
A New View on HJLS and PSLQ:
Sums and Projections of Lattices

Jingwei Chen†,‡

†Chengdu Institute of
Computer Application, CAS

‡CNRS, ENS de Lyon,
UCBL, Université de Lyon

Laboratoire LIP
velen.chan@163.com

Damien Stehlé
CNRS, ENS de Lyon, Inria
UCBL, Université de Lyon

Laboratoire LIP
damien.stehle@gmail.com

Gilles Villard
CNRS, ENS de Lyon, Inria,
UCBL, Université de Lyon

Laboratoire LIP
gilles.villard@ens-lyon.fr

ABSTRACT
The HJLS and PSLQ algorithms are the de facto standards
for discovering non-trivial integer relations between a given
tuple of real numbers. In this work, we provide a new inter-
pretation of these algorithms, in a more general and powerful
algebraic setup: we view them as special cases of algorithms
that compute the intersection between a lattice and a vector
subspace. Further, we extract from them the first algorithm
for manipulating finitely generated additive subgroups of a
euclidean space, including projections of lattices and finite
sums of lattices. We adapt the analyses of HJLS and PSLQ
to derive correctness and convergence guarantees.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

Keywords
integer relation, lattice, HJLS, PSLQ, LLL

1. INTRODUCTION
A vector m ∈ Zn \ {0} is called an integer relation for

x ∈ Rn if x · mT = 0. The HJLS algorithm [7, Sec. 3],
proposed by H̊astad, Just, Lagarias and Schnorr in 1986, was
the first algorithm for discovering such a relation (or proving
that no small relation exists) that consumed a number of real
arithmetic operations polynomial in n and the bit-size of the
relation bound. In 1992, Ferguson and Bailey published the
other de facto standard algorithm for this task, the PSLQ
algorithm [5] (see also [6] for a simplified analysis). We refer
to the introduction of [7], and to [6, Sec. 9] for a historical
perspective on integer relation finding. Our computational
model will assume exact operations on real numbers. In this
model, Meichsner has shown in [10, Sec. 2.3.1] that PSLQ is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

essentially equivalent to HJLS (see also [2, App.B, Th. 7]
and the comments in Section 2).

Given as input x ∈ Rn, HJLS aims at finding a nonzero el-
ement in the intersection between the integer lattice Λ = Zn

and the (n−1)-dimensional vector subspaceE = Span(x)⊥ ⊆
Rn. It proceeds as follows. (1) It first projects the rows of
the identity matrix (which forms a basis of Λ) onto E. This
leads to n vectors belonging to a vector space of dimen-
sion n − 1. The set of all integer linear combinations of
these n vectors may not be a lattice: in full generality, it
is only guaranteed to be a finitely generated additive sub-
group, or fgas for short, of Rn (fgas’s are studied in detail
in Section 3). (2) It performs unimodular operations (swaps
and integral translations) on these n vectors, in a fashion
akin to (though different from) the LLL algorithm [8]. This
aims at removing the linear dependencies between the fgas
generators. (3) It stops computing with the fgas if it finds
n−1 vectors belonging to the same (n−2)-dimensional vec-
tor subspace and an n-th vector that is linearly independent
with those first n − 1 vectors. This n-th vector contains a
component that cannot be shortened any further using any
linear combination of the previous vectors. At this stage, the
inverse of the unimodular transformation matrix contains a
non-trivial integer relation for x. The computationally ex-
pensive step of HJLS is the second one, i.e., the manipulation
of the fgas representation.

Our results. Our first contribution is to propose a new
view on HJLS, and hence PSLQ, in a more general alge-
braic setup. It (partially) solves a special case of the follow-
ing lattice and vector space intersection problem Intersect:
given as inputs a basis of a lattice Λ ⊆ Rm and a basis of
the vector subspace E ⊆ Rm, the goal is to find a basis of
the lattice Λ ∩ E (i.e., in the case of HJLS, the lattice of
all integer relations). The main step of HJLS for (partially)
solving (a particular case of) this problem, i.e., Step (2),
is itself closely related to the following structural problem
on fgas’s. The topological closure S of any fgas S ⊆ Rm

is the orthogonal sum of a unique lattice component Λ and
a unique vector subspace component E, i.e., S = Λ©⊥E.
The Decomp problem takes as input an fgas S described by
a generating set and returns bases of Λ and E. We exhibit
a duality relationship between the Intersect and Decomp
problems that was somewhat implicit in HJLS.

Apart from putting HJLS in a broader context, this new
view leads to the first algorithm, which we call Decomp_HJLS,
for decomposing fgas’s. Prior to this work, only special cases

149

were handled: Pohst’s MLLL algorithm [12] (see also [7,
Sec. 2]) enables the computation of a basis of a lattice given
by linearly dependent lattice vectors; and special cases of
fgas’s, corresponding to integer relations detection instances,
were handled by HJLS and PSLQ. We describe the De-
comp_HJLS algorithm in details, provide a correctness proof
and analyze its convergence by adapting similar analyzes
from [6] (which are essentially the same as in [7]). We show
that it consumes a number of iterations (akin to LLL swaps)
that is O(r3 + r2 log X

λ1(Λ)), where r is the rank of the in-
put fgas, X is an upper bound on the euclidean norms of
the input generators and λ1(Λ) is the minimum of the lat-
tice component Λ. For an fgas S ⊆ Rm with n generators,
an iteration consumes O(nm2) arithmetic operations. Addi-
tionally, we prove that the returned lattice basis is reduced,
for a notion of reduction that is similar to the LLL reduction.

Finally, we investigate a folklore strategy for solving prob-
lems similar to Decomp. This approach can be traced back
to the original LLL article [8, p. 525]. It consists in embed-
ding the input fgas into a higher-dimensional lattice, and
calls the LLL algorithm. In order to ensure that the lattice
component of the fgas can be read from the LLL output, we
modify the underlying inner product by multiplying a sub-
part of the LLL input basis by a very small weight. More
specifically, if we aim at decomposing the fgas spanned by
the rows of a matrix A ∈ Rn×m, the Decomp_LLL algorithm
will call LLL on the lattice basis

(
c−1 · In|A

)
, where In de-

notes the n-dimensional identity matrix and c > 0. For a
sufficiently large c, it is (heuristically) expected the lattice
component of the fgas will appear in the bottom right corner
of the LLL output.

Notation. All our vectors are row vectors and are denoted
in bold. If b is a vector, then ‖b‖ denotes its euclidean norm.
We let 〈b, c〉 denote the usual inner product between two real
vectors b and c sharing the same dimension. If b ∈ Rn is a
vector and E ⊆ Rn is a vector space, we let π(b, E) denote
the orthogonal projection of b onto E. Throughout this
paper, we assume exact computations on real numbers. The
unit operations are addition, substraction, multiplication,
division, comparison of two real numbers, and the floor and
square root functions.

