H-LLL: Using Householder Inside LLL

. Ivan Morel
ENS Lyon, Université de Lyon
University of Sydney
Laboratoire LIP, France
'CNRS-ENSL-INRIA-UCBL
ivan.morel@ens-lyon.fr

Damien Stehlé
CNRS, Macquarie University
and University of Sydney
Department of Mathematics
and Statistics
University of Sydney

Gilles Villard
CNRS, Université de Lyon
Laboratoire LIP, France
CNRS-ENSL-INRIA-UCBL
gilles.villard@ens-lyon.fr

NSW 2006, Autralia
damien.stehle@gmail.com

ABSTRACT

We describe a new LLL-type algorithm, H-LLL, that relies
on Householder transformations to approximate the under-
lying Gram-Schmidt orthogonalizations. The latter com-
putations are performed with floating-point arithmetic. We
prove that a precision essentially equal to the dimension suf-
fices to ensure that the output basis is reduced. H-LLL re-
sembles the L? algorithm of Nguyen and Stehlé that relies
on a floating-point Cholesky algorithm. However, replac-
ing Cholesky’s algorithm by Householder’s is not benign,
as their numerical behaviors differ significantly. Broadly
speaking, our correctness proof is more involved, whereas
our complexity analysis is more direct. Thanks to the new
orthogonalization strategy, H-LLL is the first LLL-type al-
gorithm that admits a natural vectorial description, which
leads to a complexity upper bound that is proportional to
the progress performed on the basis (for fixed dimensions).

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems— Computations
on matrices

General Terms
Algorithms

Keywords

Lattice Reduction, LLL, Floating-Point Arithmetic, House-
holder’s Algorithm

1. INTRODUCTION

Lattice reduction is a fundamental tool in diverse fields
of computational mathematics [2] and computer science [8].
The LLL algorithm, invented in 1982 by Arjen Lenstra, Hen-
drik Lenstra Jr and Laszlé Lovész [7], allows one to perform

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSAC’09, July 28-31, 2009, Seoul, Republic of Korea.

Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$10.00.

271

lattice reduction in time polynomial in both the dimensions
and the bit-sizes of the entries of the input matrix.

In terms of efficiency, the major weakness of the origi-
nal rational algorithm and its improved variants [5, 17] is
that they perform all computations with exact arithmetic,
leading to the use of very large integers. This considerably
slows down the algorithm, making it impractical for large
dimensions or entries. As early as 1983, Odlyzko, in his first
attempts to cryptanalyze knapsack cryptosystems [10], used
floating-point arithmetic (fpa for short) within LLL to avoid
the rational arithmetic cost overhead. The cost of updating
the basis being negligible compared to the cost of computing
and updating the Gram-Schmidt orthogonalization (GSO
for short) of the vectors, it seems natural to compute the
latter using fpa, while using exact arithmetic to update the
basis. This was at first implemented in a heuristic manner,
without ensuring the accuracy of the computations. In a pio-
neering work [13], Schnorr showed that the natural heuristic
approach can be made rigorous.

In the present paper we present a new fp LLL algorithm
that relies on the computation of the QR-factorization of
the basis using Householder’s algorithm. H-LLL computes
fp approximations to the coefficients of the R-factor and
uses them to perform exact operations on the basis. We
prove that if the precision is large enough, then H-LLL runs
correctly. The bound on the precision depends on the di-
mension only (it is actually essentially equal to it). Our
analysis relies on bounds on the errors made while comput-
ing the R-factor of a given reduced basis. Those bounds are
proved in [1]. Exploiting them while requiring a fairly small
precision is where the technical complexity of the present
work lies. In particular, the bounds do not seem sufficient
to perform a size-reduction, a crucial step in the LLL algo-
rithm (even with the weaker version of Definition 2). This
is where H-LLL differs from most LLL variants: rather than
fully size-reducing the current vector, we transform it so that
enough information is obtained to decide whether Lovész’s
condition is satisfied. The correctness of H-LLL is thus
harder to prove, but its unique design allows us to explic-
itly bound the bit-complexity in terms of the actual work
that was performed on the lattice basis. All other LLL al-
gorithms work on the underlying quadratic form, whereas
ours can be interpreted as working on vectors. Considering
a basis matrix (b1, ...,bg) € Z"*% with vectors of euclidean
norms < ||B||, the total bit complexity is:

a1 I[b7]]
O[(d + logH @ + p] logH Ibe]

) nM(d)(d +log | B]) | ,

where d? (resp. df) is the determinant of the lattice spanned

by the first ¢ columns of B at the beginning (resp. the end),

and M(z) = O(z?) is the cost of multiplying two x-bit

long integers. The product []d; is classically referred to
b

as the potential. The term log[] % quantifies the actual

progress made with respect to the pétentiaL while the term

[
log I T e

norms of the vectors. One can note that the obvious bound
on the latter (dlog||B]|) is negligible compared to the ob-
vious bound on the former (d?log||B||). The overall bit
complexity is O(nd>M(d)log || B||(d + log || B||))-

