g(ay, a,) rem f, where now f = [] (t — t). This
extends to an arbitrary number of variables and shows that multipoint evaluation in s variables
reduces to multivariate modular composition in the same number of variables [52, Theorem 3.3].

As mentioned in Section 1.2.2, Kedlaya and Umans actually make a heavy use of a con-
verse reduction [52, Theorem3.1]. If g is a polynomial in K[xi,...,xs], the composition
g(ai(x),...,as(x)) rem f reduces to a multipoint evaluation of a polynomial of smaller degree
in each of its variables, whose number is increased. For the univariate case of composition (s = 1)
studied here, the smallest possible number of variables for evaluation would be 2, leading to a bi-
variate evaluation of a polynomial of degree \/n at ©(n*/?) points, which is too large for our target
complexity. The next possible choice would be a polynomial of 3 variables in degree n'/3 at ©(n*/?)
points. Unfortunately, we are not aware of a sufficiently efficient multipoint evaluation algorithm
in 3 or more variables to make this approach succeed in the algebraic model.

1.3.2  Bivariate Ideals. Viewing the problem of computing g(a) modulo f as a problem of
reduction of g modulo the ideal 7 = (y — a(x), f(x)), we introduce bivariate polynomials in
a different way from the inverse Kronecker substitution mentioned above. Grébner bases are
commonly used for reductions modulo multivariate ideals. A division with a remainder similar to
that in Equation (6) below would be achieved via reduction by an appropriate Grébner basis of 7,
provided we could compute this basis and perform the reduction in good complexity. However,
already the size of the Grobner basis itself may be ©(n*/?) (see the example below), hence exceed
our target complexity.

For an ideal given by two generic bivariate polynomials of degree n (hence the ideal is of de-
gree n?) and the graded lexicographic order, van der Hoeven and Larrieu avoid the use of an explicit
Grébner basis. They show that a concise representation of the basis of size only O(n?) is sufficient
for reducing a polynomial modulo the ideal in time O(n?) [33]; the concise representation consists
in particular of truncations of well chosen polynomials in the ideal. It is unclear to us whether a
similar truncation strategy could be applied specifically to 7, whose degree is only n. Instead, the
matrices of relations we compute give a set of small degree polynomials in 7 that may not gener-
ate the whole ideal (see Section 4.1), but provide a process of complexity O(n*) for the reduction
modulo 7 of Equation (6). These polynomials generate the same ideal as the first polynomials in
the Grobner basis of I for the lexicographic order (see Corollary 4.3).

The concise representation of Grobner bases has also been exploited by van der Hoeven
and Lecerf for computing the minimal polynomial of the multiplication by y modulo 7, when
J = (fi, f2) is generated by two generic polynomials fi, f € K[x,y] and K is a finite field [40,
Section 4]. They apply the transposition principle to a bivariate modular composition map mod-
ulo 7, then compute the minimal polynomial from the resulting bivariate power projections [45,
Section 6]. The evaluation of the composition map modulo J is again in O(n?), thanks to the
concise representation [40]. In our case of 7 = (y — a(x), f(x)) and for a generic a, matrices of
relations allow us to compute the minimal polynomial of the multiplication by y modulo J in
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complexity O(n*) (see Section 10.1); matrices of relations are obtained via a bivariate power pro-
jection process that can be regarded, in part, as dual to Niisken and Ziegler’s bivariate modular
composition algorithm (Section 3.4.3).

Note. For a sufficiently large field K, take f = (x—1) - - - (x—n), wheren = k(k+1)/2,and a € K[x]
the polynomial of degree smaller than n such that a(i) = [V2i] for 1 < i < n. Then the reduced
Grobner bases for the graded lexicographic order and for the lexicographic order, both with y < x,
coincide. They contain one polynomial with leading term x’y*~* for each i € {0, ..., k}. Counting
the number of monomials of these polynomials shows that this basis has k(k + 1)(k +2)/3+ (k+ 1)
monomials; this is of the order of n3/2.

1.3.3  Modular Composition and Multipoint Evaluation with Precomputation. Quasi-linear mod-
ular composition g(a) rem f is feasible after precomputations on (f, a) only, for a generic and f
square free [61].

Likewise, after precomputations on the evaluation points and under genericity assumptions
on them, quasi-linear multivariate multipoint evaluation is feasible [39], as well as quasi-linear
bivariate interpolation [61]. Furthermore, for bivariate evaluation, genericity can be replaced by
randomization [38].

In these works, the precomputation stages are at least as expensive as the fastest known corre-
sponding modular composition or multipoint evaluation algorithms. They have a feature in com-
mon with our composition algorithm: from f, a (or from the evaluation points), they compute a
set of polynomials that belong to (y — a(x), f(x)) (or vanish at the points), and allow for efficient
degree reduction of the polynomial to compose with (or to evaluate). This set is either akin to
several matrices of relations of Mﬁff’f ) for a small number of values of m ranging from 1 to n [61],
or is a collection of well-chosen polynomials in several Grobner bases for subsets of the points so
as to build a multivariate divide and conquer evaluation tree [38, 39].

1.4 Algorithmic Tools

Our work builds upon a sequence of earlier algorithmic progress that we now recall. We denote
by K[x]<, the set of univariate polynomials in x with coefficients in K and degree less than n; by
K[x, y]<(r,s) the bivariate polynomials in x, y of bidegree in (x, y) less than (r, s).

1.4.1  Baby Steps/Giant Steps. One of the bottlenecks in algebraic approaches for evaluating g
at a modulo f is the computation of successive powers 1,a, a?, ... modulo f, which leads to the
question of minimizing the number of powers that are used. The solution used by Brent and Kung
relies on a baby steps/giant steps scheme [17, 64], where only

l,a,...,arﬁ] rem f and azr‘m],a”‘m],...remf

are computed. The former group forms the baby steps; the latter forms the giant steps. The problem
is then reduced to about v/n modular compositions “g;(a) rem f” for g; of degree about v/n. These
compositions are all obtained simultaneously through the multiplication of two matrices of sizes
roughly v/n x v/n and y/n X n. This is followed by a less expensive Horner evaluation step using
the powers of a/ V1. See Section 3.1 for a complete description.

1.4.2  Projection-Reconstruction. Wiedemann’s algorithm [76] finds the minimal polynomial of
a matrix A € K™ by considering the sequence (0T A*W)0, for two vectors v and w. This se-
quence is linearly recurrent and its generating function h(y) = Y 5,(v" AFw)/y**! is rational; for
generic v and w, the denominator of h(y) is the minimal polynomial p4 of the matrix A. Writing
d < n for the degree of p4, this polynomial can be reconstructed efficiently from the first 2d terms
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11:8 V. Neiger et al.

of the sequence by the Berlekamp-Massey algorithm or, equivalently, by the computation of a
Padé approximant. Given the expansion in y~! of a rational power series h(y) = q(y)/pa(y) with
polynomials g and pi4 of degree at most d — 1 and d, this reconstructs the fraction (g, pa) as a
solution of

(h(y) + Oy~ pa(y) - q(y) = O™, (4)
If the degree of y14 is unknown, one can use this approach with the upper bound d = n instead.

Wiedemann’s algorithm can be combined with the baby steps/giant steps paradigm [44, Sec-
tion 3; 69; 49, Algorithm AP]. In particular, when A is the matrix M, of multiplication by a mod f
in the basis 8 = (1, x, ..., x" 1) of K[x]/{f), this was used by Shoup to compute the minimal poly-
nomial of the polynomial a modulo f [69-71]. For irreducible f, Shoup used the vectorsv = w =1
(where 1 is the first column of the identity matrix), in which case the sequence (v"A*w);s¢ be-
comes the sequence of power projections (£(1), £(a), £(a®), . .. ), where € is the linear form that takes
the coefficient of 1 of an element of K[x]/(f) written on the basis 8. For an arbitrary f, Shoup
used a random linear form ¢, corresponding to a random choice of the vector v and w = 1.

In either case, the required 2d elements of the sequence can be obtained by left multiplication
by o' of a matrix whose columns are the coefficient vectors of 1, a, a%, ... modulo f. Now, the
right multiplication of the exact same matrix by a vector of coefficients corresponds to modular
composition. Using the transposition principle, Shoup described a baby steps/giant steps algorithm
that computes the power projections for an arbitrary linear form ¢ : K[x]/(f) — K in the same
complexity as that of Brent and Kung’s algorithm [69-71] (See Section 3.1.2.). This principle states
that the existence of an algebraic algorithm for the multiplication of a matrix by a vector induces
the existence of an algorithm for the product of the transpose of that matrix by a vector, both
having essentially the same complexity [19, Theorem 13.20; 13].

The same idea is used by Shoup for another operation that we also need. Given a, b, f, the inverse
modular composition asks for a polynomial g of least degree such that g(a) = b mod f or for a proof
that no such g exists. This problem reduces to the computation of the power projections

(1), L(a), ..., 6@*" 1)) and (£(b),L(ab), ..., La"'b)),

again in the same complexity as that of modular composition, followed by the resolution of a linear
system of Hankel type [69, Theorem 3.5]. The latter is known to be equivalent to Padé approxima-
tion [15], where Equation (4) generalizes to

ak ak
2, i(kﬂ) + 0" ) gw) - qw) = . % + Oy,

k>0 k>0

with unknowns a numerator q(y) € K[y]<, and the inverse composition ¢g(y) € K[y]<,.

1.4.3  Blocks for Speed and Structure. Coppersmith introduced a block version of Wiedemann’s
algorithm [20]. There, the scalar sequence (v'A¥w)s( is replaced by the matrix sequence
(VTAKW) 50 for two matrices V. € K™ and W € K™™: the generating function H(y) =
Skso(VTARW) /yF+1 is a rational £ x m matrix.

Such a matrix admits an irreducible matrix fraction description N(y)D(y)™! with N € K[y
and D € K[y]™™ two polynomial matrices (see Section 5.1.1), and the columns of the denom-
inator matrix D form a basis of the K[y]-module of polynomial vectors u € K[y]™ such that
i <deg(u) VTAR*iWuy; = 0 for all k > 0, where u; denotes the coefficient of y in u [50, Lemma 2.8].
For m = 1, this module is the ideal generated by the minimal polynomial of the sequence in Wiede-
mann’s algorithm.

For 1 < m < ¢ < n, the matrix D contains more information: for example, for generic V
and W, its invariant factors are the m invariant factors of largest degree of the characteristic matrix

]€><m

Journal of the ACM, Vol. 71, No. 2, Article 11. Publication date: April 2024.



Faster Modular Composition 11:9

yl, — A [50, Theorem 2.12], the highest degree one being the minimal polynomial of A. Conse-
quently, the determinant of D has degree the sum v,, of the degrees of these m invariant factors,
which implies that v, < n.

The computation of D can be achieved in two steps, which are matrix versions of the methods
used for m = 1 in Section 1.4.2. Writing d for the degree of D, it is sufficient to compute the
first 2d matrices of the sequence (VTAXW)yso, which can be done by a baby steps/giant steps
approach [50]. Next, D is obtained by matrix fraction reconstruction, solving

(VT(yIn AW + O(y‘z""l)) D(y) - N(y) = O(y™*™)

for the unknown N € K[y]®™ and D € K[y]™ ™ of degrees at most d — 1 and d; this can be done
efficiently by a generalization of Padé approximation called minimal approximant bases, whose
properties are recalled in Section 5.2. (See References [50, 51] for bibliographic pointers to algo-
rithms that compute minimal linear generators of matrix sequences.) The parameter d plays a
major role in the efficiency of both steps: it is usually unknown a priori, and might be as large as
O(n). Yet, the interest of this block approach lies in the fact that, for generic V and W and € > m,
the matrix D has degree d = [v,,/m] < [n/m] [74, Corollary 6.4].

1.4.4  Efficient Projections and Small Bivariate Polynomials. Special choices of the matrices V
and W above, with identity blocks, lead to efficient projections and have been shown to be effective
in the context of black-box matrix inversion [24]. Even simpler matrices, X = (I, 0) and Y =
(0 ILp)"in K™™ with m € {1,...,n}, have been used by Villard in his fast algorithm for the
bivariate resultant of two bivariate polynomials f and g in K[x, y] [75]. In this context, for generic
f and g, this choice of X and Y is sufficient to ensure that the denominator matrix D contains m
“small” polynomials in the ideal of K[x, y] generated by f and g.

1.5 Overview of the Core Algorithm

When a mod f has a minimal polynomial y, of small degree, j1, can be computed efficiently using
power projections (£(1), {(a), {(a?), . .. ) by Shoup’s algorithm, since few terms in the sequence are
needed (see Sections 1.4.2 and 3.1.3). Then, for composition, one uses the identity g(a) = §(a) mod
f, where § = g rem p,. Since § has small degree, this reduces the number of powers of a mod f
that need be considered.

Our algorithm can be viewed as a block or bivariate version of this approach, replacing the
univariate polynomial y, by a collection of m small bivariate polynomials in the ideal generated by
y—a(x) and f(x), for a fixed parameter m. In a generic situation, while y1, has degree n, there exists
such a collection with degrees m—1 and [n/m] in x and y. This collection is represented as a matrix
in K[y]™™ and is found efficiently by exploiting the structure of the matrix of multiplication
by a mod f.

Matrices of Relations. Let M, € K™ be the matrix of multiplication by a mod f in the ba-
sis (1,x,...,x""!). Following Section 1.4.3, in the special case where A = M,, if V is a generic
matrix in K™, and W is the matrix X = I 0)T with m < € and m < n, the block Wiede-

mann approach yields a denominator matrix D € K[y]™ whose columns represent a basis of
the K[y]-module

Mi?) = {rx,y) = ro(y) + -+ + rmea (@™ | r(x, a(x)) = 0 mod ()} 5 ®

this follows, for instance, from [74, Lemma 4.2]. The elements of this module are algebraic rela-
tions of degree less than m in x satisfied by a mod f (Section 5.1). We call matrix of relations any
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nonsingular matrix R(,Z’f ) e K[y]™ ™ whose columns are the coefficients of polynomials in Mg:f’f )
(Section 4.1.1), that is, any nonsingular right multiple of D.

(a.f)
Rin

Given a matrix of relations , the composition g(a) rem f is obtained in two steps.

— First, by polynomial matrix division [43, Theorem 6.3-15, p.389], there exist vectors v, w €
K[y]™ such that

Gy) 0 - 0T =R w40, (6)

where deg(v) < d and d is an upper bound on deg(R(,f;’f ) ); finding such vectors takes
O(m®(d + n/m)) operations (Section 4.2) [80]. Then, by design, the bivariate polynomial

9~(X, y) = ’Ul(y) 4+ oo+ Um(y)x’"‘l

has degree less than m and d in x and y, and is such that g(a) = g(x, a) mod f.
— The polynomial g can then be evaluated at y = a mod f by the Niisken-Ziegler algorithm
in O(c(n, m, d)) operations, with c(-) from Equation (2) (Proposition 3.4).

Truncated Sequence of Projections. In the block Wiedemann approach, using X as our right pro-
jection matrix, we need the first 2d elements of the matrix sequence (VMXX); 5o, which amounts
to a type of bivariate power projections (see Section 1.3.2). Unfortunately, we do not know how to
obtain them efficiently enough for an arbitrary V. Choosing V = X', we design a baby steps/giant
steps algorithm in Section 3.3 that runs in O(c(n, m,d) + md) operations. With this choice, by
fraction reconstruction the sequence (X' M¥X);, yields a denominator D that is a basis of the
K[y]-module

Mfﬁj,;) = {r(x, y) € K[x, yl<(m, ) | [a(x)kr(x, a(x)) rem f(x)](r)n_1 =0forallk > 0} ,

where [ - ]! is the projection on Span(1, x, . ..,x™'). The inclusion Mi,f’f) c MSZJ,;) holds but

may be strict, leading to a denominator D that is not a matrix of relations.

Matrices of Relations of Small Degree. For an arbitrary f with f(0) # 0 (this is not really a restric-
tion, see Remark 3.8) and a generic a, two important properties hold (see Section 7.3): the above
inclusion of modules is an equality—making the algorithm correct—and a basis R(,Z’f ) of degree
d = [n/m] of MEg’f ) can be reconstructed from the first 2d elements of the sequence (XTMKX) 50—
making the algorithm fast.

The reconstruction is done via minimal approximant bases in Sections 5.2 and 5.3. Directly

extending Section 1.4.3, we would solve the equation at infinity
(X"l = Mo X + 07247 i () - N(w) = 054, )

for unknown matrices N and Rﬁ,‘i’f ) of degree at most d — 1 and d. For technical reasons coming
from the reconstruction algorithm, we actually use an expansion at y = 0 rather than at infinity,
so that the sequence we use involves powers of M instead of M, (see Remark 5.7).

Beyond generic cases, a relevant quantity is

V&I = deg(ay) + - - - + deg(om), ®)
where o1, ..., 0, € K[y] are the invariant factors of yI,, — M,, ordered by decreasing degree. This

quantity is at most n, and it is the degree of the determinant of any basis of M;’f’f ) (Proposition 4.1).
In favorable situations, working with d = fvﬁ,f’f ) /m], and a fortiori with [n/m], is sufficient to

obtain such a basis M,(,?’f ),
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1.6 Probabilistic Algorithm for f Separable or Purely Inseparable

Our probabilistic algorithm aims at bringing arbitrary inputs to the favorable situation mentioned
above, by means of a random change of basis. For a polynomial y € K[x] such that the minimal
polynomial 1, of y mod f has degree n, the powers (1,y,...,y" ") mod f form a basis of A =
K[x]/{f). This induces a K-algebra isomorphism:

dy + A = Klyl/(py)

that maps y to y, and more generally u € A to v such that v(y) = u mod f.
Using ¢, allows us to transport our problem of modular composition to the right-hand side. For
ain K[x]<, and g in K[y], to find g(a) rem f, this boils down to the following (see Algorithm 8.1):

— a forward change of basis: through inverse modular composition, compute « € K[y]<, such
that a = a(y) rem f; this step also determines the minimal polynomial i ;

— a modular composition in the new basis: compute = g(a) rem 1, ;

— a backward change of basis: the modular composition f(y) rem f, which equals g(a) rem f.

Computational Aspects. The second and third steps are modular compositions. They can
performed efficiently by the approach of Section 1.5, by finding and using matrices of relations

R(,,yl’f ) R(r;?ll’ Hy)

and , as long as certain genericity assumptions hold; this aspect is discussed
below:.

The first step, for the forward change of basis, is an instance of inverse modular composition and
the calculation of a minimal polynomial. As mentioned in Section 1.4.2, Shoup’s solutions recover
both & and y, from the power projections (£(1), £(y), . .., €(y*"™")) and (€(a), £(ya), . . ., €(y™" 'a)),
in the complexity of Brent and Kung’s modular composition algorithm. Using matrices of relations
we achieve a lower complexity, for a generic y, as follows.

(1) Matrix of relations and minimal polynomial. Generalizing the power projections of y, the
algorithm of Section 1.5 computes the first 2d terms of (XTM’;X);CZO, where d = [n/m],

and then reconstructs a basis R%’f ) of Mg};’f ) by solving Equation (7) (with y instead of a).
This basis gives in particular the minimal polynomial 1, which appears as an entry of the
Hermite normal form of this basis (Proposition 4.1).

(2) Bivariate inverse composition. The use of projections (£(a), £(ya), ..., t(y" 'a)) is directly
generalized by computing the first 2d terms of (XTM)’fMal)kzo, where 1 is the first column
of X, and solving

(X"l = M) X + 0y waly) - on(y) = X (41, = M) M + 0 (9)

for polynomial vectors vy and vg in K[y]™ of degree less than d; the entries of the vector
vg are the coefficients of a bivariate polynomial @(x, y) of small degree such that a(x,y) =
amod f.

As for Equation (9), we actually work with an expansion at y = 0 rather than infinity.

(3) Bivariate & to univariate c. The situation is now symmetric to that of the composition algo-
rithm of Section 1.5: we consider again Equation (6), where now g is unknown (it is ), v
is known (it is @(x, y)) and both R(,Z’f ) and v have degree at most d, so that the polynomial
matrix problem can be solved in O(m®(d + n/m)) operations.

This approach is detailed in Algorithm CHANGEOFBaAsIs, with the steps reordered and combined
so as to retrieve both R(,,Yl’f ) and vg from a single fraction reconstruction.
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Probabilistic Aspects. For a generic y, one has deg(y,) = n, so the isomorphism ¢, is well
defined. Using the Schwartz-Zippel lemma, it is straightforward to control the probability of
having deg(y,) < n.

For generic y, we can then follow the approach described in Section 1.5 to perform the last
step, modular composition by y, with the desired complexity. The quantitative aspects can be
worked out as well, and similar considerations hold for the first step, inverse modular composition
by y.

However, the composition in the second step, g(a) rem py, is more delicate to analyze. We

need the equality of modules Mi:”uy) = Mx’,ﬁy), and that a matrix of relations in this module

can be reconstructed from the first 2|’v§: Hy) /m] < 2[n/m] elements of the corresponding matrix

sequence; the analysis is made difficult by the fact that both a and yi, are nonlinear functions of
the random element y.

We prove that this happens for a generic y in two cases: when f is separable in Section 8.3, and
when f is purely inseparable, with extra conditions, in Section 8.4; the latter case covers power
series composition with f = x™. In both situations, there is a nonzero polynomial A in n variables
such that the constraints above hold if A does not vanish at the coefficients of y. We choose a
random y, and the probability of failure is again bounded by the Schwartz-Zippel lemma.

We do not have a proof that a generic y satisfies our requirements for an arbitrary f. Our algo-
rithm for the general case proceeds by reduction to the two extreme cases above, separable and
purely inseparable polynomials.

From Monte Carlo to Las Vegas. At this stage, we have a probabilistic algorithm of Monte Carlo
type, that runs in the announced complexity and returns the correct result with a controlled prob-
ability of error. The next question is to modify the algorithm so that it detects and reports the
unlucky choices of y for which its result would be incorrect.

In order to certify the result obtained for a random choice of y € A, it would be sufficient to
check the following properties:

(1) the computed matrix R%’f ) is a basis of relations of Mﬁ;{’f );
(2) the minimal polynomial of y modulo f has degree n;

(3) the computed matrix REZ[’” ") is a basis of relations of Mf;f’” v,

However, we do not know how to check that all the columns of a matrix belong to the ideal
(f(x),y — y(x)) or {u,(x),y — a) in sufficiently low complexity and in a deterministic way. The

matrix R(,,yl’f ) is easier to deal with: as it is expected to behave like in the generic case, its expected
degree structure is known and the matrix can be certified by degree considerations (Item (ii) of
Proposition 5.4, and Proposition 6.1). From there, the minimal polynomial of y can be computed

efficiently via the Hermite normal form of M%’f ), and it remains to check that it has degree n.

The other matrix, R(,Z{’”y), carries more information about a and cannot be expected to behave as

predictably as R%’f ). Our approach is to extract from its columns two small degree polynomials r
and s in K[x, y]. Since only two such polynomials are considered, they can be checked to vanish
at  mod 1, by the Niisken-Ziegler algorithm without affecting the asymptotic cost. Then, these
two polynomials are used to construct a Sylvester matrix that can be used for composition instead

of R(,Z’Hy), without increasing the overall complexity (Algorithm 5.2).

Note. Equivalently, the randomization of our probabilistic algorithm can be seen as a change
of projection. Indeed, let P € K™ have its jth column formed by the coefficients of y/~! rem f.
If y mod f generates K[x]/(f) and M, is the matrix of multiplication by & mod p, with basis
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(1,y,...,y" 1), then the multiplications by & and by a are related by
M, = P~ M,P. (10)

Hence

X"MEX = (XTPYME(PX),
which, for instance, on the right side, leads to considering the first m columns of P instead of X
for projecting. This amounts to kinds of structured projections (VT MXW); 50, i.e. with matrices V
and W in a special proper subset of K™,

1.7 Algorithm for the General Case

The algorithm of Section 1.6 is proved to work when f is either separable, or purely inseparable
(for the latter, with extra conditions that are dealt with in Section 8.4). In Section 9, we address the
general case, by first computing a separable decomposition of f [57], yielding a factorization into
a product into pairwise coprime terms of the form h;(x?" )i, with h; separable and e;, £; integers
(here, p is the characteristic of K).

Working modulo each factor separately, we are thus left with the question of composition mod-
ulo a polynomial of the form h(x?“)¢, with h separable (all such results are eventually recombined
via the Chinese remainder theorem).

For a modulus of the form h(x)¢, van der Hoeven and Lecerf showed how composition can be
reduced to £ compositions modulo A, the computation of an annihilating polynomial modulo A, and
a power series composition at precision ¢ with coefficients in L = K[x]/(h(x)) [34]. We extend
this result to the case of moduli of the form h(x?“)¢ in Section 9.4, involving essentially the same
steps. The first two operations (compositions and annihilating polynomial modulo k) are directly
handled by our results so far, but this is not quite the case for the latter, power series composition
with coefficients in L.

Our algorithms are written assuming they work over a field, as they perform zero-tests and
inversions (compare this with Brent and Kung’s algorithms, for instance, which apply over a ring).
If h is irreducible, L is a field, but if & is only assumed to be separable, then L is only a product of
fields. The dynamic evaluation paradigm [21] explains how an algorithm written for inputs lying
in a field can carry over to inputs in a product of fields, but the original approach induces cost
overheads that go beyond our cost target. Using van der Hoeven and Lecerf’s efficient dynamic
evaluation strategy [37], we show how our algorithm for power series adapts to this situation
(Section 9.2) without affecting the asymptotic runtime.

1.8 Outline

Section 2 introduces some notation and our computational model. Section 3 details baby
steps/giant steps techniques used in our composition algorithm: known ones such as in Brent and
Kung’s composition, and new ones such as for computing truncated powers, which give access to
(XTMXX);.»0. Section 4 studies matrices of relations and how they are used in our composition
algorithm, whereas Section 5 shows how to compute them efficiently by matrix fraction recon-
struction under some assumptions on (f, a, m). Section 6 presents an algorithm for the change of
basis of Section 1.6: it finds the minimal polynomial y, and an inverse composition & such that
a(y) = amod f, under assumptions on (f, y, m). Section 7 studies these assumptions, and in par-
ticular gives precise generic situations where they hold. Section 8 describes our main randomized
composition algorithm and proves its correctness for a separable f and for a purely inseparable
f (generalizing f = x"); then Section 9 handles the general case of composition modulo any f.
Finally, in Section 10, we state resulting complexity improvements for several variants of modular
composition and other related problems.

Journal of the ACM, Vol. 71, No. 2, Article 11. Publication date: April 2024.



11:14 V. Neiger et al.

2 PRELIMINARIES

Notation. In this article, K is an arbitrary field. For bivariate polynomials in variables x and y,
deg, and deg, give the degree in x and in y. For any polynomial or power series p = }; pix', we

use the following notation for a “slice” of it: [p];< = pj + pjs1x + - + pjskx*. The ideal generated
by polynomials fi, ..., fx in an ambient ring (which will be clear from the context) is denoted
by (fi. .. fi)-

Vectors, such as elements of K™ or K[y]™, are seen as column vectors by default; when row
vectors are considered this is explicit in our notation, e.g., K*™ or K[y]""™. We often identify a
polynomial go(y) + - - - + gm—1(y)x™ " in K[x, y]<(m,.) With the column vector (gy --* gm-1)" in
K[y]™ of its coefficients on the basis (1, x, ...,x™") of the K[y]-module K[x, y]<(m,.)-

For a and f in K[x], M, denotes the matrix of the linear map of multiplication by a
in K[x]/{f(x)) with basis (1, x, . ..,x" 1), and p4, resp. x4, denotes the minimal, resp. characteris-
tic polynomial of a in K[x]/{f(x)) (that is, the minimal and characteristic polynomials of M,).

Whenever the context is sufficiently clear, particularly in Sections 4, 5 and 7, notation such
asMﬁ,‘f’f ), vfff’f ) defined in the introduction is shortened into M, V. We keep the superscripts in
important statements.

Computational Model. Our algorithms are written in pseudocode, using standard syntax ele-
ments (for loops, if statements, . ..). Informally, we count all arithmetic operations {+, —, X, +}
and zero-tests in K at unit cost. The underlying complexity model is the computation tree [19,
Section 4.4].

A computation tree over K is a binary tree whose nodes are partitioned into input nodes that form
an initial segment of the tree starting at the root, computation nodes with outdegree 1, branching
nodes with outdegree 2 and output nodes at the leaves. To each node is associated a label. Compu-
tation nodes are labeled by constants in K or operations in {+, —, X, +}, in which case they also
carry references to two previous input or computation nodes; branching nodes are labeled by zero-
tests, referring to some previously computed quantity. Each leaf v is labeled with a sequence of
references (u, . . ., U¢(y)) to previous input or computation nodes. The cost of a computation tree
is its height 7, that is, the maximum length of a path from the root to a leaf.

It then makes sense to evaluate a computation tree at an element of K° — called input to the
tree, where s is the number of input nodes, following a path from the root to a leaf. After the input
nodes, the path is constructed as follows. Each computation node is assigned a value derived from
the label it carries, when it is defined. Otherwise, e.g., in case of a division by 0, the path stops.
At a branching node the path branches left or right depending on whether the value it refers to
vanishes or not. At a leaf v with label (uy, . . ., uz(y)), the output of the computation is the tuple of
the values computed at nodes uy, ..., u). In that case, the computation tree is called evaluable
at the input. Overall, the computation requires at most 7 arithmetic operations in K. An algorithm
is called quasi-linear when the height of its computation tree is linear (up to logarithmic factors)
in the number of inputs. It is called quasi-optimal when this height is linear (up to logarithmic
factors) in the number of inputs plus the maximum number of values returned by the output nodes.

A computation tree takes inputs of fixed length. In order to solve a problem for inputs of ar-
bitrary size and characteristic, we need a family of trees, parametrized by the input size and the
characteristic. Every algorithm we describe using pseudocode in this article, and all algorithms
that we rely on from the literature, can be described by a family of computation trees.

The translation from pseudocode to computation tree is usually rather direct, and as is cus-
tomary in the literature, we do not do it explicitly. In a nutshell, for loops and recursive calls are
“unrolled”; if statements that test whether a computed quantity vanishes yield branching nodes,
and so on. Some operations in our pseudocode may not be directly available in our model (as
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we only allow arithmetic operations in K and zero-test), but they can be rewritten in a way that
complies with our requirements. This is, for instance, the case when we compute the degree of a
polynomial (as in Euclid’s GCD algorithm): this can be achieved by scanning its coefficients, in or-
der of decreasing degree, until a nonzero one is found. We also invoke a result by van der Hoeven
and Lecerf [37] on the transformation of computation trees for directed evaluation in Section 9.2;
the translation from pseudocode to tree also applies to their algorithm.

The families of trees that we build for modular composition with arbitrary degree and character-
istic are uniform, in the sense that an appropriate tree description is generated from the pseudocode
and any given degree n and characteristic p.

We allow our algorithms to return flags (such as Farr, or CERT/NoOCERT). This can be done in
this model, by returning constants in the vector of outputs, such as 1 for FAIL and 0 otherwise.