2. REMINDERS
We give some brief reminders on lattices, and on the HJLS

and PSLQ algorithms. For a comprehensive introduction to
lattices, we refer the reader to [13].

LQ decomposition. Let A ∈ Rn×m be a matrix of rank r.
It has a unique LQ decomposition A = L · Q, where the
Q-factor Q ∈ Rr×m has orthonormal rows (i.e., QQT = Ir),
and the L-factor L ∈ Rn×r satisfies the following property:
there exist diagonal indices 1 ≤ k1 < . . . < kr ≤ n, such
that li,j = 0 for all i < kj , and lkj ,j > 0 for all j ≤ r
(when n = r, the L-factor is lower-triangular with positive
diagonal coefficients). The LQ decomposition of A is equiv-
alent to the more classical QR decomposition of AT .

Definition 2.1. Let L = (li,j) ∈ Rn×r be a lower trape-
zoidal matrix with rank r and diagonal indices k1 < . . . < kr.
We say L is size-reduced if |li,j | ≤ 1

2

∣∣lkj ,j

∣∣ holds for i > kj .

Given L, it is possible to find a unimodular matrix U ∈
GLn(Z) such that U · L is size-reduced. Computing U and

updating U ·L can be achieved within O(n3) real arithmetic
operations.

Lattices. A euclidean lattice Λ ⊆ Rm is a discrete (additive)
subgroup of Rm. A basis of Λ consists of n linearly indepen-
dent vectors b1, · · · , bn ∈ Rm such that Λ =

∑
i Zbi. We say

that B = (bT1 , . . . , b
T
n)

T ∈ Rn×m is a basis matrix of Λ. The
integer n is called the dimension of Λ. If n ≥ 2, then Λ has
infinitely many bases, that exactly consist in the rows of U ·B
where B is an arbitrary basis matrix of Λ and U ranges
over GLn(Z). The i-th successive minimum λi(Λ) (for i ≤ n)
is defined as the radius of the smallest ball that contains i
linearly independent vectors of Λ. The dual lattice Λ̂ of Λ is
defined as Λ̂ = {x ∈ Span(Λ) : ∀b ∈ Λ, 〈b,x〉 ∈ Z}. If B is

a basis matrix of Λ, then (BBT)−1B is a basis of Λ̂, called
the dual basis of B.

Weakly-reduced bases. Weak reduction is a weakening
of the classical notion of LLL reduction. It is very similar to
the semi-reduction of [14]. Let B = (bT1 , · · · , bTn)T ∈ Rn×m

be the basis matrix of a lattice Λ, and L = (li,j) be its L-
factor. We say the basis b1, · · · , bn is weakly-reduced with
parameters γ > 2/

√
3 and C ≥ 1 if L is size-reduced and

satisfies the (generalized) Schönhage condition lj,j ≤ C · γi ·
li,i for 1 ≤ j ≤ i ≤ n. Note that a LLL-reduced basis is
always weakly-reduced, with C = 1. If a lattice basis is
weakly-reduced, then

‖bi‖ ≤
√
nCγi · li,i,

(
√
nC2γ2i)−1 · λi(Λ) ≤ ‖bi‖ ≤

√
nC2γ2n · λi(Λ).

(2.1)

HJLS-PSLQ. We recall HJLS [7, Sec. 3] using the PSLQ
setting [6]. We call the resulting algorithm HJLS-PSLQ (Al-
gorithm 1). Given x = (x1, · · · , xn) ∈ Rn, HJLS-PSLQ ei-
ther returns an integer relation for x, or gives a lower bound
on λ1(Λx), where Λx is the lattice of all integer relations
for x, and λ1(Λx) is the norm of any shortest nonzero vector
in Λx. The updates of U andQ at Steps 1b, 2a, 2b and 2c are
implemented so as to maintain the relationship ULx = LQ
at any stage of the execution. Note that storing and up-
dating Q is not necessary for the execution of the algorithm
(and does not appear in [6]). It has been added for easing
explanations in Section 4.

Algorithm 1 (HJLS-PSLQ).

Input: x = (x1, · · · , xn) ∈ Rn with xi .= 0 for i ≤ n, M > 0
and γ > 2/

√
3.

Output: Either return an integer relation for x, or claim
that λ1(Λx) > M .

1. (a) Normalize x, i.e., set x := x/‖x‖; set U := In
and Q = In−1.

(b) Compute the Q-factor (xT |Lx)
T of (x|In)T ; set L :=

Lx; size-reduce L and update U .
2. While ln−1,n−1 .= 0 and maxi li,i ≥ 1/M do

(a) Choose k such that γk · lk,k = maxj<n γj · lj,j ; swap
the k-th and (k + 1)-th rows of L and update U ;

(b) Compute the LQ decomposition of L; replace L by
its L-factor and update Q.

(c) Size-reduce L and update U .
3. If ln−1,n−1 .= 0, return “λ1(Λx) > M”. Else return the

last column of U−1.

For the proof of termination, it suffices to enforce the par-
tial size-reduction condition |lk+1,k| ≤ 1

2 lk,k before swapping

150

(HJLS), instead of full size-reduction (PSLQ). Along with a
stronger size-reduction, PSLQ may have a slightly faster ter-
mination for specific cases, due to a refined while loop test.
PSLQ has been proposed with the additional nullity test of
(x ·U−1)j for some j ≤ n, possibly leading to the early out-
put of the j-th column of U−1. Apart from the latter test,
if HJLS is implemented with full size-reduction then PSLQ
is equivalent to HJLS [10, Sec. 2.3.1] (see also [2, App. B,
Th. 7]). Full size-reduction is essentially irrelevant in the ex-
act real number model. Indeed, HJLS works correctly and
consumes O(n3 + n2λ1(Λx)) iterations. The same bound
has been established for PSLQ. We note that without loss
of generality HJLS has been initially stated with γ =

√
2.

Both the roles of the size-reduction and the parameter γ may
be important in a bit complexity model for keeping integer
bit sizes small [8, 7], or in a model based on approximate
real number operations for mastering the required number
precision [6]. This is outside the scope of the present paper.

3. DECOMP AND INTERSECT
In this section, we provide efficient reductions in both di-

rections between the problem of computing the decomposi-
tion of an fgas (Decomp) and the problem of computing the
intersection of a lattice and a vector subspace (Intersect),
assuming exact computations over the reals.