quantifies the progress made with respect to the

RELATED WORKS. As mentioned previously, the first rig-
orous fp LLL was invented by Schnorr in 1988 (see [13]).
However, the precision used in the fp computations was a
linear function of both the bit-size of the matrix entries and
the dimension, with rather large constant factors. Since
then, Schnorr et. al have described several heuristic reduc-
tion algorithms [15, 6, 14, 12], notably introducing in [15]
the concept of lazy size-reduction and in [6] the idea to use
Householder’s algorithm. The outputs of those heuristic al-
gorithms may be certified LLL-reduced with [18], but so far
there does not exist any proved variant of LLL relying on
Householder’s algorithm and using a fp precision that does
not depend on the bit-size of the matrix entries. The L2
algorithm [9] of Nguyen and Stehlé is a proven fp LLL, also
of complexity O(nd>M(d)log || B||(d +1log || B]|)), that relies
on a lazy size-reduction based on Cholesky’s algorithm. Al-
though this approach is close to the present work, there are
a few key differences caused by the use of different orthog-
onalization algorithms. The first difference is the nature of
the numerical errors. Both Cholesky’s algorithm and House-
holder’s are backward stable [4] and forward stable when the
input is LLL-reduced [9, 1]. When computing the R-factor
of a given basis, the error made using Cholesky’s relates to
the diagonal coefficient of the row, which induces an abso-
lute error on the Gram-Schmidt coefficients. When using
Householder’s, the same error involves the diagonal coeffi-
cient of the column, inducing possibly much larger absolute
errors on the Gram-Schmidt coefficients. This leads us to
use a slightly relaxed definition of reduction, which is a fix-
point under perturbation of the original basis [1]. The dif-
ferent nature of the error makes the correctness harder to
obtain. The second difference is the number and type of
arithmetic operations made. Cholesky’s algorithm uses the
exact Gram matrix of the basis to compute the R-factor,
which implies additional integer arithmetic. Furthermore
the overall number of operations needed to compute and up-
date the GSO-related quantities using Cholesky’s algorithm
is roughly twice the number of operations needed when using
Householder’s. Also, the precision required is higher when
using the Cholesky factorization, which can be explained
intuitively by its condition number being greater than the
condition number of the QR-factorization. This leads to the
fact that H-LLL requires a precision of ~ d bits, whereas
L? requires a precision of ~ 1.6d bits. Finally, the vectorial
nature of H-LLL makes its complexity analysis simpler than
that of L2: the amortized cost analysis (which allows to get
a complexity bound that is quadratic when the dimensions
are fixed) is much more direct.

RoOAD-MAP. In Section 2, we give some reminders that are
necessary for the description and analysis of H-LLL. In Sec-

272

tion 3, we describe a new (incomplete) size-reduction al-
gorithm and analyze it. H-LLL relies on the (incomplete)
size-reduction algorithm and is presented in Section 4.

NoOTATION. Vectors will be denoted in bold. If b is a vec-
tor, then ||b|| will denote its euclidean norm. For a ma-
trix A = (a;,;) € R™ ", its j-th column will be denoted
by a;. If b is a vector and ¢ < j are two valid entry indices,
then b[i..j] is the (j —i+1)-dimensional sub-vector of b con-
sisting of its entries within indices ¢ and j. The notation |z]
denotes an arbitrary integer closest to x. We define sign(x)
as 1 if x > 0 and —1 otherwise. We use a standard base-2
arbitrary precision fp model, such as described in [4, Sec.
2.1]. The notation o(a) refers to the fp rounding of a. If z is
a variable, the variable T hopefully approximates and Ax
is the distance between them. For complexity statements,
we count all elementary bit operations.

GLOSSARY. The variables «,8,3,0’,7,7,6,0 and p all refer
to parameters related to the LLL-reduction. For simplicity,
the reader may think of a =~ 2/\/37 1

~
~

d <o <d <
,1/2 < <n~1/2,0< 60 <0~ 0and p~ V3.
The variables co, ¢c1 are polynomially bounded functions of d
and n (and the variables above) and can be safely thought
of as constants.

2. LATTICE REDUCTION

A euclidean lattice L is a discrete subgroup of R"™. A
basis B = (b1,...,bs) € L% of L is a tuple of linearly
independent vectors such that L is precisely the set of all
integer linear combinations of the b;’s. The integer d < n is
the dimension of L. Any lattice L of dimension d > 2 has
infinitely many bases, which can all be derived from any ar-
bitrary basis of L by applying unimodular transformations,
i.e., invertible integral operations. Lattice reduction aims
at finding ’good’ bases, i.e., bases with reasonably short and
orthogonal vectors. Having such a basis allows one to obtain
information about the lattice more easily. In the following
we consider only integer lattices, i.e., L C Z™. We represent
a basis B by using the n X d integer matrix whose columns
are the b;’s. We will now introduce some elementary notions
about lattices. We refer to [8] for more details.

Orthogonalization. The Gram-Schmidt orthogonaliza-
tion maps a basis B = (b1,...,bg) to a tuple of orthogonal
vectors (b7, ..., b}) defined by:

<bi7 b;) b*

Vi<d bi=b;— Y 2 _ilp
b2 ™

>
j<i
The GSO quantifies the orthogonality of the b;’s. If
the (b;,b})/||bj|[*’s are small and the ||b}||’s do not de-
crease too fast, then the b;’s are fairly orthogonal. The GSO
is closely related to the R-factor of the QR-factorization of
the basis matrix. For a given B € R™*? of rank d, there ex-
ist matrices @ € R™*% and R € R¥*?, such that QTQ = I,
R is upper triangular with positive diagonal coefficients
and B = QR. Such a factorization is unique and we
have R;; = ||bj|| and R; ; = (bj, b])/||b;| for any i < j.

Lattice invariants. An invariant of a lattice L is a quantity
that does not depend on the particular choice of a basis of L.
The minimum is defined by: Ar = min(||b||,b € L\ {0}).
The determinant det L = 1/det(BTB) =[] ||b;|| is another
lattice invariant.