Finally, several of our algorithms rely on randomization; however, we do not want to introduce
another arithmetic operation for the selection of random field elements. One reason for this is that
the result by van der Hoeven and Lecerf [37] mentioned above is explicitly written in a determinis-
tic model. Instead, “random” field elements are given to our procedures as extra input parameters.

3 SIMULTANEOUS MODULAR OPERATIONS BY MATRIX MULTIPLICATION

A key ingredient in fast modular composition algorithms is to turn the problem into the simulta-
neous evaluation of polynomials of smaller degree, and exploit the structure brought by this si-
multaneity using matrix multiplication. In this section, after reviewing Brent and Kung’s original
algorithm and giving a direct extension of it, we use this idea in two further contexts: Niisken and
Ziegler’s bivariate modular composition algorithm, and the computation of truncations of powers
of the form a* rem f. Both arise in our algorithms, and are bottlenecks in their complexity.

3.1 Brent and Kung’s Algorithm

3.1.1  Modular Composition. We start with a review of Brent and Kung’s algorithm to compute
g(a) rem f, pointing out the impact of rectangular matrix multiplication [41] and how the runtime
depends on the degrees of both f and g [69, Fact 3.1]. This can be seen as an introduction to the
Nisken-Ziegler algorithm, which generalizes this approach to a bivariate g.

PROPOSITION 3.1. Given polynomials f € K[x] of degree n, a in K[x]<, and g in K[y]|4, Algo-
rithm MopULARCOMPOSITION-BRENTKUNG computes g(a) rem f using O((1 + n/d)d“?/?) operations
inK.

Proor. Correctness follows from noticing that at Step 7, b; = gi, +girr1a+- -+ *+gir1r—1a" ' mod
f holds for all i, where g; is the coefficient of degree j in g for all j. The cost of the algorithm comes
from ©(d'/?) multiplications modulo f, which use O(nd'/?) operations in K, and a matrix product
in sizes sxr and rxn, with both s and r in ©(d'/?). This product can be done through [n/d] < n/d+1
matrix products in sizes s X r and r X d, each of which takes O(d?/?) operations in K. O

Note. In the analysis, dividing the matrix product into blocks, as we did, is suboptimal. Us-
ing rectangular matrix multiplication directly, the runtime can be described by the finer estimate
O(d®=vemnog@/2) Here, the notation wy is a feasible exponent for rectangular matrix multiplica-
tion for any real number 6: there is an algorithm that multiplies an n x [n?] matrix by an [n%] x n
matrix using O(n®?) operations [56]. However, this refinement complicates notation, and would
not be of use for our main results. The same remark holds for several other runtime estimates in
this section, such as Lemmas 3.3 and 3.5.
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ALGORITHM 3.1 MopUuLARCOMPOSITION-BRENTKUNG( f, 4, 9)

Input: f of degree nin K[x], a in K[x]<,, g in K[y] 4
Output: g(a) rem f
1r e [d/?*,s « [d/r]
2: &0 —1
3 fori=1,...,rdod; < a-d;_rem f >d; = a' rem f
4

: A « matrix (coeff(d;, j))o<i<r in K" > coefficient of degree j of d;
0<j<n
5: G «— matrix (coeff(g, ir + j))o<i<s in K"
0<j<r
6: B = (bi,j)O§i<s «— GAin stn
0<j<n
7. fori=0,...,s—1dob; < bjog+ -+ bjp_1x""

8: return by + b1d, + -+ bs_1a57 rem f > Horner evaluation

1

ALGORITHM 3.2 PowERPROJECTION(f, a,d, (i)o<i<n)

Input: f of degree nin K[x], a in K[x]<p,, din N, (r;)o<i<n in K"
Output: (£(1),£€(a), ..., ¢ mod f)), with £(by + - -+ + bp_1x"") = robg + - - - + Fp_1bn_1

3.1.2  Power Projection. The transposition principle implies the existence of an algorithm
PowEeRPRrROJECTION with the same asymptotic runtime as Algorithm MoDULARCOMPOSITION-
BRENTKUNG and with the following signature [69].

Whereas seeing the details of Algorithm MopuLARCOMPOSITION-BRENTKUNG is useful as a pre-
amble to the Niisken-Ziegler algorithm, Algorithm PowERPROJECTION only plays the role of a
subroutine in one other algorithm given just below. Moreover, giving its pseudocode would re-
quire us to introduce concepts such as transposed product, that would not used any further in
this text. We refer the reader to Reference [71], which gives all details but uses classical matrix
arithmetic (with w, = 4), so the runtime of that version is O(d? + nd) instead of O((1 + n/d)d®2/?).

3.1.3  Small Minimal Polynomial. Modular composition can be sped up when the minimal
polynomial p, of a modulo f has degree at most d, for some (small) integer d < n. To com-
pute g(a) rem f, the idea is that once p, is known, § = ¢ rem p, can be computed, and then
g(a) = g(a) mod f (see e.g. [35, Section 4.1]). The computation of the latter by Proposition 3.1
benefits from g having degree less than d.

It remains to discuss how to compute p,. Here, we follow an algorithm of Shoup (the deter-
ministic version, for f irreducible, is in [69, Theorem 3.4]; the randomized one is in [70, Sec-
tion 4]). We take a random linear form ¢ : K[x]/{f) — K and compute the sequence (£(a* mod
f)o<k<24- With high probability, its minimal polynomial is i,; the algorithm verifies whether
it is the case, and returns either a correct result or FAIL. In Algorithm MopuLARCOMPOSITION-
SMALLMINIMALPOLYNOMIAL, 1, is computed using an Extended Euclidean scheme called Min1-
MALPOLYNOMIALFORSEQUENCE [26, Algorithm 12.9].

The following lemma analyses the runtime of this procedure, and the probability of success. As
per our convention at the end of Section 2, the “random” linear form ¢ is actually given as an
argument, through the vector (o, . ..,r,—1) € K" of its coefficients.

LEmMA 3.2. Given f € K[x] of degree n, a in K[x]<pn, g in K[yl<,, d in{1,...,n} and (ri)o<i<n
in K", Algorithm MopuLARCOMPOSITION-SMALLMINIMALPOLYNOMIAL uses O(nd“2/?=1) operations
in K and returns either g(a) rem f or FAIL. If p, has degree at most d, and the entries of (r;)o<i<n
are chosen uniformly and independently from a finite subset S of K, then with probability at least
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ALGORITHM 3.3 MoDULARCOMPOSITION-SMALLMINIMALPOLYNOMIAL( f, 4, g, d, (7i)o<i<n)

Input: f of degree nin K[x], a in K[x]<,, gin K[y]<pn, din {1,...,n}, (ri)o<i<n in K"
Output: g(a) rem f or FAIL
t: (vg, ..., U24-1) < POWERPROJECTION(f, a, 2d, (r;)o<i<n)
[ — MINIMALPOLYNOMIALFORSEQUENCE(vy, . . . , Uag—1)
t « MobpuLARCOMPOSITION-BRENTKUNG(f, a, ;1)
if t # 0 then return FarL
else return MopULARCOMPOSITION-BRENTKUNG( f, a, g rem p)

1 — n/card(S) the algorithm returns g(a) rem f and computes y, as a by-product. If i, has degree
more than d, the algorithm returns FAIL.

Proor. For any given a in K[x]|<, and (ro, ..., r,-1), the algorithm computes a polynomial p
and tests whether p(a) = 0 mod f; if it is the case, it reduces g modulo p before doing a modular
composition. Hence, the output may only be g(a) rem f or Fa1L, as claimed; it is FArL if and only
if the value t at Step 3 does not vanish.

By the discussion in Section 3.1.2 and Proposition 3.1, the call to POWERPROJECTION takes O((1+
n/d)d“»/?) operations in K; because we take d < n, this is O(nd“>/?-1). Step 2 then computes a
nonzero annihilating polynomial of degree at most d in O(d) operations in K [26, Algorithm 12.9].
The remaining lines call Algorithm MopuLARCoMPOSITION-BRENTKUNG with a last argument of
degree at most d, so the cost is é(nd(”’zm_l) again; this establishes the claim on the runtime.

Suppose first that p, has degree greater than d. Then since deg(y) < d, p(a) rem f cannot be
zero, so the output is FAIL, as claimed.

Finally, suppose that the minimal polynomial y, has degree at most d and that the entries of
(ri)o<i<n are chosen uniformly at random and independently from a set S in K. With M, the multi-
plication matrix by a mod f and 1 the vector (1,0, ..., 0), the sequence (MX 1)z is (a* rem f)io
and the sequence ((r;)"MX1); 5 is (€(ak mod f))xs. Following the probabilistic analysis of Wiede-
mann’s algorithm [46, Lemma 2; 47, Lemma 1], the probability that their minimal polynomials
coincide is at least 1 — n/card(S). When this occurs, Step 2 computes y,; the value t at Step 3 is
then zero, and the output is g(a) rem f. O

The main idea in this algorithm—computing an annihilating polynomial for a and using it to
reduce g — is actually at the core of our main algorithm as well. Key differences are that we compute
several annihilating polynomials (which we call relations), and use them to reduce g into a bivariate
polynomial. We then apply Niisken and Ziegler’s extension of Brent and Kung’s algorithm, which
we present now.

3.2 Bivariate Composition

Here we describe the Niisken-Ziegler algorithm for modular composition [63], which computes
g(x,a) rem f for a bivariate g in K[x, y].

First, however, we address the following question: given f of degree n in K[x], a in K[x]<, and
an s-tuple (go, . . ., gs—1) in K[x, y]i(m’r), compute all compositions

(go(x,a) rem f, ..., gs—1(x,a) rem f) € K[x]°.

The solution designed by Niisken and Ziegler [63] boils down to a multiplication of polynomial
matrices. Writing the polynomials g; as the rows of their coefficients in y gives an s X r matrix G
whose entries are polynomials in K[x],. Writing the powers of 1,a,...,a ™! rem f in a column
vector A reduces the simultaneous composition to a matrix-vector product GA. This is turned into
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ALGORITHM 3.4 SIMULTANEOUSBIVARIATEMODULARCOMPOSITION(f, 4, 4o, - - - » Js—1, M, T)

Input: f of degree nin K[x], a in K[x]<,, (9o, - - -, gs—1) in K[x, y]i(m "
Output: (go(x,a) rem f,...,gs_1(x,a) rem f)

1: ﬁo — 1
2. fori=1,....,r-1dod; < a-d;—y rem f >d; = a' rem f
3: A « matrix ([al]]m )0<l<r in K[x]rxr"/m]

0<j<[n/m]
4: G « matrix (g; j(x))1<i<s in K[x]
0<j<r
5: = (B1])0<l<7 — GA
0<j<n/m] ]
6: fori=0,...,s —1dob; < (Xo<j<rn/m) Bi,jx'™) rem f
7: return (bo, ey bsq)

SXr

2 where g;(x,y) = X 9, j(x)y/

a matrix-matrix product by spreading the coefficients of A as follows. If

gitey) = D) g0,

0<j<r
then computing the product
Goox) - gora(x) \[ La’rem FIFTH e [t rem fIEE
B=| z z z
gs-1,0(x) -+ gs—1,r-1(x) [@"" rem f](r)n—l - [@" rem f]zrf,_,/lm"_l)m

yields a matrix whose entry B; ¢ is

Bir= ). gij(ld rem fI70.

0<j<r

Summing the Bi,gx{’)m modulo f, for £ = 0,...,[n/m] — 1, then provides g;(x, a) rem f for i =
0,...,s—1atlow cost. This is detailed in Algorithm 3.4 and Lemma 3.3.

LEmMA 3.3 ([63, LEMMA 10(iii)]). Algorithm SIMULTANEOUSBIVARIATEMODULARCOMPOSITION cOMm-
putes (go(x,a) rem f,...,gs_1(x,a) rem f). Assuming s € O(r), it uses O(c(n,m,r?)) = O((m +
n/r?)r®z) operations in K, with c(-) from Equation (2).

Proor. Steps 1and 2 use O(rn) operations. Similarly, for each i = 0,...,s—1, Step 6 uses [n/m]
additions in O(m) operations each and one reduction in O(m + n) operations. The total cost of
Step 6 is thus O(s(n + m)).

Steps 3 and 4 do not use any arithmetic operation. The most expensive step is Step 5, the product
of an s Xr matrix by an r X [n/m] matrix, both with entries in K[x] <. Using the same kind of block
decomposition as in Propos1t10n 3.1, this is done using [[n/m]/r*] € n/ (er) + O(1) products in
sizes s X r and r X r%. With the assumption s € O(r), each of them uses O(mr®?) operations in K,
for a total of O(c(n, m, 7)) = O((m + n/r’)r:) operations in K.

The other steps, in O((r+s)(n+m)) = O(rm+rn), are at most of the same order, since w, > 3. O

Algorithm SIMULTANEOUSBIVARIATEMODULARCOMPOSITION is the central step in bivariate com-
position as showed in Algorithm BivARIATEMODULARCOMPOSITION, leading to the complexity
stated in Proposition 3.4.
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ALGORITHM 3.5 BIvARIATEMODULARCOMPOSITION( f,a,g)  (Nusken-Ziegler algorithm [63])

Input: f of degree n in K[x], a in K[x] <, g in K[x, y]<(m,a)
Output: g(x,a) rem f
tr e [dV?, s « [d/r]
2: Write g(x,y) = go(x,y) + g1(x, Y)y" + - - - + gs_1(x, y)y" "~V with deg,(9i) <rfor0<i<s

3: (bg,...,bs—1) <= SIMULTANEOUSBIVARIATEMODULARCOMPOSITION(f, @, go, - - - » §s—1, M, T)

> b; = gi(x,a) rem f
4 d<«a rem f > is computed in the previous step
5. return by + b1d + - - - + bg_1457! > Horner evaluation

ProrosITION 3.4 ([63, THEOREM 9]). Given f € K[x] of degree n, a € K[x]<n, g in K[x, y] <(m, ),
Algorithm BIVARIATEMODULARCOMPOSITION computes g(x, a) rem f using O(c(n, m,d)) = O((m +
n/d)d»/?) operations in K, with c(-) from Equation (2).

Proor. The correctness of the algorithm is straightforward. For the complexity analysis, we
first note that s ~ r ~ d'/2. Lemma 3.3 then shows that the complexity of Step 3 is O(c(n, m, r?)) =
O(c(n, m, d)). The other task involving arithmetic operations is the final Horner evaluation which
costs O(rn). As in the proof of Lemma 3.3, this is smaller than the other part, since w, > 3. O

3.3 Sequence of Truncated Modular Powers

Another key ingredient in our composition algorithm also relies on polynomial matrix multipli-
cation. To our knowledge this is a new algorithm, whose properties are summarized in the next
lemma.

LEMMA 3.5. Given f of degree n in K[x], (po, . .., pr-1) in K[x]Z,, (o, - - .. qs—1) in K[x]%, and
m € N, Algorithm SIMULTANEOUSTRUNCATEDMODULARMULTIPLICATION computes the simultane-
ous truncated modular multiplications

{[pigj rem FI;" 1 |0 <i<r,0<j<s}
Ifse O(r), it uses O(c(n, m, r?)) = O((m + n/r¥)re2) operations in K, with ¢(-) from Equation (2).

The basic approach to this problem is to first compute all the products p;q; modulo f and then
truncate the computed polynomials. However, this produces an intermediate result of size nrs,
which is ©(nr?) when s is in ©(r), and is larger than our target complexity.

Hereafter, we use the reversal of a polynomial p € K[x] with respect to m € N defined by
rev(p, m) = x™p(1/x); when m = deg(p) this is the classical reciprocal of the polynomial p.

Proor. For all i < randj < s, let p;q; = hi;f + r;j, with deg(r; ;) < n, be the Euclidean
division of the product p;q; by the polynomial f. The main task of the algorithm is to compute
the truncated quotients [h; ;7" (Steps 1 to 5); from there, the truncated remainders [r; ;]7"~! are
easily obtained (Step 6) at a total cost of O(mrs) operations.

For the efficient computation of the quotients h; ;, we rely on the classical approach via recipro-

cals and power series operations. More specifically we use the identity
rev(p;,n — 1)rev(gj,n—1)
rev(f,m)

obtained by evaluating p;q; = h; ; f +ri j at 1/x and multiplying by x" 2/ f(1/x) = x*"~2/rev(f, n);
here we have p; = rev(p;,n — 1) and ¢; = rev(gj,n — 1)/rev(f, n) rem x""!, as in the pseudocode.

rem x"~' = p;g; rem x" ",

rev(h;j,n—2) =
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ALGORITHM 3.6 SIMULTANEOUS TRUNCATEDMODULARMULTIPLICATION( f, (Pi)i<r, (j)j<s, M)

Input: f of degree nin K[x], (po, ..., pr-1) in K[x]Z,, (qo, - - -, gs—1) in K[x]% ,,, m € N5

Output: ([piq; rem f]gl_l)SE"-ZQ

(L, t) «— (quotient,remair;der) in the Euclidean divisionn—-m—1={m+twith{ =0ifm > n
:fori=0,...,r—1do p; < rev(p;,n—1)

: forj=0,...,5s—1do q; < power series expansion rev(q;,n — 1)/rev(f, n) rem x
: Form the matrices

Py (Uplfusisy © KlxIZ

n-1

=W N =

rx(€+1) ]rxf

Py ([pz]jm+t)0<1<r € K[x

(note that P, is the r X £ left submatrix of P;), and

Q1 « (g1} m>o<,<z e KIx]G 0p e ([g1mL wsice € Klx 126
(€-i) ( )
_ _ -1
s H o [P+ (PaQalin ™ + (130 a1 o, = (hi,j)ij is in K[x]'25,
0<j<s

6: fori=0,...,r—1landj=0,...,s—1dor;; < (pigj — rev(h; j,m — 1)f) rem x™

7: return (r,])0<1<r
<j<s

The idea of our algorithm is to compute only the last m coefficients of this expansion by means of
two polynomial matrix multiplications.

For any t € {0,...,m — 1}, for any polynomials a, b written as
a=lalf" +x Z a;x"™ with deg(a;) <m, b= Z b;x’™ with deg(b;) < m,
i>0 j=0

and for any positive integer ¢, one has
m—1 m—1

[ablpnt, = | >, aiby|  +| D) aby| [l el (11)

i+j=t 0 i+j=(-1 m

(The last summand is a product of small degree polynomials that is 0 when t = 0.) We use this
formula with ¢ and t as defined in Step 1, so that the left-hand side is [ab]})"", _,; applying this to
a=p; and b = g, gives h; ; = [rev(h; j,n —2)]™-1 ., and thus [h; ;]]*"" by reversal.

Since £ ~ n/m, using this formula for a single pair i, j requires O(n) operations in K and thus
is as costly as computing p;g; rem x". In our algorithm, the gain comes from using this formula
simultaneously for several products, in which case matrix multiplication helps.

The first multiplication in Step 5 is the matrix product

[pol™t - [Po],, mor \(l@oliet e [gsalpt

[P_r—l];rhl e [P_r—l]nm:,:l_l [%]6"_1 o [%—1]6"_1
Its entries are the first summand in Equation (11) fora = p; and b = gj,for0 < i <rand0 < j <s.
Similarly, the second summand in Equation (11) is obtained from the matrix product

[ﬁo]i"‘l o [Pl Z(m 1 [QO](Y;:})m [QS—I](r?):})m
[pr 1]m ! [pr—l]:ln:zl(m,l) [%]6”_1 o [QS—I]Sn_l
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ALGORITHM 3.7 TRUNCATEDPOWERS(f, a, b, m, d)

Input: f of degree nin K[x], a and b in K[x],, m and d in N
Output: the truncated powers [ba* rem flrtforo<k<d

tr e [d/*;s « [d/r]
2 dp < L;fori=1,...,rdod; < a-d;—; rem f >d; =a' rem f
3: 4y «—b;forj=1,...,s—1doa; < d,-aj—; rem f >aj = ba/" rem f
4: (Ci,j)osi<r —
0<j<s
SIMULTANEOUSTRUNCATEDMODULARMULTIPLICATION(f, do, . . - , Gr—1, Ggs - - -, As—1, M)
5: fori=0,...,r—1andj=0,...,5s=2dori,j < c;;

fori=0,...,d = 1-(s—1)r dorii,(s—1) < Cis-1
6: return (rr)o<k<d

In terms of complexity, the multiplication P;Q; involves r X (£ + 1) and (£ + 1) X s matrices, while
P,Q, involves r X £ and £ X s matrices; all four operands have degree less than m.

Since ¢ = |(n — 1)/m] — 1, we have £ + 1 < n/m, so each matrix product can be done using at
most [n/(mr?)] < n/(mr?) + 1 products in sizes r x r? and r? X 5. Since s € O(r), each of these take
O(mr?), for a total cost of ¢(n, m, %) = O((m + n/r¥)rez).

The other operations performed by the algorithm are O(r) power series expansions at precision
n — 1 in O(n) operations each (precisely, one inverse and t multiplications, see Step 3), and O(r2)
power series expansions at precision m in O(m) operations each (precisely, at most 3rs multipli-
cations and rs subtractions, see Steps 5 and 6). This amounts to a total of O(nr + mr?) operations,
and can thus be neglected, since w, > 3. O

Using simultaneous truncated modular multiplication combined with a baby steps/giant steps
strategy leads to Algorithm TRUNCATEDPOWERS, with the following properties.

ProrosITION 3.6. Given f in K[x] of degree n, a and b in K[x]<,, m and d in N, Algorithm
TRUNCATEDPOWERS computes the truncations

[a*b rem flr, 0<k<d
using O(c(n, m, d)) = O((m + n/d)d“?/?) operations in K, with c(-) from Equation (2).
g O(c( P q

Proor. The algorithm computes 1,q,...,a" ! rem f and b,ba’,... ,bats™Dr rem f, which
costs O(nr) operations in K since r ~ s. From these two sets of polynomials, Algorithm
SIMULTANEOUS TRUNCATEDMODULARMULTIPLICATION is then used to compute [ba* rem f Jo=1 for
0 < k < rs — 1 using O((m + n/r?)r®2) operations, by Lemma 3.5; since w, > 3, this is larger than
O(nr). The choice of s makes (s — 1)r < d < rs, so the output consists of the terms k = i + rj for
j<s—landi<r,andforj=s—landi<d—-(s—1re{1,...,r} O

Finally, Algorithm BLoCKTRUNCATEDPOWERS computes truncations of products of the form
x'a* rem f, which are needed in our composition algorithm; here, we assume that £(0) is nonzero
(see Remark 3.8).

PROPOSITION 3.7. Given f in K[x] of degree n with f(0) # 0, a in K[x]<,, m and d in N5,
Algorithm BLOCK TRUNCATEDPOWERS computes

[xiak remf]g’_l, 0<i<m 0<k<d
using O(c(n,m,d)) + O(m?*d) = O((m + n/d)d®*/*) + O(m*d) operations in K, with c(-) from
Equation (2).

Journal of the ACM, Vol. 71, No. 2, Article 11. Publication date: April 2024.



11:22 V. Neiger et al.

ALGORITHM 3.8 BLocKTRUNCATEDPOWERS( f, a, m, d)

Input: f of degree n in K[x], with fy = f(0) # 0, a in K[x]|.,, m and d in N
Output: the truncated powers [x’a* rem fltforo0<i<mand0 <k <d

1: (rk)o<k<d < TRUNCATEDPOWERS(f, @, x™ ! rem f,2m — 1,d) >y = [xrrE—lak](Z)m—Z
2. fun < coeff(f,n) > leading coefficient
3: fork=0,...,d—1do

4 Am—1,k < Tk

5: fori=m-1,...,2,1do

6: ¢ — —a;(0)/fo

7: ai-1,k < (@i + C[f](r)n+i_l)/x >aj_j | = [xi~1ak rem f7 |m+i=2

8: return ([ai,k](’)"_l)ogmm
0<k<d

PrOOF. Proposition 3.6 shows that the first step computes the sequence [x™'a¥]2m~2 for k =

0,...,d—1inthe announced complexity. The remaining truncations are obtained from the identity
. i1 p 1 .
[xp rem flj = x[p rem fl~ - ;—[f]f),
n

for any integer j and polynomial p, where p,_; is the coefficient of degree n — 1 of p rem f and
fn is the coefficient of degree n in f. If we know [xp rem f ]0, we get —pn_1fo/ fn as its constant
coefficient, whence p,_; since fy # 0 and from there [p rem f ] ! is easily obtained. At iteration

k of the loop at Step 3, the truncation [x™ 'a* rem flam2
all [x™"1g* rem f]2™~27" for 1 < i < m in O(m?) operations. Thus this loop has a total cost of

O(m?d) operations. o

computed previously is used to deduce

Remark 3.8. The assumption f(0) # 0 is harmless in the context of modular composition:
in the computation of g(a) rem f, one can rather evaluate g(y) at a(x + ¢) modulo f(x + ¢)
for a randomly chosen ¢ € K, and unshift the result. See Steps 3 and 12 in Algorithm
MoDULARCOMPOSITIONBASECASE.

3.4 Notes

3.4.1 Linear Algebra Interpretation. Representing polynomials by their vector of coefficients
leads to viewing the operations performed by Algorithms BIvARIATEMODULARCOMPOSITION and
TRUNCATEDPOWERS as computing the product of special matrices by column vectors. Recall the
notation M, for the n X n matrix of multiplication by a mod f in the basis (1, x, ..., x" 1), and X
for the matrix (I,, 0)T € K™™ with m € {1,...,n}. Then, Algorithms BIVARIATEMODULARCOM-
POSITION and TRUNCATEDPOWERS correspond, respectively, to multiplication by

XT
KO = (X o METX) ex™m) and [0 =| 1 fegmdn, (12)
XTMd—l
a
Indeed, K| (a f ) is the matrix of the mapping K( f ) of bivariate modular composition with bounded

degrees, as computed by Algorithm BIVARIATEMODULARCOMPOSITION

O K x ylagmay — Klx]<n

g(x,y) — g(x,a) rem f.
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On the other hand, L( f ) represents the mapping /1( f ) that extracts the low- degree part of multi-
plications by powers of a, as computed by Algorlthm TRUNCATEDPOWERS:

Aed)  Klxl<n — Kx]4,,
b ([brem f177, ..., [ba® " rem £]7).

These maps and matrices play an important role in the study of the generic behavior of our algo-
rithm starting from Section 7.

3.4.2 Complexity Equivalence. Proposition 3.4 (Algorithm BrvARIATEMODULARCOMPOSITION)
and Proposition 3.6 (Algorithm TRUNCATEDPOWERS) give similar complexity bounds for the evalu-

(a, f ) and A(a /) but the computational equivalence of these problems, possibly up to some

ation of K,
condltlons 1s is stlll unclear to us in general.
However, for m = 1, when f(0) # 0, these two problems are indeed equivalent. This is a conse-

quence of the transposition principle in an indirect way, starting from the equality
L(lfl;lf) — (M K(af))Tl,

where v}, is the vector associated to b, M}, is the matrix of multiplication by b mod f, and 1 is
the first canonical vector. First, this equality gives a way to evaluate A(la;lf ) for the cost of one

multiplication by M; (i.e., O(n) by the transposition principle), plus one multiplication by the
transpose ofK;a;lf) Kia;lﬁ

, which has the same asymptotic cost as that of itself, by the same principle.

Conversely, if v = M; 1, the equality reads (K E“r’lf Ny = L(f;lf '0, s that, again by the transposition

(a f ) 2ef)

principle, the evaluation of k; 7 reduces to that of A, };* provided v, can be computed from v in

low complexity. When f(0) i 0, this can be done in O(n) by solving a linear system of Hankel
type [71, Section 3].

If £(0) = 0, it is unclear whether such a reduction holds: in the special case f = x", the map
A(la;f ) becomes much simpler, as it simply computes the sequence afb, for 0 < i < d, where a, and
by are the constant coefficients of a and b. This only requires a linear number O(d) of operations.
On the other hand, x; 4 is the composition of a univariate polynomial g(y) of degree less than d
with the power series a(x) and no quasi-linear complexity result is known for this operation.

3.4.3 Transposition of the Niisken—-Ziegler Algorithm. Finally, we discuss a different approach
to Algorithm BLockTRUNCATEDPOWERS, which actually bypasses Algorithm TRUNCATEDPOWERS
altogether, and uses the transpose of Algorithm BivARIATEMODULARCOMPOSITION instead.

Algorithm BLocKTRUNCATEDPOWERS computes the m X m projections Hy = X' M« X, for k =
0,...,d — 1, using the fact that for k < d, Hy can be deduced in o(m?) operations (for loop at
Step 5) from the column vector X"M_«u of size 2m — 1, where X = (I;,,_; 0)7 € K@m=DXm and y is
the mth column of X, i.e., the mth canonical vector (Step 1). (Here, we have taken m < (n +1)/2.)
Algorithm TRUNCATEDPOWERs computes the vectors X M¥u for 0 < k < d using O(c(n, m,d))
operations.

Alternatively, we can consider a recursion similar to the one in the proof of Proposition 3.7, but
now for learning a new coefficient of a polynomial rather than a coefficient of a new polynomial.
Assuming f(0) # 0, for a polynomial p one has

[xp rem £1%,, = [p rem 19 + (c/ fo)[f1%41.

where c is the coefficient of degree 0 of xp rem f: we see that from the row vector 1" M, m:1 4 X,
one can also deduce Hy = XM« X using O(m?) operations.
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Now, if we set v = M, 1, computing vTKila’ZQ _, precisely gives all vectors 1"M,-m:1 X,

x—m+1 >
for 0 < k < d. Since v can be computed in quasi-linear time, the application of the trans-
position principle to Algorithm BivaARiATEMoODULARCOMPOSITION shows that these vectors can
be computed using O(c(n, m,d)) operations. Altogether, this gives an alternative to Algorithm

BLOoCKTRUNCATEDPOWERS with the same asymptotic complexity.

4 MATRICES OF RELATIONS FOR COMPOSITION

The heart of our algorithm for finding g(a) rem f is the computation of a matrix of relations, which
gives a collection of polynomials of small degree in the ideal J generated by y —a and f in K[x, y].
For a given positive integer m, these polynomials are in the K[y]-module Mgf:’f ) obtained by degree
restriction as 7 N K[x, y]<(m, )-

In Section 4.1, we show that the invariant factors of Mﬁ,?’f ) are the m invariant factors of highest
degree of the characteristic matrix yI,, — My, where M, is the matrix of multiplication by a mod f.
Once a matrix of relations has been obtained, it can be used to perform composition by reducing
univariate composition to a small bivariate composition problem; this is described in Section 4.2.
Finally, in Section 4.3, the results of this section are applied to the efficient computation of annihi-
lating polynomials for a modulo f.

In all of Section 4, notation such as Mg,‘f’f ) and Vf,f’f ) is shortened into M,,, and v,,, except for
the main definitions and statements, as there is no ambiguity as to the dependency on a or f.

4.1 Structure of the Module of Relations

This section introduces the module of relations Mﬁ,ﬁ"f ) and relates it to the characteristic matrix.
4.1.1  Definitions.

