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Abstract

We describe a new algorithm for the compu-

tation of the Smith normal form of polynomial

matrices. This algorithm computes the normal

form and pre- and post-multipliers in determin-

istic polynomial time. Noticing that the com-

putation reduces to a linear algebra problem

over the field of the coefficients, we obtain a

good worst-case complexity bound,,

1 Introduction

This paper establishes that pm- and post-multipliers

for the Smith normal form of polynomial matrices can

be computed in deterministic polync)mial time. The

Smith normal form is generally defined over a principal

ideal domain, it is entirely computed within the domain

and consists in a diagonalization of the input matrix.

We will also deal with the Hermite normal form as an

intermediate form: the Hermite form is a triangular-

ization of the input matrix. Those normal forms are

well known from a theoretical point of view [7, 18] but

some problems remain to be solved when they have to

be computed.

In the case of matrices with integer entries, Frumkin,

Kannan and Bachem have shown [6, 14] that the Her-

mite and Smith forms can be computed in polyno-

mial time. The diagonalization is computed using re-

peated triangularizations of the matrix. Their bounds

on the number of digits of the integers appearing during

the calculations have been first improved by Chou and

Collins [3] changing the order in which the computa-

tions were done, and then by several authors using mod-

U1O determinant arithmetic [5, 19, 9, 1’2]. More recently,

asymptotically faster algorithms have been given in [8]
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and a rigourous study of modulo determinant methods

has been developed in [16].

These methods can also be applied for polynomial ma-

trices and bound the degrees of the polynomials in-

volved in the calculations, but they are not sufficient to

correctly bound the coefficients of those polynomials.

The related problems are similar to those encountered

when computing a polynomial greatest common divisor

using Euclid’s algorithm. A first direct polynomial time

method bringing a matrix into Hermite normal form

was given by Kannan [13]. And the first polynomial

time algorithm for the Smith normal form appeared in

[10]: but based on the Chinese remainder theorem, it

did not compute the multipliers (or equivalence trans-

forms) U and V such that if S is the Smith form of A,

UAV = S. The last breakthrough was done by [11]. In

this paper a Las Vegas probabilistic algorithm is given

for computing the Smith form. The authors have shown

that with high probability, the cost of the computation

of the Smith form is the cost of the computation of the

Hermite form. The Smith form and the multipliers can

be obtain in randomized polynomial time. As a con-

sequence, they have shown that there exist multipliers

for the form, whose entries are polynomially bounded

in the dimensions and coefficient lengths of the input

matrices. Their key idea is to “pre-condition” the input

matrix by multiplying it with a certain randomly cho-

sen constant matrix, say a “conditioning” matrix. The

Hermite form of this new randomized matrix has, with

high probability, the coefficients of the Smith form on

its diagonal. Unfortunately “good -conditionning” ma-

trices, i.e. directly leading to the Smith form without

repetition of Hermite, were characterized as not being

root of a polynomial of a large degree in many variables.

They were not computable in a deterministic manner.

We will show in section 3 that REDUCTION TO

SMITH 30RM over Q[a] (the normal form and mul-

tipliers) is in ~, where 7 is the class of sequential poly-

nomial time problems. We obtain the result by explic-

itly computing a good-conditionning matrix. We trian-

gularize the input matrix in such a way that at each
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step, the diagonal coefficient we obtain is exactly the

corresponding coefficient of the Smith form.

Furthermore, the idea we use can be combined with the

recent method of Labhalla, Lombardi and Marlin [15]

to obtain good complexity bounds. By viewing Hermite

aa a “big gcd”, the authors have developed an efficient

method based on generalized subresultants. They have

shown that the computation of the Hermite form over

Q[~] reduces to the triangularization of a big matrix

over Q . Using their idea we will show in section 4 that

the computation of the Smith form over Q[z] may also

be computed by triangularizing a big matrix over Q .