LLL-reduction. The LLL-reduction is an efficiently com-
putable relaxation of a reduction introduced by Hermite [3].
We give a generalization of the definition of [7].

Definition 1. Let n > 1/2 and § < 1 A
basis (bi,...,bq) is (4,7)-LLL reduced if for
any i< j, |Rij| <nRi: (size-reduction condition) and
if for any 1, 6R12,1)2-,1 < R%,M + sz (Lovész’s condition).

For the purpose of this work, we need a slightly weaker
definition of reduction, introduced in [1]. One can recover
Definition 1 by taking 6 = 0.

Definition 2. Let n > 1/2, 6 < 1 and 6>0.
A Dbasis (bi,...,bq) is (6,7,0)-LLL reduced if for
any ¢ < j, |Rij| <nRii+0R;; (weak size-reduction con-
dition) and if Lovédsz’s condition holds.

The latter definition is essentially equivalent to the for-
mer, as it only differs when R;; > R;;, which corre-
sponds to quite orthogonal vectors. The following theorem
(from [1]) formalizes this equivalence by exhibiting prop-
erties of (4,7, 0)-reduced bases similar to the properties of
(8, m)-reduced bases [7].

THEOREM 2.1. Let n € [1/2,1), 8 > 0, § € (n*1]
and o = 21tV (1+n92)6 " Let (bi,...,ba) be a (4,7,0)-
LLL reduced basis of a lattice L. Then for all i, we
have Rii; < aRit1i41 and Ri; < |bi] < o 'R
We also have ||bi]| < a? Az, |bi]] < a%(detL)%
and [T|bi]l € @ e)(detL)

The LLL algorithm. LLL [7] computes a (,7)-LLL-
reduced basis in time polynomial both in the dimensions d
and n and the bit-size of the entries log || B||, provided that
n € [1/2,1) and § € (§ —n? 1). Although there are many
LLL variants, they all roughly follow the same high-level
design, described in Algorithm 1.

Algorithm 1 A generic LLL algorithm.

Input: A basis (b1,...,bq) of a lattice L.
Output: An LLL-reduced basis of L.
1: k=2,
2: While k < d, do
3 Size-reduce b.
4: If Lovész’s condition holds for x, then « := k + 1.
5 Else swap b.x—1 and b,; £ := max(k — 1, 2).

Perturbation analysis of the R-factor. In this paper we
introduce a new variant of LLL that relies on the approxi-
mate computation of the R-factor of B using Householder’s
algorithm (Algorithm 2). With fpa, all operations are per-
formed in the naive order, and all sums of several terms are
computed sequentially. In order to ensure the soundness
of the operations we will perform on the basis (in H-LLL),
which are dictated by the values of the R;,;, we need to ad-
dress the issue of the accuracy of the computed R-factor.
It is known (see [4, Ch. 19]) that Householder’s algorithm
computing the R-factor is backward-stable (i.e., its output
is the R-factor of a matrix that is close to its input), but it is
not forward-stable in the general case. Theorem 2.3 (proved
in [1]) bounds the sensibility of the R-factor to column-
wise input perturbations, when the input is LLL-reduced.

273

Combined with the backward stability of Householder’s al-
gorithm (Theorem 2.2, proved in [1]), Corollary 2.4 shows
the forward-stability of Householder’s algorithm in the case
of LLL-reduced inputs.

Algorithm 2 Householder’s algorithm.

Input: A rank d matrix B € R"*%,
Output: An approximation to the R-factor of B.

1: R:=9(B).

2: For i from 1 to d, do
For j from 1to¢—1, do

ri[j.n] = ri[j.n] — (v] ri[j.n]) - viiralh] = ojrij].
r:=r;[i.n];v; :==r.
oi := sign(r[l]); s := oi[|r|.
vill] == (= 3275 elf?)/(e[1] + 9).
If v;[1] # 0, then v; := VZ/\/ s - vi[l].
© o rifien] == (|r]],0,...,0)T.

Return the first d rows of R.

3:
4
5
6:
7
8
9:
10:

THEOREM 2.2. Let B € R"*? be a rank d matriz given
as input to Algorithm 2. Let us assume that the com-
putations are performed with fpa in precision p such that
8d(n +9)277 < 1. Let R € R™? be the output. Then
there exists Q € R™*? with orthonormal columns such
that AB = B — QR satisfies:

Vi <d, Allbs <8d(n+9)277 - |bil.
THEOREM 2.3. Let n € [1/2,1),0 > 0 and § € (n*1].

Let B € R™*% of rank d be (8,7,0)-LLL-reduced. Let € > 0
such that cop®e < 1, where p = (1 +n+ 0)a and:

1+1]1—n-0a

(n+0) (- 1+f)

If AB € R™ 4 is such that Vi, A||b;|| < &-||b;|| and if R+AR
is the R-factor of B + AB (which exists), then:

4\/_ \/1+dn nVd.

Ccp = max

Vi < d, Alri|| < cop’e - Rii.

The following result provides an error bound for the R ma-
trix computed by Algorithm 2 using precision p fpa, starting
from a B in R"*? whose d—1 first columns are LLL-reduced.

COROLLARY 2.4. Letn € [1/2,1),6 > 0 and 6§ € (1>, 1).
Let B € R™% be a rank d matriz whose first (d — 1)
columns are (8,n,0)-LLL-reduced and which is given as in-
put to Algorithm 2. Let us assume that the computations
are performed with fpa in precision p such that c1p?27P < 1,
where c1 = 8d(n 4+ 9)co. Let R = R+ AR € R¥™ be the
output matriz. Then:

Vj<i<d, AR;; <cip'27" Ri;
and
Vi<d, ARiq<ci(141/0)p" 277 (Ri; + |bal)).