Relations. We call relations the polynomials of the ideal 7 = (y — a(x), f(x)) of K[x, y]; these
are the bivariate polynomials r(x, y) such that r(x,a) = 0 mod f, i.e., they are algebraic relations
satisfied by a mod f. We are interested in those relations whose x-degree is bounded from above
by a given positive integer m. They form the K[y]-module

M = {r(x,y) € KL, ylagm, | r(x.0(0)) = 0 mod £} = T 0 KLE, Yl<m,

which is denoted M,,, when a and f are clear from the context.

This is a K[y]-submodule of K[x, y]<(m, ), itself a free K[y]-module with basis (1,x,...,x™");
we refer to [23, Part III] for basic notions of module theory and modules over principal ideal
domains. As stated in Section 2, we often identify a polynomial ry(y) + -+ + rp_1(y)x™ ! in
K[x, y]<(m,.) with the column vector (r; --- rm-1)" in K[y]™ of its coefficients on that basis.
Since K[y] is a principal ideal domain, M, is free as well, and it has rank m since it contains
1aK[y]™, where yu, is the minimal polynomial of a mod f.

In terms of ideals, there is a chain of inclusions {0} = (M) C --- € (M,41) = I; the latter
identity follows from the fact that y—a and f have x-degree less than n+ 1. Furthermore, M; # {0}
since p, belongs to 7 N K[y]. For small m, the module M,, may not contain all the information
in 7 : the inclusion (M,,) C I can be strict.

Matrix and basis of relations, determinantal degree. A matrix of relations of M, is any nonsin-
gular matrix in K[y]™ whose columns are elements of the module M,, (represented as column
vectors). Such a matrix is further called a basis of relations if its columns generate M,,; all bases
of relations of M, can be obtained from any single one of them via right multiplication by an uni-
modular matrix in K[y]™*™, i.e., a matrix whose determinant is in K\ {0}. It follows that any matrix
of relations of M,, is a square, nonsingular right multiple of any basis of relations of M,,, and,
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therefore, bases of relations are exactly the matrices of relations whose determinant has minimal
degree. This degree is called the determinantal degree of the module M,.

4.1.2  Relation to Invariant Factors. As a finitely generated module over a principal ideal domain,
M., has an invariant factor decomposition. The next result shows that these invariant factors can
be found in any triangular basis of M,,, and that the largest of these factors is precisely p,, the
minimal polynomial of a modulo f. It also relates the degrees of these factors to the quantity V,(,‘,l )
(written more simply as v, when context is clear), already highlighted in Equation (8), and which

plays an important role in the analysis of our approach.

PROPOSITION 4.1. Let B be an upper triangular basis ofMﬁZ’f) for some m > 1. Then its diagonal
entries are the invariant factors ofMﬁZ’f), up to multiplication by nonzero elements of K. A number
k < min(m, n) of these invariant factors are nontrivial, and these nontrivial ones are the k invariant
factors of highest degree of the characteristic matrix yI, — M,, which is a basis of relations ofMﬁ,a’f).
The determinantal degree ofMgs’f) is the sum vﬁf’f) of the degrees of these invariant factors, hence

it satisfies min(m, n) < vfrf’f) <n.

4.1.3  Proof of Proposition 4.1. Our proof relies on Lazard’s structure theorem [54] on lexico-
graphic Grobner bases in K[x, y]. Here, the degree of a zero-dimensional ideal 7 c K[x, y] is the
dimension of the K-vector space K[x, y]/Z.

LEMMA 4.2 (LAZARD’S STRUCTURE THEOREM FOR BIVARIATE IDEALS). Let I be a zero-dimensional
ideal of degree n in K[x, y]. Any minimal Gréobner basis of I for the (y < x)-lexicographic order has
the form {ro(y)hi(x, y), i hi-1(x, y), . . ., re(y)ho(x,y)} for some k > 1, where

re =hr =1

n > deg(rg) > - -+ > deg(ry) =0

n > deg, (hg) > --- > deg,(ht) =0

for0 < i<k, r; € K[y] is divisible by riy

for0 <i <k, h; € K[x,y] has leading monomial a power of x.

Proor. The form of a minimal Grobner basis of I is given by Lazard’s result [54, Theorem 1].
The additional assumption that I is zero-dimensional ensures that this Grobner basis contains
a polynomial whose leading term is a power of y, hence hy = 1, and one whose leading term
is a power of x, hence ry = 1. Since 7 has degree n, there are precisely n monomials that are
not multiples of the leading monomials of {rihx_; | 0 < i < k}. These leading monomials are
{xdegx(h—i)ydee(ri) | 0 < i < k}, whence the bounds deg(r) < n and deg. (ho) < n. O

COROLLARY 4.3. With the same notation, when I = (f,y —a) and m > 1, a basis ofof,"f> =
I NK[x,yl<(m,.) is given by the first m polynomials in the sequence
(T rohi)osj<ses - - - » (X Ti1h1)o<j<s,s (X7 ho) 0. (13)
where §; = deg, (hj—1) — deg,(h;). If s = deg, (ho) = 61 + - - - + Ok, the nontrivial invariant factors of
Mg,'f’f) are the first min(m, s) polynomials in

(FosevosToy s ThotsensThot)- (14)
——— ~—— ———
6k 51

Proor. The polynomials in the sequence in Equation (13) form a (nonfinite) Grébner basis of
7, made of polynomials of x-degree 0, 1, 2, . . . respectively [54, Proposition 1]. By design, the first

Journal of the ACM, Vol. 71, No. 2, Article 11. Publication date: April 2024.



11:26 V. Neiger et al.

m elements in this sequence belong to M,,, and considering their x-degrees shows that they are
K[y]-linearly independent.

Any polynomial p(x, y) € M, is a K[y]-linear combination of the first m of these polynomials.
Indeed, it can be divided by the Grébner basis with a remainder equal to 0; in view of its degree
in x, only these m polynomials are involved in the division. This proves the claim on the basis
of M,, described in Equation (13).

The matrix T(y) € K[y]™™ representing this basis (with basis elements written in columns)
is upper triangular, with its first min(m, s) diagonal entries being the first min(m, s) polynomials
in Equation (14) in this order, and with its remaining diagonal entries being nonzero elements of
K. Furthermore, each of these diagonal entries divides all other entries in the same column, hence
the Smith normal form of T(y) has the same diagonal entries as T(y), which proves the claim on
the invariant factors of M,,. |

PrOOF OF PROPOSITION 4.1. Corollary 4.3 implies that the determinantal degree v, of M,, is the
sum of the degrees of the elements of the first min(m, s) elements of Equation (14). It follows that

Vm < O deg(ro) + -+ - + 01 deg(re—1) = n,

where the last identity comes from considering the K-vector space dimension of K[x,y]/7. If
s < m, all the nontrivial invariant factors appear and the bound is reached, while otherwise m < s
and deg det(B), being the sum of the degrees of m nonconstant polynomials, is at least m.

If B is a basis of M,,, then there exists an unimodular matrix U € K[y]™™ such that UB = T
with T as in the previous proof. If, moreover, B is upper triangular, then so is U and since
det(U) € K\ {0}, the diagonal entries of U belong to K \ {0}. It follows that B has the same
diagonal entries as T up to multiplication by nonzero elements of K.

The columns of the characteristic matrix yI, — M, represent the polynomials x*(y — a(x)) rem f
for 0 < k < n, making this matrix a matrix of relations of M,. It has determinantal degree
deg(ya) = n, which coincides with the determinantal degree of M,,, by the previous inequalities.
Thus ylI, — M, is actually a basis of M, and its invariant factors are given by the previous
paragraph. O

4.1.4 Note. For m € {1,...,n}, the module of relations M,, is isomorphic to the module of
vector generators for the matrix sequence {M*X},+,, where X = (I, 0)7 € K™ as above (this
elementary fact is established within the proof of Lemma 5.2, for instance); the bases of relations
are the minimal generating polynomials for that sequence [50, 74].

The relation between Coppersmith’s block Wiedemann algorithm and invariant factors of a char-
acteristic matrix was described by Kaltofen and Villard: they show that for generic projections V
and W in K" and K"™™, with £ > m, the invariant factors of minimal generating polynomial of
the sequence (VTA*W);s are the m invariant factors of largest degree of the characteristic matrix
yl, — A [50, Theorem 2.12]. In our more specific setting, Proposition 4.1 shows that this relation
holds when the right projection is the structured matrix X (see also Section 5.1.4).

4.2 Composition using Matrices of Relations

Matrices of relations are used to reduce the univariate problem g(a) rem f with g € K[y], to a
bivariate one with better degree properties, thanks to a matrix division.

4.2.1  Division for Polynomial Matrices. If R is a nonsingular matrix in K[y]™*™ and v, is a
vector in K[y]™, then there exist quotient and remainder vectors w and vg such that
vy = Rw + vg, (15)
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ALGORITHM 4.1 BivARIATEMODULARCOMPOSITIONWITHRELATIONMATRIX( f, g, g, R)

Input: f of degree n in K[x], a in K[x]<,, g in K[x, y]<(m, ),
R € K[y]”}™ a matrix of relations of Mﬁr‘:’f )
Output: ¢(x,a) rem f

1: Write g(x, ) = go(y) + g1(y)x + - - - + gm-1(y)x™ " and set vy «— (go - - “gm-1)" € K[y]™
2: > Computev € K[y]™ andr € K[y ] y] using [80, Algorithm 1]

€ K[y]™*! « MINIMALNULLSPACEBASIS(R  —vy),(d, ..., d, degy(g)))

3: v5 < R(vremr)/r € K[y]7, > v rem r is the vector of entry-wise remainders
4: g(x,y) « the polynomial in K[x, y] <(;m,4) corresponding to vy
5: return BIVARIATEMODULARCOMPOSITION( f, a, §) > g(x,a) rem f, Algorithm 3.5

and each entry of v has degree less than that of the corresponding row of R [43, Theorem 6.3-
15, p. 389]. The latter reference actually states a stronger condition on v, namely that the matrix
fraction R™'v; is strictly proper (see Section 5.1.1); this implies the above degree condition [43,
Lemma 6.3-10, p. 383], which is sufficient for our needs.

For computing this division, it is customary to use K[y]-linear system solving. For this, we rely
on a kernel basis algorithm [80]: this returns v in K[y]™ and r in K[y] such that R"'v, = v/r,
with r of minimal degree. From this, the remainder is obtained as v5 = R (v rem r)/r, and here we
do not need the quotient vector w.

4.2.2  Composition Algorithm. In the case where vy = (9 0---0)" and R is a matrix of relations
of M, of degree at most d, the remainder in the above division is a vector vg of degree less than
d whose entries yield g € K[x, y]<(m,q) such that g — § € M,,. Thus, analogously to a reduction
modulo a Grébner basis of the ideal 7 = (y — a, f), this provides a bivariate polynomial § with
smaller degree in y and controlled degree in x, and such that § — g € 7, that is, g(x,a) = g(a)
mod f.

Algorithm BrvARIATEMODULARCOMPOSITIONWITHRELATIONMATRIX is given a matrix of re-
lations R of M,, as a parameter and performs this division; then it completes the composi-
tion by evaluating g(x, a) rem f using Algorithm BIivARIATEMODULARCOMPOSITION. Algorithm
BIvARIATEMODULARCOMPOSITIONWITHRELATIONMATRIX actually accepts a slightly more general
input: g can be a bivariate polynomial with x-degree less than m (however, the rest of the article
focuses on the case of g in K[y] highlighted above). The algorithm accepts g of arbitrary degree in
y, but the cost analysis is done under the assumption deg, (g) € O(n).

ProrosiTiON 4.4. Given f in K[x] of degree n, a in Kx]<n, g in K[x,yl<(m,)
with degy(g) = O(n) and a matrix of relations R in K[y];";m of Mg,‘f’f), Algorithm
BIvARIATEMODULARCOMPOSITION WITHRELATIONMATRIX computes g(x,a) rem f using
O(m®(d + n/m) + c(n, m, d)) operations in K, with c(-) from Equation (2).

ProoF. First, Step 2 computes r € K[y] and v = rR'v, € K[y]™ with r of minimal degree.
Indeed, since R is nonsingular, the right kernel of (R —1vy) € K[y]™(m*+1) has rank 1. We use [80,
Algorithm 1] to compute a basis (v" )T of this kernel. Thus by construction Rv = rv, holds, and
the fact that (v” r)T generates the kernel ensures that the greatest common divisor of r and all
the entries of v is 1, hence the minimality of deg(v) and deg(r).

At Step 3 one considers the vector o = v rem r € K[y]™ such that deg(d) < deg(r)andv = rw+9o
for some w € K[y]™. It follows that v, = Rv/r = Rw + vg, where v; = R9/r is the vector
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computed at Step 3; by construction the ith entry of v has degree less than that of the ith row
of R. In short, Steps 2 and 3 compute a vector v € K[y]™ that has degree less than d and is
a remainder of v, modulo R. Since R is a matrix of relations, the polynomial g(x, y) at Step 4 is
such that g(x, a) = g(x, a) mod f. The correctness follows, since g(x, a) rem f is the polynomial
returned by BIvARIATEMODULARCOMPOSITION( f, 4, §) (see Proposition 3.4).

As required by Algorithm 1 of [80], the tuple of integers (d, . . ., d, degy(g)) € Z™*1 bounds the
column degrees of (R —vy). Then, since the sum of this tuple is md +deg, (9), with deg, (9) = O(n),

Step 2 costs O(m®(d + n/m)) operations [80, Theorem4.1]. The minimality of deg(r) implies
deg(r) < degdet(R) < md, and then v has degree at most deg det(R)R ‘v, < (m — 1)d + n since
det(R)R™! is the transpose of the cofactor matrix of R. Thus, the computation of = v rem r
in Step 3 uses O(m(md + n)) operations, which is smaller than the cost of Step 2. Next, the
matrix-vector product R% can be performed in O(m®d) operations: write the column @ of degree
< md as m columns of degree < d via y?-adic expansion; use a matrix-matrix product to
left-multiply these columns by R; finally, recombine the resulting columns into a single column
that gives Ro. To obtain vy it remains to divide each entry of Ro by r, which costs O(m?d) since
deg(Ro) < (m + 1)d. By Proposition 3.4, the call at Step 5 uses ¢(n, m, d) operations. The cost
bound in the Proposition follows. O

Note. Comparing Proposition 4.4 with Proposition 3.4, note that when m ~ n” and d ~ n'™"
with 1 from Equation (3), then the complexity bound of Proposition 4.4 is the same as the one
given by the Niisken-Ziegler algorithm, however, the y-degree of g can now go up to the order
of n.

4.3 Annihilating Polynomials Using Matrices of Relations

Our main algorithm requires an annihilating polynomial for a, that is, a polynomial 4 in K[y] such
that h(a) = 0 mod f. It can readily be obtained from a matrix of relations.

PROPOSITION 4.5. LetR € K[y]’;;m be a matrix of relations ofMgz’f). Its determinant is a nonzero
annihilating polynomial for a modulo f. It has degree at most md in K[y] and can be computed from R
using O(m®d) operations in K.

ProOF. As a polynomial combination of relations in M, the entry (1, 1) of the (upper triangu-
lar) Hermite normal form of a matrix of relations is a relation in (f, y —a) N K[y], so it is a nonzero
multiple of the minimal polynomial of a. This implies the same property for the determinant, since
it is a multiple of that entry. The bound on the degree of the determinant is straightforward, and
the cost bound is from [53, Theorem 1.1]. O

Note. For the computations of the minimal polynomial and of the characteristic polynomial of
a modulo f, see Section 10.1.

5 COMPUTING MATRICES OF RELATIONS

In this section, we give an algorithm computing a matrix of relations. This study may be viewed
as a specialization of the formalism developed by Kaltofen and Villard for the block Wiedemann
approach (see Sections 1.4.3 and 1.4.4) in terms of manipulations of bivariate polynomials in the
ideal generated by y —a and f.

As already done in Section 4, notation such as Mﬁff’f ) and vf,‘f’f ) is shortened into M, and vy,

in this section, except in the main statements.
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In Section 5.1, we show thatform € {1, ..., n}, denominators of irreducible right matrix fraction
descriptions of (yI, — My)"'X with X = (I, 0)T € K™™ yield bases of Mﬁ,‘j’f). For efficiency
reasons, a further truncation is required: this leads us to introduce modules Méa;r{) whose bases

are the denominators of irreducible right matrix fraction descriptions of YT(yI, — M,)~'X, where
YT =1, 0) ¢ K" with € € {1,...,n}; thus, we use structured left and right block projections.
If £ = n, Y is the identity matrix of size n, and we recover Mﬁ,‘j’f ) , but this value is too large for our
cost objectives. Instead, we focus on £ = m, and thus Y = X.

Section 5.2 describes how a basis of M(fa’n{) can be reconstructed using minimal approximant
bases [4, 73], from sufficiently many terms of the power series expansion of the matrix H =
XT(yl, — My)1X.

This strategy is turned into an algorithm for computing matrices of relations in Section 5.3: the
expansion of H is obtained via Algorithm BLock TRUNCATEDPOWERS, while approximant bases are
computed using a matrix Padé version of the Berlekamp-Massey algorithm [4, 31]. The correctness
and efficiency of this approach depends on a fundamental condition on M,, i.e., on f and a (Propo-
sition 5.6, first item). First, it expresses that the left projection does not prevent us from getting
the right denominators of (yI,, — M,)"'X from those of H. It also ensures the existence of matrices
of relations of “small” degree , and, in this way, appropriately limits the number of terms of the
expansion of H that are required for the reconstruction. We prove in Section 7 that these proper-
ties are satisfied for generic inputs; in Section 8, we further study cases where randomization can
ensure such a condition.

Verifying the condition on M,, or verifying that a certain matrix is a matrix of relations, are
expensive tasks: except for some restricted cases, the algorithm of Section 5.3 does not certify that
its output is indeed a matrix of relations. As such, this would lead to a Monte Carlo composition
algorithm. To achieve Las Vegas composition instead, in Section 5.4, we propose an algorithm
which either detects that the output mentioned above is not a matrix of relations, or uses this
output to build a certified matrix of relations of slightly larger dimensions.

5.1 Matrices of Relations as Denominators of Matrix Fractions

This section relates denominators of some matrix fractions to bases of the module of relations M,
and of a truncated version M, ,, of it.

5.1.1 Definitions.

Matrix Fractions. We first recall several notions on matrix fractions that can be found in Kailath’s
book [43, Chap. 6]. Let N be in K[y]*™, let D € K[y]™ ™ be nonsingular, and consider the rational
matrix F = ND™! € K(y)™™. Then ND™! is called a right fraction description of F. Similarly, if
F = D7'N, then D™'N is called a left fraction description of F. The right fraction ND ! is said to be
irreducible if N and D are right coprime, i.e., any right divisor common to N and D is unimodular, or
equivalently UN + VD = I,,, for some U € K[y]™¢ and V € K[y]™™ [43, Lemma 6.3.5 p. 379]. The
fraction ND! is said to be strictly proper if for each nonzero entry of the rational matrix F = ND™,
the degree of the numerator is less than the degree of the denominator. A matrix F € K(y)™™
is said to be describable in degree d if it admits both a left and a right fraction description with
denominators of degree at most d.

Truncated Module of Relations. For efficiency reasons, we consider a K[y]-module similar to M,,,
but where only the first ¢ coefficients of the polynomials are required to be 0, for some positive
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integer € with ¢ < n = deg(f). Explicitly, for £, m € N., we define the K[y]-modules
ME{Z;'{) = {r(x, y) € K[x, yl<(m, ) | [a(x)kr(x, a(x)) rem f] 5—1 =0 forall k > 0} ,

together with the usual simplified notation M ,,. They satisfy the inclusions My, 2 Mz m 2
<D Mpm = Moy I r(x, a(x)) rem f = 0 then a(x)*r(x, a(x)) rem f = 0 for all k > 0, but note
that this is no longer true if truncated polynomials are considered. This explains the presence of
kth powers of a in the definition of Mi,fz;{) , while they are not necessary in the definition of Mﬁﬁ’f )
in Section 4.1.1.

The determinantal degree of Mg, ,, is denoted v ,,. Of particular interest is the case when
Mo, m = M.

5.1.2  Relation Between Bases of Relations and Denominators of Matrix Fractions.
ProproSITION 5.1. For £,m € {1,...,n}, the columns of a matrix D € K[y]™™ form a basis
ofng;{) if and only if D is the denominator of an irreducible right fraction description ND™! of
(e 0)(yln = Ma)'X € K[y]™™;
the denominator of any right fraction description of this matrix is a right multiple of any such basis D.
5.1.3  Proof of Proposition 5.1. For a matrix of rational functions F € K(y)?*™, we let
D(F) = {v € K[y|™ | Fo € K[y]‘}, (16)

which is a K[y]-submodule of K[y]™ of rank m. Then, we can establish the relation between the
module M, ,, and the matrix in Proposition 5.1.

LEMMA 5.2. For{,m in{1,...,n}, one has M = D((I¢ 0)(yl, — My)"'X).

ProoF. Taking Y' = (I, 0), define H(y) = Y'(yl, — M,)"'X and Hy = YTMKX € K™ so that,
by power series expansion in y~,

H(y) = Y Hey™ ' =" yTMbxy ™,
k>0 k>0

Let r(x,y) = Yo<i<q i(x)y" € K[x,yl<(m, ) be of y-degree d, and let v; € K™ be the coefficient
vector of r; fori = 0,...,d. Then, for k > 0,

-1
a*r(x, a) rem f]z_l = [ Z a**ir; rem fl _ Z [ak+ir,~ rem f][_l

0
0<i<d 0 o0<i<d

. . . -
and [a**'r; rem f]g_1 has coefficient vector YTM**Xv; = Hy,;v;. Hence, [akr(x, a) rem f]o !
has coefficient vector Hyvg + - - - + Hi1qv4. Therefore, r(x,y) is in Mg, if and only if

Hyvg + -+ 4+ Hgpqug =0 forall k > 0. (17)

On the other hand, defining v = },; <4 v;y’ and setting Hy = 0 for k < 0, the expansion of Hv at
infinity reads

Ho= Y Hiy ™" Y vy = ) (Hevo + -+ Heeqvd) ™7, (18)
k>0 0<i<d k>-d
which implies that Equation (17) holds if and only if Hv has polynomial entries. O

Proposition 5.1 is then a direct consequence of the following general result on matrix fractions,
which is a reformulation of [43, Theorem 6.5-4 and Lemma 6.5-5, p. 441].
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LEMMA 5.3. Let F € K(y)™™ be a matrix of rational fractions. The columns of D € K[y]™™ form
a basis of D(F) if and only if D is the denominator of an irreducible right fraction description ND™!
of F. Besides, the denominator of any right fraction description of F is a right multiple of such a D.

5.1.4 Notes. The role of the truncated modules M, ,, is to reduce the cost of computations: we
decrease the dimension of the relevant matrices using a structured left projection. The more usual
approach [50] uses generic projections matrices; our choice here is similar to the one used for the
efficient computation of generic resultants [75].

Although not used in this work, genericity on the left is sufficient: if V € K™ is generic with £ €
{m,...,n}, then one has M,, = D((yI, — M,)"'X) = D(V'(yl,, — M,)"'X). The latter occurs if
and only if rank(VTP,VTPA, VTPA?, ...) = v, for a well chosen full rank matrix P € K™= and a
restriction A € KY*¥m of M, to the invariant subspace generated by X [74, Lemma 4.2]. The rank
condition is satisfied for a generic projection [74, Corollary 6.4 and its proof].

In terms of generators of matrix sequences, Equation (17) shows that the denominators of Propo-
sition 5.1 are bases of modules of vector generators for the matrix sequence {(I, O)M’a‘X Heso [50,
Lemma 2.8].

5.2 Reconstructing Denominators of Matrix Fractions Via Approximant Bases

Algorithm BLockTRUNCATEDPOWERS from Section 3.3 allows one to compute a truncated power
series expansion of H(y) = X' (yI,, — M,)~'X. When the precision of this expansion is sufficient, a
basis of M, ;, can be reconstructed.

5.2.1 Definitions.

Weak Popov matrices. Let P € K[y]™™ be a matrix whose column j has degree d; > 0. The
(column) leading matrix of P is the matrix in K™*™ whose entry (i, j) is the coefficient of degree d;
of the entry (i, j) of P. Then P is said to be (column) reduced if its leading matrix is invertible. This
is the case if and only if [43, Equation (24), p. 384]

degdet(P) = dy + - + dp. (19)

A (column) reduced matrix is in (column) weak Popov form if its leading matrix is invertible and up-
per triangular. Any submodule of K[y]™ has at least one basis which is in weak Popov form [5, 43].

Approximant bases. Let F € K[[y]]™** be a matrix of power series and o € N be a nonnegative
integer. A matrix P € K[y]*** is an approximant basis of F at order o if its columns form a basis
of the K[y]-module {v € K[y]* | Fo = 0 mod y°}, which is free of rank k. This approximant basis
is said to be minimal if it is reduced. Minimal approximant bases are also called o-bases, or order
bases [4, 73].

5.2.2  Denominators from Approximant Bases. We are going to use approximant bases for solv-
ing equations of the type of Equation (7). As pointed out in Section 1.5, we use expansions at y = 0
rather than infinity (see Remark 5.7).

PROPOSITION 5.4. Let H € K(y)™ ™ be strictly proper, and § be the determinantal degree of D(H)
(notation from Equation (16)). Suppose that H has a power series expansion H = Y5, Syy* aty = 0,

with S € K™*™ Let
2d—-1
F= (Z Sey* I
k=0

_ (D P (2m)x(2m)
P - (N PZ) € K[y]

c K[y]mx(Zm)’

and let
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be an approximant basis at order 2d of F in weak Popov form, with each submatrix of size m X m.
Then the following properties hold:
(i) D is weak Popov; deg(N) < deg(D); the sum of the degrees of the diagonal entries of D is
deg det(D) and satisfies deg det(D) < 6.
(ii) If degdet(D) = & and each of the m rightmost columns of P has degree at least deg(D),
then ND™! is an irreducible description of H.
(iii) IfH is describable in degree d, then ND™! is an irreducible description of H such that deg(D) < d
and each of the m rightmost columns of P has degree at least deg(D).

The first item gives general properties of the approximant basis in weak Popov form, whereas
Items (ii) and (iii) give sufficient conditions to guarantee it recovers an irreducible fraction
description of H.

5.2.3  Proof of Proposition 5.4.

LEmMMA 5.5. Let P € K[y|™™. If P is reduced and B € K[y]™™ is a right multiple B = PU
with U nonsingular, then deg(P) < deg(B). If P € K[y]™™ is weak Popov, with diagonal degrees
di,...,dm € N,andv € K[y]|™ is a nonzero right multiplev = Pu whose bottom-most entry of largest
degree is in row i and has degree d, then d; < d = max; <j<m(deg(u;) + d;), whereu = (Uj)1<j<m.

Proor. The first claim follows from the predictable degree property [43, Theorem 6.3-13, p. 387],

and so does the identity deg(v) = d = max; <j<m(deg(u;)+d;) since (ds, . . ., dn) are also the column
degrees of P by definition of a weak Popov form. The inequality d; < d is from [60, Lemma 1.17].
i

We now prove Proposition 5.4. Consider an irreducible fraction description QR™! = H for some
Q € K[y]™™ and some weak Popov R € K[y]™™. Since H is strictly proper we have deg(Q) <
deg(R) and, more precisely, the ith column of Q has degree less than the ith column of R. Thus the
ith column of ( 5 ) has its bottom-most entry of largest degree in row i; let d; be this degree.

In Item (i), the first two claims follow from the definition of P being weak Popov. In particular D
is column reduced, hence Equation (19) shows that deg det(D) is the sum of column degrees of D,
which is also the sum of diagonal degrees of D since D is weak Popov. The identity (H —1,,,)( g )=0

implies F( 5 ) = 0 mod 4*?, and therefore ( 5 ) is a right multiple of P. Hence, by Lemma 5.5, d; is at
least the degree of the ith column of P, which is the degree of the ith column of D; it follows that
degdet(D) < di+- - -+dpm. On the other hand, since R is reduced and since by Lemma 5.3 its columns
form a basis of D(H) we have d; + - - - + d;;, = deg det(R) = &, proving the last claim of Item (i).
Concerning Item (ii), the assumption degdet(D) = § = degdet(R) implies that the sum of col-
umn degrees of D is d; + - - - + d;;, while as showed above the ith column of D has degree at most
d;. Thus D has the same column degrees (di, . . ., d;,) as R. In particular deg(D) = deg(R) > deg(Q).
Then, since by assumption the m rightmost columns of P have bottom-most entries of largest de-
gree in rows at least m + 1 and of degree at least deg(D), one can deduce from Lemma 5.5 that
(5) is a right multiple of the leftmost m columns of P. Indeed, let u = (};}) € K[y]*™, with u; and
u, each of dimension m, such that the ith column of ( 5) is Pu = ( f,’;iff;;’;; ); we want to prove
uy = 0. Using the last identity in Lemma 5.5 on each of the weak Popov matrices P, D, and P, we
observe that deg(Pu) = max(deg(Du,), deg(P,uz)); note deg(Pu) = d; < deg(D) by construction.
On the other hand, since all diagonal degrees of P; are at least deg(D), Lemma 5.5 shows deg(D) <
deg(P,u;), provided that u, # 0, which we now assume by contradiction. This implies deg(Du;) <
deg(Pu) = deg(Pyu,) = deg(D), hence max;<j<m d;j + deg(uy ;) < deg(D) using Lemma 5.5, where
uy = (u1,j)1<j<m. Now by definition of weak Popov forms, the jth column of N has degree less than
djfor1 < j < m, hence deg(Nu;) < max; <j<m d; +deg(uy ;). This gives deg(Nu; + Pouz) = deg(D),
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which is a contradiction since Nu; + P,u; is the ith column of Q and has degree strictly less than
d;, itself at most deg(D). So, u, = 0. Gathering this over all columns 1 < i < m, this means
( 5) = (R)U = (RY) for some U € K[y]™™, and U is unimodular since R and D are nonsingular
with deg det(R) = deg det(D). Hence H = QR™' = ND™! and the fraction ND! is irreducible.

The following proof of Item (iii) reflects that of [31, Lemma 3.7]. The assumption implies first
the existence of a left fraction H = ﬁ‘lQ with deg(Q) < deg(ﬁ) < d, and second the degree
bound deg(R) < d thanks to the degree minimality of reduced bases (see Lemma 5.5). The above
paragraph shows in particular deg(D) < max;(d;) = deg(R) < d.

Now, since R(Y o< <2q Sky*) = O mod y??¢, multiplying on the left by R both sides of F( e
0 mod y?? shows that OD — RN is a right multiple of y2?R. On the other hand, OD — RN has degree
less than 2d. Hence it is zero, and H = R Q = ND L. To prove that the latter fraction is irreducible,
assume by contradiction that D and N have a nonsingular common right divisor B € K[y]™*™,
with deg det(B) > 0. Then H = (NB!)(DB™1)™! yields F( ]1\)[1;:11 ) = 0 mod y??, and P diag(B™,1,,)
is a right multiple of P (since P is a basis): this is impossible since degdet(P diag(B™!,1,,)) <
deg det(P).