2

We

put

Previous results

will restrict ourselves to square non singular in-

matrices, but the approach could be generalized

with no great difficulties to rectangular and singular

matrices. In this section we recall some basic results

[7, 18] concerning the Hermite and Smith normal forms

of an input matrix A of dimension n whose entries are

polynomials of Q[x], and the main algorithms for their

computation. The degrees and the coefficient lengths

(log of the absolute values) of the entries of A are re-

spectively bounded by d and /3. A matrix of Q[z]n ‘n

is called unimodular if its determinant is a non zero

element of Q .

Hermite normal form. A non singular square ma-

trix H of Q[*]” ‘n is in Hermite normal form if it is

upper triangular, its diagonal entries are monic, in each

column the entries preceding the diagonal entry are of

lower degree,

(I) Every non singular matrix A of Q[z]nxn is left

equ~v~lent to a Un@e rnatr~z H which is in He~i~e
normal form: UA = H, U unimodular.

(II) Let h; denote the greatest common divisor of all

the i x i minors formed with the jirst i columns of A;

the diagonal entries of the Hermite normalform H of A

are hl,l = hj,l and h~,$ = h~,i/h~_l,i_l J i = 2, . . .,n.

Smith normal form. A non singular square matrix
S of Q[z]~’~ is in Smith normal form if it is diagonal,
its diagonal entries are monic, each divides the next.
(III) Every non singular matrtx A of Q[x]nxn is

equivalent to a unique matrix S which is in Smith nor-

mal form: UAV = S, U and V unimodular.

(IV) Let s; denote the greatest common divisor of all

the i x i minors of A; the diagonal entries of the Smith

normal form S of A are S1 = s! and si = S~/s~_l,

i=2 >. ... n.

2.1 Kannan’s algorithm for Hermite.

The Kannan’s algorithm [13] is an elimination process

to compute the Hermite normal form. It works in n – 1

steps, after step i the (i + 1) x (i + 1) principal minor

is in Hermite form, and the matrix is denoted by Ati).

Algorithm KHNF
Input: At”) := A, n x n matrix.

forifromlton–1

Put the (z’ + 1) x (i+ 1) principal minor in upper

triangular form.

Reduce off-diagonal entries of the (i+ 1) x (i+ 1)

principal minor.

Output: H := A(n-l). ■

At step i unimodular row operations are performed

on the first i + 1 rows only. The entries Ai+l,j, j =

1 ,. ... i, become zero by left multiplying by the Bezout’s

matrices:

(

P !l

)–Ai+l,j/r Aj,j/r ‘

with r = gcd(Aj,j , 4+l,j), and r = PAj,j + qAi+l,j.

Then it is easy to perform unimodular row operations

so that each off-diagonal entry haa degree strictly lower

than that of the diagonal entry in its column.

Theorem 1 ([13]) Algorithm KHNF jinds the Her-

mite normal form (and the multiplier) of a square non

singular matrix over Q[x] in polynomial time.

A different polynomial time algorithm for comput-

ing the Hermite form can be found in [10]. From the

unicit y of the form, one can also deduce that the mul-

tiplier is unique: U = HA-1. It is possible to build

from A, in a polynomial number of operations, a linear

system over Q whose unique solution is (H, U). This

method has been developed from a parallel point of

view and seems to be costly in sequential. We will use

instead, the next result.

2.2 Subresultants for Hermite

We present in this section the method of Labhalla,

Lombardi and Marlin [15]. As in [10], they reduce the

Hermite form computation over Q[z] to a linear system

solution over Q , but they avoid the cost of finding the

appropriate system. The main idea of the method is

to generalize the use of the Sylvester matrix and of the

subresultants for the computation of polynomial gcd to

the computation of the Hermite form. Indeed, we know

from [17] that if the Sylvester matrix is triangularized

by row operations only, then the last non zero row gives

the coefficients of the polynomial gtd.
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The method first consists in associating to the input

matrix A a matrix A(JJ with entries in Q, where 6 is a

bound on the degrees of the entries of the multiplier U

(UA = H). A(d) plays the role of the Sylvester matrix.

If d is a bound on the degrees of the entries of A, we can

take 6 = (n – l)d. Then the Hermite form is obtained

by triangularizing A($).

Let cl, ..., en the canonical bssis of the module

Q[z]n. It provides a natural basis of the Q-vector space

formed by the elements of Q[z]n whose entries have de-

grees less than d +6:

B(5) =(zd+Jel, . . ..e~. zd+6en,6,e n). .,en).