Thus denoting the quantity c1(1+1/0)p"™ by ¢(i), we have
forany j <i<d:

AR;j; <2 P¢())Rii and ARia < 27P$(i)(Ri: + ||bal]).

Proof. The first statement is a direct consequence of The-
orems 2.2 and 2.3. Let ¢ < d. We consider the basis
(b, ...,bi,,) defined by b} = (b],0)” for j < iandbj,, =
(bY, R;; + ||bal|/6)T. By construction, it is (8,7, 0)-LLL re-
duced. Furthermore, calling Algorithm 2 on (bf,...,bj,)
leads to exactly the same fp operations as on (bq,...,ba),
for the approximation of R; ;1 = R; 4. Therefore, using the
first part of the result:

AR; 4 =AR; ;4 < cap TP Rij1it1-
Then we use Riyq ;11 < Rii +(1+1/0)||bal. O

This result implies that if we start from a (4,7, 6)-LLL-
reduced basis, then we can use Householder’s algorithm to
check that it is reduced for (arbitrarily) slightly weaker pa-
rameters. It is incorrect to say that if we start from a (8, 7)-
reduced basis, then Householder’s algorithm allows to check
that it is (6’,n')-reduced for slightly weaker parameters 4’
and 1’ (a counter-example is provided in [16]). This is the
reason that underlies the weakening of the LLL-reduction.

3. ANINCOMPLETE SIZE-REDUCTION

In the present section, we present a novel algorithm (Algo-
rithm 3) that relies on a fp Householder’s algorithm (Algo-
rithm 2). It does not size-reduce the vector b, under scope,
it does not even weakly size-reduce it in general. However,
to some extent, it decreases the length of b,. This is ex-
actly the progress it attempts to make (see Step 7). Also,
we will prove that the output basis is of sufficient numerical
quality for Lovéasz’s condition to be (approximately) tested.
If the latter is satisfied, then we know a posteriori that the
basis was indeed weakly size-reduced (see Section 4). The
condition on the precision p ensures the soundness of the
computations.

The algorithm contains a main loop (Steps 1-7). The vec-
tor b, becomes more reduced with respect to the previous
ones every time the loop is iterated. Within the loop, House-
holder’s algorithm is called (Step 2) to obtain an approxi-
mation to r,. This approximation is then used to perform
a partial size-reduction (Steps 3-6), whose progress may be
limited by the inaccuracies created at Step 2. Note that only
the GSO computations are performed approximately, the
basis operations being always exact. Right before the end,
at Step 8, new approximations T, and Vv, are computed to
ensure that the output vectorsri,...,r, and vi,...,V,. are
exactly those that would have been returned by Algorithm 2
given the first k£ columns of the returned B as input.

During the execution, the quantities R; . for ¢ < k are
known only approximately, and are updated within the loop
made of Steps 3-5. To simplify the exposure, we introduce
some notation. We will denote by R; . (resp. R;,x) the ap-
proximate (resp. exact) value of R; . at Step 2. We will

denote by E;ﬁ the approximate value of R; . at the begin-
ning of Step 4. This is an approximation to R;, = Rix —

Yl XjRi;. Finally, we define R, = R}, — XiRi,
which is the new (exact) value of R; . after Step 4. We
will also use the index iy to denote the largest i« < x such
that X; # 0, with io = 0 if not defined.

We analyze Algorithm 3 as follows. We first consider the
effect of one iteration of the loop made of Steps 3—6 on the
R;.’s and ||bkl||. This study will then lead us to correctness
and complexity results on Algorithm 3.

Algorithm 3 The incomplete size-reduction algorithm.

Input: A matrix B € Z"*¢ k < d and the output
Ti,...,Tx-1,V1,.-+,Vk—1,01,...,05—1 of Algorithm 2
when given as input the first K — 1 columns of B. We
assume that the first kK — 1 columns of B are (4,7, 0)-
LLL-reduced with n € (1/2,1), § € (n*,1) and 0 €
(0,7—1/2).

Input: o(27°%) (for an arbitrary ¢ > 0) and a fp preci-
sion p > 10g2(2c7d+9f<93¢(m)a/9).

1: Do
2: Compute T, using Steps 3—4 of Algorithm 2.
3: Forifromk—1tol,do
Ri
4: X; = {o (ﬁﬂ
5: For j from 1 toi—1, do Ej,,@ =0 (Ej,,.€ -0 (Xiﬁj,i)).
6: t:=o([bx|?®); bx :=b. -3, . Xibs.
7: Until o(||bx||?) > o(o(27°%) - t).
8: Compute T, Vs, 0, using Steps 3—9 of Algorithm 2.
9: Return B, r1,...,Tx, V1,...,V, and 01,...,0%.

3.1 Analysis of Steps 3—6

The aim of the next lemmata is to bound the magnitude
of R}, and its error AR; ... As is often the case in numerical
analysis, the error and magnitude bounds are intertwined.
This issue is solved by building up an induction on the two
bounds (Lemmata 3.2 and 3.3), and the induction itself is
solved in Lemma 3.4. This allows us to lower bound the
decrease of ||b.|| after an iteration of the loop (in Theo-
rem 3.7).

LEMMA 3.1. For anyi < k, the quantity | X;|R;,: is upper
bounded by both

R
2

+ (14277 6(0)[Ri x| and 4[R;,|.