It remains to prove the last degree assertion. By contradiction, assume that P has a column
() of index larger than m with vy and v; in K[y]™ both of degree less than d. Then an argument

similar to the one above shows that Qvo - ﬁvl = 0. Altogether, we obtain a matrix ( ]1\), Z‘l’) of

rank m + 1 which is in the right kernel of (O R € K[y]™ ™ whose rank is m: this is not
possible.

5.2.4 Notes. The existence of appropriate left and right descriptions of H was used before for
the reconstruction of matrix fractions within the approximant framework [31, Section 3.2]. Our
proof is similar to that of [31, Lemma 3.7], with the additional use of the weak Popov form.

Reduced forms were introduced [78] as a way to get a better control over the degrees when com-
puting with polynomial matrices and matrix fractions, see e.g., [43, Lemma 6.3-11, p. 385] for proper
fractions, [43, Theorem 6.3-13, p. 387] for a predictable degree property, and [43, Theorem 6.5-10,
p- 458] concerning the minimality of the column degrees. Weak Popov forms were introduced later
[5, 59] (under the name quasi-Popov and up to column permutation) and provide a refined degree
control as illustrated by Lemma 5.5.

5.3 Candidate Basis of Relations

Algorithm CANDIDATEBASIs takes as input a polynomial f € K[x] of degree n with f(0) # 0, a
polynomial a € K[x], such that gcd(a, ) = 1, and two positive integers m < n and d. With this
input, it computes an m X m matrix of degree at most 2d.

The algorithm starts by computing a truncated expansion at order 2d of H = X' (yI,, — M,)™'X
at y = 0 using Algorithm BLockTRUNCATEDPOWERS. Then, it computes a 2m X 2m minimal approx-
imant basis as in Proposition 5.4 using the algorithm PM-Basis of [31], and extracts a potential
basis of relations. In some cases, we can certify that it is indeed basis of M,,, but it is not always
possible to do so; a flag is returned to indicate this. This certification is actually an optimization,
rather than strictly necessary; Section 5.4 discusses this question in more detail.

ProposSITION 5.6. Given f € K[x] of degree n with f(0) # 0, a € K[x]<, such that ged(a, f) =
1, and two positive integers m < n and d, Algorithm CANDIDATEBASIs uses O(m“d + c(n,m, d))

operations in K, with c(-) from Equation (2), and computes a weak Popov matrix R € K[y]7)7". The

matrix R is a basis ofMS,‘:’f) in either of the following cases:
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ALGORITHM 5.1 CANDIDATEBASIS(f, a, m, d)

Input: f € K[x] of degree n, with f(0) # 0, a € K[x]<, with ged(a, f) = 1,m < nand d in N,
Output: a weak Popov matrix R € K[y]’;’;dm and a flag in {CERT, NOCERT}; R is a basis of M,, in
either of the following cases:
® Vom = Vmand H = XT(yI, — M,)"'X is describable in degree d, in which case deg(R) < d
o the flag is CERT, which implies vy, = vy = 1
1: > Truncated expansion of H: compute Sy = —XTM;k_leorO < k < 2d using Algorithm 3.8
(Azk) 0<i<m ¢ BLOCKTRUNCATEDPOWERS(f,a™! mod f,m,2d + 1)

0<k<2d+1
Si.k € K™ « vector of coefficients of —A}, = € K[x]<pm,for0 <i<mand0 <k <2d

2: > Fraction reconstruction: compute approximant basis using algorithm from [31, 42]
Fe K[y]rf;dzm — (Xo<k<2d Skyk —L,) where g = (Sox *+ Sm-1,k) € K™
Pe K[y]i’%zm — PM-Basts(FT, 2d, 0)", with P in weak Popov form

3: > Return candidate matrix and result of basic certification
R« Pl..m,l..m
if the sum of diagonal degrees of R is equal to n > Item (ii) of Proposition 5.4
and each of the m rightmost columns of P has degree > deg(R)

then return (R, CERT) else return (R, NOCERT)

— The determinantal degree V,Si’&) is equal to vf,‘f’f) and the fraction H(y) = X" (yl,, — M,) 7' X is
describable in degree d; in that case we further have deg(R) < d; if in addition Vf,?’f) = n then

the flag is CERT.
— The flag is CERT, which implies vf,i’g = Vf:,l’f> =n.

PROOF. Proposition 3.7 shows that Step 1 uses O(m?®d + c(n, m, d)) operations to compute the
vectors S; x € K™. These vectors are such that the matrices Sy built in Step 2 are Sy = —XTM;k’lX ;
as a result, the matrix S = 3o <4 Sky* considered at Step 2 is the power series expansion of H
truncated at order 2d. Then Step 2 correctly computes a weak Popov approximant basis P for
F = (S -1,) at order 2d with deg(P) < 2d using O(m®d) operations [31, Theorem 2.4] [42,
Proposition 3.2]. (Note that transposes are used at Step 2 because in References [31, 42] approxi-
mant bases are considered row-wise, rather than column-wise here.) The claimed cost bound for
Algorithm CANDIDATEBASTIS is proved.

For the first item, assume that H is describable in degree d. Then Item (iii) of Proposition 5.4
ensures that R is the denominator of an irreducible right fraction description of H, that deg(R) < d,
and that each of the m rightmost columns of P has degree at least deg(R). From Proposition 5.1 we
obtain that R is a basis of M, ,, hence a basis of M,,, when v,,, , = v;,. This also proves the last
claim of the item: if vy, = vy = n, then deg det(R) = n and this is the sum of diagonal degrees of
R since this matrix is in weak Popov form; hence the flag CERT is returned.

For the second item, assume that the output flag is CERT. Then, the sum of diagonal degrees
of R is n; according to Item (i) of Proposition 5.4, this sum is also degdet(R) and is at most &,
the determinantal degree of bases of D(H). On the other hand, Proposition 5.1 implies that §
is the determinantal degree vy, m of My, m. Hence n = degdet(R) < § = vp,m, from which
we deduce degdet(R) = 8 = Viym = Vm = N, since Vuym < vm < n always holds. Since
the output flag is CERT we know in addition that each of the m rightmost columns of P has
degree at least deg(R). Thus, Item (ii) of Proposition 5.4 applies, and R is the denominator of an
irreducible right fraction description of H. We conclude as done for the first item that R is a basis
of M,,. O
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Remark 5.7. The assumption that f and a are coprime is used here to ensure that M, is invertible,
so that the expansion H = Y50 Sky* = Yiso(=XTM;*1X)y* at y = 0 can be used for fraction
reconstruction. This is different from what happened in the proof of Proposition 5.1, where we used
the expansion at infinity H = Y-, Hxy 1. The latter expansion involves powers of M, and thus
our formalism remains close to that of Reference [50] with Krylov sequences. From an algorithmic
point of view, expansions at y = 0 allow us to use directly the existing efficient algorithms for
matrix fraction reconstruction [31, 42], and exploit their properties.

This assumption on ged(f, a) is harmless in our context: in the computation of g(a) rem f, one
can instead evaluate g(y — ¢) at y = a + ¢ for a randomly chosen ¢ € K, ensuring ged(a +¢, f) =1
with good probability. See Step 2 in Algorithm MopULARCOMPOSITIONBASECASE.

Notes. For some families of approximation instances, PM-Basis has been used to design faster
minimal approximant basis algorithms [42, 79]. Yet, the instances considered here are ones where
PM-Bass is the fastest known algorithm.

A candidate matrix of relations in K[y]7)7" corresponds to m polynomials in K[x, y]<(m,z2a)-
Using Algorithm SIMULTANEOUSBIVARIATEMODULARCOMPOSITION to verify that the evaluations
of these polynomials at a mod f are zero uses O(c(n, m, d?)) operations in K, by Lemma 3.3. For
the values of m and d used to obtain the exponent k¥ < 1.43 in our main algorithm, this is O(n?%),
and thus too costly.

5.4 Certified Matrix of Relations

In general, when Algorithm CANDIDATEBASIS does not certify its result, we do not know methods
to verify that the matrix it returns is a matrix of relations within our complexity bound.

Instead, from a matrix R computed by Algorithm CaNDIDATEBAsIS, Algorithm
MATRIXOFRELATIONS either detects that it is not a matrix of relations of M,,, or constructs from
R a matrix of relations of M, of degree at most 2d, for some m’ < 2m. This is the key toward
making our modular composition algorithm Las Vegas, rather than Monte Carlo.

To achieve this, instead of evaluating all columns of R at amod f, Algorithm
MATRIXOFRELATIONS evaluates only two polynomials built randomly from these columns
(and only one polynomial in the special case m = 1), which is within our target complexity using
the Niisken-Ziegler algorithm. If these evaluations are not both zero, then R was not a matrix
of relations. Otherwise, the algorithm constructs a Sylvester matrix from these two vectors (see
e.g., [26, Section 6.3] for the definition and properties of the Sylvester matrix). When this matrix
is nonsingular, it is a matrix of relations of a module M, for m" < max(1,2(m — 1)); since m’

cannot be much larger than m, this matrix can be used for efficient composition.

ProrosITION 5.8. Given f € K[x] of degree n with f(0) # 0, a € K[x]<, with gcd(a, f) = 1,
two positive integers m(< n) and d, and (r;)3<j<m € K™ 2, Algorithm MATRIXOFRELATIONS uses
O(m®d + c(n, m,d)) operations in K, with c(-) from Equation (2), and returns either FAIL or a matrix

of relations R’ € K[y]’;’;zml ofME:f,’f) where m’ < max(1, 2(m — 1)).

vai,i’,]:,) = vﬁf’f), the fraction H = X" (yl, — M,) "' X is describable in degreed, and (rs, . . ., ry,) are
chosen uniformly and independently at random from a finite subset S of K, then failure happens with
probability at most (m — 1)/card(S) and in case of success, deg(R’) < d.

Proor. If FLac = CERT at Step 1, then from the second item of Proposition 5.6 an ap-
propriate matrix of relations is returned. Now assume that FLaAc = NOCERT and Algorithm
MATRIXOFRELATIONS does not return Farr. If m = 1 then the relation has been checked at Step 2,
proving the result. Otherwise, let R” € K[y]™*™ be the output matrix, which is constructed from
the polynomials r, s of x-degree less than m; in particular, m" = deg,(r) + deg (s) < 2(m — 1)
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ALGORITHM 5.2 MATRIXOFRELATIONS( f, a, m, d, (ri)3<i<m)

Input: f € K[x] of degree n, with f(0) # 0, a € K[x]<, with ged(a, f) = 1,
m < nanddinNsg, (7)s<i<m € K™
Output: either FAIL or a matrix R’ € K[y];";;m' of relations of M,y with m” < max(1,2(m — 1))
1: > Use Algorithm 5.1 to find a candidate basis of relations
(R,FLAG) € K[y]';‘;dm X {CERT,NOCERT} « CANDIDATEBASIS(f, a, m, d)
if FLAG = CERT then return R
2: > Casem = 1, check that Ry,1 € K[y] <2441 annihilates a mod f
if m = 1 then
if MoDULARCOMPOSITION-BRENTKUNG(f, @, R1,1) # 0 then return FArL
else return R
3: > Build candidate relations and verify them
r(x,y) < Ri138(x,y) « Ria+ 3R+ -+ rpRim > both in K[x, Y] <(m,2d+1)
if BIVARIATEMODULARCOMPOSITION( f, a,r) # 0
or BIVARIATEMODULARCOMPOSITION( f, g, s) # 0
then return Faro > Algorithm 3.5
if m = 2 then return R
4: > Construct and return the Sylvester matrix of f and s, if it is nonsingular
if ged (r,s) # 1 then return FArL > r and s not coprime as elements of K(y)[x]
return the Sylvester matrix of (7, s) as in [26, Section 6.3, Equation (5)], with rows in reversed
order, viewing r and s as polynomials in x over K[y]

[26, Section 6.3]. The fact that the test at Step 4 has not failed ensures that r and s are coprime
as univariate polynomials in K(y)[x], and therefore R’ is nonsingular [26, Corollary 6.15]. Fur-
thermore, since the tests at Step 3 have not failed, r and s are relations of M,,. It follows that the
columns of R’, which are by construction multiples of r and s in K[x, y] represented as vectors in
K[y]ml, are relations of M, . Besides, the construction of the Sylvester matrix does not increase
the y-degree, hence deg(R’) < deg(R) < 2d. We have proved the fact that if the output is not FaIL,
then it is a matrix of relations of M, .

For the complexity bound, the cost for finding R is given in Proposition 5.6, while the ones for
checking that Ry q, r and s are relations are given in Propositions 3.1 and 3.4. As for the gcd test
at Step 4, it can be done via the resultant of r and s with respect to x, computed using O(m?d)
operations [67].

It remains to prove the third assertion and the probability bound. Since when FLac = CErT
a basis is returned with no randomization, assume FLac = NOCERT. The assumptions here
and the first item of Proposition 5.6 ensure that R is a basis of M,, with deg(R) < d, hence
deg(R’) < d. In that case failure never occurs at Step 2 for m = 1. It never occurs either at Step 3
for m > 2, and r and s are relations of M,,. The columns of R represent bivariate polynomials
by,...,by € K[x,yl<(m d+1) and we claim that ged, (b1, . .., b,) = 1, meaning that there is a K[y]-
linear combination of by, . . ., by, in K[y] \ {0}. Since R is nonsingular, the first column of a transfor-
mation for the (upper triangular) Hermite normal form of R provides such a combination. It follows
that Fa1r is returned with probability at most (m — 1)/card(S) at Step 4 [26, Theorem 6.46]. O

Note. The computation of CERT by Algorithm CANDIDATEBASTS is only an optimization. Algo-
rithm MATRIXOFRELATIONS works as it is, even if CERT is never returned. When the candidate
matrix R at Step 1 is not a matrix of relations, this is often detected at Step 3, but not always. Even
if it is not detected, it suffices to find two coprime polynomials r(x, y) and s(x, y) that are relations
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to ensure that Algorithm MATRIXOFRELATIONS returns a matrix of relations. For example, it may
happen that R is not a matrix of relations but some columns of it still give low-degree relations

of M,,.

6 CHANGE OF BASIS

In this section, we present an algorithm for performing a change of basis in A = K[x]/(f). This
algorithm is used in a randomized manner in Section 8, in order to handle arbitrary inputs with
good complexity bounds. Our approach is based on an extension of the approximant bases used
in Section 5; we start with necessary definitions.

6.1 Definitions

We use an extension of the forms of polynomial matrices introduced in Section 5.2.1, called shifted
forms [5, 73]. For a given tuple t = (¢, ..., t,) € Z™ and a column vector v € K[y]™, the t-shifted
degree of v is max;<;<,(deg(v;) + ;). Then, for a matrix P € K[y]™™ whose jth column has
t-shifted degree d; € Z, the (column) t-shifted leading matrix of P is the matrix in K™ whose
entry (i, j) is the coefficient of degree d; — t; of the entry (i, j) of P. Then P is said to be t-shifted
weak Popov if this t-shifted leading matrix is invertible and upper triangular.

We also need the corresponding normal form: P is said to be t-shifted Popov if it is t-shifted weak
Popov and its row leading matrix is the identity of K™*™ [5, 43]. For a given ¢, any submodule of
rank m of K[y]™ admits a unique basis in ¢-shifted Popov normal form [5, Theorem 3.7]. By defi-
nition, t-shifted Popov matrices are also (nonshifted) row reduced; in particular, Hermite normal
forms are t-shifted Popov for an appropriate choice of ¢, hence are row reduced.

Row reduced matrices allow for a division with remainder with stronger properties than the
one for general nonsingular matrices presented in Section 4.2.1; namely, they ensure uniqueness
of the remainder. Precisely, if a matrix P € K[y]™™ is row reduced, for any vector v € K[y]™
there exists a unique vector 0 € K[y]™ such that v — U is a right multiple of P and the ith entry
of © has degree less than the ith row of P [43, Theorem 6.3-15, p. 389].

We also use the fact that, by definition, for any block decomposition P = (11;; II;Z ) of a matrix P,
if P is in Hermite (resp. ¢t-shifted Popov) normal form, then:

— Pj; and P,; are in Hermite normal form (resp. in shifted Popov normal form with respect to
the corresponding subtuple of t);
— each column of Py, (resp. Pz;) is its own remainder in the division by Py; (resp. Pa2).
Finally, t-shifted forms induce the notion of ¢-shifted approximant bases [5, 42, 79], which are
approximant bases (see Section 5.2.1) in t-shifted Popov normal form.

6.2 Inverse Modular Composition and Change of Basis Via Approximant Bases

Let f be in K[x] of degree n. A core ingredient for the randomization in our composition algorithm
is an instance of inverse modular composition, which is used to change the basis of A = K[x]/(f)

from (1,x,...,x" ) to (L, y,...,y" ') mod f, for some y € K[x] whose minimal polynomial y,
modulo f has degree n. This change of basis induces the K-algebra isomorphism
dy + A = Klyl/{puy), (20)

which maps any u € A to v such that v(y) = u mod f. Given a in K[x].,, this section explains
how to compute the unique polynomial representative & € K[y]<, of ¢, (a mod f), i.e., the unique
a € K[y]<p, such that a(y) rem f = a.

Reversing the path followed in our modular composition approach, we first find a bivariate

a € K[x,y]suchthata —a € Mg,’;’f), hence @(x,y) = a(y) mod f. Then, the univariate solution «
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isrecovered from & and a basis of relations R of M%’f ) by reversing the division from Equation (15);
this corresponds to a division by the Hermite normal form of R.

Our algorithm for computing & can be seen as a generalization to m > 1 of Shoup’s algorithm
for computing a, mentioned in Section 1.4.2. The latter algorithm deals with the case m = 1: from
the power projections (£(1),£(y),...,(y*" 1)) and (£(a),{(ya),...,L(y" 'a)), it obtains both
a and p, by solving two Padé approximation problems. In the matrix case m > 1, Algorithm
CHANGEOFBAsIs computes solutions to equations similar to Equations (7) and (9) given in
the introduction. These are matrix generalizations of the Padé approximation problems; their
solutions provide, respectively, a basis of relations R of Mg;f’f ) and a.

In more details, Steps 2 and 3 first compute the power series expansions involved in Equations (7)
and (9), which amounts to a type of generalized power projections. Then both approximation
problems are solved at once using shifted approximant bases:

— The choice of the first 2m columns of F = (S —1I,, s) at Step 4, which are the same as in Step 2
of Algorithm CANDIDATEBASIS, and the use of a corresponding “zero shift” (first 2m entries
of the tuple t at Step 4), make this equivalent to the computation in Section 5.3 (compare
Steps 3 to 5 of Algorithm CHANGEOFBAsIs to Steps 1 to 3 of Algorithm CANDIDATEBASIS).
This yields a basis R of Mﬁ,’l/’f).

— Equation (9) is solved thanks to an additional series expansion in F (its last column), and
the use of a sufficiently large shift (the last entry 2d of the tuple t). This yields a bivariate
polynomial & that is the remainder of the requested « in the division by R.

Finally, this sought & can be obtained by reversing this division, using a Hermite normal form
computation which also provides the minimal polynomial y, (Steps 6 and 7).

The assumptions in Algorithm CHANGEOFBAsIS yield a slightly stronger statement in Proposi-
tion 6.1 than in Proposition 5.6 for Algorithm CANDIDATEBASIs. Indeed, we suppose that y is such
that deg(y ) = n, whereas we make no such assumption in Algorithm CANDIDATEBASTS. From the
module properties in Proposition 4.1, we deduce that deg(y, ) = n implies VE;),/ ) = n, which allows
us to certify the basis of relations R when FAIL is not returned.

Algorithm CHANGEOFBAsIs may still return FAIL; Section 8 shows that when it is called with a
random y, then with high probability, it does not fail, at least under some assumptions on f.

ProPOSITION 6.1. Given f € K[x] of degree n with f(0) # 0, y and a in K[x]<,, m < n and d
in N, Algorithm CHANGEOFBASIS uses O(m®d + c¢(n, m, d)) operations in K, with c(-) from Equa-
tion (2), to return either FAIL or (R, p, &) where R € K[y]T,)7" is the Popov basis ofMg;f’f), y is the
minimal polynomial yi, of y mod f and has degreen, and a is the unique polynomial in K[y]<, such
that a(y) = amod f.

Ifged(y, f) =1, vﬁ,{’ﬁ = vg’f), deg(yy) = n and the fraction H = X" (yI,, — M, )"'X is describable
in degree d, then the output is not FAIL; in that case we further have deg(R) < d.

Proor. We start by showing that if the algorithm does not fail, then the truncated module Mg{ﬁ,?
and the module of relations Mi,’:’f ) are equal, and R is a basis of this module.

Steps 1 to 4: the approximant basis P. If the test at Step 1 does not fail then the specifications for
Steps 2 and 3 are met. At Step 2, Algorithm TRUNCATEDPOWERS returns rx = [ay™*~! rem f]m!

for 0 < k < 2d using é(c(n, m,d)) operations, according to Proposition 3.6. Thus the coefficient
vector s € K™ of r is XTM;k‘lva, where v, € K" is the coefficient vector of g, so that the polyno-

mial vector s(y) computed at Step 2 is the power series expansion of =X (yI, — M, ) v, truncated
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ALGORITHM 6.1 CHANGEOFBAsIS(f, y, a,m, d)
Input: f of degree n in K[x], with f(0) # 0, y € K[x]<,, a € K[x]<,, m < nand d in N5,
Output: either FAIL or (R, y, ) where R € K[y]’;l;dm is the Popov basis of Mg,’:’f ), 4 is the minimal
polynomial of y in K[x]/{f) and has degree n, and « € K[y]<, with a(y) = a mod f
1: if ged(y, f) # 1 then return FaIL
2: > Truncated expansion of =X (yl,, — My)_lva using Algorithm 3.7, vq € K" is the coefficient vector of a
(r)o<k <24 < TRUNCATEDPOWERS(f, y~! mod f,y 'a mod f,m, 2d)
s € K[y]™ — 3o<k<sa Sky~ where s, € K™ is the coefficient vector of ry
3: > Truncated expansion of X" (yl,, — My)_lX using Algorithm 3.8 (analogous to Step 1 of Algorithm 5.1)

(Ti.x) o<i<m ¢ BLOCKTRUNCATEDPOWERS(f,y ™! mod f,m,2(d + 1))
0<k<2d+2

Si.k € K™ « vector of coefficients of —I} 41 € K[x]<,,,for0 <i<mand0 < k < 2d
S € K[y]™" — Yo<k<za Sky* where S = (So ik -+ Smo1x) € K™
4: > Fraction reconstruction using [31, 42] (analogous to Step 2 of Algorithm 5.1)
Fe Kyl < (S@) ~In s(y)
t e N2l (0,...,0,2d)
Pe K[y](j;:’;l)x(zmﬂ) «— Porov-PM-Basis(FT, 2d, t)T, with P in t-shifted Popov normal form
P—Piomi.2m

vg € K[y];"deg(m — Pl moms1 > represents &(x, y), expected to satisfy @(x,y) = a mod f

5: > Ensure R is a basis ofM%’f),from Item (ii) of Proposition 5.4 (analogous to Step 3 of Algorithm 5.1)
R« Pl,.m,l..m
if the sum of diagonal degrees of R is less than n
or among the m rightmost columns of P, one has degree < deg(R) then return FarL
6: > Compute 1y, and ensure it has degree n
T € K[y]™™ « Hermite normal form of R > using [53, Algorithm 1 and 3]
u € K[y] « Ty,1; if deg(p) < n then return FArL
7: > Deduce o and return
acKlylan &« a1 — (T12a2 + -+ + T, m@m) rem p, where vg = (@1 -+ am)
return (R, j1, @)

at order 2d. From Proposition 3.7, the computation of S(y) at Step 3 uses O(m?d + c(n, m, d)) oper-
ations; S is the power series expansion of X (yI,, — M,)~'X truncated at order 2d.

Step 4 computes the t-shifted Popov approximant basis P for F = (S —1,, s) at order 2d, which
uses O(m®d) operations [31, Theorem 2.4; 42, Section 3]. Writing

P= (5 Z) for some P € K[y](;;:’;x(zm),i € Klyl<aq,u € K[y]zs'gd, and z € K[y]lsxz(;m),

the fact that P is t-shifted Popov and the choice t = (0,...,0,2d) ensure that P is (nonshifted)
Popov, that A # 0, and that deg(z) + 2d < deg(P) < 2d. The latter degree bound yields z = 0,
hence P is the Popov approximant basis of (S —1,,,) at order 2d. The fact that P is t-shifted Popov
also ensures that the (unique) remainder in the division of u by P is u itself, and that the ith entry
of u has degree less than the ith diagonal degree of P.

After Step 5, R is a basis of M,(};’{n) = M%’f ) Let R be the m x m leading principal submatrix of
P (and of P), and let vz € K[y]™ be the length-m top subvector of u. Similarly to the above, R is
(nonshifted) Popov, and the ith entry of v; has degree less than the ith diagonal degree of R; in
particular, deg(vs) < deg(R). Considering H(y) = X" (yI, — M,)~'X, recall from Proposition 5.1
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that D(H) = MS,): Q, and recall that Mf}{ Q 2 M(Y f) with equality if and only if v(y S = vfz )

In particular, bases of D(H) have determinantal degree v(y 1) < v(y S <, Applying Item (i) of

Proposition 5.4 to H and the approximant basis P shows that the sum of diagonal degrees of R is

deg det(R), and is at most V(Y 1)

(Yf) (yf) - (y,f) —n

As aresult, if Step 5 does not return Fa1L, then n < deg det(R) < v,/ , hence vy,

and D(H) = M%Q = MS}: D, Furthermore, Item (ii) of Proposmon 5.4 shows that R is a basis
(v.f)
of M;;”".

After Step 6, ji is py, and has degree n. Using O(m®d) operations [53], Step 6 finds the Hermite

normal form T of R. Since T is a basis of Mﬁ;{’f ) in upper triangular form, Proposition 4.1 states that
its first diagonal entry is the minimal polynomial of y in K[x]/{f). Hence y computed at Step 6
is this minimal polynomial. It has degree at most n, and the algorithm returns FArL at this step if
and only if deg(u) < n.

After Step 6, vg represents &(x,y) such that a(x,y) = amod f. Let @ € K[x, y]<(m,deg(r)) be the
polynomial whose coefficient vector is vg, that is, @ = @;(y) + xa@(y) + - - + x™ 'a@,,(y) using
notation from Step 7.

The fact that p = p, has degree n also ensures that there exists a unique & € K[y]<, such
that a(y) = amod f. Thenlet v, = (@ 0 --- 0)' € K[y]™, and let vz € K[y]™ be the unique
remainder in the division of v, by R. The entries of v4 have degree strictly less than that of the
corresponding row of R: the degree of the ith entry of vy is less than the ith diagonal degree of R.
We also define @ € K[x, y] <(m, deg(r)) as the polynomial whose coefficient vector is vg; in particular
a(x,y) = a(y) =amod f.

We now show that @ = @&, which yields a(x,y) = a mod f. By construction, a(x, y) — a(x) is in
Mgly’f), and since yI, — M, is a basis of Mff’f) (see Proposition 4.1) there is a vector v € K[y]"
such that (yI,, — M, )v = Xvz — v,. Applying the predictable degree property [43, Theorem 6.3-13,
p- 387] to the column reduced matrix yI, — M,, all of whose columns have degree 1, we obtain that
deg(v) + 1 = deg(Xvz — v,) = deg(vg). Furthermore, from (yI, — M, )v = Xvg — v, we get

XT(yl, — My) ' Xvg — X"o = X" (yL, - My) "o, = 0,

and considering truncated power series it follows that Fg = (S —1I,, s)g = 0 mod y?¢, where
g= ( ) e K[y and = (;Ti,) € K[yP"

Therefore q is a right multiple of the approximant basis P = (} %), which shows that 1 is an
element of K (we had shown A # 0 in K[y] at Step 4), hence A = 1 as it is a monic polynomial in
the Popov form. It follows that @ —u is a right multiple of P, and we check finally that the remainder
of 7 in the division by P—which is u by construction—is # itself. Indeed the degree of the ith entry
of v; is less than the ith diagonal degree of R, which is the ith diagonal degree of P; and as seen
above all entries of X"v have degree at most deg(vg) — 1 < deg(R) — 1, with deg(R) being itself
at most the ith diagonal degree of P for m + 1 < i < 2m. In particular v4 = vg, hence @ = & and

a(x,y) =amod f.

Step 7 computes a € K[x]<n such that a(y) = a mod f. Since deg(y) = n, the Hermite normal

form of R has the shape T = ) with Ty, = (T1 2 -+ Tim)and deg(Ty, ;) < deg(y) = n for
2 < j < m. Then, the polynomlal a=a;—(Ti20, + -+ T1,m@n) rem p constructed at Step 7 has
degree less than n and, by construction as well, the vector v, = (@ 0 --- 0)7 € K[y]™ is such that

Vg — Uq 1s a right multiple of T. (In fact, v, is the unique remainder in the division of vz by T.) In
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particular, vz —v, is a right multiple of R, meaning that v, is equal to vz modulo relations of M%’f ),
which implies a(y) = @(x, y) = a mod f. The computation of & costs O(nm) operations in K.
This concludes the proof of the properties of (R, 11, @) in the case where the algorithm does not re-
turn FArL. Furthermore, adding the above costs yields the cost bound claimed in the lemma, which,
therefore, holds in general since the cost can only be smaller when the algorithm returns FarL.

Proof of the last claim. The assumption ged(y, f) = 1 ensures that Step 1 does not return FArL,
in which case we have seen that P is a weak Popov approximant basis of (S —1,,,) at order 2d.

From deg(y,) = n and Proposition 4.1 we know that V(y /) = 1, hence with the assumption

ﬁ,{f) = v,(}; f) e have v(y S = V<Yf) = n. Using D(H) = M% 51) M(Y /) and Item (iii) of
Proposition 5.4 thanks to the assumption on H(y) = X' (yl, - M y)” 1X, we deduce that the m

rightmost columns of P have degree at least deg(R) and that R is a basis of Mﬁ,’:’f ) with deg(R) < d.
In particular deg det(R) = n, and it follows that Step 5 does not return FAIL.

Then, the assumption on the degree of the minimal polynomial also ensures, using Proposi-
tion 4.1 as above, that the first diagonal entry of the Hermite normal form T of R is y, and is the
polynomial y computed at Step 6. Therefore, Step 6 does not return FAIL either: we have proved
that, under the assumptions ged(y, f) = 1, v% ,J:l) = vf,’{ f) ,deg(py) =n,and H = XT(yl, - My)'X
is describable in degree d, then the output is not FaiL and deg(R) < d. O

Notes. Shoup’s algorithm for computing « in the case m = 1 uses only n terms of the sequence
(€(y*a))g 0, or more generally d terms, where d is a known bound on deg(y1,). Here as well, if one
knows that the sought basis of relations satisfies deg(R) < d, for example under the conditions
of Proposition 6.1 ensuring success, then the algorithm may be modified so as to require only d
terms of the expansion of —X"(yI, — M,)'v, instead of 2d. The vector vz would appear in the
approximant basis at order d, and from there one would consider a residual approximant problem
focusing on obtaining the missing part of R. This is not detailed here, as this would complicate the
presentation without bringing an improvement to the asymptotic complexity.