Let Li be the row-vectors of A. A($) is the n(6 + 1) x

n(d+ 6 + 1) matrix with entries in Q whose row-vectors

are the

:;t::;”;n’t;~;~:6;;;” “ “ “ ~~d-’~n, . . . . L,, . . . . ~n]. .

Theorem 2 ([15]) ‘The row-vectors of -the Herrnite

normal form of A (written in the base B(6)) are com-

puted by a triangulari.zation of A(t) using row opera-

tions only, followed by the reduction of the o~-diagonal

entries by row operations.

In section 4 below we extend this theorem, and per-

form a triangularization with column operations for the

computation of the Smith form.

2.3 Randomized algorithm. for Smith.

The usual method to compute the Smith normal form

consists in iterating Hermite normal form computations

on the matrix and on its transpose [14]. The number of

iterations is theoretical y bounded aa 0(n3) although

in practice two iterations suffice. The randomized al-

gorithm of [11] consists in pre-conditionning the input

matrix A by multiplying it by a randomly chosen con-

stant matrix. With high probability, the diagonal en-

tries of the Hermite form, say H’, of this new matrix

are the entries of the Smith form. Ccmsequently ([1 1],

lemma 3.4), a second application of Hermite, on the

transpose of H’, gives the Smith form~ of A.

Algorithm RSNF
Input: A, n x n matrix.

C := unit lower triangular matrix whose entries

are chosen at random in Q .

A’ := AC.

Al := Hermite normal form of A’.

A2 := Hermite normal form of ‘Al.

Output: A2 if it is diagonal or Failed. ■

In fact, the entries of C can be chosen in a subset

of Q whose construction is detailed in [11].

Theorem 3 ([11]) Let A be a matrix of Q[z]”x” of

dimension n with the degrees of the entries bounded by

d. There is a polynomial r in n(n – 1)/2 variables of

degree O(n3d) such that if C does not form a root of r,

then the algorithm RSNF computes the Smith normal

form and multipliers in polynomial time.

The polynomial time complexity is the simple con-

sequence of the two previous theorems on Hermite.

This theorem does not provide a way to compute good

pre-conditionning matrices (that do not form a root of

7r) . In sections 3 and 4 below we will show how to

compute such matrices and consequently we will give

a deterministic polynomial time algorithm to compute

the Smith form.

Remark 1 Let us refer to the characterizations (II)

and (IV) of the diagonal entm’es of the Hermite and the

Smith form. The diagonal entries of the Hermite form

of A are the entries of the Smith form if and only if

for all i, the gcd of the i x i minors formed with the i

first columns of A is equal to the gcd of all i x i minors

of A.

3 A new method for Smith

We have seen that the algorithms computing the Her-

mite form perform only row operations. The main stage

of the method we propose for the Smith form also con-

sists in computing a triangular form, but doing some

simple column operations to ensure that the diagonal

entries that are computed are those of the Smith form.

We give the main idea of the method in this section, a

corresponding algorithm, bssed on the generalized sub-

result ants, is studied in next section. Notice that it

suffices to focus on the triangular form: as seen pre-

viously, the Smith form is then directly obtained by

reducing the off-diagonal entries by column operations

([11], lemma 3.4).

Definition 1 Let B be an n x n non singular ma-

triz. A good conditioning of B is a (n – 1)-uple

(az,~s, . . . . an) of Qn–l such that: if the first column

of B is replaced by the linear combination of the other

columns given by

B{ :=Bl+~zBz+~sBs+...+~~B~,

then

gcd~<~<n(B&~) = gcd,~~,,~n(B~,r)
The gcd of the–e~tries of the first column of B is now

equal to the gcd of all the entn”es in B.