Proof. The result being obviously correct when X; = 0, we
assume that X; # 0. We have that | X;| is no greater than

1/2 + o(|R; .| /Ris) <1/24 (14 277)|R; .| /R

Therefore, by using Corollary 2.4:

R 14277
Xi||Rii| < —= —— R .
i < B TR

Rii (14 2771 (i) (R .

<
- 2

Since X; # 0, we have |§;H| > R;I > % Thus:

X0l Rii| <201 +27776(0) (R .,
which completes the proof. O

LEMMA 3.2. For any i < ig, we have:

|R;,H| SHbKH + HO‘i07iRi0,i0

+ (1+277 (o)) ZU (naj’i + 9) IRl

j=it1

Proof. By using the LLL-reducedness of the first xk — 1

columns of B, we have:

i
|Riwl < |Riwl + > 1X5[Re s
j=i+1
<bell+ > (e~ +0)[X;| Ry,
j=i+1
< ”bN” + Kai07iRi0»i0‘

The result is then provided by Lemma 3.1. O

LEMMA 3.3. For any i < ig, we have:

i
AR, <277P2@)(Ibull + Ri) +2777 7 6(5)IR;..l.

j=it1

Proof. Using the bound [4, Eq. (3.5)], Corollary 2.4,
Lemma 3.1 and the LLL-reducedness of the first k — 1
columns of B, we have that AR; . is bounded by:

i
K27PH <|§m|+ > |Xj§i,j|>

j=it1

i
+ Z | X;|AR; j + AR;
j=it1

i0
+ QZ | X;|AR;; +2AR; «
j=it1

i0
< H2p+1<|b~| +>° |Xij-|>

j=i+1

20
< K277 b 4+ 277 X |(KRis + $() Ry 5) +2AR:
j=i+1
< n2*P*1|\bn|\ +27P (i) (sl + Rii)

+92- p+3 Z

o7+ $(5)) Rl

Jj=i+1
which provides the result. O
LEMMA 34. For any ¢ < i9, we have that

|§;,,{| < 26p 7 (||bi|| 4+ Rig.io). This bound also holds
for any |Ri.| at any moment within the loop made of
Steps 3-5.

Proof. Using Lemmata 3.2 and 3.3, we bound |§;,,{| by:
|Ri x| + AR

)
<R+ 277200 (sl + Riv) +2777 D7 ()R]

j=it1
< a||bk|| + 260" " Ry iy
i
+ > (07T 0+ 2P0 R .

j=it1

We now define (u;)i<i, by i, = |Rig,x| and, for i < io:

ig
u; = al|bk|| + 262" " Rig i + Z A(i, §)uy,
j=it1
with A(3,7) = na? =" + 0 + 275 ¢(ig)a? ~*. For any i < i,
we have |E;,,€| < u;. Moreover, using the fact that R;; <
aRit1,i+1, we obtain that for i < ip — 1:

Ui — QU4+1 < A(Z,Z + 1)7.Li+1 < Oé(n + 9)7.”+1.

275

Thus u; < puiy1 and, by using Corollary 2.4, we have that
for any i < ip:

ig—i—1
Uig—1

u; < p
< p 7 a(|Ibell + 26Rig i + (1 +6) ([bell + ARig x))
< 207 (plbr | +rerRig i +a(n +0)27 d(io) Rig.io)

which gives the result for i < ig. To conclude, note that:

tip < [Ibrll + ARig,x < 2(|Ibsll + 277 ¢(i0) Rig i)-

This completes the proof. O

We can now use Lemma 3.4 to obtain a bound on

the AR;N’S that does not depend on the computed E;ﬁ’s
but only on their exact values.

LEMMA 3.5. For any i < 19, we have:

AR; . < 27" 524 (i) ([brll + Rig,ip)-

Proof. Using Lemma 3.4, we have:

i9g—1

Z)Rl < 26(|[bill + Rigi) > 60

j=i+1 j=i+1
< 267 (|[bwll + Rig.io)b (o).
Together with Lemma 3.3, the latter provides the result.

loj

]

Now that we understand precisely the R;H’s, we study
the R ’s.

LEMMA 3.6. Let 7= 1/2+ 27" 1 ¢(k). We have:

277 K2 ¢(io) (|[bell + Rig.io) i i <o
R;;/K‘ < 7RZ,L A ! K 10,20 - . - ;
Rinl <1 *‘ 26(i) b if i > io.
Proof. Suppose first that ¢ < ip. Then
|Rz Kl = |R1 K X1R1,7,|
< ARi,,{ + |E;,,.€ — XiRii| + | Xi|AR:
< AR}, + Ri;- =2 X+ | X3 | AR s
Ri; o[Ris|
< AR 27P|R AR;;
zn+ + | zn|+<2 Rll>
/ 1,1 —p | Rz K
<AR; . R27 le;,nl + <1 + 2| |> AR;;

< AR+ (% + 2*”¢>(z')> Rii+ 277 20(0) | Ri o,

where we used Corollary 2.4. Therefore, using Lemmata 3.4
and 3.5, we get the result.
Suppose now that ¢ > 4. Then, using Corollary 2.4:

|RY .| = |R} .| <|Ri.|+AR;,
< Rii/2+277¢(i)(|Ibwll + Rii),

which completes the proof. O

The latter bound on the R{,’s shows that at Step 6, the
length of the vector b, is likely to decrease.