Modular composition and inverse composition are very similar. They both involve the
computation of a matrix of relations and use symmetric steps with similar complexi-
ties. Indeed, the division with remainder of Section 4.2.1 is used in both algorithms to
change between univariate and bivariate representations efficiently. Also, the application of
Algorithm BivARIATEMoDULARCoOMPOSITION at the last step of composition in Algorithm
BIVARIATEMODULARCOMPOSITIONWITHRELATIONMATRIX is reflected by TRUNCATEDPOWERS as
starting step of inverse composition in Algorithm CHANGEOFBAsIs. Both these steps have cost
O(c(n, m, d)) from Propositions 3.4 and 3.6, respectively (see also Section 3.4.3).

7 THE BLOCK HANKEL MATRIX Hk(r;‘:’;) AND ITS GENERIC PROPERTIES

Matrices of relations are obtained either by Algorithm MATRIXOFRELATIONS directly, or by Algo-

rithm CHANGEOFBAsIs after a change of basis. In both cases, for the correctness of the computation

to be granted via Propositions 5.8 and 6.1, we need v( f ) @f) to be equal (and, equivalently,

Mg,'f],;) = Mi: f)) and the fraction H(y) = X'(yI, — Ma) 1X to be describable in degree d, or the

same statement with y in place of a. It is thus important to understand when these properties hold.
Recall from Section 3.4.1 the matrices K< f) and L(a f) , that are defined for m € {1,...,n} by

and v,,

XT
L(a’f) — . c K(md)xn and K(a,df) — (X . Mg_l)() € Knx(md)
. m,

XTmd-1
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and that correspond to Algorithms BivARIATEMODULARCOMPOSITION and TRUNCATEDPOWERS re-
spectively, and also to the maps KEZ’? and )LEZ’? . Their product forms the block Hankel matrix

H() H] Hd_l
Hyy Hg ... Hy,

with Hy = XTMKX for k in N. This matrix, and in particular its rank, is strongly related to the
two properties mentioned above [74; 50, p. 97].
The outcomes of this section are the following. For any positive parameters m < n and d, as

soon as rank(Hk(a f)) = v(a f) , then v(a f) vﬁ,‘f /) and H is describable in degree d (Section 7.1).
This happens in partlcular when f(0) # 0,d > [n/m] and either deg(a) = m (Section 7.2) or for a
generic choice of a (Section 7.3). Also, for generic choices of the roots of f and of the values of a at
these roots, rank(Hk(a f)) (a ) as soon as d > fv,(,f’f)/m] (Section 7.4). As in previous sections,

(a.f) Hk(rs 5), A(a f) , and so on. is often shortened into vy, Hkp, g, Am, 4, and so on.

These results will be used in Sectlon 8 for the analysis of the randomized composition algorithm
when f is separable (Section 8.3), or when f is purely inseparable, which includes the case of power
series composition (Sections 8.4 and 8.5).

notation such as v,,

7.1 Relation Between Block Hankel Matrix Rank and Fraction description degree

The key condition to control the degrees of fraction descriptions of H(y) and obtain matrices of
relations is the equality

rank(Hkp, 4) = V.
The special case when rank(Hk,, 4) = n is common, and appears naturally later on. The proof of
the following result relies in an essential manner on Lemma 7.2, which we give next (the references
we cite only give a sketch of proof).

ProrosITION 7.1. Given f € K[ | of degree n, a € K[x]<,, and positive integers m < n and
d, the rank ofHk(r:,’f) is at most vm “I) In case of equality, we have v(“ S = vfrf’f) and H(y) =
XT(yl, — My)"'X is describable in degree d.

In particular, ifHk(rZ’{;) has rank n, then vf,f Q = vf,(: P = nand H(y) is describable in degree d.

Proor. Using Proposition 4.1, the inclusion M,, € M, n, implies vy < vy < n, so that
by Lemma 7.2 below, we have rank(Hk,, 4) < vpm < v < n. If Hky, 4 has rank v,,, then
Vm = Vm.m, and the claim on H follows again from Lemma 7.2. The case where the rank is n
follows similarly. O

LEMMA 7.2 ([50, SECTION 2.1] AND [75, LEMMA 2.4]). For positive integers m < n and d, the rank
ofHk(”‘:’f) is at most v,(n Q, with equality if and only if H(y) = X"(yl, — M,)~'X is describable in
degree d.

Proor. We denote by Hy = XTM5X € K™ ™ the coefficient in the expansion of H at infinity:

H(y) = X (yly = M) "X = ) Hey™ 7 = 3" XTMExy™ .
k>0 k>0

To show that the rank is at most v, ,, we first note that Hk,, 4 is a submatrix of Hk,, 441
for d > 0, the sequence (rank(Hk,, 4))40 is thus nondecreasing. Since M, n, is the module of
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vector generators for the sequence {Hg}rso (Section 5.1), the minimal generating polynomial
F € K[y]™™ in Popov form for that sequence is a basis of M,, ,, ([74, Definition 2.5] and [50,
Definition 2.3]). It follows that deg det(F) = vy, m, and [50, Equation (2.6)] shows that for d > n,
the rank of Hk,,, g is v, m. So the first claim is proved.

From Lemma 5.2, F is also a basis of D(H); we now study the descriptions of H by exploiting
identities that we used to prove this lemma. If the rank of Hk,, 4 is equal to v,, »,, then this rank
is also that of the infinite matrix corresponding to the system (see also Equation (17))

HkvO + -+ HkerUd =0 fork > 0, (22)

thus a solution to
Hivg+ -+ Hipgqug=0 for0<k<d-1 (23)

is also a solution to Equation (22). Since the rank of Hky, 4 is maximal, we also know that the
last block column of Hk,, 4+; is a linear combination of the previous ones. This provides with m
linearly independent Ry, . .., R,, € K[y]™, of degree d, whose coefficient vectors in y are solutions
to Equation (23), hence to Equation (22). Let R be the matrix in K[y]™*™ whose jth column is R;.
Using Equation (22), we deduce that HR = Q with QO € K[y]™*™ (see also Equation (18)). This
gives a right fraction description H = QR™! (which may not be irreducible) with denominator of
degree d. The same reasoning on the left side gives a left matrix description of degree d, hence H
is describable in degree d.

Conversely, a right matrix description H = QR™! with R of degree at most d gives R;’s whose co-
efficient vectors are solutions to Equation (22). Since F is a basis of the module of vector generators
for {Hg }r >0, R must be a multiple of F. By minimality F has degree at most d [43, Theorem 6.5-10,
p- 458], and using [50, Equation (2.6)] the rank of the infinite block Hankel matrix restricted to its
first d block columns is maximal. Starting from a left description, in an analogous way we obtain
that the rank restricted to the first d block rows is maximal, which yields that Hk,, 4 has rank
deg det(F) = Vi, m. O

7.2 Families with Hk(r:j’? of rank n

A simple condition implies the equality rank(Hk,, 4) = n of Proposition 7.1.

ProrosiTION 7.3. Let f € K[x] have degree n, let a € K[x]<,, and let m be a positive integer. If
f(0) # 0 and deg(a) = m (hence 1 < m < n), then the block Hankel matrix Hk(n‘i’g) e Kimd)x(md) pq¢
rank n for alld > [n/m].

The rest of this subsection is devoted to the proof of this result. It is a basis for the genericity
result in the next subsection.

Proor. For a given c in K, by construction of this block-Hankel matrix, one has

Hk&;a{’if) = CHk(r:’Z) C, where C = diag(1,...,1,¢,...,c,... ,cd_l, ... ,cd_l).
’ ? —_——— —— —_—
m times  m times m times

It follows that rank(Hk(r;a(’if )) = rank(Hk:’g)) for any ¢ # 0, and therefore in the rest of the proof
we can assume that a is monic of degree m.

By Equation (21), it is sufficient to show that the mappings x,, 4 and A,, 4 associated to K, 4
and L,, 4 are surjective and injective, respectively.
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The mapping kn, q is surjective. By assumption, n < md so that surjectivity of k,, 4 is equivalent
to the matrix K, 4 € Kx(md) from Equation (12) having full row rank n. Indeed, the first n columns
of K, 4 are the coefficients of the family of polynomials x'a’ rem f,for0 <i<mand0 < j < d,
with 0 < i + jm < n. Since deg(a) = m, these columns form an upper triangular matrix, with 1’s
on the diagonal; this proves the claim.

The mapping A, q4 is injective. Equivalently, we have to show that L,, 4 has full column rank n.
This follows from the structure of this matrix, seen at the level of polynomials.

LEMMA 7.4. With the notation and hypotheses of Proposition 7.3, let
pi = [ax""™ rem 177!, i=0,...,m—1.
Then,

(i) if m < n/2, the m polynomials py, . . ., pm-1 are linearly independent;
(ii) ifn/2 < m, the n — m polynomials pym—n, - . . , Pm—-1 are linearly independent.

Proor. The two cases require different proofs, sharing common ingredients. For i > 0, let r; =
x™* rem f. For b in K[x]<,, we then have

x'brem f = [x"b]"" + 6y, (24)

for some &, ; in Span(ry, . . ., ri—1), in particular &, ¢ = 0. Applying thisto b = ryp = x" rem f yields

r = [x"ro]g_1 + Or,,i- Taking this relation modulo x™ gives [ri](’)"_l = [xiro]f)"_l + pj, with p; in

Span([ro]i*!, ..., [ri=1]y*™") for i > 0 and i = 0. By induction on i > 0, one deduces that
Span([rolg* ", ... [ri]"™") = Span([ro]g* ", .. .. [x"rol] ).

Writing f = fo + - + fox™ 1+ x", we getrp = —fy — fix — -+ — fr_1x" L. Since fy # 0 by

assumption, [x'ro];*! has valuation i for 0 < i < m; this implies that Span([ro]"™", ..., [r:]i*")

has dimension i + 1 for 0 < i < m.

Proof of Item (i). Let b = ax™ ™ rem f in Equation (24). Upon reduction modulo x™, for 0 < i <
m, we obtain the relation p; = [x'b];*" + p/, with p/ in Span([ro];*™ ", ..., [riza ],

Since ax™™™ is monic of degree n (a has degree m), with valuation at least n — m > m (here,
m < n/2), we get [b]™! = [ro];"”", and thus [x'b]!*! = [x're]" ! for 0 < i < m. This gives
pi = [rl™ + g} — p, with g — p; in Span([ro])* ™", . . ., [ri=1]7"™"). In particular, taking all i up to
m—1, we get the equality Span(py, . . ., pm-1) = Span([ro];* ', ..., [rm-1];*!), and we saw that the
latter has dimension m. Item (i) is proved.

Proof of Item (ii). Assume that ¢ = ¢, x™ + -+ + c,_1x" ! is such that [ag rem f]7""" = 0. We
prove that all ¢;’s vanish.

We can rewrite aq rem f as x™b rem f, with b = a(q/x™); since a has degree m, b is in
K[x]<n. Applying Equation (24) to b and i = m, our assumption that [x™b rem f]7""' = 0
implies [5b,m]6”‘l = 0. Writing &p,, = Zj";?)l Sjrj for some &,...,0m1 € K, we get
Zj";()l §;[rj1mt = [Spm]™ = 0. The linear independence of [ro]™',....[rm_1]"" en-
sures §; = 0 for all j, showing that &, itself is zero. Hence x™b rem f = [x™b]2~", from which

we deduce x"[x™b]™! rem f = 0 using

x™b rem f = ([x"b]7"" + x"[x™b]7 ") rem f = [x"b]} " + (x"[x"b]7 ! rem f).
Since x"[x™b]™~! = x"[b]™"}, and since f; # 0 ensures that x is invertible modulo f, it follows
that [b]™} vanishes modulo f, or equivalently that [b]™), = 0. Since a is monic of degree m, and

since n — m < m, the definition of b then implies that all coefficients c¢;’s vanish. Hence, Item (ii)
is proved. ]
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Let now v € K[x]~, be such that
[l = [avrem f] = = [a%'0 rem flt =o.

We prove that deg(v) < n—mifori = 0,...,d — 1, by induction. For d = [n/m], this gives
deg(v) < m; together with the assumption [0]~! = 0, this proves that v = 0.

The base case of the induction is for i = 0, and deg(v) < n holds by assumption. If the claim holds
for some index i < d—1, since a has degree m, for any w in K[x],, the polynomial [aw rem f]"~!
splits into two parts:

[aw rem f](’)" = [a[w]y™™" 1]0 + [ax"" " [w];,, rem f157”

Apply this identity with w = a'v rem f. Then, both the left-hand side and the first summand
vanish: the former because [a'*'v rem f]7*"! = 0, the latter because [a’v rem f]’”_1 =0, ie,
w = a'vrem f has valuation at least m. We deduce that [ax" ™[w]7"), rem f]7"~' = 0, with
w=a'vrem f.

—Ifm < n/2 the linear independence of the polynomials pj = [ax""™* rem f|°!, for j =
0,.. — 1, then shows that [w = [a'v rem f]™}! vanishes.

—Ifm>n / 2, then the assumption that w has valuation at least m, with thus m > n—m, shows
that [w]?L = x®™"[w]% ™! In this case, the linear independence of the polynomials p;
forj=2m—n,...,m— 1shows that [w]™} = 0.

In other words, in both cases, we have proved that w = a’v rem f has degree less than n — m.

On the other hand, the induction assumption that deg(v) < n—mi implies that a’v rem f = a'v,
so the latter has degree less than n—m. Since a’ has degree mi, this shows that deg(v) < n—m(i+1),
as claimed. O

7.3 Generic Regularity in a and f

In all this document, genericity is understood in the Zariski sense:

Definition 7.5. A property P of certain parameters (us, ..., us) holds for a generic choice of
(u1, .. .,us) in K* if there exists a nonzero polynomial A in K[y, .. ., @s] (where the @;’s are new
indeterminates) such that A(u, .. ., us) # 0 implies that P(uy, . . ., us) holds.

Note that if K is finite, there may be no choice of the u;’s in K for which A does not vanish, but
such points exist in a finite extension of K of sufficiently large degree (such as O(log(n)) when the
degree of A is polynomial in n, as is the case below).

ProrosITION 7.6. Let f in K[x] be of degree n and such that f(0) # 0. Foranym € {1,...,n}
there exists a nonzero polynomial Af.m inKlay, . ..,an-1] of degree at most 2n*/m such that for
a=ag+ -+ ap_1x"VinK[x]<n, if Ar.m(ao,...,an-1) # 0 then HkE:’{;) € Kmdx(md) pas rank n
for anyd > [n/m].

7.3.1  Proof of Proposition 7.6.
LEMMA 7.7. Let m, n be positive integers, withm € {1 .,n}, and letf fo cot fuox™T X
anda = Gy + - - - + @y_1x"! be polynomials in Z[do, . . ., @n-1, for - - - » fu1] Then any n-minor of

Hk(r: JF)/ . has degree at most 2n*/m in @y, . . ., d,—1 and 2n*(n —1)/m in fo, oo ot

Proor. The multiplication matrix Mg can be written as Mg = XJ_ (l)akM’; , where M, is the
companion matrix of f . The entries of M, which are the coefficients of x¥a rem f fork=0,...,n—
1, are therefore polynomials of degree 1 in the coefficients dy, .. ., d,-; and at most n — 1 in the
coefficients fo, .. ,fn_l. In turn, the coefficients of Mé have degree at most j in dj, . .., d,—1 and
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(@)

j(n=1)in fy, ..., fu_1. For 0 < i,j < [n/m], the m x m block of coordinates (i, j) in H m. [n/m] isa
submatrix ofM;+j; it has degree at most i + j in @, . .., d,_1 and (i + j)(n — 1)in fy,..., fu_1. Asa
result, any n-minor of this matrix has degree at most m[n/m]([n/m] —1) < 2n?/min ay, ..., @,

and m[n/m]([n/m] = 1)(n—1) < 2n’*(n—1)/min fo,..., fo1. o
Take f of degree n with f(0) # 0. Proposition 7.3 with a = x™ shows that at least one n-minor
of HK") s nonzero, so the corresponding n-minor of Hk(r:’ f)

m, [n/m] »[n/m]

take this minor for Af,m, and its degree is then bounded by Lemma 7.7.

is not identically zero. We

7.3.2  Note: Basis of Relations for a Generic a. For any f in K[x] with f(0) # 0, and for a

generic a in K[x],, Proposition 7.6 shows that the rank of Hk(’Z’g) is n, with d = [n/m]. From
Proposition 7.1 we then obtain vf,‘: ) = vg,i’ﬁ = n and the describability of H in degree d. Therefore,

by Proposition 5.6, Algorithm CANDIDATEBASTISs returns a basis of Mgﬁ’f ) and the flag CERT.

7.4 Generic Rank for a Separable f

We now study the rank of Hk,, 4, for a generic choice of the roots of f, and for a generic choice
of the values of a at these roots, subject to certain combinatorial conditions.

7.4.1  Definitions. Consider pairwise distinct &, . . ., &, in an algebraic closure K of K. To such
points, we associate the polynomial f = (x — &) - - - (x — &,). We also consider a € K[x],, and we
say that a takes values Ay, ..., A, at &y, . .., &, with multiplicities {4, . . ., {, if the following holds:

— A1, ..., A, are pairwise distinct elements in K:
— {1 + -+ +{, = n, with all {; positive integers;
—fori=1,...,r,a(&s,41) = -+ = a(és,4¢,) = Ai, where we write 0; = {1 + -+ + {;_1 (the

empty sum for i = 1 is zero).

In view of our application, we also assume that the &;’s are such that f is in K[x].
7.4.2  Generic Rank.

PROPOSITION 7.8. Fix positive integersm € {1,...,n} and€ = ({4, ...,¢;) suchthat {1+ - -+, =
n. Then, there exists a nonzero polynomial Iy, € Z[fl, e EH,L, . ,/L] such that the following
holds. For pairwise distinct nonzero &, . . ., &, in K such that f = c(x—&)--- (x—&,) withc € K\ {0}
is in K[x] and for a € K[x] that takes values A1, ..., A, at &y, ..., &, with multiplicities €y, ..., ¢y, if
e m(&1, ..oy Eny A1y - oo Ay) is nonzero, then

rank(Hk:’{;)) = v,(;f’f) forany d > [vgf’f)/mh

with in addition the equality
Vﬁ,‘f’f) = Z min(¢;, m).
i=1

Finally, for any pairwise distinct A1, ..., A, the polynomial I“g,m(g:l, o, 59,,,11, ..., Ar) is nonzero
and has degree at most 2n?.

7.4.3  Proof of Proposition 7.8. The rather long proof is decomposed as follows. First, the expres-
sion for the determinantal degree vy, is established. For the proof of the rest of the proposition we
exploit the factorization Hk,,, g = L,;, 4Ky, 4, that is analyzed through a series of lemmas. All along,
we use classical linear algebra notions concerning invariant factors and Smith normal forms, and
their relation to eigenvalues in the case of diagonalizable matrices; see e.g. [62, Ch.II and III] for
more background on these aspects.
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The ranks of the matrices K, 4 and L,, 4 are related to that of a simple matrix P ,, 4 (see
Equation (31)). This leads to the proof that for d = [v,,/m], the rank of K, 4 and L, 4 is Vi,
generically. Then we prove that generically, taking any dy > [v,,/m] is sufficient for studying the
rank of Hk,,, 4. The proofis concluded by establishing that the rank is v,,, when d is r, the number
of distinct values a(&)’s: for this value of dy, we establish that the intersection of the image of K,,, 4
with the kernel of L,, 4 is reduced to 0. The polynomial I ,, and the degree bounds are derived
from the proof.

Determinantal degree vfff’f ). Asin the proposition, let &, . . ., &, be pairwise distinct in K and let
f=clx—¢&)--(x —&,). The Lagrange interpolation polynomials
1 X X —
Lp(x) = f® =]_[ e k=1,....n. (25)

frlx-& & -&

form a basis of A := K[x]/( f).Forany a € A, the matrix of multiplication by a is diagonalizable,
its eigenvalues are the values of a at the ;’s, and the Lagrange polynomials are eigenvectors. The
characteristic polynomial y, of a modulo f is therefore given by

Xa = | |- atée)) € Elyl.
k=1

For1 <i<r,wedefineS; = {k € {1,...,n} | a(é) = A;} and use that
Si:{O'i+l,...,O'i+€i}. (26)

With these conventions we have the factorization

,
xa=| [-2",
i=1

where the factors (y — ;) are pairwise coprime. The Smith normal form of yI,, — M, is then known
and an explicit expression for the determinantal degree v, can be given: yI,, — M, has max(¢{;)
nontrivial invariant factors; for 1 < k < max(¢;), the kth one is [[;<;<,(y — 4;)%*%, where ¢; = 1
if k < ¢; and 0 otherwise. From there, recalling from Equation (8) that for m in {1,...,n}, vy, is
the sum of the degrees of the first m such invariant factors, we have:

min(rm, max(¢;)) r
Vi = Z card({i | ¢; < k}) = Z min(¢;, m). (27)
k=1 i=1

This proves the claim regarding v,, in the proposition (this claim thus holds without further
assumption on the &;’s and A;’s).

Maximal rank ofHk(rZ:Z).

LEMMA 7.9. Let A € K™" and m € Ns, and let v be the sum of the degrees of the min(m, n)
highest degree invariant factors of yl, — A. Then for any collection of m vectors vy, . .., v, € K", one
has dim(Span(A'v;,0 < i,1 < j < m)) < v.

index such that Adfvj € Span(vj, Avj, . .. ,Adf—lvj, {Afv | 0 < 1,0 < k < j})ifl > d;j then Alvj
also belongs to the latter subspace of K”, which is therefore stable under left multiplication by A.
This holds for any 1 < j < m, hence d; + - - - + d;, = 7, and the matrix

Proor. We let # = dim(Span(A'v;,0 < i,1 < j < m)).For 1 < j < m,letd; > 0 be the first

Plz(vl Avy - Avfl_l coo Uy Avp e Avfn"‘_l)eK"X‘;
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has rank 7 and can be completed into a nonsingular matrix P = (P; P,) € K"™*". By applying the
change of basis P"!AP we obtain
yly - C B,

0 yIn—V/ - By

where C € K™ B, € K"X("=V) B, € K("="X(n=%) Thanks to the form of P;, the matrix C € K™ is
block upper triangular with at most m companion blocks C; of dimensions d; on the diagonal (there
is no block for d; = 0, and at most n of the d;’s are nonzero). By a unimodular row transformation
Uj € K[y]%>*%, a matrix ylg; —Cj can be brought into an upper triangular form T;(y) = U;(y)(yls, —
Cj), which has diagonal entries 1 except for the last entry which is the characteristic polynomial

P~ (yl, — AP = € K[y]™", (28)

X0 =yl =yt == ) of €
-1 )((g; 1
1 X -
vy - e S ey
-1 .. : 1
1y ... y¥! 1 )(g_)_l xV ()
J

Therefore Equation (28) can be rewritten as

-1 _(Ty) By \_(L  Biy) (T 0

VWPl = AP = ( 0 yluy - Bz) - (o Wiy - Bz) ( 0 Iw) @
where U = diag(Uy, . .. Up,I,—3) is unimodular (with no U; if d; = 0),and T € K[y]™" is block
upper triangular with diagonal blocks the T;’s. The matrix T is triangular with 1’s on the diagonal
except for at most m entries. We deduce that the gcd of the minors of dimension k of T is a unit
for 1 < k < ¥ — m, and that T has at most m nontrivial invariant factors [62, Ch.II, Equation (13)].
The product of these invariant factors is det(T) = []; x%), whose degree is d; + - - - + d,, = 7. From
the matrix product on the right-hand side of Equation (29), these latter invariant factors divide
the m highest degree invariant factors of yI,, — A [62, TheoremII.14]. From the definition of v we
obtain v < v. |

With A = M, or M}, and K, 4, L, 4 from Equation (12), for any positive integer d, Lemma 7.9
gives
rank(Kp, 4) < v, rank(Ly, 4) < vy, and rank(Hk,,; g) < vp,. (30)
Next, we show that the ranks of both Ky, 1y,,/m1 and Ly, [v,,/m] are v, generically.

The relation ofK’(::’g) and LEZ’J;) to the matrix Pr m.q. For £ = ({1,...,¢;),min{1,...,n},and a
positive integer d, we define the matrix

Pe.ma = (Vf D;Ve - D;‘{‘lVg) €Z[&, ... En ... ,Zr]"xmd, (31)
where _ _
1 & - lm—l
Ve=|t and Di:diag(il,...,/Tl,...,/_lr,...,ir).
= Zm—1 — ———
1 §n T n £, times £, times

The following lemma summarizes the key properties of this matrix in relation with the rank of
Km.qand Ly, 4.

LEMMA 7.10. Let{, &, ..., & M, ..., Ay, f, a and m be as in Proposition 7.8, and let d be a positive
integer. The following holds:
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— the rank of Ky, q is equal to the rank of Py . a(&r, ... Ens A1y o0 A);
—ifall&;’s are nonzero, the rank of L, 4 is equal to the rank of P m.a(1/ &1, ..., 1/ Ens A, s Ap).

Proor. We use the same notation
Km.d * K%, Yl<ma) = Kx]/(f) and  Apq:Klxl<n - K[x]2,

for the mappings induced by scalar extension from x,, 4 and A,, 4 from Section 3.4.1.

Taking (x'y/)o<i<m,o0<j<a for basis of K][x, Yl<(m,qy and the Lagrange basis Li,..., L,
for K[x]<n, the matrix of ;g is P, m.a(&1, - - -, Ens A1, - . ., Ar). This proves the first point.

To prove the second point, take k in {1,...,n}, and let i in {1,...,r} be such that a(&) = A;.
The image of the Lagrange polynomial L by A,, 4 is the polynomial vector

Ama(Li) = ([Lk](,n-l, [aLy rem £1771,... [a%1 £y rem f]g"-l) e K[x14,,
and since the Lagrange polynomials are eigenvectors of multiplication by a, we get
Ama(Li) = (L™ Ll 128 £y
= (Ll Ly AL

—(md
LetL’ € K(m pxn be the matrix whose kth column (for k = 1,...,n) contains the md coeflicients

of the entries of A,, 4(L). This is the matrix of 4,, 4, if we take the Lagrange basis for the do-
main K[x] <.

Since all ¢;’s are nonzero, we get f(0) # 0, so that f is invertible as a power series. Because the
K-linear transformation b € K[x]<,, + [b/f]*~" is invertible, L’ has the same rank as the matrix
whose columns are the coefficients of the vectors

(I N (o e NP S PN T B
for i and k as above. On the other hand, we have [[Lk]g"‘l/f]g”‘l = [..[:k/f](g”_1 and
Le 1 1
o fE)x-&

This shows that to determine the rank of L’, we may as well consider the vectors

1 m—1 . 1 m-—1 i 1 m-1
([x_gk]o M [x_gk]o ,.”7/11- [x—ka )

T 1 1
=& 1+ —x+- + ——x""].
[x—§k]0 &k [

Thus, up to the factors — &, taking the md coefficients of these vectors and putting them in columns
gives us the transpose of Pp . a(1/&1,...,1/&n, A1, . .., A;). This proves the rank equality claimed
in the second item. O

Now, note that

The rank of Kf:,’? and L(rZ:J;) ford = fvﬁ,‘f’f ) /m]. Together with Lemma 7.10, the next lemma
establishes that the generic rank of Kp, [v,,/m] and Ly, 1y, /m1 i Vm. Let R¢, m be the vy, X vy, subma-
trix of P¢ m, [v,,/m] Obtained by extracting the first min({;, m) rows containing Aifori=1,...,r
(see Equation (27)), and the first v,,, columns (note that P ,, [v,,/m] has m[vy,/m] > vy, columns).
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LEMMA 7.11. For € = ({1,...,0,),n = &1+ -+ € and m in {1,...,n}, and for any pairwise
distinct Ay, ..., A, in Kr, the determinantw&m(gl, &, A of the vy X v, matrix Re,m at
Ay ..., Ay is nonzero.

Proor. We prove the nonvanishing property by exhibiting a vector (&1, ...,&,) € K" for which
the evaluation wg (&1, ..., &y At, - .., A,) is not zero. In what follows, for i = 1,...,r, recall that
we write o; = {1+ - -+{;_1, so that the rows involving A;in Pt m, [vin/m] haveindices o;+1,. .., 0;+
{; (see Equation (26)).

Assume first that m is invertible in K, and choose § in K such that § + A #0fori=1,...,r.
Then, for all i, the polynomial x™ —(§ + ;) is separable, since its discriminant is m™ (5 +1;)™"!, and
we choose &5,41, . . ., £, +min(¢;, m) to be pairwise distinct roots of this polynomial in KIifm<¢ i, we
further take &5, 4m+1, - - - » €5,+¢; arbitrary in K (note that wy,_,, does not depend on these quantities).
Now, for any &, A such that €™ = §+A, and forj > 1, we have M= fjm+2£=l (i)(—5)k§(j_k)m. Upto
invertible linear combinations of its columns, Ry, ,,(&1, . . ., €4, A1, . . ., Ay) is thus the Vandermonde
matrix at the roots 5,41, . . ., &5, 4min(e;,m), i = 1,...,7.Since the A;’s are pairwise distinct, all these
roots are pairwise distinct too, so the determinant we (&1, . . ., &, A1, - . ., A;) is nonzero.

If mis 0 in K, then for all i, x™ + x — A; is separable, since its discriminant is (—1)"’(’"_1)/2 # 0.
Again, choosing distinct roots of these polynomials and performing linear combinations of the
columns of Ry, leads to a nonzero Vandermonde determinant. |

In several steps, we now study the rank of Hk(rZ’? and show it is vfff’f ) for d large enough. Note
that unlike in Section 7.2 where we were working with v,, = n, additional ingredients are necessary

in order to deduce this rank from those of KE:’? and LEZ’J;) .

If the rank ofHkEZ’Z) is vﬁ,‘f’f) for somed > 0, then it is vi,‘f’f) foralld > [vi:f’f)/m}.

LEMMA 7.12. Let(, &, ..., &, A, ..., Ar, a, f andm be as in Proposition 7.8. If Hky,, 4, has rank vy,

forsomedy > [vy,/m], and ifwe (&1, ..., En Ay A) and we (1) &1, .0 1/ En A, . Ay) from
Lemma 7.11 are nonzero, then Hky, 4 has rank vy, for alld > [vy,/m].

ProoOF. Since wg (&1, ..., &n, A1, ..., A) is nonzero, Pe pm 1v,,/m1(&1s- .. &A1, ..., A,) has
rank at least v,,, and so does Ky, [y,,/m] (Lemma 7.10).