3.1 FGAS of a euclidean space
Given a1, · · · ,an ∈ Rm, the finitely generated additive

subgroup (fgas for short) spanned by the ai’s is the set of
all integral linear combinations of the ai’s:

S =
n∑

i=1

Zai =

{
n∑

i=1

ziai : zi ∈ Z
}

⊆ Rm. (3.1)

Given an fgas S as in (3.1), the matrix A ∈ Rn×m whose
i-th row is ai is called a generating matrix of S. The rank
of A is called the rank of the fgas. If a matrix U ∈ GLn(Z),
then U ·A is also a generating matrix of S.

When the vectors ai are linearly independent, then the
set S is a lattice and the ai’s form a basis of the lattice.
If the ai’s are linearly dependent, but S can be written
as S =

∑d
i=1 Zbi for some linearly independent bi’s, then S

is also a lattice. In this case, the ai’s are not a basis of S
and dim(S) < n.

The situation that we are mostly interested in the present
work is when S is not a lattice. The simplest example may
be the fgas Z+αZ with α /∈ Q: it contains non-zero elements
that are arbitrarily close to 0, and thus cannot be a lattice.
More generally, an fgas can always be viewed as a finite sum
of lattices.

Fgas’s can also be viewed as orthogonal projections of lat-
tices onto vector subspaces. Let Λ =

∑
i Zbi ⊆ Rm be a

lattice and E ⊆ Rm be a vector subspace. The orthogo-
nal projection of Λ onto E, i.e., the set π(Λ, E) = {v1 ∈ E :
∃v2 ∈ E⊥,v1+v2 ∈ Λ}, is an fgas of Rm: it is spanned by the
projections of the bi’s. Conversely, given an fgas S with gen-
erating matrix A ∈ Rn×m, let Λ ⊆ Rn+m be the lattice gen-
erated by the rows of (In|A) and E = Span(In|0)⊥ ⊆ Rn+m.
Then S = π(Λ, E).

3.2 The Decomp and Intersect problems
Consider the topological closure S of an fgas S ⊆ Rm, i.e.,

the set of all limits of converging sequences of S (which is

hence a closed additive subgroup in Rm). By [9, Th. 1.1.2]
(see also [3, Chap. VII, Th. 2]), there exists a unique lat-
tice Λ ⊆ Rm and a unique vector subspace E ⊆ Rm such
that their direct sum is S, and the vector space Span(Λ)
spanned by Λ is orthogonal to E. We denote the latter de-
composition by S = Λ©⊥E. More explicitly, if rankS =
dim(Span(S)) = r ≤ m, then there exist 0 ≤ d ≤ r, (bi)i≤d

and (ei)i≤r−d in Rm such that:

• S =
∑

i≤d Zbi +
∑

i≤r−d Rei;

• the r vectors bi (i ≤ d) and ei (i ≤ r − d) are linearly
independent;

• for any i ≤ d and j ≤ r − d, we have 〈bi, ej〉 = 0.

Then (bi)i≤d and (ei)i≤r−d are bases of Λ and E, respec-
tively. We call Λ and E the lattice and vector space com-
ponents of S, respectively, and define the ΛE decomposition
of S as (Λ, E). The Decomp problem is the associated com-
putational task.

Definition 3.1. The Decomp problem is as follows: Given
as input a finite generating set of an fgas S, the goal is to
compute its ΛE decomposition, i.e., find bases for the lattice
and vector space components Λ and E.

The following result, at the core of the correctness analysis
of our decomposition algorithm of Section 5, reduces Decomp
to the task of obtaining an fgas generating set that contains
sufficiently many linear independencies.

Lemma 3.2. Let (ai)i≤n be a generating set of an fgas S
with ΛE decomposition S = Λ©⊥E. Define a′

j as the projec-
tion of aj orthogonally to Span(ai)i≤n−k, for n − k + 1 ≤
j ≤ n and some k < n, and assume the a′

j ’s are linearly
independent. Then a′

n−k+1, . . . ,a
′
n form a basis of a projec-

tion of Λ and E ⊆ Span(ai)i≤n−k. Further, if k = dimΛ,
then Λ =

∑
n−k+1≤i≤n Z · a′

i and E = Span(ai)i≤n−k.

The proof derives from the definition of the ΛE decompo-
sition. The vector space component E is the largest vector
subspace of Span(S) that is contained in S. This character-
isation of E implies that it is contained in Span(ai)i≤n−k.
Indeed, the projections a′

j are linearly independent and lead
to a discrete subgroup that must be orthogonal to E. By
unicity of the ΛE decomposition, the vectors a′

n−k+1, . . . ,a
′
n

form a basis of a projection of the lattice component Λ.
We now introduce another problem, Intersect, which

generalizes the integer relation finding problem.

Definition 3.3. The Intersect problem is as follows:
Given as inputs a basis of a lattice Λ and a basis of a vector
subspace E, the goal is to find a basis of the lattice Λ ∩ E.

Finding a non-zero integer relation corresponds to tak-
ing Λ = Zn and E = Span(x)⊥, and asking for one vector
in Λ∩E. In that case, Intersect aims at finding a descrip-
tion of all integer relations for x. When E is arbitrary but Λ
remains Zn, Intersect corresponds to the task of finding all
simultaneous integer relations. These special cases are con-
sidered in [7].

3.3 Relationship between the problems
The Decomp and Intersect problems turn out to be closely

related. To explain this relationship, we need the concept
of dual lattice of an fgas. The facts of this subsection are
adapted from basic techniques on lattices (see, e.g.,[4]).

151

Definition 3.4. The dual lattice Ŝ of an fgas S is de-
fined as Ŝ = {x ∈ Span(S) : ∀b ∈ S, 〈x, b〉 ∈ Z}.

We could equivalently define Ŝ as {x ∈ Span(S) : ∀b ∈
S, 〈x, b〉 ∈ Z}. Indeed, for all b ∈ S, there exists a converg-
ing sequence (bi)i in S such that bi → b as i → ∞. Thus,

for all x ∈ Ŝ, we have 〈x, b〉 = 〈x, limi bi〉 = limi〈x, bi〉 ∈ Z.
We will freely use both definitions.

Note further that if S is a lattice, then Ŝ is exactly the
dual lattice of S. Interestingly, Ŝ is always a lattice, even if
S is not a lattice.

Lemma 3.5. Let S be an fgas and Λ its lattice component.
Then Λ̂ = Ŝ.

Proof. Let S = Λ©⊥E be the ΛE decomposition of S.
Recall that for any x ∈ S, there exist unique xΛ ∈ Λ and
xE ∈ E such that x = xΛ + xE and 〈xΛ,xE〉 = 0.