THEOREM 3.7. Consider by at the beginning of Step 6.
Let b!! be its new value at the end of Step 6. Then

I < 2max Ru + 2777k () [

Proof. Using Lemma 3.6:

K 10 k—1
Xl < D IRl = R+ Y _|RIc|+ D |Rixl
i=1 i=1 i=ip+1
<

Ry + 27" T%i06 (i0) Rio i + K77 max Ri.;
1<K
+ 277 52 (k) b .

The latter provides the result. O

3.2 Correctness and Cost of Algorithm 3

The following lemma ensures the soundness of the test of
Step 7. It also implies that the algorithm terminates.

LEMMA 3.8. Consider b, at the beginning of Step 6. Let
b!! be its new value at the end of Step 6. If the test of Step 7
succeeds, then ||bll||? > 2741 |b,||?. If the test of Step 7
fails, then [[b|* < 2~ |[b ||

Proof. Using [4, Eq. (3.5)], we have for any b € Z" that
o(||b||?) € (1 £n27PT)||b||>. Thus <>(<>(2’Cd) ~<>(Hb,<;|\2)) S
(14+n277+2)27%d||b,||2. D

The following shows that at the end of the execution of
Algorithm 3, the length of b, and the R; .’s are small. The
algorithm is correct in the sense that the size of the output
vector is bounded.

THEOREM 3.9. Let 0 = 2 P85 130(k) and 77 = 1/2 +
27PT ¢(k). At the end of the execution of Algorithm 8, we
have:

[bell < 3wmaxRi;,
Vi < R, |Ri,ﬁ| S ﬁRl,z +§(Hb.‘€|‘ + R&*l,ﬁ*l)'

Proof. Lemma 3.8 gives us that ||bL[> < 2°¢F!||b.]|?,
where b}, (resp. b,) is the vector b, at the beginning (resp.
at the end) of the last iteration of the loop made of Steps 1—-
7. Using Theorem 3.7, we obtain:

bl < 25 max R, + 27" T2 (k) [bL|
i<K
cd
< 2rmax Ry + 277 gk bl
< 3kmax R; ;.
1<K
For the second inequality, note that Lemma 3.6 implies:

|Ri| <MRii + 277 K2 G() (DL + Re1,0-1).-

It only remains to use the inequality ||bf||? < 2°?*!||b.|.
O

We now consider the cost of Algorithm 3. We start by
bounding the number of iterations of the main loop.

LEMMA 3.10. The number of iterations of the loop made
of Steps 1-7 is:

where bl (resp. bZ) is b, at the beginning (resp. the end).

[brll
(bl

O(l—!—élog

276

Proof. Let b’, be the vector b, at the beginning of Step 2 of
the last iteration of the loop made of Steps 1-7. Lemma 3.8
implies tha;c the number of loop iterations is bounded by 1+

bb
s 5
then b® = b’. Otherwise, since Xi, # 0, Lemma 3.1 and
Corollary 2.4 give:

log

If all the X;’s of the last iteration are zero,

—=
bl > |Ri, | > [Rig .l — AR, .

1 — . ¢
> Z'XiolRio,io -2 qu(lo)(l‘bra” + Rio»io)
1
> gRig,io-
Furthermore, using Lemma 3.6, we get (not-
ing a = (Rix,-.., R x,0,...,0) and b =
0,...,0, R} 41,0s--- RE4,0,...,0)):
e £ e ¢
bl = bl = llrkll = [lrxl

< llall + IIb]| — |Ib]]
<> IR
i<io
< (KA +8) Rigio + 0|/ bL||

< 9(ka™ +)by

This gives that ||b%|| < 10ka”||b%||, which provides the
bound. O

The result above leads us to the following complexity up-
per bound.

THEOREM 3.11. Let (by,...,ba) € Z™*? be a valid input
to Algorithm 3. Let k be the input index. Suppose the pre-

cision satisfies p > 10g2(2%+9m3¢(n)a/0) and p = 299,
Then the ezecution finishes within

IIbiH) nM(d)
(bl d

0 [(d + log (d+log||BJ|)| bit operations,

where | B|| = max;<, ||b:| and b’ (resp. b%) is b, at the
beginning of Step 1 (resp. Step 9).

Proof. The bit-cost of one iteration of Steps 4 and 5
is O(dM(d)) for handling the mantissas (thanks to the sec-
ond restriction on p) and O(dlog(d + log || BJ|)) for handling
the exponents (thanks to Corollary 2.4 and Lemmata 3.1
and 3.4). This implies that one iteration of the loop made of
Steps 3-5 costs O(d*M(d)-+d? loglog || B||). A similar bound
O(ndM(d)+ndloglog || B||) holds for one iteration of Step 2.
The computation of ¢ at Step 6 is negligible compared to
the costs above. Theorem 3.9 implies that the update of b
at Step 6 can be performed within O(nM(d) log(d||B||)) bit
operations (note that though X; can be a very large inte-
ger, it is stored on < p = O(d) bits). The cost of Step 7
is also negligible compared to the costs above. Overall, the
bit-cost of one iteration of the loop consisting of Steps 1-7
is O(nM(d)(d+1log ||B]|)). Lemma 3.10 provides the result.
O

4. ANLLL RELYING ON
HOUSEHOLDER’S ALGORITHM

The H-LLL algorithm (Algorithm 4) follows the general
structure of LLL algorithms (see Algorithm 1). For the
size-reduction, it relies on Algorithm 3. The precision re-
quirement is a little stronger than in the previous section.
Asymptotically, for close to optimal parameters §, n and 6
(ie, d = 1, n = 1/2 and 0 ~ 0), a sufficient precision
is p =~ d.

Algorithm 4 The H-LLL algorithm.