As aresult, for d > [vy,/m], Ky, g still has rank exactly v, (recall that this rank cannot exceed
Vm, by Equation (30)). Thus, for such d, there exists a nonsingular P € K(md)x(md) ch that
Km,aP = [Km,[v,,/m] 0], where the zero matrix is n X (m(d — [vy,,/m])). In the same way, since
we,m(1/&1, ..., 1/&n, Ar, ..., Ay) is nonzero, Lemma 7.10 also implies that L, fy,,/m] has rank vy,
therefore there exists a nonsingular Q € K(md)x(md) gych that OLpma = [(Lm,[v,, /m])T 0]". We
obtain

QHkp,g P = QL dKim,aP = (Hk'"’ ol 8) e Kmdpx(md),

which shows that for d > [v,,/m] we have rank(Hk,, 4) = rank(Hkp, 1y,,/m1)- O
The rank of Hk(,::j]: ) is vﬁff’f ) generically. To establish that the rank of Hk,, , is v,, for generic
choices of &, . .., &,, we introduce a decomposition into vector spaces associated to the A;’s. We

then study these spaces separately; their dimensions are min(¢;, m), respectively, leading as ex-
pected to a total dimension };}_, min({;, m) = vy,.
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This is achieved through a description of the images of the mappings k, 4 and 4,, 4 in terms of
polynomials. Given positive integers £ = ({1,...,¢,)and &,...,&, in K", define
P,-,J-=Z§iLk eK[x], i=1,....r, j>0, (32)
keS;

with the Lagrange polynomials £y, ..., £, and the sets Sy, ..., S, from Equation (26).

LEmMA 7.13. Letl, &, ..., &, A1, ..., Ar, a, f andm be as in Proposition 7.8 and let d be a positive
integer. The image of K, q lies in the linear span of the vy, linearly independent polynomials P; j from
Equation (32), for1 <i <r and0 < j < min(¢;, m).

Proor. Let V(x,y) = j";gl ¢j(y)x’ belong to K[x, Yl<(m,q)- Lagrange interpolation gives
n
kma(V) = V(x,a) rem f = " V(& a() Lx.
k=1

Since V(&, a(é)) = j”i_ol cj(a(fk))é',i, we deduce

r m-1
Kma(V)= > ) ¢(A)Py.
i=1 j=0
Fori = 1,...,r, at most ¢; of the polynomials P; ;, j = 0,...,m — 1, can be linearly indepen-
dent, since they are all linear combinations of ¢; linearly independent L. On the other hand, the
polynomials P; j for j = 0,...,¢; — 1 are linearly independent, due to the linear independence of

j —{liX¢; .
the polynomials L, and the invertibility of the Vandermonde matrix [gi]og j<t, € K "' This
proves that the image of k,,, 4 is included in the span of the polynomials P; j, fori = 1,...,r and

j=0,...,min({;,m) — 1, as claimed. O
This polynomial-based interpretation then allows us to use the following decomposition.

LEMMA 7.14. Let(, &, ..., &, M, ..., Ay, a, f and m be as in Proposition 7.8. The rank of Hk,y, ,
is the sum of the dimensions of the vector spaces

V; = Span([P;;]7""",j = 0,...,min({;, m) — 1) (33)
with the polynomials P; j from Equation (32) fori =1,...,r.

Proor. We first claim that for d = r, K, » has rank vy, or equivalently (Lemma 7.10) that Py, -
has rank v,, at (&1,. .., &, A1, - . ., A;). Indeed, we can extract from Pr , r @ Vi X Vi, submatrix by
keeping the first min(¢;, m) rows indexed by A;, for i = 1,...,r, and the columns containing
the monomials A*~1, ..., Ai-tgmin(lem)=1 for j = 1, ... r. The columns of this matrix contain the
evaluations of the polynomials x’y/ for i = 0,...,r —1and j = 0,...,min({;;;,m) — 1 at the
points (4;,¢;;) fori = 1,...,rand &; = &, 1...s¢,,4j for j = 1,.. ., min({;, m). Now, up to linear
combinations of its columns, the determinant of this matrix is the same as that of the matrix whose
columns evaluate the polynomials

i-1

j-1
Qyiry)=[ |- [ |w-&x).  i=1...r j=1,... min(l,m).
k=1

h=1
The latter matrix is triangular; its diagonal elements are Q;;(4;, &;;) # 0, showing that the matrix is
nonsingular and therefore that K,,, , has rank at least v,,,. (More general determinant factorizations
of this kind are considered by [18], [25, Section 2].) Using Equation (30) we deduce that K, , has
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rank exactly v,, as announced, and from Lemma 7.13, we know that the image of k, , is the span
of the polynomials P; ; defined in that lemma.

It follows that the rank of Hky, , is the dimension of the span of the image A, (P; ;). For
i=1,...,r,andj=0,...,min({;,m) — 1,

Am,r(Pij) = ([P;j rem f17"7", [aP;j rem 17", ..., [ 'P;j rem f]*71),
and since the Lagrange polynomials are eigenvectors of multiplication by a, we get
Am,r(Pij) = (P10 TGP 1T L [T P10
= ([P 10 AP 10 AT P 1Y)

Let v;; = (0,...,0,[P;;]""",0,...,0) be [P; ;]! times the ith canonical vector in K[x]% s
seen as row vector. The span of the A, (P; j)’s multiplied on the right by the inverse of the Van-
dermonde matrix associated to the A;’s is the span of the v; ;’s . By grouping the v; ;’s for each i,
this yields a block-diagonal matrix with blocks that span the spaces V; of the lemma. The result

on the rank follows. |

The dimensions of the vector spaces from Equation (33) can now be analyzed separately.

LEmMMA 7.15. Fix positive integers { = ({1, ...,¢,) suchthat{; +---+{, =n,andm in{1,...,n}.
There exists a nonzero polynomial z,m, € Z[£,. .., &,] of degree at most (n — 1)(n — v,) such that
if pairwise distinct nonzero &, ..., &, do not form a zero of z¢ m, then V; from Equation (33) has
dimension min(¢;, m) for all i.

Proor. Takeiin {1,...,r}, consider the set of indices S; = {€1+---+€;_1+1,..., {1+ +{;}
from Equation (26). Let then A; = [[jes, (x — &), Bi = [Ix¢s,(x — &) and C; = 1/B; mod A;. Note
that A; and B; have respective degrees ¢; and n — ¢;, and that C; is well defined, since B; and A;
have no common root.

For k in S;, by construction, B; divides the Lagrange polynomial L, with a quotient of degree
n—1-deg(B;) = {; — 1. In view of Equation (32), B; divides P; ; = X s, fiLk, for all j > 0, and
the quotient has degree less than £;. We now prove that it is actually equal to x/C; rem A;. Since
f = A;B;, for k in S;, the Lagrange polynomial L = f/(f'(&)(x — &)) satisfies

Ly 1 f 1 A Cil&) A

B, fE&)Bx-&) [fEx-& AE)x-&

In particular, for j > 0, §£Lk/Bi takes the value §£Ci(§k) at &, and 0 at all other roots of A;.
Taking the sum over all k in S; then proves our claim that P; j/B; = x/C; rem A;. Since &,. .., &,
are nonzero, B;(0) as well is nonzero, so B; is invertible as a power series and [P; ; /B,-](’)"’1 =
[[P:,; 17"~ /B;]y*~". Thus the truncated polynomials [P; ;];*"", for 0 < j < min(¢;, m), are linearly
independent if and only if the truncated polynomials [x/C; rem A;]7"" are.

When ¢; < m, the polynomials x/C; rem A; have degree less than m and their linear indepen-
dence follows from that of the polynomials x/, j = 0,...,¢; — 1, since C; is invertible modulo A;.
Thus in this case, we always have dim(V;) = ¢; = min(¢;, m).

When ¢; > m, we are going to prove that the polynomials [x/C; rem A;];*™', j = 0,...,m — 1,
are linearly independent for a generic choice of &, . . ., &,. To achieve this, define the matrix Mc,
whose entry (j, £) is the coefficient of x{1 in x/71C; rem A; forj=1,...,¢;and € = 1,...,¢(;
this is the multiplication matrix by C; modulo A;. We also consider its inverse, the multiplication
matrix Mp, by B; modulo A;.
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For our claim to hold, it is enough to guarantee that the m X m leading principal minor K; of Mc,
be nonzero. We view this minor as a rational function in §_1, e, fn: this is done by introducing the
polynomials A; = [Txes,(x — &), Bi = [xgs,(x — &) and C; = 1/B; mod A;, all of which are in
Q(&1, ..., &n)[x]. We can then define the matrices My, and My of multiplication by respectively
C; and B; modulo A;, and the m x m leading principal minor K; of M, . This is a rational function
of fl, R f,,, whose evaluation at &, . . ., &, gives the scalar K; € K.

Note first that K; is not identically zero: if we evaluate all fg at 0, for g in S;, A; becomes x
and the matrix Me, becomes lower triangular, with 1/B;(0) # 0. It then remains to estimate the
degree of a numerator of K;. The Schur complement formula gives K; = det(M¢,)L;, where L; is
the (¢; — m) x (¢; — m) lower right minor of the inverse Mp, of Me,. The determinant of M¢, is
the resultant of C; and A;, that is, 1/] ] es, nes, (€5 — €r)- On the other hand, L; is a polynomial in
Z[f_l, . rf,,] (since B; and A; have coefficients in Z[fl, el fn], and A; is monic in x).

For s > 0, write x* rem A; = ¢5 + -+ + ¢, ¢,—1x' 7Y, for ¢s, € Z[&,, ..., &,]. By induction on s,
we obtain the bound deg(cs,;) < s — t. From this, it follows that all entries of M, have degree at
most n — 1, and that L; has degree at most (n — 1)({; — m) < nf;. To conclude the proof, we let
z¢,m be the product of the polynomials L;, for i such that ¢; > m. The degree bound follows from
remarking that >, . ,,((; =m) =n—vp. O

i
bl

Genericity polynomials and degree bounds. Until here, the conditions we have seen are the nonva-
nishing of wg (&1, .. s Eny Aty oo s Ar), Wem (1 &1, o 1) Ep Ay, oo Ay),and zg, (&1, - - -, €,). When
nonzero, the first two quantities allow us to apply Lemma 7.12 and obtain the rank of Hk,, rn/m]
from any Hk,, 4, with dy > [v,,/m]; the third condition z¢ ,,,(&1,...,&,) # 0 allows us to take
dy = r thanks to Lemmas 7.14 and 7.15

The bound on the degree of w, , in 591, o §_n follows from summing the degrees of the columns
in P¢,m,[v,,/m]- Each block of m columns involves degrees 1 + --- + (m — 1) = m(m — 1)/2, and
we consider [vy,/m] such blocks (the last one may not be complete), for a total of at most (v, +
m)(m — 1)/2. Next, consider the term wy, ,,(1/&,...,1/&,, A1, ..., A,), which is not a polynomial
in the &;’s. To estimate the degree of its numerator, observe that it is a v,, X v,,,-minor of the matrix

1 1 7 17 1 y[vm/ml-1
1 E e F /11 gﬂ] e ?/11
1 §L . 5"11 A ELH/L . m%iﬁvm/’“‘l

Factoring out (on the right) the diagonal matrix with diagonal (1/ 55{”’1)15,-5,,, we see that the
nonvanishing of wg ,,(1/&,...,1/&,, A1, ..., A,) is equivalent to the nonvanishing of the corre-
sponding vy, X V,,-minor we,_, in

Fmel gme2 oy gl gmezy o Jlve/min
Fml fme2 oy gmoll gme2p o Rlve/mio

The degree upper bound for we, , is (v, + m)(m — 1)/2, as for we p,.

We then take Iy, = We, mWe, mze,m to prove Proposition 7.8. For the degree estimate, note that
(Vm + m)(m —1) + (n—1)(n — v,,;) < 2n?. For correctness, take pairwise distinct nonzero &, ..., &,
inKandletae K[x] take distinct values A1, ..., A, at &, ..., &,, with multiplicities €y, ..., £,. As
before, we write f = (x — &)+ (x — &,), and we assume that f is in K[x]. Finally, we suppose
that I'y (&1, ..., &ny A1, .. ., Ap) is nonzero. Lemmas 7.14 and 7.15 show that for dy = r, we have
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rank(Hka:]: )) = Vp. Since r > [v,,/m], by Lemma 7.12, it is then also the case for HkEZ’JdC) for all
d > [vin/m], as claimed. ’

The only remaining claim is that for any pairwise distinct Ay, ..., A, Fg,m(&, o fn, Ay s Ay)
is a nonzero polynomial in fl, . §_n. That z¢,,, is nonzero is in Lemma 7.15 (this polynomial does
not depend on Ai,...,1,); Lemma 7.11 proves that W[,m(gl, e, fn,/ll, ...,Ar) is nonzero. That
lemma also implies that w{;,m(l/fl, el l/fn, A, ..., Ar)is nonzero (as a rational function), and as a
consequence, this is also the case for Wg,m(fl, oo s&n A1y ., Ay). The claim for Iy m is thus proved.

8 A RANDOMIZED COMPOSITION ALGORITHM THROUGH CHANGE OF BASIS

In this section, we give the base case of our modular composition algorithm that is used when f
is either separable or purely inseparable (which includes the case of power series). The core Al-
gorithm MopuLARCOMPOSITIONBASECASE is studied in Section 8.1, and a variation for computing
annihilating polynomials is given in Section 8.2.

The algorithm of Section 4.2 performs bivariate modular composition within our target com-
plexity bound, assuming the knowledge of a matrix of relations with appropriate dimension and

degree. Since such a matrix of relations of Mﬁ:’f ) may not exist for general a and f, Algorithm
MoDpULARCOMPOSITIONBASECASE transports the computation of g(a) in A = K[x]/(f) to an iso-
morphic algebra that is expected to be more favorable to the computation.

More precisely, we pick a random y € K[x]<,; generically, its minimal polynomial y, €
K[y] has degree n and is also its characteristic polynomial y,, so that the powers of y gen-
erate A. This induces the K-algebra isomorphism ¢, of Equation (20); Step 5 of Algorithm
MobpuLARCOMPOSITIONBASECASE then computes a polynomial representative a of ¢, (a mod f)

using the change of basis algorithm of Section 6. Note that a matrix of relations R%’f ) is also ob-
tained at Step 5 in preparation for the final stage. Then, with good probability, the conditions for

the efficient computation of a certified matrix of relations R(,Z(’”Y) of Mi:’”y) via the approach of
Section 5.4 are fulfilled. Step 8 of Algorithm MopULARCOMPOSITIONBASECASE computes this ma-
trix of relations, which then allows us to obtain the polynomial § = g(a) rem i, at Step 9, as seen
in Section 4.2. The solution b = g(a) rem f to the initial problem is finally recovered by applying

¢;1 to f mod 1, which amounts to computing b = f(y) rem f. Since we already have R(,%’f ) at
our disposal, b is obtained with the algorithm of Section 4.2 as well.

Proposition 8.1 in Section 8.1 shows the correctness of this strategy and bounds its complexity.
We then study the probability of success for f separable and f purely inseparable. The main point

R%’f) R(r:’ll}’)

is to ensure that appropriate matrices of relations and are actually available. For
Steps 5 and 11 where a random y is involved, we directly rely on the generic properties of the

1) (e pry)
k" fn/m] m . we
use the fact that « and 1, are sufficiently generic, hence also give access to good properties for the

associated block Hankel matrix after the change of basis.

The probability of failure for a general separable f is bounded in Section 8.3. The power series
case and, more generally, the case of purely inseparable f are treated in Sections 8.4 and 8.5. For
such f, the success of Algorithm MopurLARCoMPOSITIONBASECASE is proven in Section 8.4 under
some assumptions on the valuation of the input polynomial a and the characteristic of K. Still in the
case of f purely inseparable, a complete algorithm is then given in Section 8.5: when the valuation
is large (with respect to the target value m ~ n” with 5 from Equation (3)), then the minimal
polynomial of a modulo f has small degree and we use the extension of Shoup’s algorithm seen
in Section 3.1.3. For fields K of small characteristic, we adapt Bernstein’s composition algorithm
for power series [6] to our general context.

associated block Hankel matrix H (Proposition 7.6). For the computation of R
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ALGORITHM 8.1 MopuLARCOMPOSITIONBASECASE(f, a,g,T)

Input: f of degree nin K[x], a € K[x]<,, g € K[y],r € K]
Output: b = g(a) rem f or FAIL

1: if n = 1 then return g(a) >aeK
g — gy —ry), a < a(x) + ry; if ged(a, f) # 1 then return FAIL
f e« f(x+r);a < a(x +ry); if f(0) = 0 then return FarL
m « [n"] > With n from Equation (3)
> Change of basis: compute a polynomial a such that a = ¢y (a mod f) mod py

> Getting a basis of relations RY-1) and the minimal polynomial py of y mod f

Y T3 rax e+ rpax™!
RYD, . a) - CHANGEOFBASTS(f,
y.a,m,[n/m]) > Algorithm 6.1

if this call returned FaiL then return FArL
6: if p, (0) = 0 then return FamL

7: substitute “y” by “x” in 1, and &, which are then in K[x]
8: > Compute a matrix of relations for (a, 1)

R(@py) MATRIXOFRELATIONS(y , &, m, [n/m], (Fpii)3<i<m) > Algorithm 5.2
if this call returned FAIL then return Famo
9: > Bivariate modular composition in the new basis: f = g(a) mod j, > Algorithm 4.1

P BIVARIATEMODULARCOMPOSITIONWITHRELATIONMATRIX(,UY, a, g, R(”""Y))
10: substitute “x” by “y” in §, which is then in K[y]
11: > Inverse change of basis: b = ¢~(B mod py) mod f
b « BIVARIATEMODULARCOMPOSITIONWITHRELATIONMATRIX(f, ¥, f3, RO0-f )) > Algorithm 4.1

12: return b(x —ry)

8.1 Randomized Composition

The procedure is detailed in Algorithm MopuLARCOMPOSITIONBASECASE. It uses n+m parameters
from K that are available as a sequence r of length n + m. The coefficients of the random polyno-
mial y are given as part of the input as r;, for 3 < i < n+2; we require further parameters in order
to reduce to the case where f(0) # 0 and gcd(a, f) = 1 (Remarks 3.8 and 5.7), and for the random
column combination performed by Algorithm MATRIXOFRELATIONS.

The parameter m could be taken arbitrarily in {1, ..., n}, but we choose the specific value m =
[n'], with n from Equation (3), as this choice minimizes the overall cost. The following proposition
describes the output of the procedure; the probability of failure is bounded in Sections 8.3 and 8.4.

ProrosITION 8.1. Given f € K[x] of degree n, a € K[x]<p, g € K[y] with deg(g) = O(n) and
r € K™™ with m = [n"] and n from Equation (3), Algorithm MopUuLARCOMPOSITIONBASECASE
returns either g(a) rem f or FAIL; it uses O(n*) operations in K, with k < 1.43 as in Equation (1).

Proor. If n = 1 then as a has degree 0, the result is g(a) € K and the algorithm is correct. The
rest of the proof assumes n > 1.

Steps 2 and 3 ensure that ged(a, f) = 1 and f(0) # 0. This does not impact the complexity, as
shifting a polynomial of degree O(n) can be achieved in O(n) arithmetic operations [9, Chap. 1,
Pb. 3.5]. The same observation applies to the last step.

At Step 5, if Algorithm CHANGEOFBAsIs does not return FAIL then by Proposition 6.1 the matrix
R"-f) is a basis of relations of Mf,’{’f), My = xy,and a(y) = a mod f. It follows that y, = 1, since
the quotient algebras are isomorphic, and y1,(0) = 14(0) implies ged(a, p1,) = ged(a, f) = 1. If the
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ALGORITHM 8.2 ANNIHILATINGPOLYNOMIAL(f, a, 1)

Input: f of degree nin K[x], a € K[x]<,, r € K+
Output: p nonzero in K[y] <4, such that py(a) = 0 mod f or FaiL
1: if n = 1thenreturny —a >aeK
2: > Compute a matrix of relations R%Hy) for (a, py) with a = ¢, (a)
execute Steps 3 to 8 of Algorithm 8.1
if FAIL has been returned by one of these steps then return FaiL
3y det(R(@Hr)) > [53, Algorithm 2]
4: return p

test at Step 6 does not fail then the specifications for the call to Algorithm MATRIXOFRELATIONS
are met; from Proposition 5.8, if Step 8 does not return FAIL then the matrix R(®#r) is a matrix
of relations in (y,, y — a). Both these matrices of relations have dimension at most 2(m — 1), and
degree at most 2[n/m]; they are obtained in O(m®d + c(n,m,d)) = O(m“d + md“»/?) operations,
with d = [n/m]. This is O(n*) arithmetic operations, according to Equations (1) and (3) and the
choice of m at Step 4.

The variable substitutions at Steps 7 and 10 are harmless; they make notation match with that in
Algorithms MATRIXOFRELATIONS and BIVARIATEMODULARCOMPOSITION WITHRELATIONMATRIX.

At Step 9, within the same complexity bound as above by Proposition 4.4, f§ is computed such
that § = g(a) mod p, (these polynomials are temporarily in x). After the substitution of Step 10
the latter relation implies the existence of a polynomial h € K[y] such that

Py) = g(a()) + h(y)py (y)-
Since 1, (y) = 0 mod f, evaluating this identity at y = y results in b = f(y) = g(a) rem f at
Step 11. O

8.2 Randomized Annihilating Polynomial

If the choice of y ensures that the isomorphism ¢, is well defined (the powers of y generate A),
then a univariate polynomial p over K is such that p(a) = 0 mod f if and only p(a) = 0 mod .
Since Algorithm MobpuLARCOMPOSITIONBASECASE computes a matrix of relations in {y,,y — @)
at Step 8, an algorithm for computing such a y follows from the results of Section 4.3.

COROLLARY 8.2. Given [ € K[x] of degreen, a € K[x]<,, andr € K™ withm = [n"] and n from
Equation (3), Algorithm ANNIHILATINGPOLYNOMIAL returns either FAIL or a nonzero j1 € K[y] <4, such
that pi(a) = 0 mod f; it uses O(n*) operations in K, with k < 1.43 as in Equation (1).

Proor. If n = 1 thenasa € K, y = y — a is such that py(a) = 0 and the algorithm is correct.
Now assume that n > 1. The annihilating polynomials are left unchanged by the substitution
X « x + rp. As in the proof of Proposition 8.1, if failure does not occur then Step 8 computes a
matrix of relations of Mffl[,’”y), for some m’ < 2(m — 1), within the claimed complexity bound; this
matrix has degree at most 2[n/m]. Then Proposition 4.5 shows that y annihilates « mod y,, and
thus @ mod f, and that it has degree deg(u) < 4(m — 1)[n/m]. This is at most 4n when m < +/n,
which is the case when m = [n"] with 5 as in Equation (3). The complexity then follows from the
proof of Proposition 8.1 and Proposition 4.5 again. O

8.3 Success of Randomization for Separable f

The probabilistic properties of the previous algorithms in the separable case are summarized in
the following.
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PROPOSITION 8.3. Let a, f be polynomials in K[x]| and g be in K[y], with f separable of degree n
and deg(a) < n.Ifry,...,rpepan] € K are chosen uniformly and independently from a finite subset S
of K, then Algorithms MoDpULARCOMPOSITIONBASECASE and ANNIHILATINGPOLYNOMIAL return FAIL
with probability at most 6n*/card(S).

Proor. The success of modular composition in Algorithm MopuLARCOMPOSITIONBASECASE
and of the computation of an annihilating polynomial in Algorithm ANNIHILATINGPOLYNOMIAL
relies on: finding good shifts r; and r; in the first two steps; a choice of y such that y,(0) # 0 and
j1y has degree n; the availability of matrices of relations R¥-/) and R®#r). The probability estimate
is obtained by showing the existence of polynomials whose zero sets contain the values of the
parameters r; where these properties do not hold. The probability of avoiding these zero sets is then
handled by the Schwartz-Zippel lemma. In what follows, as in the algorithm, we write m = [n"].

(1) A value of 1y such that gcd(a + r1, f) # 1. The resultant of a(x) + r; and f(x) is nonzero of
degree n in r;. Bad choices thus occur with probability at most n/card(S).

(2) A value of ry such that £(0) # 0 after the shift “x < x + ry”. The same reasoning as above
applies to the coefficient of degree zero of f(x + ry).

The next properties all concern the same parameters (r3, ..., ,1m), so their failures are not
independent events, and their joint probability is bounded using a product of polynomials
encoding each of them. Below, we write § = 7y + - - - + 7,,_1x"" !, with the 7;’s new indeterminates,
and consider polynomials in K[, . . ., 7,_1] to quantify probabilities of failure.

(3) The constant coefficient j1,(0) is not 0. Write f = c(x — ¢1) - - - (x — @), for pairwise distinct
¢; inK and ¢ € K\ {0}. The roots of Hy are the values 7(¢;), so j1,(0) being nonzero is equivalent
to ged(y, f) being trivial. Thus, we let Ay € K[y, ..., 7n-1] be the resultant of y and f. This
polynomial has degree n, and choosing y = 1 shows that it is not identically zero.

(4) The minimal polynomial 1, has degreen. Foranyy = yo+- - -+yp—1x"" ' in K[x],, the charac-
teristic polynomial y, € K[y] of y mod f factors over K[y] as Xy = [1i=1(y = &), where & = y(¢;)
for all i. We can thus let A; € K[jo, ..., 7n_1] be the product [Ti<i<j<n(¥(@i) = 7(@))). This is
a polynomial of degree n(n — 1)/2, and the previous discussion shows that A;(yp,...,yn-1) # 0
implies that y, is separable. In that case, since the n distinct roots of y, must be roots of y,, we
have y, = p,. Finally, the polynomial A, itself is nonzero since its value at (0,1,0,...,0), ie.
at y = x, is not zero.

(5) The computation of RV-f) does not fail. Since f(0) # 0, Proposition 7.6 shows that the
-f)
k

associated block Hankel matrix H
m, [n/m]

has rank n as soon as the coeflicients of y avoid the

zero set of a polynomial Ay, ,,, of degree at most 2n®/m.

When this condition holds, Proposition 7.1 shows that the matrix fraction X" (yl, — M, )X is

describable in degree [n/m], and that vf,’,/ f) - vf,’; ’Q. Since we also have gcd(y, f) = 1 by the item

above, and since the minimal polynomial 1, of y mod f has degree n, Proposition 6.1 concludes
that the computation of R"f) is successful.

(6) The rank ofHkEZ":Y) is equal to vf:’”y) ford > fvf:’“y)/ml When the previous properties are
all satisfied, there exists a K-algebra isomorphism ¢, : K[x]/{f) — K[yl/(y,) that maps a to «
such that a(y) = a mod f. Up to changing the indices of the roots ¢;, we can assume that a takes
values Ay, ..., A, at @1, ..., @, with multiplicities ¢, . .., {,, for some positive integers {1, . .., {x,
and pairwise distinct A4, ..., 4, in K (as in Section 7.4, the ¢;’s are assumed to be ordered such that
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a(p1) = -+ - = alge,) = A1, etc). Then, since & = y(¢;) for all i, the relation a(y) = a mod f implies
that a(&;) = a(e;) for all i, so that « takes the values Ay,...,4, at &,..., &, with multiplicities
l1, ..., 0.

The assumptions of Proposition 7.8 are satisfied. If Iy, € Z[fl,...,gn,/il,...,ir] is the
polynomial defined in that proposition, then when Iy (&1, . . ., &y, A1, . . ., A,) is nonzero, the rank

ofHk(mOi’gy) is vf,‘f’”y) ford > [vf:’uy)/m'l.

The relevant polynomial is thus As = Ty pm(7(@1), ..., 7(@n) A1, ..., A) € K[}’/o, ooy Tn-1l-

Proposition 7.8 states that Iz ,(jo, - - - s ¥n-1, A1, - - . » A;) is nonzero of degree at most 2n?; this is
thus also the case for As, since the transformation (yo, ..., n-1) — F(¢1),...,7(@n)) is linear
and invertible (its matrix is the Vandermonde matrix at ¢y, . .., @p).

(7) The computation of R #r) does not fail. When the previous properties are all satisfied, Propo-

sition 7.1 applies with a = « and f = p, and shows that vf,‘iﬁy) = V,(,f’”y) and XT(yI, — My)"'X

is describable in degree |'v£:lz Hy) /m], where M,, is the multiplication matrix of & modulo . Since

py(0) # 0 and ged(a, py ) = ged(a, f) = 1, the assumptions of Proposition 5.8 are satisfied for the
successful computation of R(%#r) (Algorithm MATRIXOFRELATIONS) with a probability of failure
depending on the choices of (43, . .., "+m) and bounded by (m — 1)/card(S).

Case n = 1. In that situation steps, (5)-(7) above simplify. Since its top left corner is the identity
matrix, the rank of the block-Hankel matrix is at least 1, which is equal to n, and thus (5)-(7)
succeed with probability 1 in that case.

Probability bounds. The polynomial A¢A;Af A3 € K[fo, - - - ¥n_1] is nonzero and has degree

at most
-1) 2n?
dn.m =n+M+i+2n2.
2 m
A choice of (rs,...,rn+2) that avoids its zero set ensures that the properties (3)—(6) hold. The
other probabilities have been discussed in steps (1), (2) and (7) above. In summary, the probability

of success is at least

3
1 3 : —
(1—m)21—m ifn=1,
2
dn,m -1 2n+dp m+m—1 .
(1 _ ﬁ(S)) (1 - Card(s)) (1 - c;;ld(s)) > 1- = otherwise.

In the second expression, dividing the numerator of the fraction for n > 2 by n? gives

5 5 2 m-—1
=+ =+
2 2n m n?

>

which decreases as a function of n for n > 0 and, for fixed n, decreases as a function of m for
m < n. Thus it reaches its maximum at m = 1,n = 2, where its value is 23/4 < 6, proving the
probability bound for n > 2, while 3 < 6 deals with the case n = 1.

The assertion for Algorithm AnNIHILATINGPOLYNOMIAL follows: Step 2 apart, it fails in the

same cases as Algorithm MoDULARCOMPOSITIONBASECASE. O

8.4 Success of Randomization for f Purely Inseparable: Small Valuation

Definition 8.4. A degree n polynomial f in K[x] is purely inseparable if it has only one root in
an algebraic closure K, so that it factors as f = (x — £)" in K[x]; if n is a unit in K| & itself is in K.

In this  section, we  study the  probabilistic  aspects of  Algorithm
MobpUuLARCOMPOSITIONBASECASE for such polynomials. If a = ag + a,(x — &)Y + ap(x —
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EV 4t apq(x— )", with ag = a(¢) and a,, # 0, then the valuation v = valg(a —a(¢)) is the
order of vanishing of a—a(¢) at x = &. For the moment, we work under two additional assumptions
on this valuation: it is not 0 in K, and it is at most the value chosen for m (which is [n”] in the
algorithm, for the target complexity bound). The other cases are discussed in the next section.

PROPOSITION 8.5. Let a, f be polynomials in K[x] and g be in K[y], with f = (x — &)" € K[x]
where ¢ € K, and deg(a) < n. Letp be the characteristic of K. Suppose that v = valg(a—a(£)) satisfies
the following inequalities, with nj as in Equation (3):

v < [n'], p=0orv<p.