We first prove that Λ̂ ⊆ Ŝ. For all x̂ ∈ Λ̂ and all x ∈ S,
we have 〈x̂,x〉 = 〈x̂,xΛ〉+〈x̂,xE〉 = 〈x̂,xΛ〉 ∈ Z, where the
second equality follows from the orthogonality between the
vector subspaces E and Span(Λ), and 〈x̂,xΛ〉 ∈ Z derives

from the definition of Λ̂.
Further, for all x̂ ∈ Ŝ and all x ∈ Λ ⊆ S, it follows

from the second definition of Ŝ that 〈x̂,x〉 ∈ Z, i.e., we

have x̂ ∈ Λ̂. This completes the proof.

From Lemma 3.5, we derive the following alternative def-
inition of the lattice component of an fgas.

Lemma 3.6. Let S be an fgas and Λ its lattice component.

Then Λ =
̂̂S .

Let Λ ⊆ Rm be a lattice and E ⊆ Rm a vector subspace. If

π(Λ̂, E) happens to be a lattice, then it is exactly Λ̂ ∩ E (see,

e.g., [9, Prop. 1.3.4]). However, in general, the fgas π(Λ̂, E)
may not be a lattice. Using Definition 3.4, we can prove the
following result, which plays a key role in the relationship
between Intersect and Decomp.

Lemma 3.7. For any lattice Λ ⊆ Rm and a vector sub-

space E ⊆ Rm, we have Λ ∩ E = ̂π(Λ̂, E).

Proof. Let b ∈ Λ ∩ E and y ∈ π(Λ̂, E). There exist

b̂ ∈ Λ̂ and y′ ∈ E⊥ such that b̂ = y + y′. Then

〈b,y〉 = 〈b, b̂〉 − 〈b,y′〉 = 〈b, b̂〉 ∈ Z.

Hence Λ ∩ E ⊆ ̂π(Λ̂, E).

Now, let b ∈ ̂π(Λ̂, E) . By definition, we have

b ∈ Span(π(Λ̂, E)) ⊆ E.

Moreover, for all b̂ ∈ Λ̂, using b̂ = π(b̂, E) + π(b̂, E⊥):

〈b, b̂〉 = 〈b,π(b̂, E)〉+ 〈b,π(b̂, E⊥)〉 = 〈b,π(b̂, E)〉 ∈ Z.

Hence b ∈ ̂̂
Λ = Λ. We obtain that b ∈ Λ ∩ E, which

completes the proof.

Reducing Decomp to Intersect. Suppose we are given
a generating set a1, · · · ,an ∈ Rm of an fgas S. Our goal
is to find the ΛE decomposition of S, using an oracle that

solves Intersect. It suffices to find a basis of the lattice

component Λ, which, by Lemma 3.6, satisfies Λ =
̂̂S .

Recall that we can construct a lattice Λ′ and a vector
space E such that (see the end of Section 3.1) S = π(Λ′, E).
From Lemma 3.7, the lattice component Λ of S is the dual
lattice of Λ̂′∩E. This means we can get a basis of Λ̂ by call-
ing the Intersect oracle on Λ̂′ and E, and then computing
the dual basis of the returned basis.

Reducing Intersect to Decomp. Assume we are given a
basis (bi)i of a lattice Λ ⊆ Rm and a basis (ei)i of a vector
subspace E ⊆ Rm. We aim at computing a basis of the
lattice Λ ∩ E, using an oracle that solves Decomp.

We first compute the dual basis (b̂i)i of (bi)i. Then we

compute the projections b̂′i = π(b̂i, E), for all i. Let S de-

note the fgas spanned by (b̂′i)i. We now use the Decomp
oracle on S to obtain a basis of the lattice component Λ′

of S. Then, by Lemma 3.7, the dual basis of the oracle
output is a basis of Λ ∩ E.

4. A NEW VIEW ON HJLS-PSLQ
We explain the principle of HJLS-PSLQ described in Sec-

tion 2, by using the results of Section 3. At a high level,
HJLS-PSLQ proceeds as in the Intersect to Decomp reduc-
tion from Section 3. The algorithm in Section 2 halts as
soon as a relation is found. Hence it only partially solves
Decomp, on the specific input under scope, and, as a result,
only partially solves Intersect. The full decomposition will
be studied in Section 5.

Step 1 revisited: Projection of Zn on Span(x)⊥. The

reduction from Intersect to Decomp starts by projecting Λ̂
onto E. In our case, we have Λ = Λ̂ = Zn (the lattice
under scope is self-dual) and E = Span(x)⊥. The start of
the reduction matches with the main component of Step 1,
which is the computation of the Q-factor Qx := (xT |Lx)

T

of (xT |In)T , considering x after normalization. Using that
QT

x ·Qx = In we now observe that Lx satisfies the following
equation

(
x
In

)
=

(
1
xT Lx

)
·
(

x
LT

x

)
.

By construction, the matrix Lx is lower trapezoidal. Indeed,
since the i-th row of Qx is orthogonal to the linear span of
the first i − 1 rows, and as this linear span contains the
first i − 2 unit vectors, the first i − 2 coordinates of this i-
th row of Qx are zero. Hence the equation above provides

the LQ decomposition of
(
xT |In

)T
. It is worth noticing the

unusual fact that Lx is involved in both the L-factor and the
Q-factor. Also, as a consequence of the equation above, we
have that the matrix πx = In − xTx = LxL

T
x corresponds

to the orthogonal projection that maps Rn to Span(x)⊥.
Therefore the rows of Lx are the coordinate vectors of the
rows of πx with respect to the normalized orthogonal basis
of Span(x)⊥ given by the n − 1 rows of LT

x . Overall, we
obtain that (0|Lx) · Qx is a generating matrix of the fgas
Sx = π(Zn, Span(x)⊥).

Step 2 revisited: A partial solution to Decomp. Since
(0|Lx) ·Qx is a generating matrix of the fgas Sx, the while
loop of HJLS-PSLQ only considers this fgas (in fact, HJLS-
PSLQ only works on Lx since its only requires U). In Sec-
tion 5, we will show that a generalization of the while loop
may be used to solve the Decomp problem. By Lemma 3.7,

152

finding a basis of the lattice component of Sx suffices to find
all integer relations of x: indeed, the dual basis is a basis
of the integer relation lattice. However, when HJLS-PSLQ
terminates, we may not have the full lattice component Λ′

of Sx. If the loop stops because ln−1,n−1 = 0, then we have
found a projection to a 1-dimensional subspace of a vector
belonging to the lattice component. In this sense, Step 2 of
HJLS-PSLQ partially solves Decomp on input Sx. It gets the
full solution only when dim(Zn ∩Span(x)⊥) = dim(Λ′) = 1.