Input: A matrix B € Z"*¢ of rank d and valid LLL pa-
rameters 6,7 and 0, with < n —1/2.

Input: o(27°%) (for an arbitrary ¢ > 0) and a fp precision
p > po+1—log,(1—6)—log,(n—6—1/2) with po :=
log, (d>¢(d)a®/0) + 16 + cd/2.

Output: A (4,7,0)-LLL-reduced basis
spanned by the columns of B.

1: Let & be a fp number in (§ +27PTP0 1 — 27PFPo),

2: k:= 2. While k <d, do

3 If kK = 2, then

4: Compute T1, V1,01 using Steps 3-9 of Algorithm 2.

5 Call Algorithm 3 on B,T1,...,Tx—1,V1,...,Vs—1 and
Ol,...

s:=o([o(b

of the lattice

L Or—1.
—2

6 WIP); s = 0(s = i _p Rin)-

7 If o6 <>(R,,€ 1,s—1)) < s, then k :== Kk + 1.

8 Else swap bx—1 and b,; £ := max(k — 1, 2).

9: Return B.

Before proceeding to the analysis of Algorithm 4, let us
explain how Step 6 is performed. We compute o(|| o (b,)||?)

sequentially; we compute the O(Ein)’s; and finally we com-
pute s := o(|| o (be)[|*> = e E?m) sequentially. Corol-
lary 2.4 and Theorem 3.9 provide the soundness of such a
computation.

LEMMA 4.1. Assume that the first k—1 columns of B are
LLL-reduced. Then at the end of Step 6, we have:

‘8_ Riﬁ—’_Rﬁ 1/@)’ §27P+12H3aﬁ¢(ﬁ)(Ril€+Rm 1,k— 1)

Proof. thanks to [4, Eq. (3.5)],
have | o || ¢ ([bi?| € n27PH b, |*. Also:

First of all,

b.)|? -

R <2 PR, 4R, - R,
<2PTRE L+ 2ARi k(2| Rik| + AR

Thanks to the LLL-reducedness of the first x — 1 columns
of B, Corollary 2.4 and Theorem 3.9, we have (using 6 <
a ")

we

-2
lo(Rix) =

|Risn| < 2(" " Ru—rn-1 + a”"|bx))
< 8K(" "Ru_15-1+ Re)
AR <277¢(i)(a" " Ru—1,6-1 + i)
<27PP2Rp(i) (0" " Re—1,m—1 + Riuon).
As a consequence, we obtain the bound:
o (R2) — BE | < 2773620 (RY_y et + B2
—|—27p+8/£2¢(z)(a ‘Re 11+ Rux)’
<277 G(k) (R w1 + R -

277

Finally, using [4, Eq. (3.5)], we get the bound:
|5 = (R + Rio1n-1)| < 62777 (RE o+ RE_1 o)

—2
+2]obul® = [Ibel*| +2 D o (Rix) -

i<rk—2

R .|,

which leads to the result. O

LEMMA 4.2. Assume that the first k—1 columns of B are
LLL-reduced. Then at the end of Step 6, we have:

|<>(6 0(k—1,k— 1))_5Ri71,/€71|§27p+3¢()5RN 1,k—1-

Lemmata 4.1 and 4.2 imply the soundness of the test of
Step 7.

THEOREM 4.3. Let 0 = 2P+ S@3¢(d) and 7 =
1/2 + 277 ¢(d). Assume that the first kK — 1 columns
of B are (6,n,0)-LLL-reduced. If the test of Step 7
succeeds then the first k columns of B are (8,n,0)-
LLL-reduced. Otherwise 6'RE_, . 1 > R .+ R:_, . with
8 =01+ 2773 0(k)a").

Proof. Suppose that the test succeeds. Corollary 2.4 and

Lemmata 4.1 and 4.2 imply:
(1- 27p+3¢(”))3Ri—1,~71
< (142770 ¢(k)) (Ri e + R)

By choice of 8, this implies that SR2_, w1 < RK,LH +Ri’,i.
Now, using Theorem 3.9, we know that:

|RK471,K| S (ﬁ“‘g)Rnfl,nfl +§an”
<@+ 0(1 +36a"))Re—1,0—1 + 30K Rsc
S T]Rmfl,ﬁfl +9RI'€,N‘

As a consequence, we have Ri—1,.x-1 < aRy k.
Theorem 3.9 again, we have:

|R’i,l<b| S ﬁRZ,’L +§(||bn|| + Rnfl,nfl)
< TR + 0(3k max(R; ;) + aR,x)
ISK

By using

< TRi; + 40k Ry .,

which completes the proof of the first claim of the theorem.
Suppose now that the test fails. Corollary 2.4 and Lem-
mata 4.1 and 4.2 imply:

(1+ 27p+3¢(”))3Ri—1,~71
> (1= 277260 g(k)) (R e + Ri—1n1)-
By definition of &, this implies that 6’ R2_ 1r—1 > R2_ 1,0+
RZ,.. O
We can now conclude our study of Algorithm 4.
THEOREM 4.4. Algorithm 4 returns a (0,71,0)-LLL-

reduced basis (b§ b§) of the lattice spanned by the input
basis (b, .. bb) Z"Xd. Furthermore, the bit complexity

8
0Kd+1ogH—e +=log[] ”bZ”)
d (b5
where ||B|| = max ||b;| and d° (resp. d) is the determi-
nant of the lattice spanned by the first i columns of the in-

put (resp. output) basis. The complexity bound above is
itself O(nd* M(d) log || B||(d + log || B|)))-

(d)(d +log||B])) |,

Proof. Using the classical analysis of the LLL algorithm [7]
and Theorem 4.3, we know that the algorithm terminates
b
within O (d—i— log Higd %) iterations. A simple induction
using Theorem 4.3 proves that the output is indeed (8, 7, 6)-
LLL reduced. Furthermore, the classical analysis of LLL
yields that at any moment, the norms of the basis vectors
are below d||B|| (except within the calls to Algorithm 3).