The triangular form with the “good diagonal en-

tries is computed by an elimination process in n – 1
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steps. After step i, in each column j, j s i, the entries

under the diagonal entry are zero. The diagonal entries

by [~lAG(sl ,..., sj); x(~+l)]. The conclusion will

then come immediately: the latter form obtained from

in the i first rows are the sj, j ~ i, the diagonal entries A(n- 1) is the Smith form, since it is computed by unit
of the Smith form:

S1 *** * *

o.** “.
* *

o . . . s; * * *

o . . . 0
0 . . . 0 J(t+l)

o . . . 0

Let A!) be the j-th column-vector of A(i), and let

z(i+l)’ denote the submatrix formed by the n – i last

rows and columns of A(i). We compute the triangular

matrix A(n - 1) as follows:

Algorithm Q[~]-TSNF (Triangular Smith form)

Input: A(o) := A, n x n non singular matrix.

forifromlton–1

Compute a good conditioning of A(i):

(aj+l,..., ~f)) ~ Qn-i.

A(i) .– A(i-l) + LYf~lAf~;l) + . ..+ rx$)Af-l)..—

[~OW gcd;<~<n(A$~) = gc@@$F?-1
Zero the s~b~diagonal entries m column i using

unimodular t ransformat ions on the last i rows.

Reduce the upper-diagonal entries in column i by

row operations.

Output : A~n - l). ■

Provided that a good conditioning can always be

found, we prove with the proposition below that this

algorithm is correct, i.e. that it computes the “trian-

gular Smith form”. Then we will show how to compute

such good t ransformat ions.

Proposition 1 For a non singular square input matrix

A of Q[z]”x” , algorithm Q[x]-TSNF computes, by uni-

modular transformations, a triangular matrix T whose

diagonal entries are the entries of the Smith form of A.

Furthermore, T is in Hermite normal form.

Proof. Clearly, the transformations are unimodular.

We prove by induction that at each step i, unit upper

triangular operations on the columns of A(z) suffice to

bring A(i) into the form:

[i”$~ ‘1

non zero entries are in diagonal positions or in the

last i rows and columns. Let this form be denoted

upper triangular operations on the columns, the two

matrices have the same diagonal entries.

At step i = 1, algorithm Q[z]-TSNF computes

AP? = gcdlc~t~(A~/ ). Indeed, when the sub-diagonal--,
en&ies are zeroed in column i using unimodular trans-

formations on the last i rows, the diagonal entry is

replaced by the gcd of the entries of the column.

Now, from ~$e ~finition of a good conditioning,

gcdl~~<n(A~,l) – gcd15k,l<n(Ak,i) = S1. Conse-

quently, the off-diagonal entries in the first row are mul-

tiples of Sl,l and can be zeroed by unit upper triangular

operations.

We proceed by induction for 1 < i < n. In

the same way, at step i, algorithm Q[z]-TSNF com-

putes A\~j = gcdi<~<n(A$~). Since a good condi-

tionning has been used (Afi) is not singular), A\~j =

gcdi<k,l<n (A$,~ 1)). Then, by induction for the rows k,

k < i, &d by subtracting multiples of the diagonal

entry for the row i, A(i) can be brought into the form

[DIAG(sI, . . . . si-l, A$~); A(i+l)]. From the definition,

S1S2 . . . si_l divides all’(i – 1) x (i – 1) minors and by

construction, A\i) divides all the entries of ~(i+l). Now,

all minors but the principal one can be computed from

entries of ~(i+l) and from (i – 1) x (z’ – 1) minors: they
(i) (i)

are multiple of S1S2 . . .si_l Ai<i. Since SIS2 . . .Si_l Ai ~

is a minor, it is the gcd of all i x i minors, and A\y/ = Si.

The last assertion of the proposition comes from the

reduction of the upper-diagonal entries at each step. ❑

We now turn to the good conditionnings. We give

below an algorithm to compute them, the associated

proposition shows that it runs in polynomial time.

Before, let us partly re-formulate a lemma of [11].

This lemma gives a construction for a good condition-

ing in the case of a n x 2 matrix.

Lemma 1 Let B be a n x 2 matrix of rank 2 in Q[z]

with the degree of the entries bounded by d. There exists

a “test polynomial” r in Q[a], of degree at most 2d,

such that for any cr2 that is not a root of m,

gcdl<i<n(Bi,l + @2Bi,2) = gcdl~i<n(%l, %2)
In other %;rds, a2 is a good conditioning for B.