Step 3 revisited: Getting back to Intersect. Sup-
pose HJLS-PSLQ exits the while loop because ln−1,n−1 = 0.
Because of the shape of L (see Lemma 3.2), it has found
a 1-dimensional projection of a non-zero basis vector of Λ′,
orthogonally to the first vectors of that basis of Λ′. This
vector is:

b := (0|ln−1,n−1) · diag(1, Q) ·Qx.

Its dual, when considered as a basis, is

b̂ = b/‖b‖2 = (0|l−1
n−1,n−1) · diag(1, Q) ·Qx.

As b̂ is a projection of a non-zero basis vector of Λ′, orthogo-
nally to the first vectors of that basis, we have that b̂ belongs
to Λ̂′ = Zn∩Span(x)⊥. Because of the specific shape of Qx,
we obtain

b̂ = (0|l−1
n−1,n−1) ·

(
1

Q

)
·
(

x
LT

x

)

= (0|l−1
n−1,n−1) ·

(
x

QLT
x

)
.

Now, as ULx = LQ, we obtain that b̂ = (0|l−1
n−1,n−1) ·

(xT |U−1L)T = (0|1)U−T . This explains why the relation
is embedded in the inverse of the transformation matrix.
Note that this is somewhat unexpected, and derives from
the uncommon similarity between Lx and Qx.

A numerical example. Consider the input (1,
√
2, 2). Af-

ter normalization, it becomes x = (1√
7
,
√

2√
7
, 2√

7
). At the

beginning, we have

Lx =





6√
42

0

−
√
2√
42

√
2√
3

− 2√
42

− 1√
3



 and Qx =





1√
7

√
2√
7

2√
7√

6√
42

−
√
2√
42

− 2√
42

0
√
2√
3

− 1√
3



 .

The matrix (0|Lx) · Qx is a generating matrix of the fgas
Sx = π(Zn, Span(x)⊥). After 5 loop iterations, HJLS-PSLQ
terminates. At that stage, we obtain

L =





15−10
√
2√

35
0

− 5(−41+29
√
2)√

35(−3+2
√
2)

0

41
√

2−58√
35(−3+2

√
2)

1√
5




,

U =





−2 −3 −4

5 7 10

−1 −2 −3



, Q =





−4+3
√
2√

30(3−2
√
2)

−
√
14√
15

√
14√
15

−24+17
√

2√
30(17−12

√
2)



.

Thanks to the shape of L, the ΛE decomposition Sx =
Λ©⊥E can be derived from (0|L). In this precise case,
HJLS-PSLQ discloses the full lattice component. Thanks
to Lemma 3.7, we have Λ = Λ̂x, and hence dim(Λ) =

dim(Λ̂x) = dim(Λx) = 1 (as x contains two rational entries
and one irrational entry). Using the matrix factorisation
above, we obtain

Λ = Z · (0, 0, 1/
√
5) · diag (1, Q) ·Qx = Z · (2/5, 0,−1/5)

and E = (0, 1, 0) · diag(1, Q) · Qx. By Lemma 3.7, we ob-

tain Z3 ∩ Span(x)⊥ = Λ̂ = Z · (2, 0,−1). Note that we
recovered the last column vector of U−1.

5. SOLVING DECOMP À LA HJLS
Let A ∈ Rn×m be a generating matrix of an fgas S and

S = Λ©⊥E be the ΛE decomposition of S with dim(Λ) = d.
In this section, we present and analyze an algorithm, named
Decomp_HJLS, for solving the Decomp problem.

Note that Decomp_HJLS requires as input the dimension d
of the lattice component. One might ask whether there ex-
ists an algorithm, based on the unit cost model over the
reals, solving the problem without knowing d before. This
is actually not the case: In [1], Babai, Just and Meyer auf
der Heide showed that, in this model, it is not possible to de-
cide whether there exists a relation for given input x ∈ Rn.
Computing the dimension of the lattice component of an
fgas would allow us to solve that decision problem.

5.1 The Decomp_HJLS algorithm
Decomp_HJLS, given as Algorithm 2, is a full fgas decompo-

sition. It is derived, thanks to the new algebraic view, from
the Simultaneous Relations Algorithm in [7, Sec. 5]. The
latter is a generalization of the Small Integer Relation Algo-
rithm of Section 2 which contains, as we have seen, a partial
decomposition algorithm. We keep using the PSLQ setting
and follow the lines of [11, Sec. 2.5]. In particular we adopt
a slight change, with respect to [7, Sec. 5], in the swapping
strategy. (The index κ′ we select, hereafter at Step 2c of
Algorithm 2, may differ from κ+ 1.) However, as for differ-
ences between HJLS and PSLQ we have seen in Section 2,
there is no impact on the asymptotic number of iterations.

We introduce the next definition to describe different stages
in the execution of the algorithm, using the shape of the cur-
rent L-factor L.

Definition 5.1. Let 0 ≤ ' ≤ r. If a lower trapezoidal
matrix L ∈ Rn×r can be written as

L =




M
F
G N



 ,

with F ∈ R(n−r)×(r−#), G ∈ R#×(r−#), and both N ∈ R#×#

and M ∈ R(r−#)×(r−#) are lower triangular with positive di-
agonal coefficients, then we say that L has shape Trap(').

Decomp_HJLS takes as input an fgas generating matrix. It
also requires the dimension of the lattice component (see
the end of Section 3.2). Without loss of generality, we may
assume that the initial L-factor L(0) has shape Trap(0) (this
is provided by Step 1a). The objective of Decomp_HJLS is to
apply unimodular transformations (namely, size-reductions
and swaps) to a current generating matrix L · Q of the
input fgas, in order to eventually obtain an L-factor that
has shape Trap(d), where d is the dimension of the lattice
component. These unimodular transformations are applied
through successive loop iterations (Step 2), that progres-
sively modify the shape of the current L-factor from Trap(0)

153

to Trap(1), . . ., and eventually to Trap(d). When the latter
event occurs, the algorithm exits the while loop and moves
on to Step 3: the lattice component can now be extracted
by taking the last d rows of L and cancelling their first r−d
columns, where r is the rank of L.

Algorithm 2 (Decomp HJLS).

Input: A generating matrix A = (aT
1 , · · · ,aT

n)
T ∈ Rn×m

of an fgas S with maxi≤m ‖ai‖2 ≤ X; a positive integer
d as the dimension of the lattice component Λ of S; a
parameter γ > 2/

√
3.

Output: A basis matrix of Λ.