Take r; = 0 ifged(a, f) = 1 and ry = 1 otherwise, r, = 0 if f # x" and r, = 1 otherwise.
Ifrs,...,rpypan are chosen uniformly and independently from a finite subset S of K, then Algo-
rithms MopULARCOMPOSITIONBASECASE and ANNIHILATINGPOLYNOMIAL return FAIL with probability
at most 2n*/card(S)

Proor. The proof follows the same steps as in Section 8.3. As before, we write m = [n"].

(1), (2) Values of r; and r;. The choice of r; gives ged(a + rq, f) = 1, and r, modifies the constant
coefficient of f if necessary. The first two steps of Algorithm MopuLARCOMPOSITIONBASECASE
therefore provide polynomials that satisfy gcd(a, f) = 1, f(0) # 0, and v = valg(a — a(§)) < m.

(3) The constant coefficient i, (0) is not 0. For any y = yo + -+ + yp—1x""', the roots of the
characteristic polynomial y, of y modulo f are the values taken by y at the roots of f, counted
with multiplicities. Since f = (x — &) over K[x], this implies that Xy = (y — y(&))". The minimal
polynomial y, then admits a similar factorization as (y — y(£))¢, for some positive c.

Set Ao(fo, - - -»¥n) = 27y 7:€%; this is a (nonzero) polynomial of degree 1 which is such that
Ao(¥0, - - - > ¥Yn-1) = y(&), so the nonvanishing of this quantity gives the same property for 11, (0).

(4) The minimal polynomial y1, has degree n. Consider now A(¥o, ..., ¥n-1) = SrtipEi,
which is also a nonzero polynomial of degree 1. It is such that A;(yo,. .., yn-1) = y’(), so the
nonvanishing of this quantity implies that valg(y — y(§)) = 1. This implies that the powers
Ly —y(&),(y =y &) ..., (y — y(&)" ! rem (x — )" have respective valuations 0,1,...,n — 1
at ¢, and thus are linearly independent. It follows that the minimal polynomial of y — y(&) has
degree n, and the same then holds for y itself.

(5) The computation of RV-f) does not fail. Here, the argument of the previous section applies
verbatim and relies on a polynomial A¢ ,,, of degree at most 2n*/m.

(6) The rank ofHk<a ) equal to n ford > [n/m]. This step is the difficult one in the proof;
note that the statement sllghtly deviates from the one in the separable case in the definition of the
threshold degree [n/m].

The result is obtained by bounding the degree of the numerator of a nonzero n X n minor

of Hkgz FIV/) ] seen as a polynomial in yy, ..., y,—1. We first show the existence of y € K[x]<,

and ¢ € K[y]<, such that the block Hankel matrix Hk( F’ Y/) 1 has rank n. This implies the ex-
istence of a nonzero n X n minor of this matrix; the degree of this minor as a polynomial in the
coefficients of a and 1, is controlled by Lemma 7.7. These, in turn, are related to the coefficients
of y, using its explicit form for y, and a linear system for the coefficients of a.

(6a) Generic behavior. We start by proving the existence of & of degree m in K[y] and y in K[x] -,
such that we have a(y) = a mod f, y(¢) # 0 and y’(¢) # 0.
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Write a = ag + ap(x — &)Y + -+ + ap_1(x — &)L, with ay = a({) and, by definition of v =
valg(a — a(£)), a, # 0 and v > 0. Since we also assume that the characteristic p of K is either zero,
or greater than v, this means in particular that v is a unit in K. Let

a(x) = ( =1+ Y ax-9,

1<i<n-v
with coefficients a; = aj,/a,.

- If v = m, we define a(y) = y¥ = y™. Since v # 0 in K, @’(1) # 0 and Newton iteration
guarantees the existence of a unique y = 1+ Y <;.,, Vi(x — £)" such that ¥ = d mod f.

- Ifv < m, we define @&(y) = y* +y™. This time, we let y be the unique polynomial of the form
V=14 1<icnvilx — &) such that % + (x — €)™ “y™ = G mod f. As previously, existence
follows from Newton iteration, using the assumption v # 0 in K.

In both cases, wesety =1+ (x — )y rem f € K[x] and & = ag + a,a(y—1) € K[y]. We can then
verify that all requirements a(y) = a mod f, y(&) # 0 and y’(£) # 0 are satisfied.
Since y1, then has degree n, and since y,(0) = (—=y(£))" is nonzero, Proposition 7.3 shows that

Hk(:;’gy) has rank n for d > [n/m].

(6b) A polynomial in K[ay, . ..,an-1, fo, - - -» fu-1]. The existence of y and & implies that of a

nonzero nXn minor & ofHkgnoi’r)(ny/)m1 .Letthen A € K[do, . ..,dn-1, fo . - . » fu_1] be the corresponding

minor of Hk'* {)/ E where @ = dy+- - +a,_1x" 'and f = fy+-- -+ fp_1x"" 1 +x™ are polynomials
whose coefficients are indeterminates. Lemma 7.7 shows that this is a polynomial of degree at most

2n’/min ay, ...,a,, and 2n*(n —1)/min fo, ..., fu1.

(6¢) The rational functions &, . . ., @n—1. Next, with 7 = 7 + + - + 7,,_1x""! a polynomial whose
coefficients are indeterminates, we consider & such that a(y) = a mod f. The coefficients of @
are given as solutions of the linear system a(y) = a mod f, thus they are rational functions
Qs - - - » An—1 In K(Jo, . . ., ¥n—1). In this paragraph, we bound the degrees of their numerators and
denominators in K[y, . . ., ¥n-1], using power series inversion and composition.

We first consider the solution u to u(y) = x — &€ mod (x — &)", or equivalently u(¢) = x mod x",
with ¢ = 7(x + £). We write ¢ = @g + @1x + - - - + $p_1x" "1, where the coefficients @, . . ., @, are
linear in jy, . . ., Yn—1, with in particular ¢y = Ay and @; = A;. We can then write u = ;’:_11 uj(y —
Ao)!, where for j > 1, the coefficient ujis a ratlonal function in 4, . . ., ¥p—1, with numerator of
degree j — 1in yi,...,7n-1 and denominator A] 271 More generally, for i > 1, the power u’ has
valuation i, and for j > i, the coefficient of (y — Ao)f in it is a rational function with numerator of
degree j—iin ji,. .., 7s—1 and denominator A; 2=t

It follows that if we write a = ag + a,(x — §)” <o+ ap_1(x — )", then the solution @ to
the equation @(7) = a mod f is given by @ = ag + a,u® + - -+ + ayu" " rem (y — Ag)". Once we
rewrite @ as @ + - - + @p_1y" !, we see that the coefficients aj, ..., @, ; are rational functions
with numerator of degree at most 2n — 3 in jy, . . ., ¥n—1, and denominator Af””.

(6d) The polynomial A,. We now evaluate the indeterminates @; and f; in the minor A of (6b) at
the coefficients of @ and yj = (y — A¢)", respectively. Write (y — Ag)" as Go + - - - + Gn1y" " + 4",
so that g; = (7)(=Ao)" " for all i. It follows that A(dy, . . ., @n-1.Go, - - - Gn—1) is a rational function
in the indeterminates jy, . . ., Jn—1, which can be written as

No(Fo, - s ¥n-1)

s 34
M (Jo, .. ¥n-1)¢ G4

A(a_O’ L ’dn*15 q05 .- aC?nfl) =
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for some polynomial A, of degree at most

Z_nZ(zn 34 2n?(n — 1)(n 1= 2n(n? - 2)’
m m
and for some integer exponent € < 2n%(2n — 3)/m.

Consider again the polynomials y and « in (6a), and their coefficients yy,...,y,-1 and
Qs - - -, Ap—1 (With actually a1 = -+ = a1 = 0). We saw that y satisfies A;(yo, ..., ¥n-1) =
y’'(£) # 0, which implies that the rational functions &, . .., @,—1 are well defined at yy, . .., yn—1
and take ap,...,a,—1 for values there. This implies that the nonzero minor § is § =
No(Yos - -+ > Yn-1)/D1(Yo, - - - » Yn—1)¢, and in particular that A, is a nonzero polynomial.

Probability bounds. The end of the proof is as in the previous section. The polynomial
AoAAf Ay in K[§y, . . ., ¥u—1] has degree at most

2n? 2n2(n®*-2) 2(n*-n?®+m)
1+1+— + = :
m m m

5

we can now readily verify that a choice of (73, . . ., rp42) that avoids its zeros ensures that properties
(3)-(6) hold. For (3)—(5), this follows immediately from the definitions.

To see that (6) holds, that is, that Hk:{’g ") has rank n for d > [n/m], recall that the algorithm

constructs y = r3 + r4x + - -+ + rpp2x™ 1. Properties (3)-(4) show that y has degree n, and that its
constant coefficient is nonzero. Since in particular Ay (rs, . .., rp42) # 0, we deduce that the rational
functions @, . . ., @,—1 of (6¢) are well defined at (rs, . .., r,+2), and that they give the coefficients
of the unique polynomial @ such that a(y) = a mod f. Since Ay(rs, ..., rp12) # 0, it follows from

Equation (34) that Hk(ma: ?;/)m] has rank n (and thus similarly for Hk(ma: 5 y), ford > [n/m]).

The other probabilities have been discussed in step (1)—(2) above and in step (7) of the previous
section. Altogether, this gives a probability of success at least

2(n* = n? + m)/m m-1)_ 2n* —=n’+m)/m+m-1
card(S) ) ( - card(S)) = card(S)

Dividing the numerator of the last fraction by n*/m gives

2n® —m?—-m
2- L "oy
n

where the last inequality comes from m < n. O

1-—

8.4.1 Note. In Proposition 8.5, the role of the condition on the valuation being nonzero in K is
shown by the following example. Take a field K of characteristic 2,n = 6, m = 3, f = (x — 1)® and
a = (x—1)%. Then for any y € K[x]¢, the four polynomials (1, a, y?, ay?) rem f belong to the vector
space generated by (1, x2, x*) and are therefore linearly dependent. Using the expression of M,

from Equation (10), we see that this implies that the block Krylov matrix K (@py) o Equation (12)

m,n/m

is singular, and thus so is Hk(r:: /Y;l

A more general version of this counterexample when K has characteristic p > 0 is obtained
withm =p+1,d = p,n = md, and valg(a) = p.

regardless of the choice of y.

8.5 Complete Algorithm for f Purely Inseparable

We now extend Proposition 8.5 in order to cover all cases of composition modulo a purely insepa-
rable polynomial f.

If p is the characteristic of K, any purely inseparable f can be written as f(x) = (x?° — ¢)¢
with ¢ in K and e, ¢ in N such that p does not divide £, and e = 0 if p = 0 [29]; in particular the
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degree n of f is equal to p®£. We assume that the parameters e, £ and ¢ are known, since this is the
case when our algorithms have to handle this situation; indeed in the next section we introduce
separable factorization techniques that allow us to compute them.

8.5.1 Large Valuation. If v = valg(a(x) — a(&)) satisfies v > [n"], the minimal polynomial of a
in K[x]/(f) factors over K as ta(y) = (y—a(£))?, with § = [n/v] < [n'~7]. Since the latter degree
is small compared with n, this case is handled efficiently by Algorithm MopuLARCOMPOSITION-
SMALLMINIMALPOLYNOMIAL from Section 3.1.

8.5.2 Small Characteristic. In the case 0 < p < [n'], our algorithm is based on Bernstein’s
composition algorithm for power series [6], which we adapt to work modulo f(x) = (x?° — ¢)’.
See also [34, Algorithm 3.1] for another extension of Bernstein’s result, which is, however, not
sufficient to reach our target cost for the specific kind of modulus we work with.

Ife = 0, p° = 1 and we are working modulo f = (x — ¢), with £ = n. In this case, to compute
b = g(a) rem f, we write a(x) = a(x +c), we compute b= g(a@) rem x?, then we obtain b as I;(x —0).
The bottleneck is the computation of g(@) rem x¢, which can be done in O(pf) operations in K using
Bernstein’s algorithm (in Algorithm ComPOSITIONMODULOINSEPARABLE-SMALLCHARACTERISTIC,
that algorithm is called POWERSERIESCOMPOSITION-SMALLCHARACTERISTIC).

Suppose now that e > 1. Write g = Y5~ g:(y?)y’, with g; € K[y] of degree less than p¢~¢.

Write also a(x) = Y./ a;x’, and let a(x) = 2./ a’'x’, so that a?(x) = a(x?). It follows that
p-1
g(a) rem (x*° —¢)f = Z gia' rem (x*° - ¢)¢
i=0
where, forall0 <i<p-1,
Gi(x) = gi(a () rem (< — 0)f = gi(@(xP) rem (x¥* — c'.
If we define h; = g;(a) rem (x?*"" = ¢)!, it follows that gi = hi(xP), so that
p-1
g(a) rem (x*° —¢)f = Z hi(xP)a' rem (x*° - c)’.
i=0

The following lemma summarizes the cost of this procedure.

LEMMA 8.6. For a field K of characteristic p > 0, given a purely inseparable polynomial f = (x?* —
)t of degreen = p°, a € K[x]<, and g € K[y]<,, Algorithm CompOosITIONMODULOINSEPARABLE-
SMALLCHARACTERISTIC returns g(a) rem f and uses O(pn) operations in K.

Proor. Correctness follows from the previous description. For the runtime analysis when e = 0,
the result is Bernstein’s. For e > 0, apart from the p recursive calls, Step 8 takes O(n) operations (we
raise all coefficients of a to the power p < n), Step 11 takes O(n) operations by repeated squaring,
and Step 12 takes O(pn) operations, using Horner’s rule. Remembering that n = £p°, we deduce
that the runtime T'(e, p, {) satisfies T(e, p,€) = pT(e —1,p, ) + é(pe”@ and T(0,p,¢) € O(pf). This
resolves to T(e, p, £) € O(p*'¢), which is O(pn). O

8.5.3 Main  Algorithm. Combining  the  previous  results gives  Algorithm
CoMPOSITIONMODULOINSEPARABLE. It first tests whether the characteristic of K is small
enough for Algorithm CoMPOSITIONMODULOINSEPARABLE-SMALLCHARACTERISTIC to run within
our prescribed runtime. Otherwise, rather than computing the valuation v, it simply calls
Algorithm MopuLARCOMPOSITION-SMALLMINIMALPOLYNOMIAL; in case of failure, it falls back on

Journal of the ACM, Vol. 71, No. 2, Article 11. Publication date: April 2024.



Faster Modular Composition 11:63

ALGORITHM 8.3 CoMPOSITIONMODULOINSEPARABLE-SMALLCHARACTERISTIC(C, €, ¢, a, g)

Input: K has characteristic p > 0,
cinK, e in N and ¢ in N+ such that f = (x° — ¢) has degree n = £p®,
ain K[x] <n, g in K[yl
Output: g(a) rem f
1: if e = 0 then

2: a < a(x+c)

3: b « POWERSERIESCOMPOSITION-SMALLCHARACTERISTIC(x", a, g) > [6, Section 2]
4: return b(x — ¢)

5. else

6 Write g = go(yP) + - + gp-1(yP)yP ™"

7: Write a = ag + -+ - + ap_1x™"!

8 a« ag +ot a‘fl_lx"_1

9: fori=0,...,p—1do

10: h; <= COMPOSITIONMODULOINSEPARABLE-SMALLCHARACTERISTIC(c, € — 1,4, d, g;)
1. f e (xP" —c)f

12: return ho(x?) + - - + hp_(xP)a?~" rem f

ALGORITHM 8.4 CoMPOSITIONMODULOINSEPARABLE(c, €, £, a, g, )

Input: c¢in K, e in N and £ in N+ such that f = (x*° — ¢) has degree n = £p¢, where p is the
characteristic of K,
ain K[x]<p, gin K[y] <, r € K"*1""1 with 5 from Equation (3)
Output: b = g(a) rem f or FAIL
1 n e« {p°
2. if 0 < p < [n"] then
return COMPOSITIONMODULOINSEPARABLE-SMALLCHARACTERISTIC(C, e, £, a, g)
30 f e (xP° —c)f
4 b < MoDULARCOMPOSITION-SMALLMINIMALPOLYNOMIAL( f, a, ¢, [n'™"], (ri)o<i<n)
if b # Fa1L then return b
5: if ged(a, f) = 1thenr; =0elser; =1;if c #0thenr, =0elser; =1
6: return MOoDULARCOMPOSITIONBASECASE(f, a,g,7) > Proposition 8.5

Algorithm MopuLARCOMPOSITIONBASECASE. As previously, the algorithm takes as input a vector
r that plays the role of random parameters.

PROPOSITION 8.7. For a field K of characteristic p, given c, e, { such that f = (x*° — ¢)’ is purely
inseparable of degreen = {p° (e = 0 ifp = 0),a € K[x]<p, g € K[y]<p, andr € K™™ withm = [n"]
and n from Equation (3), Algorithm CoMPOsITIONMODULOINSEPARABLE uses O(n*) operations in K,
with k < 1.43 as in Equation (1), and returns either g(a) rem f, or FAIL.

If the entries of r are chosen uniformly and independently from a finite subset S of K, then the
algorithm returns g(a) rem f with probability at least 1 — 2n*/card(S).

ProoF. We first analyze the runtime. For a small characteristic 0 < p < [n"], then Algo-
rithm CoMPOSITIONMODULOINSEPARABLE-SMALLCHARACTERISTIC has cost O(pn) by Lemma 8.6,
which is thus O(n'*7) e O(n'*@-V7) = O(n*) from Equation (3). Computing f takes
time O(n) by repeated squaring. By Lemma 3.2, the call to Algorithm MobpuLARCOMPOSITION-
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SMALLMINIMALPOLYNOMIAL uses
5] (n1+(1—'7)(w2/2—1)) -9 (nri+(1—f7)(wz/2)) = 6(n*)

operations in K, and by Proposition 8.1, it is also the case for Algorithm
MopULARCOMPOSITIONBASECASE. The specifications of the subroutines imply that the out-
put can be either g(a) rem f or FAIL, so only the probability analysis remains.

If 0 < p < [n"], Lemma 8.6 shows that the output is g(a) rem f; hence, we may now assume
that p > [n"],orp = 0. Let £ = ¢'/?° € K, so that f = (x — £)" in K[x]; let further v be the
valuation of a — a(&) at . The minimal polynomial of a modulo f has degree § = [n/v].

Suppose first that v < [n"], so that § > [n'/[n"]]. The value b computed at Step 4 is either
g(a) rem f, or FAIL; let 7 be the probability of the former (for instance, by Lemma 3.2, 7 = 0
if § > [n!™"]). If Famw is returned at Step 4, then we enter Step 6. At this stage, we have in-
equalities v < [n"] < p,or v < [n"] and p = 0, so by Proposition 8.5 the call to Algorithm
MoDULARCOMPOSITIONBASECASE returns g(a) rem f with probability at least 1 — 2n*/card(S).
Overall, the probability of returning g(a) rem f in this case is at least 7 + (1 — 7)(1 — 2n*/card(S)),
which is at least 1 — 2n/card(S).

Suppose, on the other hand, that v > [n"], so that we have in particular v > n", and thus
§ = [n/v] < [n'"7]. By Lemma 3.2, b computed at Step 4 is g(a) rem f with probability at least
1-n/card(S). If it is not the case, the algorithm enters Algorithm MopULARCOMPOSITIONBASECASE,
which computes g(a) rem f with a certain probability 7’ > 0. Overall, we return g(a) rem f with
probability at least 1 — n/card(S) + 7’ > 1 — n/card(S). O

9 ALGORITHM FOR GENERAL f

We now present our Las Vegas Algorithm MobpuLARCOMPOSITION that computes g(a) rem f for
arbitrary input g, a, f. The analysis of this algorithm in Section 9.5 proves Theorem 1.1.

The starting point is the separable decomposition of f (Section 9.1), a generalization of square-
free decomposition from fields of characteristic zero to arbitrary base fields. This yields a partial
factorization f = fi - - fs into pairwise coprime factors. The algorithm then proceeds by comput-
ing g(a) modulo each of these factors and the final result is obtained by Chinese remaindering in
quasi-linear complexity [26, Section 10.3]. If p is the characteristic of K then the factors f; of the
separable decomposition of f are the form h;(x?“ )’ (or more simply h;(x)‘ when p = 0), with
integers e;, {; and separable h; € K[x]. Composition modulo such an f; is achieved via a K-algebra
isomorphism

¥ 1 A; = K[x]/(fi(x)) — B; = K[0, 2]/ (hi(0), (2" = 0)"")
that maps x to z (Proposition 9.6). If L; denotes K[0]/(h;(0)), then, as a K-vector space,

B; =~ Li[2]/{(z"" — 6;)%t) with 0; the class of 0 in LL;. The computation of g(a) rem f; over K is
thus mapped to the composition

g(A;) mod (2 - ;)"

over L;, with A; = ¥;(a mod f;) and modulo the purely inseparable (z*' — 6;)¢i. In order to
perform this last composition efficiently, it is also necessary to decrease the degree of g by first
reducing g modulo the characteristic polynomial of A; in L;[z]/{(z*" — 0;)’1). We call reduction
of g that step of the process (Proposition 9.8). It produces a representative of G; € L;[y] such
that B; = g(A;) € B; is obtained through the univariate modular composition

Gi(A;) mod (2 - 0,)"",
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which is computed with coefficients in L;. Finally, the class g(a) mod f; € A is recovered as
¥:1(B;). In practice, the algorithms working with elements of L; use polynomial representatives
in K[0] <geg(f;), that are the canonical lifts of their class.

The idea of using these homomorphisms was introduced by van der Hoeven and Lecerf in the
case e; = 0 [34]; it is extended to the general case in Sections 9.3 and 9.4. We keep their terminology,
calling untangling an algorithm that computes the map ¥; and tangling, one which computes the
reverse map. Both these operations can be performed efficiently (Section 9.3).

The univariate modular composition in L;[z] modulo the purely inseparable polyno-
mial (z7“ — )i can be achieved by Algorithm CoMPOSITIONMODULOINSEPARABLE of Section 8.5
when L; is a field. In general, however, L; is a product of fields. In Section 9.2, the extension of the
scope of our algorithms to this setting is obtained using a paradigm also due to van der Hoeven
and Lecerf called directed evaluation [37].

Conventions. For h of degree d in K[0] and f in K[6, z], monic of degree n in z, and for any P
in K[6, z], we denote by P rem (h, f) € K[0, z]<(4,») the polynomial obtained by reducing P first
by f, then by A (this is the normal form of P modulo (A, f), if we see the latter as a Grobner basis
for the lexicographic order induced by 6 < z). Thus P rem (h, f) is a canonical lift of the class of
Pin K[0,z]/{h, f). If P € K[, z], we use the notation P(z) to denote the class (projection) of P
in L[z], where L will be clear from the context.

9.1 Separable Decomposition

Let p be the characteristic of the field K and let f in K[x] be of degree n. The separable decomposition
of f is the set

S ={(hy,e1,t1),...,(hs,es,€s)}, with h; € K[x] and e;, ¢; € N for all i,

that satisfies the following properties, where we write f; = h; (x?" )fi:
1) f=cfi- fs withc e K\ {0};
(2) foralli #jin {1,...,s}, fi and f; are coprime;
(3) foralliin {1,...,s}, h; € K[x] is separable, monic and of positive degree d;;
(4) foralliin {1,...,s},e; =0(if p=0) or e; isin N (if p > 0);
(5) foralliin {1,...,s}, ¢; is not divisible by p;
(6) for all i ?5]' in {1, e ,S}, (e,-,{’,-) * (ej,{’j).

The separable decomposition of f can be computed in O(n) operations in K using an algorithm due
to Lecerf [57]. The special case when p = 0 recovers the more classical square-free factorization.

9.2 Composition over Products of Fields, Modulo Purely Inseparable f

Let h be separable of degree d in K[6], and consider f of the form f = (z*° — ¢(0))! € K[6, 2], for
integers e € N and ¢ € N, where p is the characteristic of K. Given A in K[, z]<(4,n) and G in
K[0, yl<(d,n), with n = deg,(f) = {p®, we consider here the computation of B = G(6, A) rem (A, f).

This question is mapped to a univariate composition problem with coefficients in L = K[8]/(h):
if we let A, G, B and ¢ be the projections of respectively A, G, B and ¢ in L[z], L[y], L[z] and L (the
degree constraints show that A, G, B can be obtained without any calculation from A, G, B, and
conversely), then B = G(A) rem (z”° — ¢)’ as an equality in L|z].

When h is irreducible, so that L is a field, the algorithm of Section 8.5 applies over L; as reported
in Proposition 8.7, if n = deg(f) = ¢p, the runtime is O(dn*) operations in K, coming from
é((fpe)K) = O(n*) times a factor in O(d) for the cost of arithmetic operations in L. However,
we only assume h separable, so that LL is a product of fields. The key difference is the presence of
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zero-divisors in L: a nonzero element of L is not necessarily invertible. Since the procedures in
Section 8.5 use zero-tests and divisions, their direct application is not possible.

9.2.1 Directed Evaluation. The technique of directed evaluation, due to van der Hoeven and
Lecerf [37], is an efficient version of the classical dynamic evaluation process [21].

In dynamic evaluation, prior to each zero-test or inversion, say by a quantity g € L, the compu-
tation of h; = ged(q, h) gives the factorization h = hyh,. Since h is separable, h; and h; are coprime,
and L can be decomposed as the product L; X L,, with ¢ = 0in L; = K[0]/(h;) and q invertible
inL, = K[6]/(h,). Under the dynamic evaluation paradigm, the calculation can then be continued
in two branches, working modulo h; and h; separately.

In directed evaluation, the idea is rather to run the entire program in a unique branch, then
to apply the process recursively in residual branches after reduction of input data modulo the
corresponding polynomial. We do not detail the underlying techniques, for which we refer to
Sections 3 and 4 of [37], and simply apply their panoramic evaluation procedure [37, Algorithm 2].
It takes as input a computation tree 7~ over K (see Section 2), a defining separable polynomial h of
degree d for L, and A = (44,...,4,) in K[0]® , (representing an input to 7" in L*); it then returns
a panoramic value, defined as follows.

Definition 9.1 ([37, Definition 1 and Lemma 2]). Given an input (h, A, 7") as above, a panoramic
value of 7~ at A is a set of pairs {(hy, €1), . .., (h, &)}, where

— hy, ..., h; are polynomials in K[60] that satisfy h = hy---h; (thus L =~ L; X --- X L;, with
Li = K[0]/<h));

—forall i, ¢ is in K[@]fdi (representing an output in Lfi), with d; = deg(h;) and ¢; in N;

—forall1 <i<t]leth;,...,h; bethe factorization of h; into irreducibles. For 1 < j < k;,
let L; ; be the field K[0]/{h; ;), and denote by ; ; : K[0] — L; ; the canonical projection
a — amod h; ; (the notation carries over to vectors over K[0]). Then 7~ is supposed to be
evaluable at 7; j(1) € Lf’j for all i, j, and 7; j(¢;) € Li"j is the result of evaluating 7~ (seen as
a computation tree over L; ;) at 7; j(1), using the same branch of 7~ for all j.

The application of this method requires that one uses computation trees as the underlying com-
putational model, which is the case here (Section 2). Crucially, the cost overhead is then O(d) [37,
Theorem 1], i.e., similar (up to logarithmic factors) to the one incurred if h were irreducible.

9.2.2 Algorithm. With ~ Algorithm  CoMPOSITIONMODULOINSEPARABLE-PRODUCTOFFIELDS
we apply panoramic evaluation (called PANorRamIC in our pseudocode) to Algorithm
CoMPOSITIONMODULOINSEPARABLE for modular composition over K. Note that in addition
to field elements, the latter algorithm also takes two integers e, £ as input. Panoramic evaluation
can still be used in this context, since each choice of the parameters e,{ corresponds to a
computation tree, to which the techniques described above apply. This yields a factorization
of h, and performs the compositions modulo the corresponding factors; the final result is then
reconstructed using Chinese remaindering.

ProposITION 9.2. For a field K of characteristic p, given h € K[0] separable of degree d, c in
K[0]<q, integers e in N and € in Nxo, A in K[0, z] <(a,n), G in K[0, yl<(a,n), 1 in KT ith n =
tp¢ and n from Equation (3), Algorithm CoMPOSITIONMODULOINSEPARABLE-PRODUCTOFFIELDS uses
O(d(£p®)*<) = O(dn*) operations in K, with k < 1.43 as in Equation (1).

It returns either G(0,A) rem (h, f) € K[0,z]<( n) or FAIL, with f = (z° = c)!. If the entries
of r are chosen uniformly and independently from a finite subset S of K, then the algorithm returns
G(0, A) rem (h, ) with probability at least 1 — 2dn*/card(S).
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ALGORITHM 9.1 COMPOSITIONMODULOINSEPARABLE-PRODUCTOFFIELDS(h, C, €, (, A, G, 1)

Input: h separable of degree d in K[6],
cinK[0].4, e in N and £ in N+ such that f = (z/° - ¢)¢ has degree n = £p®,
Ae K[Q, Z]<(d’n), Ge K[@, y]<(d,n)= r e Kn+[n"'|
Output: B = G(0,A) rem (h, f), or FAIL
1. > Splitting L ~ K[0]/(h1) X - - - X K[0]/(ht) and reductions of B, accordingly, using [37, Algorithm 2]

{(h1,By),...,(ht, B;)} « PANORAMIC(COMPOSITIONMODULOINSEPARABLE, h, ¢, ¢,{, A, G,r)
2. if any of the B;’s equals FAIL then return FarL
3. return CHINESEREMAINDERING((B1, ..., B;), (h1,..., h;))

Proor. Combined with our Proposition 8.7, Theorem 1 in [37] gives the runtime estimate.
In the pseudocode, the output of the panoramic evaluation is written as {(h, By), .. ., (hs, Bt)},
where h;---h; is a factorization of h (not necessarily into irreducibles), and for all i, either
B; € K[0,z]<@,n) with d; = deg(h;), or B; = FaIL. At the level of computation trees, a flag
such as FAIL is obtained by setting a dedicated output value to 1 (and 0 otherwise); call flag; this
value, for 1 < i < t. If flag; = 1 (failure), we set B; = 0 by convention, so in the rest of this proof,
B; is an element of K[6, z] for all i.

We use the following notation: for 1 < i < t, the irreducible factors of h; are written

hit, ... hik,. For 1 < j < k;, we then define ¢; ;,A; ;,G;; by taking ¢, A,G modulo h;; and
seeing them over the field Li,j = K[G]/<h1’1>, SO Ei,j is in Li,ja Ai,j in Li,j [Z] and Gi,j in Ll,][y] The
elements in the vector r are already in K, and thus in L; ;. Finally, we let B; ; be the polynomial
obtained by taking B; € K][6, z] and projecting it to L; j[z] through reduction modulo h; ;, and we
set flag; ; = flag; (recall that flag; € K is either 0 or 1).

Then, from Definition 9.1, the key property of the output of the first step is that for all indices
i,j, flag; ; and B; ; are the result of calling Algorithm CoMPOSITIONMODULOINSEPARABLE on input
Cij.e, 0, A; j, Gi . r over the field L; ;. This implies, in particular, that our algorithm returns FaiL
if and only if the computation fails over one of the fields L; ;.