Proof. B is a matrix in Q[z]n x 2 of rank 2. Applying

lemma 3.7 in [11], we know that there is a polynomial

r in Q[a], of degree at most 2d, such that if

- R in Q[z]2X 2 is unit lower triangular,

- H is the row equivalent echelon form of BR,

- S1 is the first determinantal divisor of A,
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then sl = H1,l unless the entry below the diagonal in

R is a root of T. Clearly, n is the desired polynomial:

,.=(::)(::)

(

B2,1 + a’2B2,2 l?2:2.
. . . .,, .

Bn,I + CY2B73,2 BW,2 )}
since H is obtained from BR by unimodular row oper-

ations,

H1,l = gcdl<i<n(Bi,l + ~~Bi,z),

and by definition, the- first determinantal divi-

sor of B is the gcd of all the entries of B:

S1 = gcdl<~<~(Bi,l, Bi,2),

the assertion of the lemm-a% simply the previously ob-

tained identity S1 = H1,l. •1

For a square input matrix B of dimension n, the

algorithm computes a good conditioning in n – 1 steps.

Let Bl be the l-th column-vector of B. At step j only

B1 and Bj are involved, throughout the algorithm only

B1 is modified.

Algorithm GC (Good conditioning)

Input: B, n x n non singular matrix.

for j from 2 to n

g(~) := gcdl<i<n(Bi,l, Bi,j)

U(Z) := gcd12izn(Bi,l)--
&j := O

while j(x) # g(z)

~j :=~j+l

B1 := B1 + Bj

@(z) := gcdl<i<n(Bi,l)

output: (a2, a3, . . . . cq ■

Proposition 2 For a non singular square matrix B

in Q[z]nxn (n > 1) with the degree of the entries

bounded by d, algorithm GC jinds a good condition-

ing (az, cw, . . . . an) that ven”jies tall < 2d for all i.

In the worst case, O(nd) greatest common divisors of

n polynomials have to be computed: the number of op-

erations is polynomial bounded in the dimension and

length of B.

Proof. Algorithm GC consists in applying the lemma

iteratively with the first and the n — 1 other columns

of B. We begin to show that the algorithm terminates

after O(nd) passing through the while loop. The lemma

may be applied: since the matrix is non singular, the

first column associated with another column j forms

a n x 2 matrix of rank 2. From the lemma, we may

sssociate to each column j a test polynomial of degree

at most 2d: with at most 2d + 1 roots. Each time the

algorithm pass through the while loop a new value of

al is tested, starting form the value O. Consequently,

after at most 2d + 1 tests, the treatment of column

j is finished. With j varying from 2 to n we obtain

that the algorithm pass through the while loop at most

(n – l)(2d + 1) times.

Now we show that a good conditioning is com-

puted. Recall that only B1 is modified. The column-
(j)vector B1 during step j will be denoted by B1 and

‘~) We have the relation: B~~ =its entries by Bi ~ .

B~l-l) + ~j-lB~,j–l. At the end of step j = 2, CY2

ve;ifies,

gcd~<i<n(B\~/) = gcdi(Bi,l + ~zBi,z)

= gcdi(Bi,l, Bi,z).

We proceed by induction for 2< j ~ n. At the end of

step j, ~j is computed such that,

gcdl~i<.(B$?) = gcdi(B$~’) + ~jBi,j)

‘j-1)7 ‘i,j).= gcdi(Bi,l

Now, from step j – 1 we know that,

gcd~<i<n(B~{l)) = gcd$(B~~2) + ~j-~Bi,j-~)— —
o-a fJ, ~),= gcdi(.Bi,l , “,. -

with the previous identity, this gives,

gcdi(B~/) !~-z) + ~j-lBi,j-l +~jBi,j)= gcdi (B, ~

0-2), Bij_l, Bi,j).= gcdi(Bi,l

Applying the same reasoning fr~m j – 2 to j = 2 finally

leads to the expected result,

gcdi(B~/) = gcdi(.Bi,l + &zBi,z + . ..+ ~jB~,j)

= gcdi(Bi,l, Bi,2, . . ., Bi,j).