1. (a) Compute r = rank(A). If d = r, then return
a1, · · · ,ar. Else, using row pivoting, ensure that
the first r rows of A are linearly independent.

(b) Compute the LQ decomposition A = L0 ·Q0.
(c) Set L := L0 and size-reduce it; set Q := Q0 and

' := 0.
2. While lr−d+1,r−d+1 .= 0 do

(a) Choose κ such that γκ · lκ,κ = maxk≤r−# γ
k · lk,k.

(b) If κ < r − ', then swap the κ-th and the (κ + 1)-
th rows of L; compute the LQ decomposition of L;
replace L by its L-factor and update Q.

(c) Else swap the κ-th and κ′-th rows of L, where
κ′ ≥ κ + 1 is the largest index such that |lκ′,κ| =
maxκ+1≤k≤n−# |lk,κ|. If lκ,κ = 0, set ' := '+ 1.

(d) Size-reduce L.
3. Return

(
0d×(r−d)|(li,j)i∈[n−d+1,n],j∈[r−d+1,r]

)
·Q.

In the remainder of this section, we let L(t) = (l(t)i,j) denote
the matrix L at the beginning of the t-th loop iteration of
Decomp_HJLS. We also let '(t) and κ(t) respectively denote
the values of ' and κ at the end of Step 2a of the t-th loop
iteration. We let τ denote the total number of loop iterations
and L(τ+1) and Q(τ+1) respectively denote the values of L
and Q at Step 3.

5.2 The correctness of Decomp_HJLS

Note that if κ(t) = r − '(t) and l(t)κ′(t),r−#(t) = 0, then

l(t+1)
r−#,r−# = 0. This is the only situation that transforms L
from shapes Trap(') to Trap(' + 1), i.e., that decrements
(resp. increments) the dimension of the triangular matrix M
(resp. N) from Definition 5.1. Indeed, LQ decompositions,
size-reductions and swaps of consecutive vectors of indices
κ < r − ' preserve the trapezoidal shape of L.

The two lemmas below give insight on the execution of
the algorithm. They will be useful especially for proving
that Decomp_HJLS terminates, and bounding the number of
iterations. On the one hand, the maximum of the diagonal
coefficients of the M -part of the current L-factor does not
increase during the successive loop iterations (Lemma 5.2).
On the other hand, because of the existence of the lattice
component, which is linearly independent from the vector
space component, these diagonal coefficients cannot decrease
arbitrarily while maintaining the dimension of M . As long
as the lattice component has not been fully discovered, this
maximummust remain larger than the first minimum of that
lattice (Lemma 5.3).

Lemma 5.2. For any t ∈ [1, τ], we have maxi l
(t+1)
i,i ≤

maxi l
(t)
i,i , where i ranges over [1, r− '(t+1)] and [1, r− '(t)]

respectively.

The proof is standard. The only li,i’s that may change
are those that correspond to the swapped vectors, and the
non-increase of the maximum of this or these li,i’s originates
from the choice of the swapping index.

Lemma 5.3. Let Λ be the lattice component of the input
fgas, and d = dim(Λ) ≥ 1. Then, for any t ∈ [1, τ], we have

λ1(Λ) ≤ max
i≤r−#(t)

l(t)i,i .

Proof. The matrix L(τ+1) has shape Trap(d), and
(
0r−d, l(τ+1)

n−d+1,r−d+1,0
d−1

)
·Q(τ+1)

belongs to Λ (by Lemma 3.2). As the matrix Q(τ+1) is or-

thogonal, it has norm l(τ+1)
n−d+1,r−d+1. We thus have λ1(Λ) ≤

l(τ+1)
n−d+1,r−d+1. Now, as τ is the last loop iteration, Step 2c
must have been considered at that loop iteration, with a
swap between rows κ(τ) = r − d+ 1 and n− d+ 1 of L(τ).
We thus obtain:

λ1(Λ) ≤ l(τ+1)
n−d+1,r−d+1 = l(τ)r−d+1,r−d+1

≤ max
i≤r−d+1

l(τ)i,i ≤ max
i≤r−#(t)

l(t)i,i .

The last inequality follows from Lemma 5.2.

We now prove the correctness of the Decomp_HJLS algo-
rithm, i.e., that it returns a basis of the lattice component
of the input fgas. We also prove that the returned lattice
basis is weakly-reduced (see Section 2), and hence that the
successive basis vectors are relatively short compared to the
successive lattice minima (by Equation (2.1)).

Theorem 5.4. If the Decomp_HJLS algorithm terminates
(which will follow from Theorem 5.6), then it is correct:
given a generating matrix of a rank r fgas S as input and
the dimension d of its lattice component, it returns a weakly-
reduced basis, with parameters γ and C = γr−d, of the lattice
component of S.

Proof. At the end of the while loop in Decomp_HJLS, the
L-factor L(τ+1) has shape Trap(d), where d = dim(Λ). As
we only apply unimodular operations to the row vectors,
the fgas Zn · L(τ+1) · Q(τ+1) matches the input fgas Zn ·
A. Let Λ′ = Zd ·

(
0d×(r−d)|(l(τ+1)

i,j)i∈[n−d+1,n],j∈[r−d+1,r]

)
·

Q(τ+1) denote the output of Decomp_HJLS. By Lemma 3.2,
the lattice Λ′ is exactly the lattice component Λ.

Let L′ ∈ Rd×d be the matrix corresponding to the bottom
right d rows and d columns of L. We now check that L′ is
size-reduced and satisfies the Schönhage conditions. Thanks
to the size-reductions of Steps 1c and 2d, the whole ma-
trix L(τ+1) is size-reduced. It remains to show that l′j,j ≤
γr−d+i · l′i,i for all 1 ≤ j < i ≤ d. For this purpose, we
consider two moments ti < tj during the execution of the al-
gorithm: the ti-th (resp. tj-th) loop iteration is the first one
such that L(t) has shape Trap(d−i+1) (resp. Trap(d−j+1)).
By construction of ti and tj , we have:

l′i,i = l(τ+1)
n−d+i,r−d+i = l(ti)n−d+i,r−d+i,

l′j,j = l(τ+1)
n−d+j,r−d+j = l

(tj)
n−d+j,r−d+j .

As ti and tj are chosen minimal, Step 2c was considered at
iterations ti−1 and tj−1. We thus have κ(ti−1) = r−d+ i

154

and κ(tj−1) = r−d+j. Thanks to the choice of κ at Step 2a,
we have (recall that '(ti − 1) = d− i and '(tj − 1) = d− j):

l′i,i = l(ti)n−d+i,r−d+i = γ−(r−d+i) · max
k≤r−d+i

γk · l(ti−1)
k,k ,

l′j,j = l
(tj)
n−d+i,r−d+i = γ−(r−d+j) · max

k≤r−d+j
γk · l(tj−1)

k,k .