To quantify the probability of this event, we apply Proposition 8.7 over all fields L; ;. For any
given i, j, Proposition 8.7 shows that flag; ; = 1 occurs with probability at most 2n*/card(S). Since
there are at most d such indices i, j, the probability that this happens for at least one pair of in-
dices is at most 2dn*/card(S). Assume none of the flag; ;’s is 1, so that the algorithm does not
return FarrL. Then, for all i, j, B;; € L; j[z]<n is equal to G; j(A; ;) rem (2*° — ¢; ;)¢. In terms of
bivariate polynomials, the Chinese Remainder Theorem then implies that for all i, B; itself is equal
to G(0, A) rem (h;, (z*° — ¢)) € K[, z]<(d,,n)- In the last step of the algorithm, we further ap-
ply the Chinese Remainder Theorem coeflicient-wise to the B;’s with respect to z; this gives us
G(8, A) rem (h, (zP° - ¢)’) as a polynomial in K[6, z]<(d,n)- The cost of this last step is in O(dtp®),
so the proof is complete. O

The complexity bound O(dn*) in Proposition 9.2 indicates that the overhead coming from oper-
ations modulo A(0) is O(d), as pointed out previously.

9.3 Untangling and Tangling

In this subsection, we give the main tools (tangling, untangling and bivariate reduction) that are
needed for reducing composition modulo powers of separable polynomials to the situation of the
previous subsection. The central results are due to van der Hoeven and Lecerf [34] with f = h(x)¢
and h separable (Sections 9.3.1 and 9.3.2). We slightly generalize them to the case f = h(x?)’
with e > 0 (Sections 9.3.3 and 9.3.4).
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9.3.1 Tangling and Untangling. The starting point is the following observation.

LEMMA 9.3 ([34, SEcTION 4.2]). For h of degree d in K[x] and for a positive integer £, there exists
a K-algebra homomorphism

Y+ Klx1/(h(x) ) — K0, 2]/(h(0), (z - 0)°)

Xz,
If moreover h is separable then Y, ¢ is an isomorphism.

This homomorphism is a variant of the homomorphism 7, ¢ considered by van der Hoeven and
Lecerf, that maps u € K[x]/(h(x)") to u(z +0) € K[0, z]/(h(0), z). The morphism ¢y, ; is obtained
by composing mp , with a translation z — z — 0. It turns out that i, ¢ is more convenient than 7y, ¢
for our generalization in Section 9.3.3. van der Hoeven and Lecerf call UNTANGLING(h, £, u) the
algorithm which implements 7j,_¢; we use this terminology for the algorithm that implements /5, ¢:
given u in K[x] 4, it computes U € K[0, z]<(4,¢) such that U = u(z) rem (h(0), (z - 6)). When
h is separable, the inverse operation is called TANGLING(h, £, U). Again, we use their terminology
for the inverse of ¢, .

LEMMA 9.4. UNTANGLING and TANGLING (when defined) take O(d() operations in K.

Proor. This is mostly in Reference [34]. First, it is easy to check that the algorithms 4.3
and 4.5 and the proofs of Proposition 4.6 and 4.10 of that reference do not make use of the sep-
arability of h. Next, translation can be performed in quasi-linear complexity over an arbitrary
ring [28, Theorem. 4.5], so that the complexity estimate is unchanged for our variant of these
algorithms. ]

9.3.2 Bivariate Reduction. The computation of the composition g(a) rem h(x) for a separable h
reduces to computing lﬁ; t,(g(xﬁh,g(a mod h(x)?))), where the inner composition is performed as a
univariate composition in L[z] modulo (z — )¢, with L = K[0]/(h).

In order to make use of the algorithms of the previous sections to perform this composition, it is
necessary to first reduce the degree of g. Denote by A the canonical lift of 15, ¢(a mod h(x)¢), and by
A its projection in L[z]. The idea is to reduce g modulo the characteristic polynomial (y — A(9)) €
L[y] of A(z) modulo (z — 6)°.

This is achieved in two steps. For h of degree d, we let « € K[0].4 be the canonical lift of
A(0) € L. First, one computes the canonical lift of , ¢(9 mod u¢), where y is an annihilating
polynomial of & mod h. This produces G(z,y) € K]z, Yl <(deg 1, ¢) such that

-1
Glz,y) = > Gia)y' = 9(y) + Uz, y)u(2) + V(z,9)(y - 2)°
i=0
for some polynomials U,Vin K[z, y].
Next, in view of u(a) = 0 mod h, a modular composition of each of the ¢ coefficients of this
polynomial G in y with a(6) modulo h(0) gives G(0,y) € K[z, y] <(deg 4, ¢) Such that

G(0,y) = g(y) + U0, y)h(0) + V(0,y)(y — a(0))", (35)

for some polynomials U, V in K[6, y]. Equation (35) may also be read as G(A) = g(A) rem (z — 0)¢
over L.

These two steps are detailed in Algorithm BivArRIATEREDUCTION below and correspond to
Steps (2)-(4) of [34, Algorithm 4.2]. The runtime and probability analyses are new; they are based
on the results of the previous sections.
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ALGORITHM 9.2 BrvariateREpucTION(h, £, @, g, 1)

Input: h separable, monic, of degree d in K[0], £ in N, @ in K[0] <4, g in K[y], r in Kd+ld"
Output: G(0,y) = g(y) rem (h(0), (y — a(0))¢) € K[, Yl<(d,¢), or FAIL
1: > Either p = FAIL, or u is nonzero in K[y]<4q and py(a) = 0 mod h

1« ANNIHILATINGPOLYNOMIAL(h, a, 1) > Algorithm 8.2
if y = FA1L then return FarL
2: G < UNTANGLING(y, £, g rem i) > Gly. 2) € K[y, Yl <(deg(u), ¢)- Lemma 9.4
3: Write G = Do<i<t Gz()/)y >Gj € Kly]<deg(n)

4: fori=0,...,—-1do
G; < MopUuLARCOMPOSITIONBASECASE(h, &, G;,7) > G; = G;(a) rem h or Fair, Algorithm 8.1
if G; = FaIL then return FAIL
5: G« 20§i<(,’ Giyi > G isin K[@,y]<(d7g)
6: return G

LEMMA 9.5. Given h in K[0] monic, separable and of degreed, o in K[0] 4, g inK[y], r in K¢*14"1
with i from Equation (3), and € in N, Algorithm BrvARIATEREDUCTION uses O(deg(g) + d*{) opera-
tions in K withk < 1.43 as in Equation (1), and returns either g rem (h(0), (y— a(6))’) or FaiL. If the
entries of r are chosen uniformly and independently from a finite subset S of K, then the algorithm
returns g rem (h, (y — )’y with probability at least 1 — 6(£ + 1)d? /card(S).

ProoF. The reduction of g mod ¢ is justified by the fact that y(a)’ = 0 mod h¢. The correction
of the rest of the algorithm when Step 6 is reached follows from the discussion above.

Since h is separable, Proposition 8.3 applies; it shows that the first step computes an annihilat-
ing polynomial for & modulo h with probability at least 1 — 6d*/card(S). It also shows that each
call to Algorithm MopuLARCOMPOSITIONBASECASE succeeds with at least the same probability.
Altogether, the probability of success of the whole algorithm is thus at least 1 — 6(¢ + 1)d?/card(S).

By Corollary 8.2, the first step uses O(d¥) operations in K. Since deg(y) is in O(d), computing
g rem p° ¢ takes O(deg(g)+d() operations in K, and Lemma 9.4 shows that deducing G takes a further
O(d¢) cost. Finally, by Proposition 8.1, each pass in the loop at Step 4 takes O(d*) operations, so
that the overall runtime is é(deg(g) +d*?). O

9.3.3  General Tangling and Untangling. In fields of positive characteristic, the isomorphism of
Lemma 9.3 and the complexity of its realization generalize as follows.

PROPOSITION 9.6. Let f = h(xP“)¢ be of degree n, with h of degree d in K[x], and K of character-
isticp (e = 0 if p = 0). There exists a K-algebra homomorphism

Wy, KIx]/(f) = K[0,z]/(h(0), (" - 0)°)

X = z.

If moreover h is separable then ¥y, ¢ is an isomorphism. Applying ¥y ¢ or its inverse when the latter
is defined takes quasi-linear time O(n) = O(d{p°®) over K.

Proor. Write A = K[x]/(f) and B = K[6, z]/(h(0), (" — 0)¢). When h is separable, we prove
that the minimal polynomial of z in the K-algebra B is f. This implies that A is K-isomorphic
(as a K-algebra) to the subalgebra of B generated by z. Since B has K-dimension n = deg(f), this
subalgebra is B itself, and the first claim will follow.

To determine the minimal polynomial of z, we can work in B = K[6,z]/(h(8), (z*° — 6)°),
where K is an algebraic closure of K. If we let &, . . ., &; be the roots of h in K (which are pairwise
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distinct), then Bis isomorphic, as a K—algebra, to the product

K[0.2]/¢0 - & = &)") x -+ x KI[0.21/(0 - &a. (2" = £a)).
The minimal polynomial of z in the ith factor above is y; = (x° — &)¢ for 1 < i < d. These
polynomials are pairwise coprime: since t > t*° is a bijection in K, y; has a unique root in K,
which is the p®-th root of &;, and these roots are pairwise distinct, since the &;’s are. As a result,
the minimal polynomial of z in B, or equivalently in B, is the product y; - - - pig = f.
For the second claim, we take a in K[x] of degree less than n, and write it as a =
Do<i<pe a;(x?)x?, with all a;’s of degree less than n/p® = df. Then,

DT @) mod(h(d), (2 - 0)°),
0<i<p®

DL A0,2)2 mod(h(0), (2 - 0)"), (36)
0<i<p®
where A;(0,z) = a;(z) rem (h(6), (z — 0)’) is in K[0, z]<(d,¢); these degree bounds show that the
expression in Equation (36) is indeed reduced modulo {f(6), (z° — 8)%). Each A; = Un.¢(a;) can
be computed in time O(df) by Lemma 9.4, so that one application of ¥, ¢ takes O(dtp®) = O(n)
operations in K, as claimed.

Conversely, any element B in K[0, z] <(4,¢p¢) can be written as in Equation (36), for some B;’s

in K[0, z] <(4,¢). Applying 1//; 15 to each of them allows us to recover b = ¥, 1£,(B), by reversing the

¥y, ¢(a mod f)

steps above. The cost analysis is similar to the one for ¥}, ;. ]

We call UNTANGLING-GENERAL(h, e, £, a) the algorithm outlined in this proof that applies ¥y ¢
to (the class modulo f of) a € Kl[x].,, and returns the canonical lift of ¥} (a mod f) to
K[0, z]<(a,¢p<); equivalently, A(0, z) = a(z) rem (h(0), (z*° - 0)f). For B in K0, z]<(d, ¢pe), the in-
verse operation is written TANGLING-GENERAL(h, e, €, B).

9.3.4 Main Reduction. A more general form of bivariate reduction is needed in Section 9.4. With
h of degree d as before, given g in K[y] and now a bivariate A in K[0, z] <(4, ¢p¢), the aim is to reduce
the degree of g before performing the composition in L[z] modulo (z¢° — §)¢ with L = K[0]/(h).
Denoting by A the projection of A in L[z], the idea is to compute G = g rem y4 in L[z], where
X4 € Lly] is the characteristic polynomial of A € L[z] in the extension L — L[z]/{(z*" — 0)°).
Thus, G € L[y] has degree less than £p®; its canonical lift G € K[0,y]<(4,¢pe) is the output.

The computation of g rem y4 is made easy by an explicit formula for the characteristic polyno-
mial y 4. In the following lemma, we let 0 : L — L be the p°th-power operator; we write the image
of A € L as A?. This notation is extended to the coefficient-wise action on polynomial rings over L.

LEMMA 9.7. The characteristic polynomial of A relative to the extension L — L[z]/{(z° - 0)) is
xi= Wt —a)! eLlyl, wherea = A°(0) € L.

Proo¥. The characteristic polynomial y4 can be computed relative to the extension L* —
L*[2]/{(z** - 0)%), where we set L* = L[w]/(wP® — 8). In L*[z], we have the factorization

@ =0 =@ —w")' = (z - w7,
so the characteristic polynomial of A in L*[z]/{(z* — 0)) is
(y = Aw)P" = " = Awy")" = (" - A7) 0
The reduction of g by this characteristic polynomial is described in Algorithm MAINREDUCTION.

First, the canonical lift « € K[f]<y of @ € L from Lemma 9.7 is computed. Next, in
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ALGORITHM 9.3 MainRepucTION(h, €, ¢, A, g, T)

Input: h separable, monic, of degree d in K[x], e in N, £ in N, A in K[0, z]<(d,gpe), ginK[y], rin
Kd+ [d"]

Output: G € K[0, y]<(q,¢pe) such that G(0, A) = g(A) mod (h(0), (2" - 0)!), or FALL

1 Write A = Yoc;cpe AiZ’ > A; € K[0]<y
2: > Compute a s.t. the characteristic polynomial of A is (yP* — )¢ (see Lemma 9.7)
a Zosi<fpeAipe0i;(l — aremh >aeK[0] 4
3 Write g = Yocicpe gi(y? )y’ > deg(g;) < deg(g)/p®
4 fori=0,...,p°—1do
G; « BrvariateREpucTION(h, £, @, g;, ) > Gi € K[0,yl<(a,¢)
50 G Zosi<pe Gi(g’ ype)yi >Ge K[G, y]<(d,€pe)

6: return G

Step 3, the polynomial g is rewritten as a polynomial in y of degree less than p€, with co-
efficients g;(y?*). Each of these polynomials ¢;(y) can then be reduced modulo (h, (y — a)’)
by Algorithm BivARIATEREDUCTION, producing a polynomial G;(0,y) (Step 4). Thus, G;(0,y) =
gi(y) mod (h, (y — a)’), whence G;(0,y*") = g;(y?°) mod y;. Recombining these coefficients
yields G(6,y) such that G(6,y) = g(y) mod y;. Finally, since y;(A) = 0 in L[z]/((z"" - 0)"), it
follows that G(8, A) = g(A) mod (h(8), (z** - 0)°).

ProrosITION 9.8. Given h separable, monic, of degree d in K[x], e in N, ¢ in Nso, A in
K[0, z]<(d,¢pe), g in K[y], and r in K441 Algorithm MaINREDUCTION uses O(deg(g) + n*) op-
erations in K, with n = d{p® and k < 1.43 as in Equation (1). It returns G € K[0, y]<(q,¢pe) such
that G(6, A) = g(A) mod (h(6), (z** — 0)), or FaIL.

If the entries of r are chosen uniformly and independently from a finite subset S of K, then the
algorithm returns G with probability at least 1 — 6(€ + 1)d*p® /card(S).

Proor. The correction of the algorithm when it does not return Fair follows from the discussion
above.

Working coefficient-wise, since e = O(log(p¢)) the computation of & at Step 2 takes O(£p¢)
operations on polynomials modulo & of degree d, so O(n) operations in K; reducing it modulo 4 has
the same complexity bound. The cost is thus governed by the loop, which uses O(deg(g) +d*p¢) =
é(deg(g) + (n/d)d") operations by Lemma 9.5. The latter also allows us to quantify the probability
of success: each of the p¢ calls to Algorithm BrvaRIATEREDUCTION succeeds with probability at
least 1 — 6(£ + 1)d?/card(S). m]

9.4 Composition Modulo Powers

We now consider f = h(x?*){, with h separable of degree d and integers e, £, with £ posi-
tive and not divisible by p (and e = 0 if p = 0); the degree of f is n = dfp°. Algorithm
MopULARCOMPOSITIONMODULOPOWER computes g(a) rem f, extending to e # 0 the approach
of van der Hoeven and Lecerf [34] outlined in Section 9.3.2.

We first compute A(6,z) = a(z) rem (h(6), (z?° — 0)’); this is done using the general un-
tangling operation of Section 9.3.3. The reduction of the degree of g is done by Algorithm
MainRepucTION, giving G in K[0, y]<4,¢pe), such that G(0,A) = g(A) mod (h(0), (2 - 0));
the construction of A then implies G(A,A) = g(a(z)) mod (h(0),(z** — 0)¢). The quantity
B = G(6,A) rem (h(0), (z"° — 0)) is obtained by Algorithm ComPOSITIONMODULOINSEPARABLE-
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ALGORITHM 9.4 MopuLARCoMPOSITIONMODULOPOWER(h, e, €, a, g, )

Input: h separable, monic, of degree d in K[x], e in N, £ in N, such that f = h(xpe)€ has degree
n=dtp¢, ain K[x].,, g in K[y], r in KP*1P"1 where p = max(d, n/d)
Output: b = g(a) rem f or FAIL
1: > Conversion of a € K[x] to a bivariate polynomial (Proposition 9.6)

A < UNTANGLING-GENERAL(h, e, £, a) > A€ K[0,z] (4, ¢pe)
2: > Reduction of g modulo the characteristic polynomial of A (Proposition 9.8)
G < MaINRepucTION(h, €, €, A, g, (Fk)o<k<d+[d7]) > G € K[0,yl<(d,¢pe)

if G = Fa1L then return FArL
3: > Modular composition, B = G(0, A) rem (h(0), (= = 9)%) e K[0, z]<(d, epe) or FAIL
B < CoMPOSITIONMODULOINSEPARABLE-PRODUCTOFFIELDS(h, 0, €, £, A, G, (Vk)ogk<§+[(§)'l])
if B = FaIL then return FaIL
4: > Recovery of b over K (Proposition 9.6)
b « TANGLING-GENERAL(h, e, £, B)
5. return b

PropUCTOFFIELDS of Section 9.2.2. We finally apply the general tangling procedure of Section 9.3.3
to B; since tangling is a K-algebra isomorphism, the outcome is b = g(a) rem h(x?*)’.

PROPOSITION 9.9. Fora field K of characteristic p, given h separable, monic and of degree d in K[x],
integers e in N and € in N+, a in K[x]<,, g inK[y], r in KPP withn = dlp®, p = max(d, {p°)
and n from Equation (3), Algorithm MopuLARCoMPOSITIONMoDULOPOWER uses O(deg(g) + n*) op-
erations in K, with k < 1.43 as in Equation (1), and returns g(a) rem h(x?*)’ or FaIr.

If the entries of r are chosen uniformly and independently from a finite subset S of K, then the
algorithm returns g(a) rem h(x?*)¢ with probability at least 1 — (2n* + 12n%)/card(S).

Proor. That the output of the algorithm is g(a) rem A(x?")¢ or Farr follows from the previous
discussion. By Proposition 9.6, with n = d{p®, the first and last step both take O(n) operations in
K. Proposition 9.8 shows that Step 2 takes O(deg(g) + n*) operations in K. Finally, Proposition 9.2
shows that Step 3 takes é(d(fpe)") = O(d(n/d)*) operations in K, so the runtime estimate is
proved.

The steps that may output FaiL are the computation of G at Step 2 and that of B at Step 3. By
Proposition 9.8, the former happens with probability at most 6(¢ + 1)d?p¢ /card(S) < 12n?/card(S);
by Proposition 9.2, the latter happens with probability at most 2d(£p¢)*/card(S) < 2n*/card(S). O

9.5 Main Algorithm and its Analysis

We can now give Algorithm MopurLarRCompoSITION performing modular composition with gen-
eral polynomials, and prove Theorem 1.1.

The separable decomposition f; - - fs; of f allows us to reduce the problem to compositions
modulo the f;’s, which are powers of polynomials as in Section 9.4. The polynomials a and ¢
are first reduced so that the compositions modulo the f;’s are called with inputs of appropriate
degrees, then the result b = g(a) rem f is recovered using Chinese remaindering. The number
of random elements in K we use is an a priori bound that can be refined if the separable
decomposition of f is known.

Proor oF THEOREM 1.1. First we prove correctness. Suppose that none of the subroutines re-
turns FAIL; we show that the output is g(a) mod f.

Using the same notation for p°th powering as in Lemma 9.7, at the ith pass in the loop at
Step 4, the polynomial y; satisfies p;(;) = 0mod h;, with a; = af (that is, the coefficients
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ALGORITHM 9.5 MopuLARCoMPOSITION(f, 4, ¢, T)

Input: f of degree nin K[x], a in K[x]<,, g in K[y]<p, r € K™ "1
Output: b = g(a) rem f or FAIL
1: » Decomposition of f [57, Algorithm 3]

(h1,e1,€1), ..., (hs, es,{s) < SEPARABLEDECOMPOSITION( f) > h; monic of degree d; in K[x|
2 (fia.. s fo) & (h(xP™)0, L hg(xP™)Es) > f; of degree nj = d;il;p®i in K[x]
3: > Degree reduction, deg(a;) < n;

(a1,...,as) < (arem fy,...,arem f;)
4: > Annihilating polynomials of the a; modulo f;

fori=1,...,sdo

Write a; = Yo<g<n, @ik xF
o — Zosk<n,- aix? "xk; a; < a; rem h;
Ui < ANNTHILATINGPOLYNOMIAL(h;, @;, (rk)osk<d,-+rdf’]) > pi(a;) = 0 mod h;, deg(u;) < 4d;
if y; = Fa1L then return Faio
Xi — iy’ > xi(ai) = 0 mod fi, deg(y;) < 4n;
5: > Degree reduction, deg(g;) < 4n;
(g1,---,9s) < (grem yy1,...,g rem ys)
6: > Modular compositions, either b; = g(a) mod f; or FAIL
fori=1,...,sdo
pi < max(d;, n;/d;)
b; < MopurLarComprosiTIoONMoDULOPOWER(h;, €;, €}, a;, gi, (rk)ogk<pl+rplfl'|)
if b; = FAIL then return FArL
7. return CHINESEREMAINDERING((b1, . . ., bs), (f1, .., f5))

of a; are the p®th powers of those of a;). Raising this equality to the power ¢; gives ,uf"(a,-) =
0 mod hfi. Evaluation at y?“' using the facts that a;(y?") = a;*" and y; = p;(y?")" finally gives
xi(a;) = 0 mod f;. The degree bound deg(y;) < 4d; follows from the specifications of Algorithm
ANNIHILATINGPOLYNOMIAL, and the degree bound for y; follows.

In the second for loop at Step 6, b; satisfies b; = g;(a;) mod h;(xP< )’ = g;(a;) mod f;. Since g; =
g rem y;, and y; cancels a; modulo f, b; is also equal to g(a;) rem f;, and thus to g(a) rem f;. It
follows that the return value, obtained by Chinese remaindering, is indeed g(a) rem f.

Next, we bound the overall cost. The call to SEPARABLEDECOMPOSITION( f) takes O(n) operations
in K [57, Proposition 5]. Using repeated squaring, the polynomials fi, ..., fs can be computed in
quasi-linear time as well, and the same holds for the remainders ay, .. ., as.

Consider a fixed index i in the loop at Step 4, and denote d;{;p®’ by n;. Working coeflicient-wise,
computing a; = af takes O(n;) operations since e; = O(log(n;)), and reducing it modulo h; has
the same complexity bound. By Proposition 8.1, Algorithm ANNIHILATINGPOLYNOMIAL uses é(d;‘ )
operations in K. If it does not fail, y; is then deduced in O(n;) operations again, hence the cost of
the loop is O(n*).

When Step 5 is reached, since all y;’s have respective degrees at most 4n;, fast multiple remain-
dering gives the polynomials g; in O(n) operations, with deg(g;) < 4n;. Then, by Proposition 9.9,
each call to Algorithm MopULARCOMPOSITIONMODULOPOWER uses O~(n;‘) operations in K, so
their total cost is O(n*) again. Finally, the cost of the last step (if reached) is O(n). Altogether, the
cost is O(n*), as claimed.

It remains to discuss the probability of failure. By Proposition 8.3, the ith call to Algorithm
ANNIHILATINGPOLYNOMIAL fails with probability at most 6d?/card(S); hence, the probability
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that we successfully exit the first for loop is at least 1 — 6n?/card(S). Then, by Proposition 9.9,
the ith call to Algorithm MopuLarRComPOsITIONMODULOPOWER fails with probability at most
(2n? + 12n?)/card(S), so the probability that we successfully exit the second for loop is at least 1 —
(2n* +12n?)/card(S). Altogether this gives a failure probability of at most (2n* + 18n2)/card(S). O

10 APPLICATIONS

We now list several variants of the modular composition problem and related ones and sketch how
the algorithms presented above can improve the best known complexity.

10.1  Annihilating Polynomials

10.1.1  Annihilating Polynomial. A by-product of Algorithm MopULARCOMPOSITION is a Las
Vegas algorithm that takes O(n*) (k from Theorem 1.1) arithmetic operations for computing an
annihilating polynomial for a of degree at most 4n.

Indeed, with the notation of the algorithm, for all 1 < i < s, since y;(a;) = 0 mod f; we have
xi(a) = rifi for some r; € K[x]. Hence [];_, x; is an annihilating polynomial for a modulo f =
[T, fi, whose degree is at most 4 }};_, n; = 4n.

10.1.2  Minimal and Characteristic Polynomial. In general, our knowledge of the minimal and
characteristic polynomial depends on whether we have a certified basis of relations.

ProposITION 10.1. Let R € K[y]7)" be the matrix produced by Algorithm CANDIDATEBASIS. If R

is a basis ofMﬁs’f), then the first m invariant factors of yl, — M,, hence in particular the minimal
polynomial j, € K[y] of a modulo f, can be computed in O(m®d) operations in K. If furthermore

CERT is returned (implying that R is a basis ofMg,f’f)), then the product of these invariant factors
gives the characteristic polynomial y, € K[y] of a modulo f.

Proor. If R is a basis of M,,, Proposition 4.1 shows that the Hermite normal form of R is a
triangular basis of M,,, whose diagonal entries are the first invariant factors oy, . . ., oy, of yI,, —My;
in particular p, = o07. If CERT is returned, then R is a basis of M,, and v,, = n (Proposition 5.6).
Hence deg det(R) = n and all the invariant factors are known; the characteristic polynomial is their
product. The Hermite normal form of R can be computed in O(m®d) operations [53, Theorem 1.2].

O

One case of certification of the minimal polynomial is when CERT is returned by Algorithm
CANDIDATEBASIS, which occurs in particular for any f in K[x] with f(0) # 0 and a generic a in
K[x]<n (see Section 7.3.2). Using Proposition 5.6 and a shift as in Remark 3.8, this establishes the
complexity bound O(n*) for computing a basis of relations and the minimal polynomial in the case
of a generic a € K[x]<,.

Under the assumptions of Proposition 8.3 with the additional hypothesis vf,f’f ) = nform =
[n"7, a call to Algorithm CANDIDATEBASTs instead of a call to Algorithm MATRIXOFRELATIONS in

Algorithm MopuLARCOMPOSITIONBASECASE, leads to a certified basis of relations of MS,?’”Y) with
good probability (use Proposition 5.6 instead of Proposition 5.8 in the proof of Proposition 8.3).

From Proposition 10.1, this also allows one to compute and certify the minimal and characteristic

polynomials in time O(n*) when f is separable and v([i’,j,? =n.

The latter can be extended to the case f irreducible and separable since then the minimal poly-
nomial y, must be irreducible as well, and therefore yI,, — M, has r nontrivial invariant factors all
equal to p,. If for m = [n"] the minimal polynomial satisfies § = deg(p,) > n/m, then r < m and

v,(:,l ) = n, hence the above certification when f is separable leads to the minimal polynomial. The
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low degree case § < n/m can be treated directly using Lemma 3.2, allowing to compute y, in time
O(nd@2/271) which is O(n*) since § < [n'~"].

However, a matrix R returned by Algorithm CANDIDATEBASIS might not be a basis of Mf;f’” v,
without an efficient certification of this property, Proposition 10.1 only gives a minimal poly-
nomial algorithm of the Monte Carlo kind. Proceeding as done above, with a call to Al-
gorithm CANDIDATEBAsIs instead of a call to Algorithm MATRIXOFRELATIONS in Algorithm
MoDULARCOMPOSITIONBASECASE, a Monte Carlo minimal polynomial algorithm in O(n*) can be
derived under the assumptions of Proposition 8.3.

10.2 Power Series Reversion and Power Series Equations

In this subsection, the characteristic of K is 0.
For a given a € K[x]| with a(0) = 0 and a’(0) # 0, power series reversion (or functional inversion)
asks for a power series g € K[[x]] such that

a(9) = g(a) = x mod x".

By Newton’s iteration, a composition algorithm in O(n°) operations for some ¢ > 1 induces a
reversion algorithm in O(n®) operations as well [17]. Thus, we get a Las Vegas algorithm for power
series reversion in O(n*) operations in K. Note that the converse reduction, from reversion to
composition, also holds in this situation [17].

The approach for reversion extends partially to the resolution of a class of power series equa-
tions. The aim is to solve an equation

g(x,y) = b mod x" (37)

for y € K[[x]]<n, when g € K[[x]][y] satisfies g(0, 0) = b(0) and its partial derivative with respect
to y is not 0 at (0, 0).

By Proposition 8.7, Algorithm ComMPOSITIONMODULOINSEPARABLE computes a composition
g(x,a) in O(n*) operations for ¢ in K[x, Yl<(m,n) With m = O(n") and n from Equation (3). To-
gether with Newton’s iteration, this gives a Las Vegas algorithm solving Equation (37) in O(n*)
operations for g € K[x, y]<(nn,n). Reversion is the special case with b = x and deg,.(9) = 0.

Note. It is known that the complexity of composition of power series (in terms of nonscalar oper-
ations) is essentially that of computing the coefficient of x"~! of g(a) [68]. By contrast, computing
the coefficient of x™! in the reverse of a costs only O(n) arithmetic operations [17].

10.3 Bivariate Composition

In this subsection, the characteristic of K is 0.
Brent and Kung gave an algorithm that computes

g(a,b) rem x"

for g € K[x,y]<(n,n) and truncated power series a,b € K[[x]] in only O(n?) operations [16]. This
is quasi-optimal, since the number of coefficients of g is ©(n?) in general. In the simple situation
where a(0) = 0 and a’(0) = 1, the algorithm is as follows:

(1) by power series reversion, compute s(x) such that a(s) = s(a) = x mod x";

(2) by univariate composition, compute ¢ = b(s) rem x";

(3) by uni-bivariate composition, compute d = g(x, c) rem x";

(4) by univariate composition, compute d(a) rem x".
The complexity is dominated by the uni-bivariate composition in Step (3), which can be performed
by Horner evaluation in O(n?) operations.
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We obtain a Las Vegas algorithm with a complexity reduced to O(n*) when g € K[x, Yl<(nn,n)s
where the uni-bivariate composition is done in O(n*) as discussed in the case of power series
equations, and all the other steps are univariate compositions that are also performed in O(n*) by
our algorithm.

This method extends to the computation of

g(a,b) rem f
with f of degree n in K[x], and a, b in K[x]<,. The algorithm becomes

(1) compute an annihilating polynomial y of a modulo f;

(2) by inverse modular composition, compute ¢ such that c(a) = b mod f;
(3) by uni-bivariate composition, compute d = g(x, c) rem y;

(4) by univariate composition, compute d(a) rem f.

At least for generic a, this is again a Las Vegas algorithm in O(n*) operations when g €
K[x9 y]<(n'/,n)-
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