From there, the cost of the whole process is easily

shown to be polynomial in the dimension of B and

the lengths of its entries. The greatest common di-

visors are computed on polynomials that remain of de-

gree d. As for the coefficient lengths of those latter

polynomials, we have seen that only the first column-

vector is modified. Assuming the lengths of the coeffi-

cients of the Bi,j are bounded by /3, and noticing that

Bfi) = Bi,l + ~zBi,z + . . . + ~jBi,j and l~jl s 2d, we

get that all the coefficients of the B~~, for any i and j,

have their lengths bounded as f? + log(nd). ❑

Remark 2 Algorithm TSNF associates to A a matrix

C in Q[z]nxn,

(

o 0
j]) ~ “o” ““” o. . . )

such that the diagonal entries of the Hermi~e form of

A’ = AC are the diagonal entries of the Smith form

of A. Furthermore, from the remark at the end of the

previous section, we know that for all i, the gcd of the

i x i minors formed with the i jirst columns of A’ is equal
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to the gcd of all i x i minors of A’, and consequently,

of A.

In conclusion, proposition 2 establishes that for a

given matrix, a good conditioning can be computed in

polynomial time. This is clearly not sufficient to prove

that algorithm TSNF itself is polynomial. This latter

result could certainly be obtained by reasoning as Kan-

nan did in [13]: by performing a direct elimination in

Q[z]. We prefer to combine the results of this section

with the use of generalized subresultants that we have

presented in section 2.2. This will lead to more satisfy-

ing complexity bounds.

4 Subresultants for Smith

To reduce a problem over Q[z] to a problem over Q

is of main interest both from a theoretical and from a

practical point of view. We have seen how this can be

done for the computation of the Hermite form at sec-

tion 2.2. The problem of limiting the coefficient growth

when computing gcd over Q [z] is solved: the normal

form is computed by a Gaussian elimination process.

Furthermore linear algebra over Q leads to much sim-

ple bounds both for the coefficients and for the global

complexity [1, 2]. All the results we will use about the

Hermite normal form come from [15].

In this section we show that computing the Smith

form also reduces to a triangularization over Q : it con-

sists in working in a Q-vector space. Indeed, the algo-

rithm of section 2.2 can be extended to compute the

Smith form: it suffices to introduce some block-column

operations that correspond to good conditionnings, As

previously, without loss of generality, we focus on the

computation of a triangular matrix which haa the same

diagonal entries as the Smith form.

First of all, we have to determine the dimension of

the Q-vector space we need. In other words, we have to

find the dimension of the big matrix that we associate

to the input matrix A. This dimension is given by the

following lemma: we show that proposition 4 of [15] can

be used for Smith. We keep the same notations than in

section 2.2. In particular, the vectors of Q[x]n whose

entries have degrees less than a fixed degree, will be

also viewed as belonging to a Q-vector space. Let C be

the constant matrix constructed by algorithm TNSF,

and let L; be the row-vectors of A’ = AC. We call

“triangular Smith form” of A our target matrix: the

Hermite form of A’.

Lemma 2 If 6 = (n – l)d, where d is a bound on the

degrees of the entries of A, the vectors xjL~, 1 ~ j ~ 6,

generate a Q-vector space that contains the row-vectors

of the “triangular Smith form” of A.

Proof. Let U be the multiplier for the Hermite form T

of A’: UA’ = UAC = T, T is the output of algorithm

TNSF, the “triangular Smith form”. Let A’* be the

adjoint matrix of A’, we have, det(A’)U = A’*T. For

any matrix M, we denote by deg(M) the maximum

degree of the entries of M. The previous identity gives:

deg(U) s deg(A’*) + deg(T) – deg(det(A’)),

since

deg(’T) ~ deg(det(A)) = deg(det(A’))

and

deg(A’*) ~ (n – l)d

we get,

deg(U) ~ (n – l)d = 6,

and the assertion of the lemma follows. ❑

By applying the lemma, we know that it is sufficient

to work in the Q-vector space formed by the elements

of Q[z]” whose entries have degrees less than d + 6. As

in section 2.2 we use the canonical basis

B(6J = (xd+8e~, . . ..el. &+6en,6,en). .,en).