Using Lemma 5.2 and the fact that ti < tj , we conclude
that:

l′j,j ≤ max
k≤r−d+j

l
(tj−1)
k,k ≤ max

k≤r−d+i
l(ti−1)
k,k

≤ max
k≤r−d+i

γk · l(ti−1)
k,k = γr−d+i · l′i,i,

which completes the proof.

Integer relation algorithms may not have any a priori in-
formation on the set of solutions. As mentioned previously,
under the exact real arithmetic model, it is impossible to
decide whether there exists an integer relation for a given
x ∈ Rn. Hence, as we have seen with HJLS-PSLQ, they
have been designed for only ruling out the existence of small
relations. Similarly, in our more general context, we can
rule out the existence of some large invariants in the lattice
component. If the target dimension is not known in advance,
then Decomp_HJLS may not return a basis of the lattice com-
ponent. However, if the input integer d is smaller than the
dimension d′ of the lattice component Λ, then Decomp_HJLS
returns a d-dimensional lattice that is a projection of Λ or-
thogonally to a sublattice of Λ and one can prove that:

λd′−d(Λ) ≤
√
2rγ2r · max

k≤r−d
l(τ+1)
k,k , (5.1)

where τ is the total number of iterations of Decomp_HJLS
with integer input d.

5.3 Speed of convergence of Decomp_HJLS

We adapt the convergence analyses from [7] to Decomp_HJLS.
We will use the following notations. For each iteration t ≥ 1,
we define

π(t)
j :=

{
l(t)j,j if l(t)j,j .= 0,

l(t)n−r+j,j if l(t)j,j = 0

and

Π(t) :=
r−1∏

i=1

i∏

j=1

max
(
π(t)
j , γ−r−1 · λ1(Λ)

)
.

The following result allows us to quantify progress during
the execution of the algorithm: at every loop iteration, the
potential function Π(t) decreases significantly.

Lemma 5.5. Let β = 1/
√

1/γ2 + 1/4 > 1. Then for any
loop iteration t ∈ [1, τ], we have Π(t) ≥ β ·Π(t+1). Further,

we also have Π(1) ≤ X
r(r−1)

2 with X = maxi≤n ‖ai‖ and

Π(τ + 1) ≥
(
γr+1

)− r(r−1)
2 · λ1(Λ)

r(r−1)
2 .

Proof. The proof of the first claim is similar to the
proofs of [7, Th. 3.2] and [6, Lem. 9]. We omit it here.
The upper bound on Π(1) follows from

γ−r−1 · λ1(Λ) ≤ λ1(Λ) ≤ max
i≤r

l(1)i,i ≤ max
i

‖ai‖ = X,

where the second inequality follows from Lemma 5.3 with t =
1. The last item follows from max(π(τ+1)

j , γ−r−1 · λ1(Λ)) ≥
γ−r−1 · λ1(Λ).

The following result directly follows from Lemma 5.5.

Theorem 5.6. The number of loop iterations consumed
by Decomp_HJLS is O(r3+r2 log X

λ1(Λ)). The number of arith-

metic operations consumed at each loop iteration is O(nm2).

6. USING LLL TO SOLVE DECOMP

In this section, we provide elements of analysis for a folk-
lore method to solve problems akin to Decomp using lattice
reduction, such as LLL.

Directly calling LLL on the input fgas generating matrix
does not work: it may launch an infinite loop and fail to
disclose the lattice component. For instance, consider

A =




1 0√
2 0
x 2



 ,

where x ∈ R is arbitrary. LLL keeps swapping (and size-
reducing) the first two rows forever, and fails to disclose the
lattice component Z · (0, 2). A crucial point here (see the
discussion in [7, Sec. 1-2]) is the fact that the swap strategy
is not global enough.

6.1 The Decomp_LLL algorithm
In Decomp_LLL, we lift the input fgas generating matrix

A ∈ Rn×m to a lattice basis Ac := (c−1In|A) ∈ Rn×(m+n),
where c > 0 is a parameter. LLL will be called on Ac. This
creates a unimodular matrix U such that U · Ac is LLL-
reduced. The output matrix U ·Ac is of the shape (c−1U |U ·
A), and hence the right hand side U ·A of the LLL output is
a generating matrix for the input fgas. The goal is to set c
sufficiently large so that in Ac there exists a gap between
those vectors corresponding the lattice component and those
vectors corresponding the vector space component. Ideally,
the first vectors of U ·A should be very small, because of the
LLL-reduction of U ·Ac: for a large c, the matrix U can get
quite large to decrease the right hand side of Ac. Oppositely,
by linear independence, the vectors belonging to the lattice
component of the input fgas cannot be shortened arbitrarily.
They will always lead to large vectors in the lattice spanned
by Ac, even for very large values of c. Overall, the key point
in Decomp_LLL is the choice of the parameter c.

Algorithm 3 (Decomp LLL).

Input: A generating matrix A = (aT
1 , · · · ,aT

n)
T ∈ Rn×m of

an fgas S; the dimension d of the lattice component Λ
of S; a parameter c > 0.

Output: Hopefully, a basis of Λ.

1. Define Ac := (c−1 · In|A).
2. Call LLL on input Ac; let A

′
c denote the output basis.

3. Let πm(A′
c) denote the submatrix of A′

c consisting in
the last m columns. Compute the LQ decomposition of
πm(A′

c) = L ·Q; define

L′ :=
(
0d×(r−d)|(li,j)i∈[n−d+1,n],j∈[r−d+1,r]

)

with r = rank(A); return L′ ·Q.

Theorem 6.1. Let c > 0 and Λc denote the lattice spanned

by the Ac matrix of Step 1. If 2
n−1
2 ·λn−d(Λc) < λ1(Λ), then

Algorithm 3 works correctly: it outputs a basis of the lat-
tice component of the input fgas. Further, for any input A,

155

there exists a threshold c0 > 0 such that 2
n−1
2 · λn−d(Λc) <

λ1(Λ) holds for any c > c0. Finally, Algorithm 3 con-
sumes O(n2 log(cX)) LLL swaps, where X = maxi ‖ai‖.

Proof. Since dim(Λ) = d, there is a unimodular ma-
trix U such that the L-factor of UA has shape Trap(d)
(see Definition 5.1) and the first n − d vectors of UA have
norms ≤ 2−nλ1(Λ). For example, we can use the while loop
in Decomp_HJLS to generate such a U that makes the M-
part small enough (using the notation from Definition 5.1).
Then, choosing c > maxi≤n−d(2

n‖ui‖/λ1(Λ)) implies that

λn−d(Λc) < 2
1−n
2 · λ1(Λ), where ui is the i-th row of U .