Each call to Algorithm 3 that transforms b{"® into b{"**”

costs

B\ nM(d)
d + log
(b d

As a consequence, the total cost of Algorithm 4 is (using
the fact that the product over the loop iterations of

O (d + log || BJ|)| bit operations.

LS [LYRY
the oG S 18 exactly T, 5]):
b\ nM(d
ol > <d+log I (WU)” d()(d+10g||B||)
iterations Hb'i ”

b b
:O[(d +log[] 3—% + Llog]] HE%H)nM(d)(d + log HBH)} .
; b d b d?
Since []|bs|l < ||IB||* and []d; < ||BJ|*, that bound
immediately gives a O(nd>*M(d) log || B||(d+log || B||)) com-
plexity upper bound. O

S. CONCLUSION

The decision to use Householder’s transformations instead
of Cholesky’s factorization within LLL leads to modifica-
tions in the proof of correctness: the perturbations induced
on the approximate R-factor have a different structure than
in the L? algorithm of [9]. These modifications may probably
be used for other forms or applications of the floating-point
reduction of lattices. For example the new approach may
be carried over to the case of linearly dependent input vec-
tors, and to the case of stronger reductions (such as the fp
Hermite-Korkine-Zolotarev reduction algorithm of [11]). An
important direction that deserves to be investigated would
be to try to further decrease the precision of the approxi-
mate computations. We showed that a precision essentially
equal to the problem dimension is sufficient. Can we do bet-
ter? It seems unnatural that a higher precision is required
in H-LLL than in its (incomplete) underlying size-reduction
algorithm. Finally, a more precise understanding of the nu-
merical behavior is required for various aspects, such as the
efficient implementation of H-LLL, which we are currently
investigating.

ACKNOWLEDGMENTS. We thank the anonymous referees for
their helpful comments. Ivan Morel and Damien Stehlé were
partly funded by the LaRedA ANR project. Gilles Villard
was partly funded by the Gecko ANR project.

278

6. REFERENCES

[1] X.-W. Chang, D. Stehlé, and G. Villard. Perturbation
Analysis of the R-Factor of the QR Factorisation in
the Context of LLL-Reduction. Work in progress,
available at http://perso.ens-1lyon.fr/damien.
stehle/QRPERTURB.html, 2009.

H. Cohen. A Course in Computational Algebraic
Number Theory, 2nd edition. Springer, 1995.

C. Hermite. Extraits de lettres de M. Hermite a M.
Jacobi sur différents objets de la théorie des nombres,
deuxieme lettre. J. reine angew Math, 40:279-290,
1850.

N. Higham. Accuracy and Stability of Numerical
Algorithms. STAM, 2002.

E. Kaltofen. On the complexity of finding short
vectors in integer lattices. In Proc. of EUROCAL’83,
volume 162 of LNCS, pages 236-244. Springer, 1983.
H. Koy and C. P. Schnorr. Segment LLL-reduction of
lattice bases with floating-point orthogonalization. In
Proc. of CALC’01, volume 2146 of LNCS, pages
81-96. Springer, 2001.

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovész.
Factoring polynomials with rational coefficients. Math.
Ann, 261:515-534, 1982.

L. Lovéasz. An Algorithmic Theory of Numbers, Graphs
and Convezity. STAM, 1986. CBMS-NSF Regional
Conference Series in Applied Mathematics.

P. Nguyen and D. Stehlé. Floating-point LLL
revisited. In Proc. of Eurocrypt 2005, volume 3494 of
LNCS, pages 215-233. Springer, 2005. Extended
version to appear in STAM J. Comput., 2009.

A. M. Odlyzko. The rise and fall of knapsack
cryptosystems. In Proc. of Cryptology and
Computational Number Theory, volume 42 of Proc. of
Symposia in Applied Mathematics, pages 75-88. AMS,
1989.

X. Pujol and D. Stehlé. Rigorous and efficient short
lattice vectors enumeration. In Proc. of Asiacrypt’08,
volume 5350 of LNCS, pages 390—405. Springer, 2008.
C. P. Schnorr. Progress on LLL and lattice reduction.
In Proc. of the LLL+25 conference. To appear in 2009.
C. P. Schnorr. A more efficient algorithm for lattice
basis reduction. J. of Alg., 9(1):47-62, 1988.

C. P. Schnorr. Fast LLL-type lattice reduction. Inf.
and Comp, 204:1-25, 2006.

C. P. Schnorr and M. Euchner. Lattice basis
reduction: improved practical algorithms and solving
subset sum problems. Math. of Prog, 66:181-199, 1994.
D. Stehlé. Floating-point LLL: theoretical and
practical aspects. In Proc. of the LLL+25 conference.
To appear in 2009.

A. Storjohann. Faster Algorithms for Integer Lattice
Basis Reduction. Technical Report TR249,
ETH-Zurich, Dpt. Comp. Sc., 1996.

G. Villard. Certification of the QR factor R, and of
lattice basis reducedness. In Proc. ISSAC ’07, pages
361-368. ACM Press, 2007.

(10]

(11]

(12]
(13]
(14]

(15]

(16]

(17]

(18]