Let Li be the row-vectors of A. To the matrix A we

associate the matrix A(6J whose row-vectors are the

[Z6L1,..., Z6Ln,21L1,1, Z6.1Ln,1,L1,.., L1,..., Ln]

written in the base B(6). We know that the Hermite

form of A is obtained by triangularizing A(a).

Remark 3 Each block of (d + 6 + 1) consecu-

tive columns in A(6) stands for a column-vector in

Q[z]n(6+1). A(d) consists in n consecutive blocks of

(d + ~ + 1) columns. For instance adding cr times

a block Bckj to a block Bcki consists in adding, for

a/i k, 1 ~ k < (d + 8 + 1), a times the k-th col-

umn of Bckj to the k-th column of Bcki. Reciprocally,

to each block-column one may associate in a natural

way a vector of Q[z]n(6+1J (’the entries of the matrzk

give the coefficients of the polynomials), a block-column

operation therefore corresponds to the same operation

in Q[z]ntJ+l).

In this new framework, we rewrite here the algo-

rithm TSNF: we compute a triangularization of A(6) in

n – 1 steps by an usual Gaussian elimination [1]. Those

n — 1 steps correspond to a block-triangularization: at

step i the sub-matrix consisting in the i first block-

columns is in row echelon form.

At each step i a good conditioning is computed;

the associated operations that were column operations

over Q [z] are now block-column operations over Q ap-

plied on A(6i-1) to obtain A($’i). In the following,

let A$5’i) be the j-th block-column of A(6’i). And let

~{~,~~11 denote the submatrix formed by the n – i last
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rows and n – i last block-columns of A~AIiJ.

Algorithm Q-TSNF (Triangular Smith form)

Input: Atd’o) := A(J).

[The n -1 steps of the Gaussian block-elimination.]

forifromlton–1

Compute a good conditionnin.g of ,Z(81ij:

[Usual operations of Gaussian elimination over Q ]

[Zero the sub-diag. entries in block-column A\&)’)]

fork from(i– l)(d+6+ l)+ltoi(d+6+ 1)

Elimination of the sub-diag. entries in CO1. k.

Reduce the polynomials represented by the upper-

diagonal entries by row operations.

Output: T(6) := A(@-l). 8

The proposition and the theorem below lead to our

main result, they establish that algorithm Q-TNSF out-

puts the good form and that the Smith form is com-

puted in polynomial time. At first let us look at the

behaviour of the algorithm on a very basic example.

Example. Let

A=
(

x—1 3x+2

x—1 )2x+3 “

Taking ii = 1 (the entries of U are of degree 1), ,

/1-10320\

IA(6)=:~lo230 I-1032’

fo 1 –1023)

Rows 2 and 4 of the triangularization of A(6) without

column operations would lead to the Hermite form of A:

(

1

_, J+i’xQ

–10320

01–100

000–11

0000

This is not the Smith form. But if we jirst add the

second block of three columns (6 = 1, d = 1) to the first

block (’thus taking CYz= 1),

(i:iiii)+(i:i:-fi,i,)
rows 3 and 4 of the triangularization of the new matrix

give

(

1 6/5 – ;

o )Z2–2Z+1 ‘

this would lead to the Smith normal form. ■

Proposition 3 For a non singular input square matrix

A of Q[x]nxn, the algorithm Q-TSNF computes, in a

polynomial number of operations, a triangular matrix

T whose diagona[ entries are the entries of the Smith

form of A, and two matrices U unimodular in Q[x]nxn

and C non singular in Q ““ such that UAC = T.

Proof. Let A be number of columns in each block-

column of A(b): A = d + 6 + 1. We know that the

triangularization lYt6) of A(d) with only row operations

gives the Hermite normal form: for each block 17\6)

of A columns of H(6), let & be the set of the indices

of the rows whose first iA entries are not identically

zero, and let ki be the maximum in J2i. Then, the ki-th

row-vector of H(6) is exactly the i-th row-vector of the

Hermite form of A, written in the base f3(6) [15].