Write A′
c = (a′T

1 , · · · ,a′T
n)T . Since the basis a′

1, · · · ,a′
n

is LLL-reduced, it follows that

∀i ≤ n−d : ‖a′
i‖ ≤ 2(n−1)/2 ·λi(Λc) ≤ 2(n−1)/2 ·λn−d(Λc).

Hence the condition on c implies that ‖a′
i‖ < λ1(Λ) for

1 ≤ i ≤ n− d. Let πm(a′
i) denote the vector in Rm consist-

ing in keeping only the last m components of a′
i. Then for

i ≤ n−d, it follows that πm(a′
i) ∈ S and ‖πm(a′

i)‖ < λ1(Λ).
Thus πm(a′

i) ∈ E, where E is the vector space component
of S = Λ©⊥E. Since dim(Λ) = d, it follows from Lemma 3.2
that E = Spani≤n−d(πm(a′

i)), and that the output is ex-
actly a basis of the lattice component Λ. Recall that in the
classical LLL analysis for integral inputs, the number of it-
erations is at most O(n2 logK), where K is the maximum
of the norms of the input vectors. For Algorithm 3, we can
map the matrix Ac to c ·Ac, and then the new vectors have
norms less than cX.

In practice, the parameter c may need to be arbitrary large.
Consider the fgas generated by the rows of

A =




0 1

1/c0 1
3 0





with c0 a large irrational number. Its lattice component
is Z · (0, 1). If we choose 2 ≤ c ≤ c0 in Algorithm 3,
then after LLL reduction, the first two rows of the sub-
matrix UA of (c−1U |UA) will be (1/c0, 0) and (0, 1). In
this case, Decomp_LLL fails to disclose the lattice component,
which means that we should choose c > c0. Thus, when c0
tends to infinity, the required parameter c will be arbitrary
large, even for bounded input norms: Decomp_LLL may hide
singularities when appending the scaled identity matrix.

7. OPEN PROBLEMS
We restricted ourselves to describing and analyzing algo-

rithms with exact real arithmetic operations, and we did not
focus on lowering the cost bounds. A natural research direc-
tion is to analyze the numerical behavior of these algorithms
when using floating-point arithmetic and to bound their bit-
complexities. It has been experimentally observed (see, e.g.,
[5]) that the underlying QR-factorisation algorithm and the
choice of full size-reduction impact the numerical behavior.
However, to the best of our knowledge, there is no theoretical
study of those experimental observations, nor bit-complexity
analysis.

An intriguing aspect of HJLS-PSLQ is that it solves (a
variant of) Intersect via a reduction to Decomp and (par-
tially) solving Decomp. Designing a more direct approach for
Intersect is an interesting open problem.

Acknowledgments. We thank D. Dadush, G. Hanrot and
G. Lecerf for helpful discussions. We also thank the review-
ers for helpful comments, and for pointing out the result
of Babai et al. [1] on the impossibility of deciding whether
there exists an integer relation among real numbers. This
work was partly supported by the ANR HPAC project, the
CAS-CNRS Joint Doctoral Promotion Programme, NSFC
(11001040, 11171053) and NKBRPC (2011CB302400). Part
of this research was undertaken while the first author was
visiting École Normale Supérieure de Lyon, whose hospital-
ity is gratefully acknowledged.

8. REFERENCES
[1] L. Babai, B. Just, and F. Meyer auf der Heide. On the

limits of computations with the floor function. Inf.
Comput., 78(2):99–107, 1988.

[2] P. Borwein. Computational Excursions in Analysis
and Number Theory. Springer, New York, 2002.

[3] N. Bourbaki. Elements of Mathematics: General
Topology, Part II. Addison-Wesley, Massachusetts,
1967. A translation of Éléments de Mathématique :
Topologie Générale, Hermann, Paris, 1966.

[4] D. Dadush and O. Regev. Lattices, convexity and
algorithms: Dual lattices and lattice membership
problems, 2013. Notes of the second lecture of a course
taught at New York University. Available from
http://cs.nyu.edu/~dadush/.

[5] H. Ferguson and D. Bailey. A polynomial time,
numerically stable integer relation algorithm.
Technical Report RNR-91-032, SRC-TR-92-066, NAS
Applied Research Branch, NASA Ames Research
Center, July 1992.

[6] H. Ferguson, D. Bailey, and S. Arno. Analysis of
PSLQ, an integer relation finding algorithm. Math.
Comput., 68(225):351–369, 1999.

[7] J. H̊astad, B. Just, J. Lagarias, and C. Schnorr.
Polynomial time algorithms for finding integer
relations among real numbers. SIAM J. Comput.,
18(5):859–881, 1989. Preliminary version: Proceedings
of STACS’86, pp. 105–118, 1986.

[8] A. Lenstra, H. Lenstra, and L. Lovász. Factoring
polynomials with rational coefficients. Math. Ann.,
261(4):515–534, 1982.

[9] J. Martinet. Perfect Lattices in Euclidean Spaces.
Springer, Berlin, 2003.

[10] A. Meichsner. Integer Relation Algorithms and the
Recognition of Numerical Constants. Master’s thesis,
Simon Fraser University, 2001.

[11] A. Meichsner. The Integer Chebyshev Problem:
Computational Explorations. PhD thesis, Simon Fraser
University, 2009.

[12] M. Pohst. A modification of the LLL reduction
algorithm. J. Symb. Comput., 4(1):123–127, 1987.

[13] O. Regev. Lattices in Computer Science, 2004. Lecture
notes of a course taught at Tel Aviv University.
Available from http://www.cims.nyu.edu/~regev/.

[14] A. Schönhage. Factorization of univariate integer
polynomials by Diophantine approximation and an
improved basis reduction algorithm. In Proceedings of
ICALP, volume 172 of LNCS, pages 436–447.
Springer, 1984.

156

http://cs.nyu.edu/~dadush/
http://www.cims.nyu.edu/~regev/

	1 Introduction
	2 Reminders
	3 Decomp and Intersect
	3.1 FGAS of a euclidean space
	3.2 The Decomp and Intersect problems
	3.3 Relationship between the problems

	4 A new view on HJLS-PSLQ
	5 Solving Decomp à la HJLS
	5.1 The Decomp_HJLS algorithm
	5.2 The correctness of Decomp_HJLS
	5.3 Speed of convergence of Decomp_HJLS

	6 Using LLL to solve Decomp
	6.1 The Decomp_LLL algorithm

	7 Open problems
	8 References