We now turn to the Smith normal form. By exten-

sion of definition 1 at previous section we define a good

conditioning of A(61;). In a natural way (remark 3)

we associate to ~(~’i) that is written in the base l?(~), a

matrix ~(i) over Q[z]. A good conditioning for ~(6~i)

is defined to be a good conditioning for ~(i), with the

associated block-column operations.

We look at what happen at the first step i = 1 of

the algorithm. The proposition is obtained by apply-

ing the same reasoning to all steps i, 1 < i < n. At

any time during the first step, to each block-column we

associate a vector in Q[x]n(6+1) (remark 3). The Gaus-

sian elimination on the first A columns computes the

gcd of the polynomial entries in the first column-vector

in Q[~]n(6+l). Since a block-column operations stands

exactly for the same operation over Q[z]n(6+1), once

applied the good conditioning, the Gaussian elimina-

tion on the first A columns computes the gcd of all the

polynomial entries of the matrix over Q[x]. In the same

way, at each step i, the Gaussian elimination on the first

A columns of ~(6>i) computes the gcd of all the polyno-

mial entries of ~(i). Finally, we know from the proof of

algorithm Q[z]-TSNF, that those gcd are the diagonal

entries of the Smith form. When the triangularization

is completed, the triangular Smith form is deduced ss

above by considering the sets Li of the indices of the

rows whose first iA entries are not identical y zero.

Concerning the multipliers U and C such that

UAC = T: U is computed using a bordering identity

matrix and we have seen that the entries of C are the

good conditionnings (remark 2).

It remains to see that the triangular form is ob-

t ained in polynomial time. The number of operations

on polynomials is bounded by the Gaussian elimination

and by proposition 2. Indeed, from lemma 2 the degrees

are implicitly bounded by A – 1, so each step i com-

putes at most (n – i)(A – 1) gcd ((n – i) block-columns

are involved) of at most (n – i + 1)(6 + 1) polynomials

(number of rows of A(’i)). As for the coefficients, let

us look at what happens to the i-th block-column. It

is modified only by the Gaussian elimination process
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before step i, and it remains unchanged after step i.

During step i, the algorithm performs

A($$) := A(d,i) + ~@A\&) + .>. + ~:)A~d$-l),
$ i {

From proposition 2, since gcd of at most n(ti + 1) po~j

nomials of degrees at most A are computed, the ~j

are bounded in absolute value by 2A. This is just an

addition of a term in O(log nA) = O(log nd) to the

coefficient lengths. •1

Remark 4 During the search of the good condition-

ing, the polynomial gcds can also be computed us-

ing the Gaussian elimination process: independently on

each block-column.

Theorem 4 Computing the Smith normal form and

multipliers over Q[x], say 7?EDUCTION ‘TO

SMITH FORM over Q[x], is in P. Indeed, the Smith

form of a matrix of dimension n in Q[x]nxn is com-

puted by triangularizing a matrix of dimension 0(n2d)

in Qnxn, then by reducing the upper diagonal entries.

Proof. This result is a direct consequence of the previ-

ous proposition. With no difficulty, the Smith form is

computed in polynomial time from the triangular Smith

form by reducing the upper diagonal entries using col-

umn operations. ❑

Corollary 1 The coefficients appearing during algo-

rithm Q- TSNF for computing the Smith normal form

are of the same magnitude than during the computation

of the Hermite normal form. The cost for Smith is the

cost for Hermite plus the cost of computing 0(n2d) gcds

of 0(n2d) polynomials.

5 Conclusion

We have proven that computing the Smith normal form

and multipliers can be done in polynomial time. Our

algorithm leads to good sequential complexity bounds

in the worst-case, but may be of low practical interest:

matrices may be very far from the worst-case and the

probabilistic algorithm of [11] gives very good results.

From another point of view, we can hope that further

studies will lead to another complexity result (see [4]

for the definitions of parallel complexity classes): from

a parallel computation point of view, 7ZEDUCTION

TO SMITH FORM is not known to be in the class

NC’ but only in 7? NC.

Acknowledgment. I am grateful to referee 1 for his

useful correction of lemma 1.
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